bfd/
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 int
372 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
373 {
374 int inner;
375 if (!l.stack_addr_p || !r.stack_addr_p)
376 /* Like NaN, any operation involving an invalid ID always fails. */
377 inner = 0;
378 else
379 /* Only return non-zero when strictly inner than. Note that, per
380 comment in "frame.h", there is some fuzz here. Frameless
381 functions are not strictly inner than (same .stack but
382 different .code and/or .special address). */
383 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
384 if (frame_debug)
385 {
386 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
387 fprint_frame_id (gdb_stdlog, l);
388 fprintf_unfiltered (gdb_stdlog, ",r=");
389 fprint_frame_id (gdb_stdlog, r);
390 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
391 }
392 return inner;
393 }
394
395 struct frame_info *
396 frame_find_by_id (struct frame_id id)
397 {
398 struct frame_info *frame;
399
400 /* ZERO denotes the null frame, let the caller decide what to do
401 about it. Should it instead return get_current_frame()? */
402 if (!frame_id_p (id))
403 return NULL;
404
405 for (frame = get_current_frame ();
406 frame != NULL;
407 frame = get_prev_frame (frame))
408 {
409 struct frame_id this = get_frame_id (frame);
410 if (frame_id_eq (id, this))
411 /* An exact match. */
412 return frame;
413 if (frame_id_inner (get_frame_arch (frame), id, this))
414 /* Gone to far. */
415 return NULL;
416 /* Either we're not yet gone far enough out along the frame
417 chain (inner(this,id)), or we're comparing frameless functions
418 (same .base, different .func, no test available). Struggle
419 on until we've definitly gone to far. */
420 }
421 return NULL;
422 }
423
424 CORE_ADDR
425 frame_pc_unwind (struct frame_info *this_frame)
426 {
427 if (!this_frame->prev_pc.p)
428 {
429 CORE_ADDR pc;
430 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
431 {
432 /* The right way. The `pure' way. The one true way. This
433 method depends solely on the register-unwind code to
434 determine the value of registers in THIS frame, and hence
435 the value of this frame's PC (resume address). A typical
436 implementation is no more than:
437
438 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
439 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
440
441 Note: this method is very heavily dependent on a correct
442 register-unwind implementation, it pays to fix that
443 method first; this method is frame type agnostic, since
444 it only deals with register values, it works with any
445 frame. This is all in stark contrast to the old
446 FRAME_SAVED_PC which would try to directly handle all the
447 different ways that a PC could be unwound. */
448 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
449 }
450 else
451 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
452 this_frame->prev_pc.value = pc;
453 this_frame->prev_pc.p = 1;
454 if (frame_debug)
455 fprintf_unfiltered (gdb_stdlog,
456 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
457 this_frame->level,
458 paddr_nz (this_frame->prev_pc.value));
459 }
460 return this_frame->prev_pc.value;
461 }
462
463 CORE_ADDR
464 get_frame_func (struct frame_info *this_frame)
465 {
466 struct frame_info *next_frame = this_frame->next;
467
468 if (!next_frame->prev_func.p)
469 {
470 /* Make certain that this, and not the adjacent, function is
471 found. */
472 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
473 next_frame->prev_func.p = 1;
474 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
475 if (frame_debug)
476 fprintf_unfiltered (gdb_stdlog,
477 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
478 this_frame->level,
479 paddr_nz (next_frame->prev_func.addr));
480 }
481 return next_frame->prev_func.addr;
482 }
483
484 static int
485 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
486 {
487 return frame_register_read (src, regnum, buf);
488 }
489
490 struct regcache *
491 frame_save_as_regcache (struct frame_info *this_frame)
492 {
493 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
494 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
495 regcache_save (regcache, do_frame_register_read, this_frame);
496 discard_cleanups (cleanups);
497 return regcache;
498 }
499
500 void
501 frame_pop (struct frame_info *this_frame)
502 {
503 struct frame_info *prev_frame;
504 struct regcache *scratch;
505 struct cleanup *cleanups;
506
507 /* Ensure that we have a frame to pop to. */
508 prev_frame = get_prev_frame_1 (this_frame);
509
510 if (!prev_frame)
511 error (_("Cannot pop the initial frame."));
512
513 /* Make a copy of all the register values unwound from this frame.
514 Save them in a scratch buffer so that there isn't a race between
515 trying to extract the old values from the current regcache while
516 at the same time writing new values into that same cache. */
517 scratch = frame_save_as_regcache (prev_frame);
518 cleanups = make_cleanup_regcache_xfree (scratch);
519
520 /* FIXME: cagney/2003-03-16: It should be possible to tell the
521 target's register cache that it is about to be hit with a burst
522 register transfer and that the sequence of register writes should
523 be batched. The pair target_prepare_to_store() and
524 target_store_registers() kind of suggest this functionality.
525 Unfortunately, they don't implement it. Their lack of a formal
526 definition can lead to targets writing back bogus values
527 (arguably a bug in the target code mind). */
528 /* Now copy those saved registers into the current regcache.
529 Here, regcache_cpy() calls regcache_restore(). */
530 regcache_cpy (get_current_regcache (), scratch);
531 do_cleanups (cleanups);
532
533 /* We've made right mess of GDB's local state, just discard
534 everything. */
535 reinit_frame_cache ();
536 }
537
538 void
539 frame_register_unwind (struct frame_info *frame, int regnum,
540 int *optimizedp, enum lval_type *lvalp,
541 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
542 {
543 struct value *value;
544
545 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
546 that the value proper does not need to be fetched. */
547 gdb_assert (optimizedp != NULL);
548 gdb_assert (lvalp != NULL);
549 gdb_assert (addrp != NULL);
550 gdb_assert (realnump != NULL);
551 /* gdb_assert (bufferp != NULL); */
552
553 value = frame_unwind_register_value (frame, regnum);
554
555 gdb_assert (value != NULL);
556
557 *optimizedp = value_optimized_out (value);
558 *lvalp = VALUE_LVAL (value);
559 *addrp = VALUE_ADDRESS (value);
560 *realnump = VALUE_REGNUM (value);
561
562 if (bufferp)
563 memcpy (bufferp, value_contents_all (value),
564 TYPE_LENGTH (value_type (value)));
565
566 /* Dispose of the new value. This prevents watchpoints from
567 trying to watch the saved frame pointer. */
568 release_value (value);
569 value_free (value);
570 }
571
572 void
573 frame_register (struct frame_info *frame, int regnum,
574 int *optimizedp, enum lval_type *lvalp,
575 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
576 {
577 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
578 that the value proper does not need to be fetched. */
579 gdb_assert (optimizedp != NULL);
580 gdb_assert (lvalp != NULL);
581 gdb_assert (addrp != NULL);
582 gdb_assert (realnump != NULL);
583 /* gdb_assert (bufferp != NULL); */
584
585 /* Obtain the register value by unwinding the register from the next
586 (more inner frame). */
587 gdb_assert (frame != NULL && frame->next != NULL);
588 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
589 realnump, bufferp);
590 }
591
592 void
593 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
594 {
595 int optimized;
596 CORE_ADDR addr;
597 int realnum;
598 enum lval_type lval;
599 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
600 &realnum, buf);
601 }
602
603 void
604 get_frame_register (struct frame_info *frame,
605 int regnum, gdb_byte *buf)
606 {
607 frame_unwind_register (frame->next, regnum, buf);
608 }
609
610 struct value *
611 frame_unwind_register_value (struct frame_info *frame, int regnum)
612 {
613 struct value *value;
614
615 gdb_assert (frame != NULL);
616
617 if (frame_debug)
618 {
619 fprintf_unfiltered (gdb_stdlog, "\
620 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
621 frame->level, regnum,
622 user_reg_map_regnum_to_name
623 (get_frame_arch (frame), regnum));
624 }
625
626 /* Find the unwinder. */
627 if (frame->unwind == NULL)
628 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
629
630 /* Ask this frame to unwind its register. */
631 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
632
633 if (frame_debug)
634 {
635 fprintf_unfiltered (gdb_stdlog, "->");
636 if (value_optimized_out (value))
637 fprintf_unfiltered (gdb_stdlog, " optimized out");
638 else
639 {
640 if (VALUE_LVAL (value) == lval_register)
641 fprintf_unfiltered (gdb_stdlog, " register=%d",
642 VALUE_REGNUM (value));
643 else if (VALUE_LVAL (value) == lval_memory)
644 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
645 paddr_nz (VALUE_ADDRESS (value)));
646 else
647 fprintf_unfiltered (gdb_stdlog, " computed");
648
649 if (value_lazy (value))
650 fprintf_unfiltered (gdb_stdlog, " lazy");
651 else
652 {
653 int i;
654 const gdb_byte *buf = value_contents (value);
655
656 fprintf_unfiltered (gdb_stdlog, " bytes=");
657 fprintf_unfiltered (gdb_stdlog, "[");
658 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
659 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
660 fprintf_unfiltered (gdb_stdlog, "]");
661 }
662 }
663
664 fprintf_unfiltered (gdb_stdlog, " }\n");
665 }
666
667 return value;
668 }
669
670 struct value *
671 get_frame_register_value (struct frame_info *frame, int regnum)
672 {
673 return frame_unwind_register_value (frame->next, regnum);
674 }
675
676 LONGEST
677 frame_unwind_register_signed (struct frame_info *frame, int regnum)
678 {
679 gdb_byte buf[MAX_REGISTER_SIZE];
680 frame_unwind_register (frame, regnum, buf);
681 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
682 regnum));
683 }
684
685 LONGEST
686 get_frame_register_signed (struct frame_info *frame, int regnum)
687 {
688 return frame_unwind_register_signed (frame->next, regnum);
689 }
690
691 ULONGEST
692 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
693 {
694 gdb_byte buf[MAX_REGISTER_SIZE];
695 frame_unwind_register (frame, regnum, buf);
696 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
697 regnum));
698 }
699
700 ULONGEST
701 get_frame_register_unsigned (struct frame_info *frame, int regnum)
702 {
703 return frame_unwind_register_unsigned (frame->next, regnum);
704 }
705
706 void
707 put_frame_register (struct frame_info *frame, int regnum,
708 const gdb_byte *buf)
709 {
710 struct gdbarch *gdbarch = get_frame_arch (frame);
711 int realnum;
712 int optim;
713 enum lval_type lval;
714 CORE_ADDR addr;
715 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
716 if (optim)
717 error (_("Attempt to assign to a value that was optimized out."));
718 switch (lval)
719 {
720 case lval_memory:
721 {
722 /* FIXME: write_memory doesn't yet take constant buffers.
723 Arrrg! */
724 gdb_byte tmp[MAX_REGISTER_SIZE];
725 memcpy (tmp, buf, register_size (gdbarch, regnum));
726 write_memory (addr, tmp, register_size (gdbarch, regnum));
727 break;
728 }
729 case lval_register:
730 regcache_cooked_write (get_current_regcache (), realnum, buf);
731 break;
732 default:
733 error (_("Attempt to assign to an unmodifiable value."));
734 }
735 }
736
737 /* frame_register_read ()
738
739 Find and return the value of REGNUM for the specified stack frame.
740 The number of bytes copied is REGISTER_SIZE (REGNUM).
741
742 Returns 0 if the register value could not be found. */
743
744 int
745 frame_register_read (struct frame_info *frame, int regnum,
746 gdb_byte *myaddr)
747 {
748 int optimized;
749 enum lval_type lval;
750 CORE_ADDR addr;
751 int realnum;
752 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
753
754 return !optimized;
755 }
756
757 int
758 get_frame_register_bytes (struct frame_info *frame, int regnum,
759 CORE_ADDR offset, int len, gdb_byte *myaddr)
760 {
761 struct gdbarch *gdbarch = get_frame_arch (frame);
762
763 /* Skip registers wholly inside of OFFSET. */
764 while (offset >= register_size (gdbarch, regnum))
765 {
766 offset -= register_size (gdbarch, regnum);
767 regnum++;
768 }
769
770 /* Copy the data. */
771 while (len > 0)
772 {
773 int curr_len = register_size (gdbarch, regnum) - offset;
774 if (curr_len > len)
775 curr_len = len;
776
777 if (curr_len == register_size (gdbarch, regnum))
778 {
779 if (!frame_register_read (frame, regnum, myaddr))
780 return 0;
781 }
782 else
783 {
784 gdb_byte buf[MAX_REGISTER_SIZE];
785 if (!frame_register_read (frame, regnum, buf))
786 return 0;
787 memcpy (myaddr, buf + offset, curr_len);
788 }
789
790 myaddr += curr_len;
791 len -= curr_len;
792 offset = 0;
793 regnum++;
794 }
795
796 return 1;
797 }
798
799 void
800 put_frame_register_bytes (struct frame_info *frame, int regnum,
801 CORE_ADDR offset, int len, const gdb_byte *myaddr)
802 {
803 struct gdbarch *gdbarch = get_frame_arch (frame);
804
805 /* Skip registers wholly inside of OFFSET. */
806 while (offset >= register_size (gdbarch, regnum))
807 {
808 offset -= register_size (gdbarch, regnum);
809 regnum++;
810 }
811
812 /* Copy the data. */
813 while (len > 0)
814 {
815 int curr_len = register_size (gdbarch, regnum) - offset;
816 if (curr_len > len)
817 curr_len = len;
818
819 if (curr_len == register_size (gdbarch, regnum))
820 {
821 put_frame_register (frame, regnum, myaddr);
822 }
823 else
824 {
825 gdb_byte buf[MAX_REGISTER_SIZE];
826 frame_register_read (frame, regnum, buf);
827 memcpy (buf + offset, myaddr, curr_len);
828 put_frame_register (frame, regnum, buf);
829 }
830
831 myaddr += curr_len;
832 len -= curr_len;
833 offset = 0;
834 regnum++;
835 }
836 }
837
838 /* Create a sentinel frame. */
839
840 static struct frame_info *
841 create_sentinel_frame (struct regcache *regcache)
842 {
843 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
844 frame->level = -1;
845 /* Explicitly initialize the sentinel frame's cache. Provide it
846 with the underlying regcache. In the future additional
847 information, such as the frame's thread will be added. */
848 frame->prologue_cache = sentinel_frame_cache (regcache);
849 /* For the moment there is only one sentinel frame implementation. */
850 frame->unwind = sentinel_frame_unwind;
851 /* Link this frame back to itself. The frame is self referential
852 (the unwound PC is the same as the pc), so make it so. */
853 frame->next = frame;
854 /* Make the sentinel frame's ID valid, but invalid. That way all
855 comparisons with it should fail. */
856 frame->this_id.p = 1;
857 frame->this_id.value = null_frame_id;
858 if (frame_debug)
859 {
860 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
861 fprint_frame (gdb_stdlog, frame);
862 fprintf_unfiltered (gdb_stdlog, " }\n");
863 }
864 return frame;
865 }
866
867 /* Info about the innermost stack frame (contents of FP register) */
868
869 static struct frame_info *current_frame;
870
871 /* Cache for frame addresses already read by gdb. Valid only while
872 inferior is stopped. Control variables for the frame cache should
873 be local to this module. */
874
875 static struct obstack frame_cache_obstack;
876
877 void *
878 frame_obstack_zalloc (unsigned long size)
879 {
880 void *data = obstack_alloc (&frame_cache_obstack, size);
881 memset (data, 0, size);
882 return data;
883 }
884
885 /* Return the innermost (currently executing) stack frame. This is
886 split into two functions. The function unwind_to_current_frame()
887 is wrapped in catch exceptions so that, even when the unwind of the
888 sentinel frame fails, the function still returns a stack frame. */
889
890 static int
891 unwind_to_current_frame (struct ui_out *ui_out, void *args)
892 {
893 struct frame_info *frame = get_prev_frame (args);
894 /* A sentinel frame can fail to unwind, e.g., because its PC value
895 lands in somewhere like start. */
896 if (frame == NULL)
897 return 1;
898 current_frame = frame;
899 return 0;
900 }
901
902 struct frame_info *
903 get_current_frame (void)
904 {
905 /* First check, and report, the lack of registers. Having GDB
906 report "No stack!" or "No memory" when the target doesn't even
907 have registers is very confusing. Besides, "printcmd.exp"
908 explicitly checks that ``print $pc'' with no registers prints "No
909 registers". */
910 if (!target_has_registers)
911 error (_("No registers."));
912 if (!target_has_stack)
913 error (_("No stack."));
914 if (!target_has_memory)
915 error (_("No memory."));
916 if (is_executing (inferior_ptid))
917 error (_("Target is executing."));
918
919 if (current_frame == NULL)
920 {
921 struct frame_info *sentinel_frame =
922 create_sentinel_frame (get_current_regcache ());
923 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
924 RETURN_MASK_ERROR) != 0)
925 {
926 /* Oops! Fake a current frame? Is this useful? It has a PC
927 of zero, for instance. */
928 current_frame = sentinel_frame;
929 }
930 }
931 return current_frame;
932 }
933
934 /* The "selected" stack frame is used by default for local and arg
935 access. May be zero, for no selected frame. */
936
937 static struct frame_info *selected_frame;
938
939 static int
940 has_stack_frames (void)
941 {
942 if (!target_has_registers || !target_has_stack || !target_has_memory)
943 return 0;
944
945 /* If the current thread is executing, don't try to read from
946 it. */
947 if (is_executing (inferior_ptid))
948 return 0;
949
950 return 1;
951 }
952
953 /* Return the selected frame. Always non-NULL (unless there isn't an
954 inferior sufficient for creating a frame) in which case an error is
955 thrown. */
956
957 struct frame_info *
958 get_selected_frame (const char *message)
959 {
960 if (selected_frame == NULL)
961 {
962 if (message != NULL && !has_stack_frames ())
963 error (("%s"), message);
964 /* Hey! Don't trust this. It should really be re-finding the
965 last selected frame of the currently selected thread. This,
966 though, is better than nothing. */
967 select_frame (get_current_frame ());
968 }
969 /* There is always a frame. */
970 gdb_assert (selected_frame != NULL);
971 return selected_frame;
972 }
973
974 /* This is a variant of get_selected_frame() which can be called when
975 the inferior does not have a frame; in that case it will return
976 NULL instead of calling error(). */
977
978 struct frame_info *
979 deprecated_safe_get_selected_frame (void)
980 {
981 if (!has_stack_frames ())
982 return NULL;
983 return get_selected_frame (NULL);
984 }
985
986 /* Select frame FI (or NULL - to invalidate the current frame). */
987
988 void
989 select_frame (struct frame_info *fi)
990 {
991 struct symtab *s;
992
993 selected_frame = fi;
994 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
995 frame is being invalidated. */
996 if (deprecated_selected_frame_level_changed_hook)
997 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
998
999 /* FIXME: kseitz/2002-08-28: It would be nice to call
1000 selected_frame_level_changed_event() right here, but due to limitations
1001 in the current interfaces, we would end up flooding UIs with events
1002 because select_frame() is used extensively internally.
1003
1004 Once we have frame-parameterized frame (and frame-related) commands,
1005 the event notification can be moved here, since this function will only
1006 be called when the user's selected frame is being changed. */
1007
1008 /* Ensure that symbols for this frame are read in. Also, determine the
1009 source language of this frame, and switch to it if desired. */
1010 if (fi)
1011 {
1012 /* We retrieve the frame's symtab by using the frame PC. However
1013 we cannot use the frame PC as-is, because it usually points to
1014 the instruction following the "call", which is sometimes the
1015 first instruction of another function. So we rely on
1016 get_frame_address_in_block() which provides us with a PC which
1017 is guaranteed to be inside the frame's code block. */
1018 s = find_pc_symtab (get_frame_address_in_block (fi));
1019 if (s
1020 && s->language != current_language->la_language
1021 && s->language != language_unknown
1022 && language_mode == language_mode_auto)
1023 {
1024 set_language (s->language);
1025 }
1026 }
1027 }
1028
1029 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1030 Always returns a non-NULL value. */
1031
1032 struct frame_info *
1033 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1034 {
1035 struct frame_info *fi;
1036
1037 if (frame_debug)
1038 {
1039 fprintf_unfiltered (gdb_stdlog,
1040 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1041 paddr_nz (addr), paddr_nz (pc));
1042 }
1043
1044 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1045
1046 fi->next = create_sentinel_frame (get_current_regcache ());
1047
1048 /* Select/initialize both the unwind function and the frame's type
1049 based on the PC. */
1050 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1051
1052 fi->this_id.p = 1;
1053 deprecated_update_frame_base_hack (fi, addr);
1054 deprecated_update_frame_pc_hack (fi, pc);
1055
1056 if (frame_debug)
1057 {
1058 fprintf_unfiltered (gdb_stdlog, "-> ");
1059 fprint_frame (gdb_stdlog, fi);
1060 fprintf_unfiltered (gdb_stdlog, " }\n");
1061 }
1062
1063 return fi;
1064 }
1065
1066 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1067 innermost frame). Be careful to not fall off the bottom of the
1068 frame chain and onto the sentinel frame. */
1069
1070 struct frame_info *
1071 get_next_frame (struct frame_info *this_frame)
1072 {
1073 if (this_frame->level > 0)
1074 return this_frame->next;
1075 else
1076 return NULL;
1077 }
1078
1079 /* Observer for the target_changed event. */
1080
1081 void
1082 frame_observer_target_changed (struct target_ops *target)
1083 {
1084 reinit_frame_cache ();
1085 }
1086
1087 /* Flush the entire frame cache. */
1088
1089 void
1090 reinit_frame_cache (void)
1091 {
1092 struct frame_info *fi;
1093
1094 /* Tear down all frame caches. */
1095 for (fi = current_frame; fi != NULL; fi = fi->prev)
1096 {
1097 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1098 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1099 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1100 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1101 }
1102
1103 /* Since we can't really be sure what the first object allocated was */
1104 obstack_free (&frame_cache_obstack, 0);
1105 obstack_init (&frame_cache_obstack);
1106
1107 if (current_frame != NULL)
1108 annotate_frames_invalid ();
1109
1110 current_frame = NULL; /* Invalidate cache */
1111 select_frame (NULL);
1112 if (frame_debug)
1113 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1114 }
1115
1116 /* Find where a register is saved (in memory or another register).
1117 The result of frame_register_unwind is just where it is saved
1118 relative to this particular frame. */
1119
1120 static void
1121 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1122 int *optimizedp, enum lval_type *lvalp,
1123 CORE_ADDR *addrp, int *realnump)
1124 {
1125 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1126
1127 while (this_frame != NULL)
1128 {
1129 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1130 addrp, realnump, NULL);
1131
1132 if (*optimizedp)
1133 break;
1134
1135 if (*lvalp != lval_register)
1136 break;
1137
1138 regnum = *realnump;
1139 this_frame = get_next_frame (this_frame);
1140 }
1141 }
1142
1143 /* Return a "struct frame_info" corresponding to the frame that called
1144 THIS_FRAME. Returns NULL if there is no such frame.
1145
1146 Unlike get_prev_frame, this function always tries to unwind the
1147 frame. */
1148
1149 static struct frame_info *
1150 get_prev_frame_1 (struct frame_info *this_frame)
1151 {
1152 struct frame_info *prev_frame;
1153 struct frame_id this_id;
1154 struct gdbarch *gdbarch;
1155
1156 gdb_assert (this_frame != NULL);
1157 gdbarch = get_frame_arch (this_frame);
1158
1159 if (frame_debug)
1160 {
1161 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1162 if (this_frame != NULL)
1163 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1164 else
1165 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1166 fprintf_unfiltered (gdb_stdlog, ") ");
1167 }
1168
1169 /* Only try to do the unwind once. */
1170 if (this_frame->prev_p)
1171 {
1172 if (frame_debug)
1173 {
1174 fprintf_unfiltered (gdb_stdlog, "-> ");
1175 fprint_frame (gdb_stdlog, this_frame->prev);
1176 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1177 }
1178 return this_frame->prev;
1179 }
1180
1181 /* If the frame unwinder hasn't been selected yet, we must do so
1182 before setting prev_p; otherwise the check for misbehaved
1183 sniffers will think that this frame's sniffer tried to unwind
1184 further (see frame_cleanup_after_sniffer). */
1185 if (this_frame->unwind == NULL)
1186 this_frame->unwind
1187 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1188
1189 this_frame->prev_p = 1;
1190 this_frame->stop_reason = UNWIND_NO_REASON;
1191
1192 /* Check that this frame's ID was valid. If it wasn't, don't try to
1193 unwind to the prev frame. Be careful to not apply this test to
1194 the sentinel frame. */
1195 this_id = get_frame_id (this_frame);
1196 if (this_frame->level >= 0 && !frame_id_p (this_id))
1197 {
1198 if (frame_debug)
1199 {
1200 fprintf_unfiltered (gdb_stdlog, "-> ");
1201 fprint_frame (gdb_stdlog, NULL);
1202 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1203 }
1204 this_frame->stop_reason = UNWIND_NULL_ID;
1205 return NULL;
1206 }
1207
1208 /* Check that this frame's ID isn't inner to (younger, below, next)
1209 the next frame. This happens when a frame unwind goes backwards.
1210 Exclude signal trampolines (due to sigaltstack the frame ID can
1211 go backwards) and sentinel frames (the test is meaningless). */
1212 if (this_frame->next->level >= 0
1213 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1214 && frame_id_inner (get_frame_arch (this_frame), this_id,
1215 get_frame_id (this_frame->next)))
1216 {
1217 if (frame_debug)
1218 {
1219 fprintf_unfiltered (gdb_stdlog, "-> ");
1220 fprint_frame (gdb_stdlog, NULL);
1221 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1222 }
1223 this_frame->stop_reason = UNWIND_INNER_ID;
1224 return NULL;
1225 }
1226
1227 /* Check that this and the next frame are not identical. If they
1228 are, there is most likely a stack cycle. As with the inner-than
1229 test above, avoid comparing the inner-most and sentinel frames. */
1230 if (this_frame->level > 0
1231 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1232 {
1233 if (frame_debug)
1234 {
1235 fprintf_unfiltered (gdb_stdlog, "-> ");
1236 fprint_frame (gdb_stdlog, NULL);
1237 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1238 }
1239 this_frame->stop_reason = UNWIND_SAME_ID;
1240 return NULL;
1241 }
1242
1243 /* Check that this and the next frame do not unwind the PC register
1244 to the same memory location. If they do, then even though they
1245 have different frame IDs, the new frame will be bogus; two
1246 functions can't share a register save slot for the PC. This can
1247 happen when the prologue analyzer finds a stack adjustment, but
1248 no PC save.
1249
1250 This check does assume that the "PC register" is roughly a
1251 traditional PC, even if the gdbarch_unwind_pc method adjusts
1252 it (we do not rely on the value, only on the unwound PC being
1253 dependent on this value). A potential improvement would be
1254 to have the frame prev_pc method and the gdbarch unwind_pc
1255 method set the same lval and location information as
1256 frame_register_unwind. */
1257 if (this_frame->level > 0
1258 && gdbarch_pc_regnum (gdbarch) >= 0
1259 && get_frame_type (this_frame) == NORMAL_FRAME
1260 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1261 {
1262 int optimized, realnum, nrealnum;
1263 enum lval_type lval, nlval;
1264 CORE_ADDR addr, naddr;
1265
1266 frame_register_unwind_location (this_frame,
1267 gdbarch_pc_regnum (gdbarch),
1268 &optimized, &lval, &addr, &realnum);
1269 frame_register_unwind_location (get_next_frame (this_frame),
1270 gdbarch_pc_regnum (gdbarch),
1271 &optimized, &nlval, &naddr, &nrealnum);
1272
1273 if ((lval == lval_memory && lval == nlval && addr == naddr)
1274 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1275 {
1276 if (frame_debug)
1277 {
1278 fprintf_unfiltered (gdb_stdlog, "-> ");
1279 fprint_frame (gdb_stdlog, NULL);
1280 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1281 }
1282
1283 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1284 this_frame->prev = NULL;
1285 return NULL;
1286 }
1287 }
1288
1289 /* Allocate the new frame but do not wire it in to the frame chain.
1290 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1291 frame->next to pull some fancy tricks (of course such code is, by
1292 definition, recursive). Try to prevent it.
1293
1294 There is no reason to worry about memory leaks, should the
1295 remainder of the function fail. The allocated memory will be
1296 quickly reclaimed when the frame cache is flushed, and the `we've
1297 been here before' check above will stop repeated memory
1298 allocation calls. */
1299 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1300 prev_frame->level = this_frame->level + 1;
1301
1302 /* Don't yet compute ->unwind (and hence ->type). It is computed
1303 on-demand in get_frame_type, frame_register_unwind, and
1304 get_frame_id. */
1305
1306 /* Don't yet compute the frame's ID. It is computed on-demand by
1307 get_frame_id(). */
1308
1309 /* The unwound frame ID is validate at the start of this function,
1310 as part of the logic to decide if that frame should be further
1311 unwound, and not here while the prev frame is being created.
1312 Doing this makes it possible for the user to examine a frame that
1313 has an invalid frame ID.
1314
1315 Some very old VAX code noted: [...] For the sake of argument,
1316 suppose that the stack is somewhat trashed (which is one reason
1317 that "info frame" exists). So, return 0 (indicating we don't
1318 know the address of the arglist) if we don't know what frame this
1319 frame calls. */
1320
1321 /* Link it in. */
1322 this_frame->prev = prev_frame;
1323 prev_frame->next = this_frame;
1324
1325 if (frame_debug)
1326 {
1327 fprintf_unfiltered (gdb_stdlog, "-> ");
1328 fprint_frame (gdb_stdlog, prev_frame);
1329 fprintf_unfiltered (gdb_stdlog, " }\n");
1330 }
1331
1332 return prev_frame;
1333 }
1334
1335 /* Debug routine to print a NULL frame being returned. */
1336
1337 static void
1338 frame_debug_got_null_frame (struct ui_file *file,
1339 struct frame_info *this_frame,
1340 const char *reason)
1341 {
1342 if (frame_debug)
1343 {
1344 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1345 if (this_frame != NULL)
1346 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1347 else
1348 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1349 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1350 }
1351 }
1352
1353 /* Is this (non-sentinel) frame in the "main"() function? */
1354
1355 static int
1356 inside_main_func (struct frame_info *this_frame)
1357 {
1358 struct minimal_symbol *msymbol;
1359 CORE_ADDR maddr;
1360
1361 if (symfile_objfile == 0)
1362 return 0;
1363 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1364 if (msymbol == NULL)
1365 return 0;
1366 /* Make certain that the code, and not descriptor, address is
1367 returned. */
1368 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1369 SYMBOL_VALUE_ADDRESS (msymbol),
1370 &current_target);
1371 return maddr == get_frame_func (this_frame);
1372 }
1373
1374 /* Test whether THIS_FRAME is inside the process entry point function. */
1375
1376 static int
1377 inside_entry_func (struct frame_info *this_frame)
1378 {
1379 return (get_frame_func (this_frame) == entry_point_address ());
1380 }
1381
1382 /* Return a structure containing various interesting information about
1383 the frame that called THIS_FRAME. Returns NULL if there is entier
1384 no such frame or the frame fails any of a set of target-independent
1385 condition that should terminate the frame chain (e.g., as unwinding
1386 past main()).
1387
1388 This function should not contain target-dependent tests, such as
1389 checking whether the program-counter is zero. */
1390
1391 struct frame_info *
1392 get_prev_frame (struct frame_info *this_frame)
1393 {
1394 struct frame_info *prev_frame;
1395
1396 /* Return the inner-most frame, when the caller passes in NULL. */
1397 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1398 caller should have previously obtained a valid frame using
1399 get_selected_frame() and then called this code - only possibility
1400 I can think of is code behaving badly.
1401
1402 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1403 block_innermost_frame(). It does the sequence: frame = NULL;
1404 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1405 it couldn't be written better, I don't know.
1406
1407 NOTE: cagney/2003-01-11: I suspect what is happening in
1408 block_innermost_frame() is, when the target has no state
1409 (registers, memory, ...), it is still calling this function. The
1410 assumption being that this function will return NULL indicating
1411 that a frame isn't possible, rather than checking that the target
1412 has state and then calling get_current_frame() and
1413 get_prev_frame(). This is a guess mind. */
1414 if (this_frame == NULL)
1415 {
1416 /* NOTE: cagney/2002-11-09: There was a code segment here that
1417 would error out when CURRENT_FRAME was NULL. The comment
1418 that went with it made the claim ...
1419
1420 ``This screws value_of_variable, which just wants a nice
1421 clean NULL return from block_innermost_frame if there are no
1422 frames. I don't think I've ever seen this message happen
1423 otherwise. And returning NULL here is a perfectly legitimate
1424 thing to do.''
1425
1426 Per the above, this code shouldn't even be called with a NULL
1427 THIS_FRAME. */
1428 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1429 return current_frame;
1430 }
1431
1432 /* There is always a frame. If this assertion fails, suspect that
1433 something should be calling get_selected_frame() or
1434 get_current_frame(). */
1435 gdb_assert (this_frame != NULL);
1436
1437 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1438 sense to stop unwinding at a dummy frame. One place where a dummy
1439 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1440 pcsqh register (space register for the instruction at the head of the
1441 instruction queue) cannot be written directly; the only way to set it
1442 is to branch to code that is in the target space. In order to implement
1443 frame dummies on HPUX, the called function is made to jump back to where
1444 the inferior was when the user function was called. If gdb was inside
1445 the main function when we created the dummy frame, the dummy frame will
1446 point inside the main function. */
1447 if (this_frame->level >= 0
1448 && get_frame_type (this_frame) != DUMMY_FRAME
1449 && !backtrace_past_main
1450 && inside_main_func (this_frame))
1451 /* Don't unwind past main(). Note, this is done _before_ the
1452 frame has been marked as previously unwound. That way if the
1453 user later decides to enable unwinds past main(), that will
1454 automatically happen. */
1455 {
1456 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1457 return NULL;
1458 }
1459
1460 /* If the user's backtrace limit has been exceeded, stop. We must
1461 add two to the current level; one of those accounts for backtrace_limit
1462 being 1-based and the level being 0-based, and the other accounts for
1463 the level of the new frame instead of the level of the current
1464 frame. */
1465 if (this_frame->level + 2 > backtrace_limit)
1466 {
1467 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1468 "backtrace limit exceeded");
1469 return NULL;
1470 }
1471
1472 /* If we're already inside the entry function for the main objfile,
1473 then it isn't valid. Don't apply this test to a dummy frame -
1474 dummy frame PCs typically land in the entry func. Don't apply
1475 this test to the sentinel frame. Sentinel frames should always
1476 be allowed to unwind. */
1477 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1478 wasn't checking for "main" in the minimal symbols. With that
1479 fixed asm-source tests now stop in "main" instead of halting the
1480 backtrace in weird and wonderful ways somewhere inside the entry
1481 file. Suspect that tests for inside the entry file/func were
1482 added to work around that (now fixed) case. */
1483 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1484 suggested having the inside_entry_func test use the
1485 inside_main_func() msymbol trick (along with entry_point_address()
1486 I guess) to determine the address range of the start function.
1487 That should provide a far better stopper than the current
1488 heuristics. */
1489 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1490 applied tail-call optimizations to main so that a function called
1491 from main returns directly to the caller of main. Since we don't
1492 stop at main, we should at least stop at the entry point of the
1493 application. */
1494 if (!backtrace_past_entry
1495 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1496 && inside_entry_func (this_frame))
1497 {
1498 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1499 return NULL;
1500 }
1501
1502 /* Assume that the only way to get a zero PC is through something
1503 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1504 will never unwind a zero PC. */
1505 if (this_frame->level > 0
1506 && get_frame_type (this_frame) == NORMAL_FRAME
1507 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1508 && get_frame_pc (this_frame) == 0)
1509 {
1510 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1511 return NULL;
1512 }
1513
1514 return get_prev_frame_1 (this_frame);
1515 }
1516
1517 CORE_ADDR
1518 get_frame_pc (struct frame_info *frame)
1519 {
1520 gdb_assert (frame->next != NULL);
1521 return frame_pc_unwind (frame->next);
1522 }
1523
1524 /* Return an address that falls within THIS_FRAME's code block. */
1525
1526 CORE_ADDR
1527 get_frame_address_in_block (struct frame_info *this_frame)
1528 {
1529 /* A draft address. */
1530 CORE_ADDR pc = get_frame_pc (this_frame);
1531
1532 struct frame_info *next_frame = this_frame->next;
1533
1534 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1535 Normally the resume address is inside the body of the function
1536 associated with THIS_FRAME, but there is a special case: when
1537 calling a function which the compiler knows will never return
1538 (for instance abort), the call may be the very last instruction
1539 in the calling function. The resume address will point after the
1540 call and may be at the beginning of a different function
1541 entirely.
1542
1543 If THIS_FRAME is a signal frame or dummy frame, then we should
1544 not adjust the unwound PC. For a dummy frame, GDB pushed the
1545 resume address manually onto the stack. For a signal frame, the
1546 OS may have pushed the resume address manually and invoked the
1547 handler (e.g. GNU/Linux), or invoked the trampoline which called
1548 the signal handler - but in either case the signal handler is
1549 expected to return to the trampoline. So in both of these
1550 cases we know that the resume address is executable and
1551 related. So we only need to adjust the PC if THIS_FRAME
1552 is a normal function.
1553
1554 If the program has been interrupted while THIS_FRAME is current,
1555 then clearly the resume address is inside the associated
1556 function. There are three kinds of interruption: debugger stop
1557 (next frame will be SENTINEL_FRAME), operating system
1558 signal or exception (next frame will be SIGTRAMP_FRAME),
1559 or debugger-induced function call (next frame will be
1560 DUMMY_FRAME). So we only need to adjust the PC if
1561 NEXT_FRAME is a normal function.
1562
1563 We check the type of NEXT_FRAME first, since it is already
1564 known; frame type is determined by the unwinder, and since
1565 we have THIS_FRAME we've already selected an unwinder for
1566 NEXT_FRAME. */
1567 if (get_frame_type (next_frame) == NORMAL_FRAME
1568 && get_frame_type (this_frame) == NORMAL_FRAME)
1569 return pc - 1;
1570
1571 return pc;
1572 }
1573
1574 static int
1575 pc_notcurrent (struct frame_info *frame)
1576 {
1577 /* If FRAME is not the innermost frame, that normally means that
1578 FRAME->pc points at the return instruction (which is *after* the
1579 call instruction), and we want to get the line containing the
1580 call (because the call is where the user thinks the program is).
1581 However, if the next frame is either a SIGTRAMP_FRAME or a
1582 DUMMY_FRAME, then the next frame will contain a saved interrupt
1583 PC and such a PC indicates the current (rather than next)
1584 instruction/line, consequently, for such cases, want to get the
1585 line containing fi->pc. */
1586 struct frame_info *next = get_next_frame (frame);
1587 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1588 return notcurrent;
1589 }
1590
1591 void
1592 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1593 {
1594 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1595 }
1596
1597 /* Per "frame.h", return the ``address'' of the frame. Code should
1598 really be using get_frame_id(). */
1599 CORE_ADDR
1600 get_frame_base (struct frame_info *fi)
1601 {
1602 return get_frame_id (fi).stack_addr;
1603 }
1604
1605 /* High-level offsets into the frame. Used by the debug info. */
1606
1607 CORE_ADDR
1608 get_frame_base_address (struct frame_info *fi)
1609 {
1610 if (get_frame_type (fi) != NORMAL_FRAME)
1611 return 0;
1612 if (fi->base == NULL)
1613 fi->base = frame_base_find_by_frame (fi);
1614 /* Sneaky: If the low-level unwind and high-level base code share a
1615 common unwinder, let them share the prologue cache. */
1616 if (fi->base->unwind == fi->unwind)
1617 return fi->base->this_base (fi, &fi->prologue_cache);
1618 return fi->base->this_base (fi, &fi->base_cache);
1619 }
1620
1621 CORE_ADDR
1622 get_frame_locals_address (struct frame_info *fi)
1623 {
1624 void **cache;
1625 if (get_frame_type (fi) != NORMAL_FRAME)
1626 return 0;
1627 /* If there isn't a frame address method, find it. */
1628 if (fi->base == NULL)
1629 fi->base = frame_base_find_by_frame (fi);
1630 /* Sneaky: If the low-level unwind and high-level base code share a
1631 common unwinder, let them share the prologue cache. */
1632 if (fi->base->unwind == fi->unwind)
1633 return fi->base->this_locals (fi, &fi->prologue_cache);
1634 return fi->base->this_locals (fi, &fi->base_cache);
1635 }
1636
1637 CORE_ADDR
1638 get_frame_args_address (struct frame_info *fi)
1639 {
1640 void **cache;
1641 if (get_frame_type (fi) != NORMAL_FRAME)
1642 return 0;
1643 /* If there isn't a frame address method, find it. */
1644 if (fi->base == NULL)
1645 fi->base = frame_base_find_by_frame (fi);
1646 /* Sneaky: If the low-level unwind and high-level base code share a
1647 common unwinder, let them share the prologue cache. */
1648 if (fi->base->unwind == fi->unwind)
1649 return fi->base->this_args (fi, &fi->prologue_cache);
1650 return fi->base->this_args (fi, &fi->base_cache);
1651 }
1652
1653 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1654 or -1 for a NULL frame. */
1655
1656 int
1657 frame_relative_level (struct frame_info *fi)
1658 {
1659 if (fi == NULL)
1660 return -1;
1661 else
1662 return fi->level;
1663 }
1664
1665 enum frame_type
1666 get_frame_type (struct frame_info *frame)
1667 {
1668 if (frame->unwind == NULL)
1669 /* Initialize the frame's unwinder because that's what
1670 provides the frame's type. */
1671 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1672 return frame->unwind->type;
1673 }
1674
1675 void
1676 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1677 {
1678 if (frame_debug)
1679 fprintf_unfiltered (gdb_stdlog,
1680 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1681 frame->level, paddr_nz (pc));
1682 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1683 maintaining a locally allocated frame object. Since such frames
1684 are not in the frame chain, it isn't possible to assume that the
1685 frame has a next. Sigh. */
1686 if (frame->next != NULL)
1687 {
1688 /* While we're at it, update this frame's cached PC value, found
1689 in the next frame. Oh for the day when "struct frame_info"
1690 is opaque and this hack on hack can just go away. */
1691 frame->next->prev_pc.value = pc;
1692 frame->next->prev_pc.p = 1;
1693 }
1694 }
1695
1696 void
1697 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1698 {
1699 if (frame_debug)
1700 fprintf_unfiltered (gdb_stdlog,
1701 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1702 frame->level, paddr_nz (base));
1703 /* See comment in "frame.h". */
1704 frame->this_id.value.stack_addr = base;
1705 }
1706
1707 /* Memory access methods. */
1708
1709 void
1710 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1711 gdb_byte *buf, int len)
1712 {
1713 read_memory (addr, buf, len);
1714 }
1715
1716 LONGEST
1717 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1718 int len)
1719 {
1720 return read_memory_integer (addr, len);
1721 }
1722
1723 ULONGEST
1724 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1725 int len)
1726 {
1727 return read_memory_unsigned_integer (addr, len);
1728 }
1729
1730 int
1731 safe_frame_unwind_memory (struct frame_info *this_frame,
1732 CORE_ADDR addr, gdb_byte *buf, int len)
1733 {
1734 /* NOTE: target_read_memory returns zero on success! */
1735 return !target_read_memory (addr, buf, len);
1736 }
1737
1738 /* Architecture method. */
1739
1740 struct gdbarch *
1741 get_frame_arch (struct frame_info *this_frame)
1742 {
1743 return current_gdbarch;
1744 }
1745
1746 /* Stack pointer methods. */
1747
1748 CORE_ADDR
1749 get_frame_sp (struct frame_info *this_frame)
1750 {
1751 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1752 /* Normality - an architecture that provides a way of obtaining any
1753 frame inner-most address. */
1754 if (gdbarch_unwind_sp_p (gdbarch))
1755 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1756 operate on THIS_FRAME now. */
1757 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1758 /* Now things are really are grim. Hope that the value returned by
1759 the gdbarch_sp_regnum register is meaningful. */
1760 if (gdbarch_sp_regnum (gdbarch) >= 0)
1761 return get_frame_register_unsigned (this_frame,
1762 gdbarch_sp_regnum (gdbarch));
1763 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1764 }
1765
1766 /* Return the reason why we can't unwind past FRAME. */
1767
1768 enum unwind_stop_reason
1769 get_frame_unwind_stop_reason (struct frame_info *frame)
1770 {
1771 /* If we haven't tried to unwind past this point yet, then assume
1772 that unwinding would succeed. */
1773 if (frame->prev_p == 0)
1774 return UNWIND_NO_REASON;
1775
1776 /* Otherwise, we set a reason when we succeeded (or failed) to
1777 unwind. */
1778 return frame->stop_reason;
1779 }
1780
1781 /* Return a string explaining REASON. */
1782
1783 const char *
1784 frame_stop_reason_string (enum unwind_stop_reason reason)
1785 {
1786 switch (reason)
1787 {
1788 case UNWIND_NULL_ID:
1789 return _("unwinder did not report frame ID");
1790
1791 case UNWIND_INNER_ID:
1792 return _("previous frame inner to this frame (corrupt stack?)");
1793
1794 case UNWIND_SAME_ID:
1795 return _("previous frame identical to this frame (corrupt stack?)");
1796
1797 case UNWIND_NO_SAVED_PC:
1798 return _("frame did not save the PC");
1799
1800 case UNWIND_NO_REASON:
1801 case UNWIND_FIRST_ERROR:
1802 default:
1803 internal_error (__FILE__, __LINE__,
1804 "Invalid frame stop reason");
1805 }
1806 }
1807
1808 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1809 FRAME. */
1810
1811 static void
1812 frame_cleanup_after_sniffer (void *arg)
1813 {
1814 struct frame_info *frame = arg;
1815
1816 /* The sniffer should not allocate a prologue cache if it did not
1817 match this frame. */
1818 gdb_assert (frame->prologue_cache == NULL);
1819
1820 /* No sniffer should extend the frame chain; sniff based on what is
1821 already certain. */
1822 gdb_assert (!frame->prev_p);
1823
1824 /* The sniffer should not check the frame's ID; that's circular. */
1825 gdb_assert (!frame->this_id.p);
1826
1827 /* Clear cached fields dependent on the unwinder.
1828
1829 The previous PC is independent of the unwinder, but the previous
1830 function is not (see get_frame_address_in_block). */
1831 frame->prev_func.p = 0;
1832 frame->prev_func.addr = 0;
1833
1834 /* Discard the unwinder last, so that we can easily find it if an assertion
1835 in this function triggers. */
1836 frame->unwind = NULL;
1837 }
1838
1839 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1840 Return a cleanup which should be called if unwinding fails, and
1841 discarded if it succeeds. */
1842
1843 struct cleanup *
1844 frame_prepare_for_sniffer (struct frame_info *frame,
1845 const struct frame_unwind *unwind)
1846 {
1847 gdb_assert (frame->unwind == NULL);
1848 frame->unwind = unwind;
1849 return make_cleanup (frame_cleanup_after_sniffer, frame);
1850 }
1851
1852 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1853
1854 static struct cmd_list_element *set_backtrace_cmdlist;
1855 static struct cmd_list_element *show_backtrace_cmdlist;
1856
1857 static void
1858 set_backtrace_cmd (char *args, int from_tty)
1859 {
1860 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1861 }
1862
1863 static void
1864 show_backtrace_cmd (char *args, int from_tty)
1865 {
1866 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1867 }
1868
1869 void
1870 _initialize_frame (void)
1871 {
1872 obstack_init (&frame_cache_obstack);
1873
1874 observer_attach_target_changed (frame_observer_target_changed);
1875
1876 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1877 Set backtrace specific variables.\n\
1878 Configure backtrace variables such as the backtrace limit"),
1879 &set_backtrace_cmdlist, "set backtrace ",
1880 0/*allow-unknown*/, &setlist);
1881 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1882 Show backtrace specific variables\n\
1883 Show backtrace variables such as the backtrace limit"),
1884 &show_backtrace_cmdlist, "show backtrace ",
1885 0/*allow-unknown*/, &showlist);
1886
1887 add_setshow_boolean_cmd ("past-main", class_obscure,
1888 &backtrace_past_main, _("\
1889 Set whether backtraces should continue past \"main\"."), _("\
1890 Show whether backtraces should continue past \"main\"."), _("\
1891 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1892 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1893 of the stack trace."),
1894 NULL,
1895 show_backtrace_past_main,
1896 &set_backtrace_cmdlist,
1897 &show_backtrace_cmdlist);
1898
1899 add_setshow_boolean_cmd ("past-entry", class_obscure,
1900 &backtrace_past_entry, _("\
1901 Set whether backtraces should continue past the entry point of a program."),
1902 _("\
1903 Show whether backtraces should continue past the entry point of a program."),
1904 _("\
1905 Normally there are no callers beyond the entry point of a program, so GDB\n\
1906 will terminate the backtrace there. Set this variable if you need to see \n\
1907 the rest of the stack trace."),
1908 NULL,
1909 show_backtrace_past_entry,
1910 &set_backtrace_cmdlist,
1911 &show_backtrace_cmdlist);
1912
1913 add_setshow_integer_cmd ("limit", class_obscure,
1914 &backtrace_limit, _("\
1915 Set an upper bound on the number of backtrace levels."), _("\
1916 Show the upper bound on the number of backtrace levels."), _("\
1917 No more than the specified number of frames can be displayed or examined.\n\
1918 Zero is unlimited."),
1919 NULL,
1920 show_backtrace_limit,
1921 &set_backtrace_cmdlist,
1922 &show_backtrace_cmdlist);
1923
1924 /* Debug this files internals. */
1925 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1926 Set frame debugging."), _("\
1927 Show frame debugging."), _("\
1928 When non-zero, frame specific internal debugging is enabled."),
1929 NULL,
1930 show_frame_debug,
1931 &setdebuglist, &showdebuglist);
1932 }
This page took 0.076137 seconds and 4 git commands to generate.