[gdb/testsuite] Rewrite gdb_test_lines
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45 #include "cli/cli-option.h"
46
47 /* The sentinel frame terminates the innermost end of the frame chain.
48 If unwound, it returns the information needed to construct an
49 innermost frame.
50
51 The current frame, which is the innermost frame, can be found at
52 sentinel_frame->prev. */
53
54 static struct frame_info *sentinel_frame;
55
56 /* Number of calls to reinit_frame_cache. */
57 static unsigned int frame_cache_generation = 0;
58
59 /* See frame.h. */
60
61 unsigned int
62 get_frame_cache_generation ()
63 {
64 return frame_cache_generation;
65 }
66
67 /* The values behind the global "set backtrace ..." settings. */
68 set_backtrace_options user_set_backtrace_options;
69
70 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
71 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
72
73 /* Status of some values cached in the frame_info object. */
74
75 enum cached_copy_status
76 {
77 /* Value is unknown. */
78 CC_UNKNOWN,
79
80 /* We have a value. */
81 CC_VALUE,
82
83 /* Value was not saved. */
84 CC_NOT_SAVED,
85
86 /* Value is unavailable. */
87 CC_UNAVAILABLE
88 };
89
90 enum class frame_id_status
91 {
92 /* Frame id is not computed. */
93 NOT_COMPUTED = 0,
94
95 /* Frame id is being computed (compute_frame_id is active). */
96 COMPUTING,
97
98 /* Frame id has been computed. */
99 COMPUTED,
100 };
101
102 /* We keep a cache of stack frames, each of which is a "struct
103 frame_info". The innermost one gets allocated (in
104 wait_for_inferior) each time the inferior stops; sentinel_frame
105 points to it. Additional frames get allocated (in get_prev_frame)
106 as needed, and are chained through the next and prev fields. Any
107 time that the frame cache becomes invalid (most notably when we
108 execute something, but also if we change how we interpret the
109 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
110 which reads new symbols)), we should call reinit_frame_cache. */
111
112 struct frame_info
113 {
114 /* Level of this frame. The inner-most (youngest) frame is at level
115 0. As you move towards the outer-most (oldest) frame, the level
116 increases. This is a cached value. It could just as easily be
117 computed by counting back from the selected frame to the inner
118 most frame. */
119 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
120 reserved to indicate a bogus frame - one that has been created
121 just to keep GDB happy (GDB always needs a frame). For the
122 moment leave this as speculation. */
123 int level;
124
125 /* The frame's program space. */
126 struct program_space *pspace;
127
128 /* The frame's address space. */
129 const address_space *aspace;
130
131 /* The frame's low-level unwinder and corresponding cache. The
132 low-level unwinder is responsible for unwinding register values
133 for the previous frame. The low-level unwind methods are
134 selected based on the presence, or otherwise, of register unwind
135 information such as CFI. */
136 void *prologue_cache;
137 const struct frame_unwind *unwind;
138
139 /* Cached copy of the previous frame's architecture. */
140 struct
141 {
142 bool p;
143 struct gdbarch *arch;
144 } prev_arch;
145
146 /* Cached copy of the previous frame's resume address. */
147 struct {
148 cached_copy_status status;
149 /* Did VALUE require unmasking when being read. */
150 bool masked;
151 CORE_ADDR value;
152 } prev_pc;
153
154 /* Cached copy of the previous frame's function address. */
155 struct
156 {
157 CORE_ADDR addr;
158 cached_copy_status status;
159 } prev_func;
160
161 /* This frame's ID. */
162 struct
163 {
164 frame_id_status p;
165 struct frame_id value;
166 } this_id;
167
168 /* The frame's high-level base methods, and corresponding cache.
169 The high level base methods are selected based on the frame's
170 debug info. */
171 const struct frame_base *base;
172 void *base_cache;
173
174 /* Pointers to the next (down, inner, younger) and previous (up,
175 outer, older) frame_info's in the frame cache. */
176 struct frame_info *next; /* down, inner, younger */
177 bool prev_p;
178 struct frame_info *prev; /* up, outer, older */
179
180 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
181 could. Only valid when PREV_P is set. */
182 enum unwind_stop_reason stop_reason;
183
184 /* A frame specific string describing the STOP_REASON in more detail.
185 Only valid when PREV_P is set, but even then may still be NULL. */
186 const char *stop_string;
187 };
188
189 /* See frame.h. */
190
191 void
192 set_frame_previous_pc_masked (struct frame_info *frame)
193 {
194 frame->prev_pc.masked = true;
195 }
196
197 /* See frame.h. */
198
199 bool
200 get_frame_pc_masked (const struct frame_info *frame)
201 {
202 gdb_assert (frame->next != nullptr);
203 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
204
205 return frame->next->prev_pc.masked;
206 }
207
208 /* A frame stash used to speed up frame lookups. Create a hash table
209 to stash frames previously accessed from the frame cache for
210 quicker subsequent retrieval. The hash table is emptied whenever
211 the frame cache is invalidated. */
212
213 static htab_t frame_stash;
214
215 /* Internal function to calculate a hash from the frame_id addresses,
216 using as many valid addresses as possible. Frames below level 0
217 are not stored in the hash table. */
218
219 static hashval_t
220 frame_addr_hash (const void *ap)
221 {
222 const struct frame_info *frame = (const struct frame_info *) ap;
223 const struct frame_id f_id = frame->this_id.value;
224 hashval_t hash = 0;
225
226 gdb_assert (f_id.stack_status != FID_STACK_INVALID
227 || f_id.code_addr_p
228 || f_id.special_addr_p);
229
230 if (f_id.stack_status == FID_STACK_VALID)
231 hash = iterative_hash (&f_id.stack_addr,
232 sizeof (f_id.stack_addr), hash);
233 if (f_id.code_addr_p)
234 hash = iterative_hash (&f_id.code_addr,
235 sizeof (f_id.code_addr), hash);
236 if (f_id.special_addr_p)
237 hash = iterative_hash (&f_id.special_addr,
238 sizeof (f_id.special_addr), hash);
239
240 return hash;
241 }
242
243 /* Internal equality function for the hash table. This function
244 defers equality operations to frame_id_eq. */
245
246 static int
247 frame_addr_hash_eq (const void *a, const void *b)
248 {
249 const struct frame_info *f_entry = (const struct frame_info *) a;
250 const struct frame_info *f_element = (const struct frame_info *) b;
251
252 return frame_id_eq (f_entry->this_id.value,
253 f_element->this_id.value);
254 }
255
256 /* Internal function to create the frame_stash hash table. 100 seems
257 to be a good compromise to start the hash table at. */
258
259 static void
260 frame_stash_create (void)
261 {
262 frame_stash = htab_create (100,
263 frame_addr_hash,
264 frame_addr_hash_eq,
265 NULL);
266 }
267
268 /* Internal function to add a frame to the frame_stash hash table.
269 Returns false if a frame with the same ID was already stashed, true
270 otherwise. */
271
272 static bool
273 frame_stash_add (frame_info *frame)
274 {
275 /* Do not try to stash the sentinel frame. */
276 gdb_assert (frame->level >= 0);
277
278 frame_info **slot = (struct frame_info **) htab_find_slot (frame_stash,
279 frame, INSERT);
280
281 /* If we already have a frame in the stack with the same id, we
282 either have a stack cycle (corrupted stack?), or some bug
283 elsewhere in GDB. In any case, ignore the duplicate and return
284 an indication to the caller. */
285 if (*slot != nullptr)
286 return false;
287
288 *slot = frame;
289 return true;
290 }
291
292 /* Internal function to search the frame stash for an entry with the
293 given frame ID. If found, return that frame. Otherwise return
294 NULL. */
295
296 static struct frame_info *
297 frame_stash_find (struct frame_id id)
298 {
299 struct frame_info dummy;
300 struct frame_info *frame;
301
302 dummy.this_id.value = id;
303 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
304 return frame;
305 }
306
307 /* Internal function to invalidate the frame stash by removing all
308 entries in it. This only occurs when the frame cache is
309 invalidated. */
310
311 static void
312 frame_stash_invalidate (void)
313 {
314 htab_empty (frame_stash);
315 }
316
317 /* See frame.h */
318 scoped_restore_selected_frame::scoped_restore_selected_frame ()
319 {
320 m_lang = current_language->la_language;
321 save_selected_frame (&m_fid, &m_level);
322 }
323
324 /* See frame.h */
325 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
326 {
327 restore_selected_frame (m_fid, m_level);
328 set_language (m_lang);
329 }
330
331 /* Flag to control debugging. */
332
333 unsigned int frame_debug;
334 static void
335 show_frame_debug (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
339 }
340
341 /* Implementation of "show backtrace past-main". */
342
343 static void
344 show_backtrace_past_main (struct ui_file *file, int from_tty,
345 struct cmd_list_element *c, const char *value)
346 {
347 fprintf_filtered (file,
348 _("Whether backtraces should "
349 "continue past \"main\" is %s.\n"),
350 value);
351 }
352
353 /* Implementation of "show backtrace past-entry". */
354
355 static void
356 show_backtrace_past_entry (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c, const char *value)
358 {
359 fprintf_filtered (file, _("Whether backtraces should continue past the "
360 "entry point of a program is %s.\n"),
361 value);
362 }
363
364 /* Implementation of "show backtrace limit". */
365
366 static void
367 show_backtrace_limit (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file,
371 _("An upper bound on the number "
372 "of backtrace levels is %s.\n"),
373 value);
374 }
375
376 /* See frame.h. */
377
378 std::string
379 frame_id::to_string () const
380 {
381 const struct frame_id &id = *this;
382
383 std::string res = "{";
384
385 if (id.stack_status == FID_STACK_INVALID)
386 res += "!stack";
387 else if (id.stack_status == FID_STACK_UNAVAILABLE)
388 res += "stack=<unavailable>";
389 else if (id.stack_status == FID_STACK_SENTINEL)
390 res += "stack=<sentinel>";
391 else if (id.stack_status == FID_STACK_OUTER)
392 res += "stack=<outer>";
393 else
394 res += std::string ("stack=") + hex_string (id.stack_addr);
395
396 /* Helper function to format 'N=A' if P is true, otherwise '!N'. */
397 auto field_to_string = [] (const char *n, bool p, CORE_ADDR a) -> std::string
398 {
399 if (p)
400 return std::string (n) + "=" + core_addr_to_string (a);
401 else
402 return std::string ("!") + std::string (n);
403 };
404
405 res += (std::string (",")
406 + field_to_string ("code", id.code_addr_p, id.code_addr)
407 + std::string (",")
408 + field_to_string ("special", id.special_addr_p, id.special_addr));
409
410 if (id.artificial_depth)
411 res += ",artificial=" + std::to_string (id.artificial_depth);
412 res += "}";
413 return res;
414 }
415
416 static void
417 fprint_frame_type (struct ui_file *file, enum frame_type type)
418 {
419 switch (type)
420 {
421 case NORMAL_FRAME:
422 fprintf_unfiltered (file, "NORMAL_FRAME");
423 return;
424 case DUMMY_FRAME:
425 fprintf_unfiltered (file, "DUMMY_FRAME");
426 return;
427 case INLINE_FRAME:
428 fprintf_unfiltered (file, "INLINE_FRAME");
429 return;
430 case TAILCALL_FRAME:
431 fprintf_unfiltered (file, "TAILCALL_FRAME");
432 return;
433 case SIGTRAMP_FRAME:
434 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
435 return;
436 case ARCH_FRAME:
437 fprintf_unfiltered (file, "ARCH_FRAME");
438 return;
439 case SENTINEL_FRAME:
440 fprintf_unfiltered (file, "SENTINEL_FRAME");
441 return;
442 default:
443 fprintf_unfiltered (file, "<unknown type>");
444 return;
445 };
446 }
447
448 static void
449 fprint_frame (struct ui_file *file, struct frame_info *fi)
450 {
451 if (fi == NULL)
452 {
453 fprintf_unfiltered (file, "<NULL frame>");
454 return;
455 }
456
457 fprintf_unfiltered (file, "{");
458 fprintf_unfiltered (file, "level=%d", fi->level);
459 fprintf_unfiltered (file, ",");
460
461 fprintf_unfiltered (file, "type=");
462 if (fi->unwind != NULL)
463 fprint_frame_type (file, fi->unwind->type);
464 else
465 fprintf_unfiltered (file, "<unknown>");
466 fprintf_unfiltered (file, ",");
467
468 fprintf_unfiltered (file, "unwind=");
469 if (fi->unwind != NULL)
470 gdb_print_host_address (fi->unwind, file);
471 else
472 fprintf_unfiltered (file, "<unknown>");
473 fprintf_unfiltered (file, ",");
474
475 fprintf_unfiltered (file, "pc=");
476 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
477 fprintf_unfiltered (file, "<unknown>");
478 else if (fi->next->prev_pc.status == CC_VALUE)
479 {
480 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
481 if (fi->next->prev_pc.masked)
482 fprintf_unfiltered (file, "[PAC]");
483 }
484 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
485 val_print_not_saved (file);
486 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
487 val_print_unavailable (file);
488 fprintf_unfiltered (file, ",");
489
490 fprintf_unfiltered (file, "id=");
491 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
492 fprintf_unfiltered (file, "<not computed>");
493 else if (fi->this_id.p == frame_id_status::COMPUTING)
494 fprintf_unfiltered (file, "<computing>");
495 else
496 fprintf_unfiltered (file, "%s", fi->this_id.value.to_string ().c_str ());
497 fprintf_unfiltered (file, ",");
498
499 fprintf_unfiltered (file, "func=");
500 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
501 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
502 else
503 fprintf_unfiltered (file, "<unknown>");
504 fprintf_unfiltered (file, "}");
505 }
506
507 /* Given FRAME, return the enclosing frame as found in real frames read-in from
508 inferior memory. Skip any previous frames which were made up by GDB.
509 Return FRAME if FRAME is a non-artificial frame.
510 Return NULL if FRAME is the start of an artificial-only chain. */
511
512 static struct frame_info *
513 skip_artificial_frames (struct frame_info *frame)
514 {
515 /* Note we use get_prev_frame_always, and not get_prev_frame. The
516 latter will truncate the frame chain, leading to this function
517 unintentionally returning a null_frame_id (e.g., when the user
518 sets a backtrace limit).
519
520 Note that for record targets we may get a frame chain that consists
521 of artificial frames only. */
522 while (get_frame_type (frame) == INLINE_FRAME
523 || get_frame_type (frame) == TAILCALL_FRAME)
524 {
525 frame = get_prev_frame_always (frame);
526 if (frame == NULL)
527 break;
528 }
529
530 return frame;
531 }
532
533 struct frame_info *
534 skip_unwritable_frames (struct frame_info *frame)
535 {
536 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
537 {
538 frame = get_prev_frame (frame);
539 if (frame == NULL)
540 break;
541 }
542
543 return frame;
544 }
545
546 /* See frame.h. */
547
548 struct frame_info *
549 skip_tailcall_frames (struct frame_info *frame)
550 {
551 while (get_frame_type (frame) == TAILCALL_FRAME)
552 {
553 /* Note that for record targets we may get a frame chain that consists of
554 tailcall frames only. */
555 frame = get_prev_frame (frame);
556 if (frame == NULL)
557 break;
558 }
559
560 return frame;
561 }
562
563 /* Compute the frame's uniq ID that can be used to, later, re-find the
564 frame. */
565
566 static void
567 compute_frame_id (struct frame_info *fi)
568 {
569 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
570
571 unsigned int entry_generation = get_frame_cache_generation ();
572
573 try
574 {
575 /* Mark this frame's id as "being computed. */
576 fi->this_id.p = frame_id_status::COMPUTING;
577
578 if (frame_debug)
579 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
580 fi->level);
581
582 /* Find the unwinder. */
583 if (fi->unwind == NULL)
584 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
585
586 /* Find THIS frame's ID. */
587 /* Default to outermost if no ID is found. */
588 fi->this_id.value = outer_frame_id;
589 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
590 gdb_assert (frame_id_p (fi->this_id.value));
591
592 /* Mark this frame's id as "computed". */
593 fi->this_id.p = frame_id_status::COMPUTED;
594
595 if (frame_debug)
596 fprintf_unfiltered (gdb_stdlog, "-> %s }\n",
597 fi->this_id.value.to_string ().c_str ());
598 }
599 catch (const gdb_exception &ex)
600 {
601 /* On error, revert the frame id status to not computed. If the frame
602 cache generation changed, the frame object doesn't exist anymore, so
603 don't touch it. */
604 if (get_frame_cache_generation () == entry_generation)
605 fi->this_id.p = frame_id_status::NOT_COMPUTED;
606
607 throw;
608 }
609 }
610
611 /* Return a frame uniq ID that can be used to, later, re-find the
612 frame. */
613
614 struct frame_id
615 get_frame_id (struct frame_info *fi)
616 {
617 if (fi == NULL)
618 return null_frame_id;
619
620 /* It's always invalid to try to get a frame's id while it is being
621 computed. */
622 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
623
624 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
625 {
626 /* If we haven't computed the frame id yet, then it must be that
627 this is the current frame. Compute it now, and stash the
628 result. The IDs of other frames are computed as soon as
629 they're created, in order to detect cycles. See
630 get_prev_frame_if_no_cycle. */
631 gdb_assert (fi->level == 0);
632
633 /* Compute. */
634 compute_frame_id (fi);
635
636 /* Since this is the first frame in the chain, this should
637 always succeed. */
638 bool stashed = frame_stash_add (fi);
639 gdb_assert (stashed);
640 }
641
642 return fi->this_id.value;
643 }
644
645 struct frame_id
646 get_stack_frame_id (struct frame_info *next_frame)
647 {
648 return get_frame_id (skip_artificial_frames (next_frame));
649 }
650
651 struct frame_id
652 frame_unwind_caller_id (struct frame_info *next_frame)
653 {
654 struct frame_info *this_frame;
655
656 /* Use get_prev_frame_always, and not get_prev_frame. The latter
657 will truncate the frame chain, leading to this function
658 unintentionally returning a null_frame_id (e.g., when a caller
659 requests the frame ID of "main()"s caller. */
660
661 next_frame = skip_artificial_frames (next_frame);
662 if (next_frame == NULL)
663 return null_frame_id;
664
665 this_frame = get_prev_frame_always (next_frame);
666 if (this_frame)
667 return get_frame_id (skip_artificial_frames (this_frame));
668 else
669 return null_frame_id;
670 }
671
672 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
673 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
674 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
675
676 struct frame_id
677 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
678 CORE_ADDR special_addr)
679 {
680 struct frame_id id = null_frame_id;
681
682 id.stack_addr = stack_addr;
683 id.stack_status = FID_STACK_VALID;
684 id.code_addr = code_addr;
685 id.code_addr_p = true;
686 id.special_addr = special_addr;
687 id.special_addr_p = true;
688 return id;
689 }
690
691 /* See frame.h. */
692
693 struct frame_id
694 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
695 {
696 struct frame_id id = null_frame_id;
697
698 id.stack_status = FID_STACK_UNAVAILABLE;
699 id.code_addr = code_addr;
700 id.code_addr_p = true;
701 return id;
702 }
703
704 /* See frame.h. */
705
706 struct frame_id
707 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
708 CORE_ADDR special_addr)
709 {
710 struct frame_id id = null_frame_id;
711
712 id.stack_status = FID_STACK_UNAVAILABLE;
713 id.code_addr = code_addr;
714 id.code_addr_p = true;
715 id.special_addr = special_addr;
716 id.special_addr_p = true;
717 return id;
718 }
719
720 struct frame_id
721 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
722 {
723 struct frame_id id = null_frame_id;
724
725 id.stack_addr = stack_addr;
726 id.stack_status = FID_STACK_VALID;
727 id.code_addr = code_addr;
728 id.code_addr_p = true;
729 return id;
730 }
731
732 struct frame_id
733 frame_id_build_wild (CORE_ADDR stack_addr)
734 {
735 struct frame_id id = null_frame_id;
736
737 id.stack_addr = stack_addr;
738 id.stack_status = FID_STACK_VALID;
739 return id;
740 }
741
742 bool
743 frame_id_p (frame_id l)
744 {
745 /* The frame is valid iff it has a valid stack address. */
746 bool p = l.stack_status != FID_STACK_INVALID;
747
748 if (frame_debug)
749 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=%s) -> %d }\n",
750 l.to_string ().c_str (), p);
751
752 return p;
753 }
754
755 bool
756 frame_id_artificial_p (frame_id l)
757 {
758 if (!frame_id_p (l))
759 return false;
760
761 return l.artificial_depth != 0;
762 }
763
764 bool
765 frame_id_eq (frame_id l, frame_id r)
766 {
767 bool eq;
768
769 if (l.stack_status == FID_STACK_INVALID
770 || r.stack_status == FID_STACK_INVALID)
771 /* Like a NaN, if either ID is invalid, the result is false.
772 Note that a frame ID is invalid iff it is the null frame ID. */
773 eq = false;
774 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
775 /* If .stack addresses are different, the frames are different. */
776 eq = false;
777 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
778 /* An invalid code addr is a wild card. If .code addresses are
779 different, the frames are different. */
780 eq = false;
781 else if (l.special_addr_p && r.special_addr_p
782 && l.special_addr != r.special_addr)
783 /* An invalid special addr is a wild card (or unused). Otherwise
784 if special addresses are different, the frames are different. */
785 eq = false;
786 else if (l.artificial_depth != r.artificial_depth)
787 /* If artificial depths are different, the frames must be different. */
788 eq = false;
789 else
790 /* Frames are equal. */
791 eq = true;
792
793 if (frame_debug)
794 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=%s,r=%s) -> %d }\n",
795 l.to_string ().c_str (), r.to_string ().c_str (), eq);
796
797 return eq;
798 }
799
800 /* Safety net to check whether frame ID L should be inner to
801 frame ID R, according to their stack addresses.
802
803 This method cannot be used to compare arbitrary frames, as the
804 ranges of valid stack addresses may be discontiguous (e.g. due
805 to sigaltstack).
806
807 However, it can be used as safety net to discover invalid frame
808 IDs in certain circumstances. Assuming that NEXT is the immediate
809 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
810
811 * The stack address of NEXT must be inner-than-or-equal to the stack
812 address of THIS.
813
814 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
815 error has occurred.
816
817 * If NEXT and THIS have different stack addresses, no other frame
818 in the frame chain may have a stack address in between.
819
820 Therefore, if frame_id_inner (TEST, THIS) holds, but
821 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
822 to a valid frame in the frame chain.
823
824 The sanity checks above cannot be performed when a SIGTRAMP frame
825 is involved, because signal handlers might be executed on a different
826 stack than the stack used by the routine that caused the signal
827 to be raised. This can happen for instance when a thread exceeds
828 its maximum stack size. In this case, certain compilers implement
829 a stack overflow strategy that cause the handler to be run on a
830 different stack. */
831
832 static bool
833 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
834 {
835 bool inner;
836
837 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
838 /* Like NaN, any operation involving an invalid ID always fails.
839 Likewise if either ID has an unavailable stack address. */
840 inner = false;
841 else if (l.artificial_depth > r.artificial_depth
842 && l.stack_addr == r.stack_addr
843 && l.code_addr_p == r.code_addr_p
844 && l.special_addr_p == r.special_addr_p
845 && l.special_addr == r.special_addr)
846 {
847 /* Same function, different inlined functions. */
848 const struct block *lb, *rb;
849
850 gdb_assert (l.code_addr_p && r.code_addr_p);
851
852 lb = block_for_pc (l.code_addr);
853 rb = block_for_pc (r.code_addr);
854
855 if (lb == NULL || rb == NULL)
856 /* Something's gone wrong. */
857 inner = false;
858 else
859 /* This will return true if LB and RB are the same block, or
860 if the block with the smaller depth lexically encloses the
861 block with the greater depth. */
862 inner = contained_in (lb, rb);
863 }
864 else
865 /* Only return non-zero when strictly inner than. Note that, per
866 comment in "frame.h", there is some fuzz here. Frameless
867 functions are not strictly inner than (same .stack but
868 different .code and/or .special address). */
869 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
870
871 if (frame_debug)
872 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=%s,r=%s) -> %d }\n",
873 l.to_string ().c_str (), r.to_string ().c_str (),
874 inner);
875
876 return inner;
877 }
878
879 struct frame_info *
880 frame_find_by_id (struct frame_id id)
881 {
882 struct frame_info *frame, *prev_frame;
883
884 /* ZERO denotes the null frame, let the caller decide what to do
885 about it. Should it instead return get_current_frame()? */
886 if (!frame_id_p (id))
887 return NULL;
888
889 /* Check for the sentinel frame. */
890 if (frame_id_eq (id, sentinel_frame_id))
891 return sentinel_frame;
892
893 /* Try using the frame stash first. Finding it there removes the need
894 to perform the search by looping over all frames, which can be very
895 CPU-intensive if the number of frames is very high (the loop is O(n)
896 and get_prev_frame performs a series of checks that are relatively
897 expensive). This optimization is particularly useful when this function
898 is called from another function (such as value_fetch_lazy, case
899 VALUE_LVAL (val) == lval_register) which already loops over all frames,
900 making the overall behavior O(n^2). */
901 frame = frame_stash_find (id);
902 if (frame)
903 return frame;
904
905 for (frame = get_current_frame (); ; frame = prev_frame)
906 {
907 struct frame_id self = get_frame_id (frame);
908
909 if (frame_id_eq (id, self))
910 /* An exact match. */
911 return frame;
912
913 prev_frame = get_prev_frame (frame);
914 if (!prev_frame)
915 return NULL;
916
917 /* As a safety net to avoid unnecessary backtracing while trying
918 to find an invalid ID, we check for a common situation where
919 we can detect from comparing stack addresses that no other
920 frame in the current frame chain can have this ID. See the
921 comment at frame_id_inner for details. */
922 if (get_frame_type (frame) == NORMAL_FRAME
923 && !frame_id_inner (get_frame_arch (frame), id, self)
924 && frame_id_inner (get_frame_arch (prev_frame), id,
925 get_frame_id (prev_frame)))
926 return NULL;
927 }
928 return NULL;
929 }
930
931 static CORE_ADDR
932 frame_unwind_pc (struct frame_info *this_frame)
933 {
934 if (this_frame->prev_pc.status == CC_UNKNOWN)
935 {
936 struct gdbarch *prev_gdbarch;
937 CORE_ADDR pc = 0;
938 bool pc_p = false;
939
940 /* The right way. The `pure' way. The one true way. This
941 method depends solely on the register-unwind code to
942 determine the value of registers in THIS frame, and hence
943 the value of this frame's PC (resume address). A typical
944 implementation is no more than:
945
946 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
947 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
948
949 Note: this method is very heavily dependent on a correct
950 register-unwind implementation, it pays to fix that
951 method first; this method is frame type agnostic, since
952 it only deals with register values, it works with any
953 frame. This is all in stark contrast to the old
954 FRAME_SAVED_PC which would try to directly handle all the
955 different ways that a PC could be unwound. */
956 prev_gdbarch = frame_unwind_arch (this_frame);
957
958 try
959 {
960 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
961 pc_p = true;
962 }
963 catch (const gdb_exception_error &ex)
964 {
965 if (ex.error == NOT_AVAILABLE_ERROR)
966 {
967 this_frame->prev_pc.status = CC_UNAVAILABLE;
968
969 if (frame_debug)
970 fprintf_unfiltered (gdb_stdlog,
971 "{ frame_unwind_pc (this_frame=%d)"
972 " -> <unavailable> }\n",
973 this_frame->level);
974 }
975 else if (ex.error == OPTIMIZED_OUT_ERROR)
976 {
977 this_frame->prev_pc.status = CC_NOT_SAVED;
978
979 if (frame_debug)
980 fprintf_unfiltered (gdb_stdlog,
981 "{ frame_unwind_pc (this_frame=%d)"
982 " -> <not saved> }\n",
983 this_frame->level);
984 }
985 else
986 throw;
987 }
988
989 if (pc_p)
990 {
991 this_frame->prev_pc.value = pc;
992 this_frame->prev_pc.status = CC_VALUE;
993 if (frame_debug)
994 fprintf_unfiltered (gdb_stdlog,
995 "{ frame_unwind_pc (this_frame=%d) "
996 "-> %s }\n",
997 this_frame->level,
998 hex_string (this_frame->prev_pc.value));
999 }
1000 }
1001
1002 if (this_frame->prev_pc.status == CC_VALUE)
1003 return this_frame->prev_pc.value;
1004 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
1005 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1006 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
1007 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
1008 else
1009 internal_error (__FILE__, __LINE__,
1010 "unexpected prev_pc status: %d",
1011 (int) this_frame->prev_pc.status);
1012 }
1013
1014 CORE_ADDR
1015 frame_unwind_caller_pc (struct frame_info *this_frame)
1016 {
1017 this_frame = skip_artificial_frames (this_frame);
1018
1019 /* We must have a non-artificial frame. The caller is supposed to check
1020 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1021 in this case. */
1022 gdb_assert (this_frame != NULL);
1023
1024 return frame_unwind_pc (this_frame);
1025 }
1026
1027 bool
1028 get_frame_func_if_available (frame_info *this_frame, CORE_ADDR *pc)
1029 {
1030 struct frame_info *next_frame = this_frame->next;
1031
1032 if (next_frame->prev_func.status == CC_UNKNOWN)
1033 {
1034 CORE_ADDR addr_in_block;
1035
1036 /* Make certain that this, and not the adjacent, function is
1037 found. */
1038 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1039 {
1040 next_frame->prev_func.status = CC_UNAVAILABLE;
1041 if (frame_debug)
1042 fprintf_unfiltered (gdb_stdlog,
1043 "{ get_frame_func (this_frame=%d)"
1044 " -> unavailable }\n",
1045 this_frame->level);
1046 }
1047 else
1048 {
1049 next_frame->prev_func.status = CC_VALUE;
1050 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1051 if (frame_debug)
1052 fprintf_unfiltered (gdb_stdlog,
1053 "{ get_frame_func (this_frame=%d) -> %s }\n",
1054 this_frame->level,
1055 hex_string (next_frame->prev_func.addr));
1056 }
1057 }
1058
1059 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1060 {
1061 *pc = -1;
1062 return false;
1063 }
1064 else
1065 {
1066 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1067
1068 *pc = next_frame->prev_func.addr;
1069 return true;
1070 }
1071 }
1072
1073 CORE_ADDR
1074 get_frame_func (struct frame_info *this_frame)
1075 {
1076 CORE_ADDR pc;
1077
1078 if (!get_frame_func_if_available (this_frame, &pc))
1079 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1080
1081 return pc;
1082 }
1083
1084 std::unique_ptr<readonly_detached_regcache>
1085 frame_save_as_regcache (struct frame_info *this_frame)
1086 {
1087 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1088 {
1089 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1090 return REG_UNAVAILABLE;
1091 else
1092 return REG_VALID;
1093 };
1094
1095 std::unique_ptr<readonly_detached_regcache> regcache
1096 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1097
1098 return regcache;
1099 }
1100
1101 void
1102 frame_pop (struct frame_info *this_frame)
1103 {
1104 struct frame_info *prev_frame;
1105
1106 if (get_frame_type (this_frame) == DUMMY_FRAME)
1107 {
1108 /* Popping a dummy frame involves restoring more than just registers.
1109 dummy_frame_pop does all the work. */
1110 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1111 return;
1112 }
1113
1114 /* Ensure that we have a frame to pop to. */
1115 prev_frame = get_prev_frame_always (this_frame);
1116
1117 if (!prev_frame)
1118 error (_("Cannot pop the initial frame."));
1119
1120 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1121 entering THISFRAME. */
1122 prev_frame = skip_tailcall_frames (prev_frame);
1123
1124 if (prev_frame == NULL)
1125 error (_("Cannot find the caller frame."));
1126
1127 /* Make a copy of all the register values unwound from this frame.
1128 Save them in a scratch buffer so that there isn't a race between
1129 trying to extract the old values from the current regcache while
1130 at the same time writing new values into that same cache. */
1131 std::unique_ptr<readonly_detached_regcache> scratch
1132 = frame_save_as_regcache (prev_frame);
1133
1134 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1135 target's register cache that it is about to be hit with a burst
1136 register transfer and that the sequence of register writes should
1137 be batched. The pair target_prepare_to_store() and
1138 target_store_registers() kind of suggest this functionality.
1139 Unfortunately, they don't implement it. Their lack of a formal
1140 definition can lead to targets writing back bogus values
1141 (arguably a bug in the target code mind). */
1142 /* Now copy those saved registers into the current regcache. */
1143 get_current_regcache ()->restore (scratch.get ());
1144
1145 /* We've made right mess of GDB's local state, just discard
1146 everything. */
1147 reinit_frame_cache ();
1148 }
1149
1150 void
1151 frame_register_unwind (frame_info *next_frame, int regnum,
1152 int *optimizedp, int *unavailablep,
1153 enum lval_type *lvalp, CORE_ADDR *addrp,
1154 int *realnump, gdb_byte *bufferp)
1155 {
1156 struct value *value;
1157
1158 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1159 that the value proper does not need to be fetched. */
1160 gdb_assert (optimizedp != NULL);
1161 gdb_assert (lvalp != NULL);
1162 gdb_assert (addrp != NULL);
1163 gdb_assert (realnump != NULL);
1164 /* gdb_assert (bufferp != NULL); */
1165
1166 value = frame_unwind_register_value (next_frame, regnum);
1167
1168 gdb_assert (value != NULL);
1169
1170 *optimizedp = value_optimized_out (value);
1171 *unavailablep = !value_entirely_available (value);
1172 *lvalp = VALUE_LVAL (value);
1173 *addrp = value_address (value);
1174 if (*lvalp == lval_register)
1175 *realnump = VALUE_REGNUM (value);
1176 else
1177 *realnump = -1;
1178
1179 if (bufferp)
1180 {
1181 if (!*optimizedp && !*unavailablep)
1182 memcpy (bufferp, value_contents_all (value),
1183 TYPE_LENGTH (value_type (value)));
1184 else
1185 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1186 }
1187
1188 /* Dispose of the new value. This prevents watchpoints from
1189 trying to watch the saved frame pointer. */
1190 release_value (value);
1191 }
1192
1193 void
1194 frame_register (struct frame_info *frame, int regnum,
1195 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1196 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1197 {
1198 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1199 that the value proper does not need to be fetched. */
1200 gdb_assert (optimizedp != NULL);
1201 gdb_assert (lvalp != NULL);
1202 gdb_assert (addrp != NULL);
1203 gdb_assert (realnump != NULL);
1204 /* gdb_assert (bufferp != NULL); */
1205
1206 /* Obtain the register value by unwinding the register from the next
1207 (more inner frame). */
1208 gdb_assert (frame != NULL && frame->next != NULL);
1209 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1210 lvalp, addrp, realnump, bufferp);
1211 }
1212
1213 void
1214 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1215 {
1216 int optimized;
1217 int unavailable;
1218 CORE_ADDR addr;
1219 int realnum;
1220 enum lval_type lval;
1221
1222 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1223 &lval, &addr, &realnum, buf);
1224
1225 if (optimized)
1226 throw_error (OPTIMIZED_OUT_ERROR,
1227 _("Register %d was not saved"), regnum);
1228 if (unavailable)
1229 throw_error (NOT_AVAILABLE_ERROR,
1230 _("Register %d is not available"), regnum);
1231 }
1232
1233 void
1234 get_frame_register (struct frame_info *frame,
1235 int regnum, gdb_byte *buf)
1236 {
1237 frame_unwind_register (frame->next, regnum, buf);
1238 }
1239
1240 struct value *
1241 frame_unwind_register_value (frame_info *next_frame, int regnum)
1242 {
1243 struct gdbarch *gdbarch;
1244 struct value *value;
1245
1246 gdb_assert (next_frame != NULL);
1247 gdbarch = frame_unwind_arch (next_frame);
1248
1249 if (frame_debug)
1250 {
1251 fprintf_unfiltered (gdb_stdlog,
1252 "{ frame_unwind_register_value "
1253 "(frame=%d,regnum=%d(%s),...) ",
1254 next_frame->level, regnum,
1255 user_reg_map_regnum_to_name (gdbarch, regnum));
1256 }
1257
1258 /* Find the unwinder. */
1259 if (next_frame->unwind == NULL)
1260 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1261
1262 /* Ask this frame to unwind its register. */
1263 value = next_frame->unwind->prev_register (next_frame,
1264 &next_frame->prologue_cache,
1265 regnum);
1266
1267 if (frame_debug)
1268 {
1269 fprintf_unfiltered (gdb_stdlog, "->");
1270 if (value_optimized_out (value))
1271 {
1272 fprintf_unfiltered (gdb_stdlog, " ");
1273 val_print_not_saved (gdb_stdlog);
1274 }
1275 else
1276 {
1277 if (VALUE_LVAL (value) == lval_register)
1278 fprintf_unfiltered (gdb_stdlog, " register=%d",
1279 VALUE_REGNUM (value));
1280 else if (VALUE_LVAL (value) == lval_memory)
1281 fprintf_unfiltered (gdb_stdlog, " address=%s",
1282 paddress (gdbarch,
1283 value_address (value)));
1284 else
1285 fprintf_unfiltered (gdb_stdlog, " computed");
1286
1287 if (value_lazy (value))
1288 fprintf_unfiltered (gdb_stdlog, " lazy");
1289 else
1290 {
1291 int i;
1292 const gdb_byte *buf = value_contents (value);
1293
1294 fprintf_unfiltered (gdb_stdlog, " bytes=");
1295 fprintf_unfiltered (gdb_stdlog, "[");
1296 for (i = 0; i < register_size (gdbarch, regnum); i++)
1297 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1298 fprintf_unfiltered (gdb_stdlog, "]");
1299 }
1300 }
1301
1302 fprintf_unfiltered (gdb_stdlog, " }\n");
1303 }
1304
1305 return value;
1306 }
1307
1308 struct value *
1309 get_frame_register_value (struct frame_info *frame, int regnum)
1310 {
1311 return frame_unwind_register_value (frame->next, regnum);
1312 }
1313
1314 LONGEST
1315 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1316 {
1317 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1319 int size = register_size (gdbarch, regnum);
1320 struct value *value = frame_unwind_register_value (next_frame, regnum);
1321
1322 gdb_assert (value != NULL);
1323
1324 if (value_optimized_out (value))
1325 {
1326 throw_error (OPTIMIZED_OUT_ERROR,
1327 _("Register %d was not saved"), regnum);
1328 }
1329 if (!value_entirely_available (value))
1330 {
1331 throw_error (NOT_AVAILABLE_ERROR,
1332 _("Register %d is not available"), regnum);
1333 }
1334
1335 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1336 byte_order);
1337
1338 release_value (value);
1339 return r;
1340 }
1341
1342 LONGEST
1343 get_frame_register_signed (struct frame_info *frame, int regnum)
1344 {
1345 return frame_unwind_register_signed (frame->next, regnum);
1346 }
1347
1348 ULONGEST
1349 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1350 {
1351 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1353 int size = register_size (gdbarch, regnum);
1354 struct value *value = frame_unwind_register_value (next_frame, regnum);
1355
1356 gdb_assert (value != NULL);
1357
1358 if (value_optimized_out (value))
1359 {
1360 throw_error (OPTIMIZED_OUT_ERROR,
1361 _("Register %d was not saved"), regnum);
1362 }
1363 if (!value_entirely_available (value))
1364 {
1365 throw_error (NOT_AVAILABLE_ERROR,
1366 _("Register %d is not available"), regnum);
1367 }
1368
1369 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1370 byte_order);
1371
1372 release_value (value);
1373 return r;
1374 }
1375
1376 ULONGEST
1377 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1378 {
1379 return frame_unwind_register_unsigned (frame->next, regnum);
1380 }
1381
1382 bool
1383 read_frame_register_unsigned (frame_info *frame, int regnum,
1384 ULONGEST *val)
1385 {
1386 struct value *regval = get_frame_register_value (frame, regnum);
1387
1388 if (!value_optimized_out (regval)
1389 && value_entirely_available (regval))
1390 {
1391 struct gdbarch *gdbarch = get_frame_arch (frame);
1392 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1393 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1394
1395 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1396 return true;
1397 }
1398
1399 return false;
1400 }
1401
1402 void
1403 put_frame_register (struct frame_info *frame, int regnum,
1404 const gdb_byte *buf)
1405 {
1406 struct gdbarch *gdbarch = get_frame_arch (frame);
1407 int realnum;
1408 int optim;
1409 int unavail;
1410 enum lval_type lval;
1411 CORE_ADDR addr;
1412
1413 frame_register (frame, regnum, &optim, &unavail,
1414 &lval, &addr, &realnum, NULL);
1415 if (optim)
1416 error (_("Attempt to assign to a register that was not saved."));
1417 switch (lval)
1418 {
1419 case lval_memory:
1420 {
1421 write_memory (addr, buf, register_size (gdbarch, regnum));
1422 break;
1423 }
1424 case lval_register:
1425 get_current_regcache ()->cooked_write (realnum, buf);
1426 break;
1427 default:
1428 error (_("Attempt to assign to an unmodifiable value."));
1429 }
1430 }
1431
1432 /* This function is deprecated. Use get_frame_register_value instead,
1433 which provides more accurate information.
1434
1435 Find and return the value of REGNUM for the specified stack frame.
1436 The number of bytes copied is REGISTER_SIZE (REGNUM).
1437
1438 Returns 0 if the register value could not be found. */
1439
1440 bool
1441 deprecated_frame_register_read (frame_info *frame, int regnum,
1442 gdb_byte *myaddr)
1443 {
1444 int optimized;
1445 int unavailable;
1446 enum lval_type lval;
1447 CORE_ADDR addr;
1448 int realnum;
1449
1450 frame_register (frame, regnum, &optimized, &unavailable,
1451 &lval, &addr, &realnum, myaddr);
1452
1453 return !optimized && !unavailable;
1454 }
1455
1456 bool
1457 get_frame_register_bytes (frame_info *frame, int regnum,
1458 CORE_ADDR offset,
1459 gdb::array_view<gdb_byte> buffer,
1460 int *optimizedp, int *unavailablep)
1461 {
1462 struct gdbarch *gdbarch = get_frame_arch (frame);
1463 int i;
1464 int maxsize;
1465 int numregs;
1466
1467 /* Skip registers wholly inside of OFFSET. */
1468 while (offset >= register_size (gdbarch, regnum))
1469 {
1470 offset -= register_size (gdbarch, regnum);
1471 regnum++;
1472 }
1473
1474 /* Ensure that we will not read beyond the end of the register file.
1475 This can only ever happen if the debug information is bad. */
1476 maxsize = -offset;
1477 numregs = gdbarch_num_cooked_regs (gdbarch);
1478 for (i = regnum; i < numregs; i++)
1479 {
1480 int thissize = register_size (gdbarch, i);
1481
1482 if (thissize == 0)
1483 break; /* This register is not available on this architecture. */
1484 maxsize += thissize;
1485 }
1486
1487 int len = buffer.size ();
1488 if (len > maxsize)
1489 error (_("Bad debug information detected: "
1490 "Attempt to read %d bytes from registers."), len);
1491
1492 /* Copy the data. */
1493 while (len > 0)
1494 {
1495 int curr_len = register_size (gdbarch, regnum) - offset;
1496
1497 if (curr_len > len)
1498 curr_len = len;
1499
1500 gdb_byte *myaddr = buffer.data ();
1501
1502 if (curr_len == register_size (gdbarch, regnum))
1503 {
1504 enum lval_type lval;
1505 CORE_ADDR addr;
1506 int realnum;
1507
1508 frame_register (frame, regnum, optimizedp, unavailablep,
1509 &lval, &addr, &realnum, myaddr);
1510 if (*optimizedp || *unavailablep)
1511 return false;
1512 }
1513 else
1514 {
1515 struct value *value = frame_unwind_register_value (frame->next,
1516 regnum);
1517 gdb_assert (value != NULL);
1518 *optimizedp = value_optimized_out (value);
1519 *unavailablep = !value_entirely_available (value);
1520
1521 if (*optimizedp || *unavailablep)
1522 {
1523 release_value (value);
1524 return false;
1525 }
1526
1527 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1528 release_value (value);
1529 }
1530
1531 myaddr += curr_len;
1532 len -= curr_len;
1533 offset = 0;
1534 regnum++;
1535 }
1536
1537 *optimizedp = 0;
1538 *unavailablep = 0;
1539
1540 return true;
1541 }
1542
1543 void
1544 put_frame_register_bytes (struct frame_info *frame, int regnum,
1545 CORE_ADDR offset,
1546 gdb::array_view<const gdb_byte> buffer)
1547 {
1548 struct gdbarch *gdbarch = get_frame_arch (frame);
1549
1550 /* Skip registers wholly inside of OFFSET. */
1551 while (offset >= register_size (gdbarch, regnum))
1552 {
1553 offset -= register_size (gdbarch, regnum);
1554 regnum++;
1555 }
1556
1557 int len = buffer.size ();
1558 /* Copy the data. */
1559 while (len > 0)
1560 {
1561 int curr_len = register_size (gdbarch, regnum) - offset;
1562
1563 if (curr_len > len)
1564 curr_len = len;
1565
1566 const gdb_byte *myaddr = buffer.data ();
1567 if (curr_len == register_size (gdbarch, regnum))
1568 {
1569 put_frame_register (frame, regnum, myaddr);
1570 }
1571 else
1572 {
1573 struct value *value = frame_unwind_register_value (frame->next,
1574 regnum);
1575 gdb_assert (value != NULL);
1576
1577 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1578 curr_len);
1579 put_frame_register (frame, regnum, value_contents_raw (value));
1580 release_value (value);
1581 }
1582
1583 myaddr += curr_len;
1584 len -= curr_len;
1585 offset = 0;
1586 regnum++;
1587 }
1588 }
1589
1590 /* Create a sentinel frame. */
1591
1592 static struct frame_info *
1593 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1594 {
1595 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1596
1597 frame->level = -1;
1598 frame->pspace = pspace;
1599 frame->aspace = regcache->aspace ();
1600 /* Explicitly initialize the sentinel frame's cache. Provide it
1601 with the underlying regcache. In the future additional
1602 information, such as the frame's thread will be added. */
1603 frame->prologue_cache = sentinel_frame_cache (regcache);
1604 /* For the moment there is only one sentinel frame implementation. */
1605 frame->unwind = &sentinel_frame_unwind;
1606 /* Link this frame back to itself. The frame is self referential
1607 (the unwound PC is the same as the pc), so make it so. */
1608 frame->next = frame;
1609 /* The sentinel frame has a special ID. */
1610 frame->this_id.p = frame_id_status::COMPUTED;
1611 frame->this_id.value = sentinel_frame_id;
1612 if (frame_debug)
1613 {
1614 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1615 fprint_frame (gdb_stdlog, frame);
1616 fprintf_unfiltered (gdb_stdlog, " }\n");
1617 }
1618 return frame;
1619 }
1620
1621 /* Cache for frame addresses already read by gdb. Valid only while
1622 inferior is stopped. Control variables for the frame cache should
1623 be local to this module. */
1624
1625 static struct obstack frame_cache_obstack;
1626
1627 void *
1628 frame_obstack_zalloc (unsigned long size)
1629 {
1630 void *data = obstack_alloc (&frame_cache_obstack, size);
1631
1632 memset (data, 0, size);
1633 return data;
1634 }
1635
1636 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1637
1638 struct frame_info *
1639 get_current_frame (void)
1640 {
1641 struct frame_info *current_frame;
1642
1643 /* First check, and report, the lack of registers. Having GDB
1644 report "No stack!" or "No memory" when the target doesn't even
1645 have registers is very confusing. Besides, "printcmd.exp"
1646 explicitly checks that ``print $pc'' with no registers prints "No
1647 registers". */
1648 if (!target_has_registers ())
1649 error (_("No registers."));
1650 if (!target_has_stack ())
1651 error (_("No stack."));
1652 if (!target_has_memory ())
1653 error (_("No memory."));
1654 /* Traceframes are effectively a substitute for the live inferior. */
1655 if (get_traceframe_number () < 0)
1656 validate_registers_access ();
1657
1658 if (sentinel_frame == NULL)
1659 sentinel_frame =
1660 create_sentinel_frame (current_program_space, get_current_regcache ());
1661
1662 /* Set the current frame before computing the frame id, to avoid
1663 recursion inside compute_frame_id, in case the frame's
1664 unwinder decides to do a symbol lookup (which depends on the
1665 selected frame's block).
1666
1667 This call must always succeed. In particular, nothing inside
1668 get_prev_frame_always_1 should try to unwind from the
1669 sentinel frame, because that could fail/throw, and we always
1670 want to leave with the current frame created and linked in --
1671 we should never end up with the sentinel frame as outermost
1672 frame. */
1673 current_frame = get_prev_frame_always_1 (sentinel_frame);
1674 gdb_assert (current_frame != NULL);
1675
1676 return current_frame;
1677 }
1678
1679 /* The "selected" stack frame is used by default for local and arg
1680 access.
1681
1682 The "single source of truth" for the selected frame is the
1683 SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL pair.
1684
1685 Frame IDs can be saved/restored across reinitializing the frame
1686 cache, while frame_info pointers can't (frame_info objects are
1687 invalidated). If we know the corresponding frame_info object, it
1688 is cached in SELECTED_FRAME.
1689
1690 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1691 and the target has stack and is stopped, the selected frame is the
1692 current (innermost) frame. This means that SELECTED_FRAME_LEVEL is
1693 never 0 and SELECTED_FRAME_ID is never the ID of the innermost
1694 frame.
1695
1696 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1697 and the target has no stack or is executing, then there's no
1698 selected frame. */
1699 static frame_id selected_frame_id = null_frame_id;
1700 static int selected_frame_level = -1;
1701
1702 /* The cached frame_info object pointing to the selected frame.
1703 Looked up on demand by get_selected_frame. */
1704 static struct frame_info *selected_frame;
1705
1706 /* See frame.h. */
1707
1708 void
1709 save_selected_frame (frame_id *frame_id, int *frame_level)
1710 noexcept
1711 {
1712 *frame_id = selected_frame_id;
1713 *frame_level = selected_frame_level;
1714 }
1715
1716 /* See frame.h. */
1717
1718 void
1719 restore_selected_frame (frame_id frame_id, int frame_level)
1720 noexcept
1721 {
1722 /* save_selected_frame never returns level == 0, so we shouldn't see
1723 it here either. */
1724 gdb_assert (frame_level != 0);
1725
1726 /* FRAME_ID can be null_frame_id only IFF frame_level is -1. */
1727 gdb_assert ((frame_level == -1 && !frame_id_p (frame_id))
1728 || (frame_level != -1 && frame_id_p (frame_id)));
1729
1730 selected_frame_id = frame_id;
1731 selected_frame_level = frame_level;
1732
1733 /* Will be looked up later by get_selected_frame. */
1734 selected_frame = nullptr;
1735 }
1736
1737 /* See frame.h. */
1738
1739 void
1740 lookup_selected_frame (struct frame_id a_frame_id, int frame_level)
1741 {
1742 struct frame_info *frame = NULL;
1743 int count;
1744
1745 /* This either means there was no selected frame, or the selected
1746 frame was the current frame. In either case, select the current
1747 frame. */
1748 if (frame_level == -1)
1749 {
1750 select_frame (get_current_frame ());
1751 return;
1752 }
1753
1754 /* select_frame never saves 0 in SELECTED_FRAME_LEVEL, so we
1755 shouldn't see it here. */
1756 gdb_assert (frame_level > 0);
1757
1758 /* Restore by level first, check if the frame id is the same as
1759 expected. If that fails, try restoring by frame id. If that
1760 fails, nothing to do, just warn the user. */
1761
1762 count = frame_level;
1763 frame = find_relative_frame (get_current_frame (), &count);
1764 if (count == 0
1765 && frame != NULL
1766 /* The frame ids must match - either both valid or both
1767 outer_frame_id. The latter case is not failsafe, but since
1768 it's highly unlikely the search by level finds the wrong
1769 frame, it's 99.9(9)% of the time (for all practical purposes)
1770 safe. */
1771 && frame_id_eq (get_frame_id (frame), a_frame_id))
1772 {
1773 /* Cool, all is fine. */
1774 select_frame (frame);
1775 return;
1776 }
1777
1778 frame = frame_find_by_id (a_frame_id);
1779 if (frame != NULL)
1780 {
1781 /* Cool, refound it. */
1782 select_frame (frame);
1783 return;
1784 }
1785
1786 /* Nothing else to do, the frame layout really changed. Select the
1787 innermost stack frame. */
1788 select_frame (get_current_frame ());
1789
1790 /* Warn the user. */
1791 if (frame_level > 0 && !current_uiout->is_mi_like_p ())
1792 {
1793 warning (_("Couldn't restore frame #%d in "
1794 "current thread. Bottom (innermost) frame selected:"),
1795 frame_level);
1796 /* For MI, we should probably have a notification about current
1797 frame change. But this error is not very likely, so don't
1798 bother for now. */
1799 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1800 }
1801 }
1802
1803 bool
1804 has_stack_frames ()
1805 {
1806 if (!target_has_registers () || !target_has_stack ()
1807 || !target_has_memory ())
1808 return false;
1809
1810 /* Traceframes are effectively a substitute for the live inferior. */
1811 if (get_traceframe_number () < 0)
1812 {
1813 /* No current inferior, no frame. */
1814 if (inferior_ptid == null_ptid)
1815 return false;
1816
1817 thread_info *tp = inferior_thread ();
1818 /* Don't try to read from a dead thread. */
1819 if (tp->state == THREAD_EXITED)
1820 return false;
1821
1822 /* ... or from a spinning thread. */
1823 if (tp->executing)
1824 return false;
1825 }
1826
1827 return true;
1828 }
1829
1830 /* See frame.h. */
1831
1832 struct frame_info *
1833 get_selected_frame (const char *message)
1834 {
1835 if (selected_frame == NULL)
1836 {
1837 if (message != NULL && !has_stack_frames ())
1838 error (("%s"), message);
1839
1840 lookup_selected_frame (selected_frame_id, selected_frame_level);
1841 }
1842 /* There is always a frame. */
1843 gdb_assert (selected_frame != NULL);
1844 return selected_frame;
1845 }
1846
1847 /* This is a variant of get_selected_frame() which can be called when
1848 the inferior does not have a frame; in that case it will return
1849 NULL instead of calling error(). */
1850
1851 struct frame_info *
1852 deprecated_safe_get_selected_frame (void)
1853 {
1854 if (!has_stack_frames ())
1855 return NULL;
1856 return get_selected_frame (NULL);
1857 }
1858
1859 /* Select frame FI (or NULL - to invalidate the selected frame). */
1860
1861 void
1862 select_frame (struct frame_info *fi)
1863 {
1864 selected_frame = fi;
1865 selected_frame_level = frame_relative_level (fi);
1866 if (selected_frame_level == 0)
1867 {
1868 /* Treat the current frame especially -- we want to always
1869 save/restore it without warning, even if the frame ID changes
1870 (see lookup_selected_frame). E.g.:
1871
1872 // The current frame is selected, the target had just stopped.
1873 {
1874 scoped_restore_selected_frame restore_frame;
1875 some_operation_that_changes_the_stack ();
1876 }
1877 // scoped_restore_selected_frame's dtor runs, but the
1878 // original frame_id can't be found. No matter whether it
1879 // is found or not, we still end up with the now-current
1880 // frame selected. Warning in lookup_selected_frame in this
1881 // case seems pointless.
1882
1883 Also get_frame_id may access the target's registers/memory,
1884 and thus skipping get_frame_id optimizes the common case.
1885
1886 Saving the selected frame this way makes get_selected_frame
1887 and restore_current_frame return/re-select whatever frame is
1888 the innermost (current) then. */
1889 selected_frame_level = -1;
1890 selected_frame_id = null_frame_id;
1891 }
1892 else
1893 selected_frame_id = get_frame_id (fi);
1894
1895 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1896 frame is being invalidated. */
1897
1898 /* FIXME: kseitz/2002-08-28: It would be nice to call
1899 selected_frame_level_changed_event() right here, but due to limitations
1900 in the current interfaces, we would end up flooding UIs with events
1901 because select_frame() is used extensively internally.
1902
1903 Once we have frame-parameterized frame (and frame-related) commands,
1904 the event notification can be moved here, since this function will only
1905 be called when the user's selected frame is being changed. */
1906
1907 /* Ensure that symbols for this frame are read in. Also, determine the
1908 source language of this frame, and switch to it if desired. */
1909 if (fi)
1910 {
1911 CORE_ADDR pc;
1912
1913 /* We retrieve the frame's symtab by using the frame PC.
1914 However we cannot use the frame PC as-is, because it usually
1915 points to the instruction following the "call", which is
1916 sometimes the first instruction of another function. So we
1917 rely on get_frame_address_in_block() which provides us with a
1918 PC which is guaranteed to be inside the frame's code
1919 block. */
1920 if (get_frame_address_in_block_if_available (fi, &pc))
1921 {
1922 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1923
1924 if (cust != NULL
1925 && compunit_language (cust) != current_language->la_language
1926 && compunit_language (cust) != language_unknown
1927 && language_mode == language_mode_auto)
1928 set_language (compunit_language (cust));
1929 }
1930 }
1931 }
1932
1933 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1934 Always returns a non-NULL value. */
1935
1936 struct frame_info *
1937 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1938 {
1939 struct frame_info *fi;
1940
1941 if (frame_debug)
1942 {
1943 fprintf_unfiltered (gdb_stdlog,
1944 "{ create_new_frame (addr=%s, pc=%s) ",
1945 hex_string (addr), hex_string (pc));
1946 }
1947
1948 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1949
1950 fi->next = create_sentinel_frame (current_program_space,
1951 get_current_regcache ());
1952
1953 /* Set/update this frame's cached PC value, found in the next frame.
1954 Do this before looking for this frame's unwinder. A sniffer is
1955 very likely to read this, and the corresponding unwinder is
1956 entitled to rely that the PC doesn't magically change. */
1957 fi->next->prev_pc.value = pc;
1958 fi->next->prev_pc.status = CC_VALUE;
1959
1960 /* We currently assume that frame chain's can't cross spaces. */
1961 fi->pspace = fi->next->pspace;
1962 fi->aspace = fi->next->aspace;
1963
1964 /* Select/initialize both the unwind function and the frame's type
1965 based on the PC. */
1966 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1967
1968 fi->this_id.p = frame_id_status::COMPUTED;
1969 fi->this_id.value = frame_id_build (addr, pc);
1970
1971 if (frame_debug)
1972 {
1973 fprintf_unfiltered (gdb_stdlog, "-> ");
1974 fprint_frame (gdb_stdlog, fi);
1975 fprintf_unfiltered (gdb_stdlog, " }\n");
1976 }
1977
1978 return fi;
1979 }
1980
1981 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1982 innermost frame). Be careful to not fall off the bottom of the
1983 frame chain and onto the sentinel frame. */
1984
1985 struct frame_info *
1986 get_next_frame (struct frame_info *this_frame)
1987 {
1988 if (this_frame->level > 0)
1989 return this_frame->next;
1990 else
1991 return NULL;
1992 }
1993
1994 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1995 innermost (i.e. current) frame, return the sentinel frame. Thus,
1996 unlike get_next_frame(), NULL will never be returned. */
1997
1998 struct frame_info *
1999 get_next_frame_sentinel_okay (struct frame_info *this_frame)
2000 {
2001 gdb_assert (this_frame != NULL);
2002
2003 /* Note that, due to the manner in which the sentinel frame is
2004 constructed, this_frame->next still works even when this_frame
2005 is the sentinel frame. But we disallow it here anyway because
2006 calling get_next_frame_sentinel_okay() on the sentinel frame
2007 is likely a coding error. */
2008 gdb_assert (this_frame != sentinel_frame);
2009
2010 return this_frame->next;
2011 }
2012
2013 /* Observer for the target_changed event. */
2014
2015 static void
2016 frame_observer_target_changed (struct target_ops *target)
2017 {
2018 reinit_frame_cache ();
2019 }
2020
2021 /* Flush the entire frame cache. */
2022
2023 void
2024 reinit_frame_cache (void)
2025 {
2026 struct frame_info *fi;
2027
2028 ++frame_cache_generation;
2029
2030 /* Tear down all frame caches. */
2031 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
2032 {
2033 if (fi->prologue_cache && fi->unwind->dealloc_cache)
2034 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
2035 if (fi->base_cache && fi->base->unwind->dealloc_cache)
2036 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
2037 }
2038
2039 /* Since we can't really be sure what the first object allocated was. */
2040 obstack_free (&frame_cache_obstack, 0);
2041 obstack_init (&frame_cache_obstack);
2042
2043 if (sentinel_frame != NULL)
2044 annotate_frames_invalid ();
2045
2046 sentinel_frame = NULL; /* Invalidate cache */
2047 select_frame (NULL);
2048 frame_stash_invalidate ();
2049 if (frame_debug)
2050 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
2051 }
2052
2053 /* Find where a register is saved (in memory or another register).
2054 The result of frame_register_unwind is just where it is saved
2055 relative to this particular frame. */
2056
2057 static void
2058 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
2059 int *optimizedp, enum lval_type *lvalp,
2060 CORE_ADDR *addrp, int *realnump)
2061 {
2062 gdb_assert (this_frame == NULL || this_frame->level >= 0);
2063
2064 while (this_frame != NULL)
2065 {
2066 int unavailable;
2067
2068 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
2069 lvalp, addrp, realnump, NULL);
2070
2071 if (*optimizedp)
2072 break;
2073
2074 if (*lvalp != lval_register)
2075 break;
2076
2077 regnum = *realnump;
2078 this_frame = get_next_frame (this_frame);
2079 }
2080 }
2081
2082 /* Get the previous raw frame, and check that it is not identical to
2083 same other frame frame already in the chain. If it is, there is
2084 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
2085 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
2086 validity tests, that compare THIS_FRAME and the next frame, we do
2087 this right after creating the previous frame, to avoid ever ending
2088 up with two frames with the same id in the frame chain. */
2089
2090 static struct frame_info *
2091 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
2092 {
2093 struct frame_info *prev_frame;
2094
2095 prev_frame = get_prev_frame_raw (this_frame);
2096
2097 /* Don't compute the frame id of the current frame yet. Unwinding
2098 the sentinel frame can fail (e.g., if the thread is gone and we
2099 can't thus read its registers). If we let the cycle detection
2100 code below try to compute a frame ID, then an error thrown from
2101 within the frame ID computation would result in the sentinel
2102 frame as outermost frame, which is bogus. Instead, we'll compute
2103 the current frame's ID lazily in get_frame_id. Note that there's
2104 no point in doing cycle detection when there's only one frame, so
2105 nothing is lost here. */
2106 if (prev_frame->level == 0)
2107 return prev_frame;
2108
2109 unsigned int entry_generation = get_frame_cache_generation ();
2110
2111 try
2112 {
2113 compute_frame_id (prev_frame);
2114 if (!frame_stash_add (prev_frame))
2115 {
2116 /* Another frame with the same id was already in the stash. We just
2117 detected a cycle. */
2118 if (frame_debug)
2119 {
2120 fprintf_unfiltered (gdb_stdlog, "-> ");
2121 fprint_frame (gdb_stdlog, NULL);
2122 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
2123 }
2124 this_frame->stop_reason = UNWIND_SAME_ID;
2125 /* Unlink. */
2126 prev_frame->next = NULL;
2127 this_frame->prev = NULL;
2128 prev_frame = NULL;
2129 }
2130 }
2131 catch (const gdb_exception &ex)
2132 {
2133 if (get_frame_cache_generation () == entry_generation)
2134 {
2135 prev_frame->next = NULL;
2136 this_frame->prev = NULL;
2137 }
2138
2139 throw;
2140 }
2141
2142 return prev_frame;
2143 }
2144
2145 /* Helper function for get_prev_frame_always, this is called inside a
2146 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2147 there is no such frame. This may throw an exception. */
2148
2149 static struct frame_info *
2150 get_prev_frame_always_1 (struct frame_info *this_frame)
2151 {
2152 struct gdbarch *gdbarch;
2153
2154 gdb_assert (this_frame != NULL);
2155 gdbarch = get_frame_arch (this_frame);
2156
2157 if (frame_debug)
2158 {
2159 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
2160 if (this_frame != NULL)
2161 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2162 else
2163 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2164 fprintf_unfiltered (gdb_stdlog, ") ");
2165 }
2166
2167 /* Only try to do the unwind once. */
2168 if (this_frame->prev_p)
2169 {
2170 if (frame_debug)
2171 {
2172 fprintf_unfiltered (gdb_stdlog, "-> ");
2173 fprint_frame (gdb_stdlog, this_frame->prev);
2174 fprintf_unfiltered (gdb_stdlog, " // cached \n");
2175 }
2176 return this_frame->prev;
2177 }
2178
2179 /* If the frame unwinder hasn't been selected yet, we must do so
2180 before setting prev_p; otherwise the check for misbehaved
2181 sniffers will think that this frame's sniffer tried to unwind
2182 further (see frame_cleanup_after_sniffer). */
2183 if (this_frame->unwind == NULL)
2184 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2185
2186 this_frame->prev_p = true;
2187 this_frame->stop_reason = UNWIND_NO_REASON;
2188
2189 /* If we are unwinding from an inline frame, all of the below tests
2190 were already performed when we unwound from the next non-inline
2191 frame. We must skip them, since we can not get THIS_FRAME's ID
2192 until we have unwound all the way down to the previous non-inline
2193 frame. */
2194 if (get_frame_type (this_frame) == INLINE_FRAME)
2195 return get_prev_frame_if_no_cycle (this_frame);
2196
2197 /* If this_frame is the current frame, then compute and stash its
2198 frame id prior to fetching and computing the frame id of the
2199 previous frame. Otherwise, the cycle detection code in
2200 get_prev_frame_if_no_cycle() will not work correctly. When
2201 get_frame_id() is called later on, an assertion error will be
2202 triggered in the event of a cycle between the current frame and
2203 its previous frame.
2204
2205 Note we do this after the INLINE_FRAME check above. That is
2206 because the inline frame's frame id computation needs to fetch
2207 the frame id of its previous real stack frame. I.e., we need to
2208 avoid recursion in that case. This is OK since we're sure the
2209 inline frame won't create a cycle with the real stack frame. See
2210 inline_frame_this_id. */
2211 if (this_frame->level == 0)
2212 get_frame_id (this_frame);
2213
2214 /* Check that this frame is unwindable. If it isn't, don't try to
2215 unwind to the prev frame. */
2216 this_frame->stop_reason
2217 = this_frame->unwind->stop_reason (this_frame,
2218 &this_frame->prologue_cache);
2219
2220 if (this_frame->stop_reason != UNWIND_NO_REASON)
2221 {
2222 if (frame_debug)
2223 {
2224 enum unwind_stop_reason reason = this_frame->stop_reason;
2225
2226 fprintf_unfiltered (gdb_stdlog, "-> ");
2227 fprint_frame (gdb_stdlog, NULL);
2228 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2229 frame_stop_reason_symbol_string (reason));
2230 }
2231 return NULL;
2232 }
2233
2234 /* Check that this frame's ID isn't inner to (younger, below, next)
2235 the next frame. This happens when a frame unwind goes backwards.
2236 This check is valid only if this frame and the next frame are NORMAL.
2237 See the comment at frame_id_inner for details. */
2238 if (get_frame_type (this_frame) == NORMAL_FRAME
2239 && this_frame->next->unwind->type == NORMAL_FRAME
2240 && frame_id_inner (get_frame_arch (this_frame->next),
2241 get_frame_id (this_frame),
2242 get_frame_id (this_frame->next)))
2243 {
2244 CORE_ADDR this_pc_in_block;
2245 struct minimal_symbol *morestack_msym;
2246 const char *morestack_name = NULL;
2247
2248 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2249 this_pc_in_block = get_frame_address_in_block (this_frame);
2250 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2251 if (morestack_msym)
2252 morestack_name = morestack_msym->linkage_name ();
2253 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2254 {
2255 if (frame_debug)
2256 {
2257 fprintf_unfiltered (gdb_stdlog, "-> ");
2258 fprint_frame (gdb_stdlog, NULL);
2259 fprintf_unfiltered (gdb_stdlog,
2260 " // this frame ID is inner }\n");
2261 }
2262 this_frame->stop_reason = UNWIND_INNER_ID;
2263 return NULL;
2264 }
2265 }
2266
2267 /* Check that this and the next frame do not unwind the PC register
2268 to the same memory location. If they do, then even though they
2269 have different frame IDs, the new frame will be bogus; two
2270 functions can't share a register save slot for the PC. This can
2271 happen when the prologue analyzer finds a stack adjustment, but
2272 no PC save.
2273
2274 This check does assume that the "PC register" is roughly a
2275 traditional PC, even if the gdbarch_unwind_pc method adjusts
2276 it (we do not rely on the value, only on the unwound PC being
2277 dependent on this value). A potential improvement would be
2278 to have the frame prev_pc method and the gdbarch unwind_pc
2279 method set the same lval and location information as
2280 frame_register_unwind. */
2281 if (this_frame->level > 0
2282 && gdbarch_pc_regnum (gdbarch) >= 0
2283 && get_frame_type (this_frame) == NORMAL_FRAME
2284 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2285 || get_frame_type (this_frame->next) == INLINE_FRAME))
2286 {
2287 int optimized, realnum, nrealnum;
2288 enum lval_type lval, nlval;
2289 CORE_ADDR addr, naddr;
2290
2291 frame_register_unwind_location (this_frame,
2292 gdbarch_pc_regnum (gdbarch),
2293 &optimized, &lval, &addr, &realnum);
2294 frame_register_unwind_location (get_next_frame (this_frame),
2295 gdbarch_pc_regnum (gdbarch),
2296 &optimized, &nlval, &naddr, &nrealnum);
2297
2298 if ((lval == lval_memory && lval == nlval && addr == naddr)
2299 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2300 {
2301 if (frame_debug)
2302 {
2303 fprintf_unfiltered (gdb_stdlog, "-> ");
2304 fprint_frame (gdb_stdlog, NULL);
2305 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2306 }
2307
2308 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2309 this_frame->prev = NULL;
2310 return NULL;
2311 }
2312 }
2313
2314 return get_prev_frame_if_no_cycle (this_frame);
2315 }
2316
2317 /* Return a "struct frame_info" corresponding to the frame that called
2318 THIS_FRAME. Returns NULL if there is no such frame.
2319
2320 Unlike get_prev_frame, this function always tries to unwind the
2321 frame. */
2322
2323 struct frame_info *
2324 get_prev_frame_always (struct frame_info *this_frame)
2325 {
2326 struct frame_info *prev_frame = NULL;
2327
2328 try
2329 {
2330 prev_frame = get_prev_frame_always_1 (this_frame);
2331 }
2332 catch (const gdb_exception_error &ex)
2333 {
2334 if (ex.error == MEMORY_ERROR)
2335 {
2336 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2337 if (ex.message != NULL)
2338 {
2339 char *stop_string;
2340 size_t size;
2341
2342 /* The error needs to live as long as the frame does.
2343 Allocate using stack local STOP_STRING then assign the
2344 pointer to the frame, this allows the STOP_STRING on the
2345 frame to be of type 'const char *'. */
2346 size = ex.message->size () + 1;
2347 stop_string = (char *) frame_obstack_zalloc (size);
2348 memcpy (stop_string, ex.what (), size);
2349 this_frame->stop_string = stop_string;
2350 }
2351 prev_frame = NULL;
2352 }
2353 else
2354 throw;
2355 }
2356
2357 return prev_frame;
2358 }
2359
2360 /* Construct a new "struct frame_info" and link it previous to
2361 this_frame. */
2362
2363 static struct frame_info *
2364 get_prev_frame_raw (struct frame_info *this_frame)
2365 {
2366 struct frame_info *prev_frame;
2367
2368 /* Allocate the new frame but do not wire it in to the frame chain.
2369 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2370 frame->next to pull some fancy tricks (of course such code is, by
2371 definition, recursive). Try to prevent it.
2372
2373 There is no reason to worry about memory leaks, should the
2374 remainder of the function fail. The allocated memory will be
2375 quickly reclaimed when the frame cache is flushed, and the `we've
2376 been here before' check above will stop repeated memory
2377 allocation calls. */
2378 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2379 prev_frame->level = this_frame->level + 1;
2380
2381 /* For now, assume we don't have frame chains crossing address
2382 spaces. */
2383 prev_frame->pspace = this_frame->pspace;
2384 prev_frame->aspace = this_frame->aspace;
2385
2386 /* Don't yet compute ->unwind (and hence ->type). It is computed
2387 on-demand in get_frame_type, frame_register_unwind, and
2388 get_frame_id. */
2389
2390 /* Don't yet compute the frame's ID. It is computed on-demand by
2391 get_frame_id(). */
2392
2393 /* The unwound frame ID is validate at the start of this function,
2394 as part of the logic to decide if that frame should be further
2395 unwound, and not here while the prev frame is being created.
2396 Doing this makes it possible for the user to examine a frame that
2397 has an invalid frame ID.
2398
2399 Some very old VAX code noted: [...] For the sake of argument,
2400 suppose that the stack is somewhat trashed (which is one reason
2401 that "info frame" exists). So, return 0 (indicating we don't
2402 know the address of the arglist) if we don't know what frame this
2403 frame calls. */
2404
2405 /* Link it in. */
2406 this_frame->prev = prev_frame;
2407 prev_frame->next = this_frame;
2408
2409 if (frame_debug)
2410 {
2411 fprintf_unfiltered (gdb_stdlog, "-> ");
2412 fprint_frame (gdb_stdlog, prev_frame);
2413 fprintf_unfiltered (gdb_stdlog, " }\n");
2414 }
2415
2416 return prev_frame;
2417 }
2418
2419 /* Debug routine to print a NULL frame being returned. */
2420
2421 static void
2422 frame_debug_got_null_frame (struct frame_info *this_frame,
2423 const char *reason)
2424 {
2425 if (frame_debug)
2426 {
2427 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2428 if (this_frame != NULL)
2429 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2430 else
2431 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2432 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2433 }
2434 }
2435
2436 /* Is this (non-sentinel) frame in the "main"() function? */
2437
2438 static bool
2439 inside_main_func (frame_info *this_frame)
2440 {
2441 if (current_program_space->symfile_object_file == nullptr)
2442 return false;
2443
2444 CORE_ADDR sym_addr;
2445 const char *name = main_name ();
2446 bound_minimal_symbol msymbol
2447 = lookup_minimal_symbol (name, NULL,
2448 current_program_space->symfile_object_file);
2449 if (msymbol.minsym == nullptr)
2450 {
2451 /* In some language (for example Fortran) there will be no minimal
2452 symbol with the name of the main function. In this case we should
2453 search the full symbols to see if we can find a match. */
2454 struct block_symbol bs = lookup_symbol (name, NULL, VAR_DOMAIN, 0);
2455 if (bs.symbol == nullptr)
2456 return false;
2457
2458 const struct block *block = SYMBOL_BLOCK_VALUE (bs.symbol);
2459 gdb_assert (block != nullptr);
2460 sym_addr = BLOCK_START (block);
2461 }
2462 else
2463 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2464
2465 /* Convert any function descriptor addresses into the actual function
2466 code address. */
2467 sym_addr = gdbarch_convert_from_func_ptr_addr
2468 (get_frame_arch (this_frame), sym_addr, current_inferior ()->top_target ());
2469
2470 return sym_addr == get_frame_func (this_frame);
2471 }
2472
2473 /* Test whether THIS_FRAME is inside the process entry point function. */
2474
2475 static bool
2476 inside_entry_func (frame_info *this_frame)
2477 {
2478 CORE_ADDR entry_point;
2479
2480 if (!entry_point_address_query (&entry_point))
2481 return false;
2482
2483 return get_frame_func (this_frame) == entry_point;
2484 }
2485
2486 /* Return a structure containing various interesting information about
2487 the frame that called THIS_FRAME. Returns NULL if there is entier
2488 no such frame or the frame fails any of a set of target-independent
2489 condition that should terminate the frame chain (e.g., as unwinding
2490 past main()).
2491
2492 This function should not contain target-dependent tests, such as
2493 checking whether the program-counter is zero. */
2494
2495 struct frame_info *
2496 get_prev_frame (struct frame_info *this_frame)
2497 {
2498 CORE_ADDR frame_pc;
2499 int frame_pc_p;
2500
2501 /* There is always a frame. If this assertion fails, suspect that
2502 something should be calling get_selected_frame() or
2503 get_current_frame(). */
2504 gdb_assert (this_frame != NULL);
2505
2506 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2507
2508 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2509 sense to stop unwinding at a dummy frame. One place where a dummy
2510 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2511 pcsqh register (space register for the instruction at the head of the
2512 instruction queue) cannot be written directly; the only way to set it
2513 is to branch to code that is in the target space. In order to implement
2514 frame dummies on HPUX, the called function is made to jump back to where
2515 the inferior was when the user function was called. If gdb was inside
2516 the main function when we created the dummy frame, the dummy frame will
2517 point inside the main function. */
2518 if (this_frame->level >= 0
2519 && get_frame_type (this_frame) == NORMAL_FRAME
2520 && !user_set_backtrace_options.backtrace_past_main
2521 && frame_pc_p
2522 && inside_main_func (this_frame))
2523 /* Don't unwind past main(). Note, this is done _before_ the
2524 frame has been marked as previously unwound. That way if the
2525 user later decides to enable unwinds past main(), that will
2526 automatically happen. */
2527 {
2528 frame_debug_got_null_frame (this_frame, "inside main func");
2529 return NULL;
2530 }
2531
2532 /* If the user's backtrace limit has been exceeded, stop. We must
2533 add two to the current level; one of those accounts for backtrace_limit
2534 being 1-based and the level being 0-based, and the other accounts for
2535 the level of the new frame instead of the level of the current
2536 frame. */
2537 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2538 {
2539 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2540 return NULL;
2541 }
2542
2543 /* If we're already inside the entry function for the main objfile,
2544 then it isn't valid. Don't apply this test to a dummy frame -
2545 dummy frame PCs typically land in the entry func. Don't apply
2546 this test to the sentinel frame. Sentinel frames should always
2547 be allowed to unwind. */
2548 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2549 wasn't checking for "main" in the minimal symbols. With that
2550 fixed asm-source tests now stop in "main" instead of halting the
2551 backtrace in weird and wonderful ways somewhere inside the entry
2552 file. Suspect that tests for inside the entry file/func were
2553 added to work around that (now fixed) case. */
2554 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2555 suggested having the inside_entry_func test use the
2556 inside_main_func() msymbol trick (along with entry_point_address()
2557 I guess) to determine the address range of the start function.
2558 That should provide a far better stopper than the current
2559 heuristics. */
2560 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2561 applied tail-call optimizations to main so that a function called
2562 from main returns directly to the caller of main. Since we don't
2563 stop at main, we should at least stop at the entry point of the
2564 application. */
2565 if (this_frame->level >= 0
2566 && get_frame_type (this_frame) == NORMAL_FRAME
2567 && !user_set_backtrace_options.backtrace_past_entry
2568 && frame_pc_p
2569 && inside_entry_func (this_frame))
2570 {
2571 frame_debug_got_null_frame (this_frame, "inside entry func");
2572 return NULL;
2573 }
2574
2575 /* Assume that the only way to get a zero PC is through something
2576 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2577 will never unwind a zero PC. */
2578 if (this_frame->level > 0
2579 && (get_frame_type (this_frame) == NORMAL_FRAME
2580 || get_frame_type (this_frame) == INLINE_FRAME)
2581 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2582 && frame_pc_p && frame_pc == 0)
2583 {
2584 frame_debug_got_null_frame (this_frame, "zero PC");
2585 return NULL;
2586 }
2587
2588 return get_prev_frame_always (this_frame);
2589 }
2590
2591 struct frame_id
2592 get_prev_frame_id_by_id (struct frame_id id)
2593 {
2594 struct frame_id prev_id;
2595 struct frame_info *frame;
2596
2597 frame = frame_find_by_id (id);
2598
2599 if (frame != NULL)
2600 prev_id = get_frame_id (get_prev_frame (frame));
2601 else
2602 prev_id = null_frame_id;
2603
2604 return prev_id;
2605 }
2606
2607 CORE_ADDR
2608 get_frame_pc (struct frame_info *frame)
2609 {
2610 gdb_assert (frame->next != NULL);
2611 return frame_unwind_pc (frame->next);
2612 }
2613
2614 bool
2615 get_frame_pc_if_available (frame_info *frame, CORE_ADDR *pc)
2616 {
2617
2618 gdb_assert (frame->next != NULL);
2619
2620 try
2621 {
2622 *pc = frame_unwind_pc (frame->next);
2623 }
2624 catch (const gdb_exception_error &ex)
2625 {
2626 if (ex.error == NOT_AVAILABLE_ERROR)
2627 return false;
2628 else
2629 throw;
2630 }
2631
2632 return true;
2633 }
2634
2635 /* Return an address that falls within THIS_FRAME's code block. */
2636
2637 CORE_ADDR
2638 get_frame_address_in_block (struct frame_info *this_frame)
2639 {
2640 /* A draft address. */
2641 CORE_ADDR pc = get_frame_pc (this_frame);
2642
2643 struct frame_info *next_frame = this_frame->next;
2644
2645 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2646 Normally the resume address is inside the body of the function
2647 associated with THIS_FRAME, but there is a special case: when
2648 calling a function which the compiler knows will never return
2649 (for instance abort), the call may be the very last instruction
2650 in the calling function. The resume address will point after the
2651 call and may be at the beginning of a different function
2652 entirely.
2653
2654 If THIS_FRAME is a signal frame or dummy frame, then we should
2655 not adjust the unwound PC. For a dummy frame, GDB pushed the
2656 resume address manually onto the stack. For a signal frame, the
2657 OS may have pushed the resume address manually and invoked the
2658 handler (e.g. GNU/Linux), or invoked the trampoline which called
2659 the signal handler - but in either case the signal handler is
2660 expected to return to the trampoline. So in both of these
2661 cases we know that the resume address is executable and
2662 related. So we only need to adjust the PC if THIS_FRAME
2663 is a normal function.
2664
2665 If the program has been interrupted while THIS_FRAME is current,
2666 then clearly the resume address is inside the associated
2667 function. There are three kinds of interruption: debugger stop
2668 (next frame will be SENTINEL_FRAME), operating system
2669 signal or exception (next frame will be SIGTRAMP_FRAME),
2670 or debugger-induced function call (next frame will be
2671 DUMMY_FRAME). So we only need to adjust the PC if
2672 NEXT_FRAME is a normal function.
2673
2674 We check the type of NEXT_FRAME first, since it is already
2675 known; frame type is determined by the unwinder, and since
2676 we have THIS_FRAME we've already selected an unwinder for
2677 NEXT_FRAME.
2678
2679 If the next frame is inlined, we need to keep going until we find
2680 the real function - for instance, if a signal handler is invoked
2681 while in an inlined function, then the code address of the
2682 "calling" normal function should not be adjusted either. */
2683
2684 while (get_frame_type (next_frame) == INLINE_FRAME)
2685 next_frame = next_frame->next;
2686
2687 if ((get_frame_type (next_frame) == NORMAL_FRAME
2688 || get_frame_type (next_frame) == TAILCALL_FRAME)
2689 && (get_frame_type (this_frame) == NORMAL_FRAME
2690 || get_frame_type (this_frame) == TAILCALL_FRAME
2691 || get_frame_type (this_frame) == INLINE_FRAME))
2692 return pc - 1;
2693
2694 return pc;
2695 }
2696
2697 bool
2698 get_frame_address_in_block_if_available (frame_info *this_frame,
2699 CORE_ADDR *pc)
2700 {
2701
2702 try
2703 {
2704 *pc = get_frame_address_in_block (this_frame);
2705 }
2706 catch (const gdb_exception_error &ex)
2707 {
2708 if (ex.error == NOT_AVAILABLE_ERROR)
2709 return false;
2710 throw;
2711 }
2712
2713 return true;
2714 }
2715
2716 symtab_and_line
2717 find_frame_sal (frame_info *frame)
2718 {
2719 struct frame_info *next_frame;
2720 int notcurrent;
2721 CORE_ADDR pc;
2722
2723 if (frame_inlined_callees (frame) > 0)
2724 {
2725 struct symbol *sym;
2726
2727 /* If the current frame has some inlined callees, and we have a next
2728 frame, then that frame must be an inlined frame. In this case
2729 this frame's sal is the "call site" of the next frame's inlined
2730 function, which can not be inferred from get_frame_pc. */
2731 next_frame = get_next_frame (frame);
2732 if (next_frame)
2733 sym = get_frame_function (next_frame);
2734 else
2735 sym = inline_skipped_symbol (inferior_thread ());
2736
2737 /* If frame is inline, it certainly has symbols. */
2738 gdb_assert (sym);
2739
2740 symtab_and_line sal;
2741 if (SYMBOL_LINE (sym) != 0)
2742 {
2743 sal.symtab = symbol_symtab (sym);
2744 sal.line = SYMBOL_LINE (sym);
2745 }
2746 else
2747 /* If the symbol does not have a location, we don't know where
2748 the call site is. Do not pretend to. This is jarring, but
2749 we can't do much better. */
2750 sal.pc = get_frame_pc (frame);
2751
2752 sal.pspace = get_frame_program_space (frame);
2753 return sal;
2754 }
2755
2756 /* If FRAME is not the innermost frame, that normally means that
2757 FRAME->pc points at the return instruction (which is *after* the
2758 call instruction), and we want to get the line containing the
2759 call (because the call is where the user thinks the program is).
2760 However, if the next frame is either a SIGTRAMP_FRAME or a
2761 DUMMY_FRAME, then the next frame will contain a saved interrupt
2762 PC and such a PC indicates the current (rather than next)
2763 instruction/line, consequently, for such cases, want to get the
2764 line containing fi->pc. */
2765 if (!get_frame_pc_if_available (frame, &pc))
2766 return {};
2767
2768 notcurrent = (pc != get_frame_address_in_block (frame));
2769 return find_pc_line (pc, notcurrent);
2770 }
2771
2772 /* Per "frame.h", return the ``address'' of the frame. Code should
2773 really be using get_frame_id(). */
2774 CORE_ADDR
2775 get_frame_base (struct frame_info *fi)
2776 {
2777 return get_frame_id (fi).stack_addr;
2778 }
2779
2780 /* High-level offsets into the frame. Used by the debug info. */
2781
2782 CORE_ADDR
2783 get_frame_base_address (struct frame_info *fi)
2784 {
2785 if (get_frame_type (fi) != NORMAL_FRAME)
2786 return 0;
2787 if (fi->base == NULL)
2788 fi->base = frame_base_find_by_frame (fi);
2789 /* Sneaky: If the low-level unwind and high-level base code share a
2790 common unwinder, let them share the prologue cache. */
2791 if (fi->base->unwind == fi->unwind)
2792 return fi->base->this_base (fi, &fi->prologue_cache);
2793 return fi->base->this_base (fi, &fi->base_cache);
2794 }
2795
2796 CORE_ADDR
2797 get_frame_locals_address (struct frame_info *fi)
2798 {
2799 if (get_frame_type (fi) != NORMAL_FRAME)
2800 return 0;
2801 /* If there isn't a frame address method, find it. */
2802 if (fi->base == NULL)
2803 fi->base = frame_base_find_by_frame (fi);
2804 /* Sneaky: If the low-level unwind and high-level base code share a
2805 common unwinder, let them share the prologue cache. */
2806 if (fi->base->unwind == fi->unwind)
2807 return fi->base->this_locals (fi, &fi->prologue_cache);
2808 return fi->base->this_locals (fi, &fi->base_cache);
2809 }
2810
2811 CORE_ADDR
2812 get_frame_args_address (struct frame_info *fi)
2813 {
2814 if (get_frame_type (fi) != NORMAL_FRAME)
2815 return 0;
2816 /* If there isn't a frame address method, find it. */
2817 if (fi->base == NULL)
2818 fi->base = frame_base_find_by_frame (fi);
2819 /* Sneaky: If the low-level unwind and high-level base code share a
2820 common unwinder, let them share the prologue cache. */
2821 if (fi->base->unwind == fi->unwind)
2822 return fi->base->this_args (fi, &fi->prologue_cache);
2823 return fi->base->this_args (fi, &fi->base_cache);
2824 }
2825
2826 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2827 otherwise. */
2828
2829 bool
2830 frame_unwinder_is (frame_info *fi, const frame_unwind *unwinder)
2831 {
2832 if (fi->unwind == nullptr)
2833 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2834
2835 return fi->unwind == unwinder;
2836 }
2837
2838 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2839 or -1 for a NULL frame. */
2840
2841 int
2842 frame_relative_level (struct frame_info *fi)
2843 {
2844 if (fi == NULL)
2845 return -1;
2846 else
2847 return fi->level;
2848 }
2849
2850 enum frame_type
2851 get_frame_type (struct frame_info *frame)
2852 {
2853 if (frame->unwind == NULL)
2854 /* Initialize the frame's unwinder because that's what
2855 provides the frame's type. */
2856 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2857 return frame->unwind->type;
2858 }
2859
2860 struct program_space *
2861 get_frame_program_space (struct frame_info *frame)
2862 {
2863 return frame->pspace;
2864 }
2865
2866 struct program_space *
2867 frame_unwind_program_space (struct frame_info *this_frame)
2868 {
2869 gdb_assert (this_frame);
2870
2871 /* This is really a placeholder to keep the API consistent --- we
2872 assume for now that we don't have frame chains crossing
2873 spaces. */
2874 return this_frame->pspace;
2875 }
2876
2877 const address_space *
2878 get_frame_address_space (struct frame_info *frame)
2879 {
2880 return frame->aspace;
2881 }
2882
2883 /* Memory access methods. */
2884
2885 void
2886 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2887 gdb::array_view<gdb_byte> buffer)
2888 {
2889 read_memory (addr, buffer.data (), buffer.size ());
2890 }
2891
2892 LONGEST
2893 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2894 int len)
2895 {
2896 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2897 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2898
2899 return read_memory_integer (addr, len, byte_order);
2900 }
2901
2902 ULONGEST
2903 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2904 int len)
2905 {
2906 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2907 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2908
2909 return read_memory_unsigned_integer (addr, len, byte_order);
2910 }
2911
2912 bool
2913 safe_frame_unwind_memory (struct frame_info *this_frame,
2914 CORE_ADDR addr, gdb::array_view<gdb_byte> buffer)
2915 {
2916 /* NOTE: target_read_memory returns zero on success! */
2917 return target_read_memory (addr, buffer.data (), buffer.size ()) == 0;
2918 }
2919
2920 /* Architecture methods. */
2921
2922 struct gdbarch *
2923 get_frame_arch (struct frame_info *this_frame)
2924 {
2925 return frame_unwind_arch (this_frame->next);
2926 }
2927
2928 struct gdbarch *
2929 frame_unwind_arch (struct frame_info *next_frame)
2930 {
2931 if (!next_frame->prev_arch.p)
2932 {
2933 struct gdbarch *arch;
2934
2935 if (next_frame->unwind == NULL)
2936 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2937
2938 if (next_frame->unwind->prev_arch != NULL)
2939 arch = next_frame->unwind->prev_arch (next_frame,
2940 &next_frame->prologue_cache);
2941 else
2942 arch = get_frame_arch (next_frame);
2943
2944 next_frame->prev_arch.arch = arch;
2945 next_frame->prev_arch.p = true;
2946 if (frame_debug)
2947 fprintf_unfiltered (gdb_stdlog,
2948 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2949 next_frame->level,
2950 gdbarch_bfd_arch_info (arch)->printable_name);
2951 }
2952
2953 return next_frame->prev_arch.arch;
2954 }
2955
2956 struct gdbarch *
2957 frame_unwind_caller_arch (struct frame_info *next_frame)
2958 {
2959 next_frame = skip_artificial_frames (next_frame);
2960
2961 /* We must have a non-artificial frame. The caller is supposed to check
2962 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2963 in this case. */
2964 gdb_assert (next_frame != NULL);
2965
2966 return frame_unwind_arch (next_frame);
2967 }
2968
2969 /* Gets the language of FRAME. */
2970
2971 enum language
2972 get_frame_language (struct frame_info *frame)
2973 {
2974 CORE_ADDR pc = 0;
2975 bool pc_p = false;
2976
2977 gdb_assert (frame!= NULL);
2978
2979 /* We determine the current frame language by looking up its
2980 associated symtab. To retrieve this symtab, we use the frame
2981 PC. However we cannot use the frame PC as is, because it
2982 usually points to the instruction following the "call", which
2983 is sometimes the first instruction of another function. So
2984 we rely on get_frame_address_in_block(), it provides us with
2985 a PC that is guaranteed to be inside the frame's code
2986 block. */
2987
2988 try
2989 {
2990 pc = get_frame_address_in_block (frame);
2991 pc_p = true;
2992 }
2993 catch (const gdb_exception_error &ex)
2994 {
2995 if (ex.error != NOT_AVAILABLE_ERROR)
2996 throw;
2997 }
2998
2999 if (pc_p)
3000 {
3001 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
3002
3003 if (cust != NULL)
3004 return compunit_language (cust);
3005 }
3006
3007 return language_unknown;
3008 }
3009
3010 /* Stack pointer methods. */
3011
3012 CORE_ADDR
3013 get_frame_sp (struct frame_info *this_frame)
3014 {
3015 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3016
3017 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
3018 operate on THIS_FRAME now. */
3019 return gdbarch_unwind_sp (gdbarch, this_frame->next);
3020 }
3021
3022 /* Return the reason why we can't unwind past FRAME. */
3023
3024 enum unwind_stop_reason
3025 get_frame_unwind_stop_reason (struct frame_info *frame)
3026 {
3027 /* Fill-in STOP_REASON. */
3028 get_prev_frame_always (frame);
3029 gdb_assert (frame->prev_p);
3030
3031 return frame->stop_reason;
3032 }
3033
3034 /* Return a string explaining REASON. */
3035
3036 const char *
3037 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
3038 {
3039 switch (reason)
3040 {
3041 #define SET(name, description) \
3042 case name: return _(description);
3043 #include "unwind_stop_reasons.def"
3044 #undef SET
3045
3046 default:
3047 internal_error (__FILE__, __LINE__,
3048 "Invalid frame stop reason");
3049 }
3050 }
3051
3052 const char *
3053 frame_stop_reason_string (struct frame_info *fi)
3054 {
3055 gdb_assert (fi->prev_p);
3056 gdb_assert (fi->prev == NULL);
3057
3058 /* Return the specific string if we have one. */
3059 if (fi->stop_string != NULL)
3060 return fi->stop_string;
3061
3062 /* Return the generic string if we have nothing better. */
3063 return unwind_stop_reason_to_string (fi->stop_reason);
3064 }
3065
3066 /* Return the enum symbol name of REASON as a string, to use in debug
3067 output. */
3068
3069 static const char *
3070 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
3071 {
3072 switch (reason)
3073 {
3074 #define SET(name, description) \
3075 case name: return #name;
3076 #include "unwind_stop_reasons.def"
3077 #undef SET
3078
3079 default:
3080 internal_error (__FILE__, __LINE__,
3081 "Invalid frame stop reason");
3082 }
3083 }
3084
3085 /* Clean up after a failed (wrong unwinder) attempt to unwind past
3086 FRAME. */
3087
3088 void
3089 frame_cleanup_after_sniffer (struct frame_info *frame)
3090 {
3091 /* The sniffer should not allocate a prologue cache if it did not
3092 match this frame. */
3093 gdb_assert (frame->prologue_cache == NULL);
3094
3095 /* No sniffer should extend the frame chain; sniff based on what is
3096 already certain. */
3097 gdb_assert (!frame->prev_p);
3098
3099 /* The sniffer should not check the frame's ID; that's circular. */
3100 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
3101
3102 /* Clear cached fields dependent on the unwinder.
3103
3104 The previous PC is independent of the unwinder, but the previous
3105 function is not (see get_frame_address_in_block). */
3106 frame->prev_func.status = CC_UNKNOWN;
3107 frame->prev_func.addr = 0;
3108
3109 /* Discard the unwinder last, so that we can easily find it if an assertion
3110 in this function triggers. */
3111 frame->unwind = NULL;
3112 }
3113
3114 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
3115 If sniffing fails, the caller should be sure to call
3116 frame_cleanup_after_sniffer. */
3117
3118 void
3119 frame_prepare_for_sniffer (struct frame_info *frame,
3120 const struct frame_unwind *unwind)
3121 {
3122 gdb_assert (frame->unwind == NULL);
3123 frame->unwind = unwind;
3124 }
3125
3126 static struct cmd_list_element *set_backtrace_cmdlist;
3127 static struct cmd_list_element *show_backtrace_cmdlist;
3128
3129 /* Definition of the "set backtrace" settings that are exposed as
3130 "backtrace" command options. */
3131
3132 using boolean_option_def
3133 = gdb::option::boolean_option_def<set_backtrace_options>;
3134
3135 const gdb::option::option_def set_backtrace_option_defs[] = {
3136
3137 boolean_option_def {
3138 "past-main",
3139 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
3140 show_backtrace_past_main, /* show_cmd_cb */
3141 N_("Set whether backtraces should continue past \"main\"."),
3142 N_("Show whether backtraces should continue past \"main\"."),
3143 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
3144 the backtrace at \"main\". Set this if you need to see the rest\n\
3145 of the stack trace."),
3146 },
3147
3148 boolean_option_def {
3149 "past-entry",
3150 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3151 show_backtrace_past_entry, /* show_cmd_cb */
3152 N_("Set whether backtraces should continue past the entry point of a program."),
3153 N_("Show whether backtraces should continue past the entry point of a program."),
3154 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3155 will terminate the backtrace there. Set this if you need to see\n\
3156 the rest of the stack trace."),
3157 },
3158 };
3159
3160 void _initialize_frame ();
3161 void
3162 _initialize_frame ()
3163 {
3164 obstack_init (&frame_cache_obstack);
3165
3166 frame_stash_create ();
3167
3168 gdb::observers::target_changed.attach (frame_observer_target_changed,
3169 "frame");
3170
3171 add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
3172 Set backtrace specific variables.\n\
3173 Configure backtrace variables such as the backtrace limit"),
3174 &set_backtrace_cmdlist,
3175 0/*allow-unknown*/, &setlist);
3176 add_show_prefix_cmd ("backtrace", class_maintenance, _("\
3177 Show backtrace specific variables.\n\
3178 Show backtrace variables such as the backtrace limit."),
3179 &show_backtrace_cmdlist,
3180 0/*allow-unknown*/, &showlist);
3181
3182 add_setshow_uinteger_cmd ("limit", class_obscure,
3183 &user_set_backtrace_options.backtrace_limit, _("\
3184 Set an upper bound on the number of backtrace levels."), _("\
3185 Show the upper bound on the number of backtrace levels."), _("\
3186 No more than the specified number of frames can be displayed or examined.\n\
3187 Literal \"unlimited\" or zero means no limit."),
3188 NULL,
3189 show_backtrace_limit,
3190 &set_backtrace_cmdlist,
3191 &show_backtrace_cmdlist);
3192
3193 gdb::option::add_setshow_cmds_for_options
3194 (class_stack, &user_set_backtrace_options,
3195 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3196
3197 /* Debug this files internals. */
3198 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
3199 Set frame debugging."), _("\
3200 Show frame debugging."), _("\
3201 When non-zero, frame specific internal debugging is enabled."),
3202 NULL,
3203 show_frame_debug,
3204 &setdebuglist, &showdebuglist);
3205 }
This page took 0.094085 seconds and 4 git commands to generate.