Add IA64_MAX_FP_REGISTER_SIZE
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 struct address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging. */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al. */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
292 value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
302 value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
313 value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320 if (p)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322 else
323 fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329 fprintf_unfiltered (file, "{");
330
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
337 else
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
340
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
343
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349 fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355 switch (type)
356 {
357 case NORMAL_FRAME:
358 fprintf_unfiltered (file, "NORMAL_FRAME");
359 return;
360 case DUMMY_FRAME:
361 fprintf_unfiltered (file, "DUMMY_FRAME");
362 return;
363 case INLINE_FRAME:
364 fprintf_unfiltered (file, "INLINE_FRAME");
365 return;
366 case TAILCALL_FRAME:
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
368 return;
369 case SIGTRAMP_FRAME:
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371 return;
372 case ARCH_FRAME:
373 fprintf_unfiltered (file, "ARCH_FRAME");
374 return;
375 case SENTINEL_FRAME:
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
377 return;
378 default:
379 fprintf_unfiltered (file, "<unknown type>");
380 return;
381 };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387 if (fi == NULL)
388 {
389 fprintf_unfiltered (file, "<NULL frame>");
390 return;
391 }
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
398 else
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
404 else
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
419 if (fi->this_id.p)
420 fprint_frame_id (file, fi->this_id.value);
421 else
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427 else
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
444
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
449 {
450 frame = get_prev_frame_always (frame);
451 if (frame == NULL)
452 break;
453 }
454
455 return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462 {
463 frame = get_prev_frame (frame);
464 if (frame == NULL)
465 break;
466 }
467
468 return frame;
469 }
470
471 /* See frame.h. */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476 while (get_frame_type (frame) == TAILCALL_FRAME)
477 {
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
481 if (frame == NULL)
482 break;
483 }
484
485 return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489 frame. */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494 gdb_assert (!fi->this_id.p);
495
496 if (frame_debug)
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498 fi->level);
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
507 fi->this_id.p = 1;
508 if (frame_debug)
509 {
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
513 }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517 frame. */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522 if (fi == NULL)
523 return null_frame_id;
524
525 if (!fi->this_id.p)
526 {
527 int stashed;
528
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
535
536 /* Compute. */
537 compute_frame_id (fi);
538
539 /* Since this is the first frame in the chain, this should
540 always succeed. */
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
543 }
544
545 return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551 return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557 struct frame_info *this_frame;
558
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
563
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
567
568 this_frame = get_prev_frame_always (next_frame);
569 if (this_frame)
570 return get_frame_id (skip_artificial_frames (this_frame));
571 else
572 return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
582 {
583 struct frame_id id = null_frame_id;
584
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
588 id.code_addr_p = 1;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
591 return id;
592 }
593
594 /* See frame.h. */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
603 id.code_addr_p = 1;
604 return id;
605 }
606
607 /* See frame.h. */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
612 {
613 struct frame_id id = null_frame_id;
614
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
617 id.code_addr_p = 1;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
631 id.code_addr_p = 1;
632 return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638 struct frame_id id = null_frame_id;
639
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
642 return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648 int p;
649
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654 p = 1;
655 if (frame_debug)
656 {
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660 }
661 return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667 if (!frame_id_p (l))
668 return 0;
669
670 return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676 int eq;
677
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
684 outer_frame_id. */
685 eq = 1;
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
690 eq = 0;
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
693 eq = 0;
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
697 eq = 0;
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
702 eq = 0;
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
705 eq = 0;
706 else
707 /* Frames are equal. */
708 eq = 1;
709
710 if (frame_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717 }
718 return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
723
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
726 to sigaltstack).
727
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732 * The stack address of NEXT must be inner-than-or-equal to the stack
733 address of THIS.
734
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736 error has occurred.
737
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
740
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
744
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
751 different stack. */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756 int inner;
757
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
761 inner = 0;
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
767 {
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
770
771 gdb_assert (l.code_addr_p && r.code_addr_p);
772
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
775
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
778 inner = 0;
779 else
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
784 }
785 else
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791 if (frame_debug)
792 {
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798 }
799 return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805 struct frame_info *frame, *prev_frame;
806
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
810 return NULL;
811
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
815
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
825 if (frame)
826 return frame;
827
828 for (frame = get_current_frame (); ; frame = prev_frame)
829 {
830 struct frame_id self = get_frame_id (frame);
831
832 if (frame_id_eq (id, self))
833 /* An exact match. */
834 return frame;
835
836 prev_frame = get_prev_frame (frame);
837 if (!prev_frame)
838 return NULL;
839
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
849 return NULL;
850 }
851 return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
858 {
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860 {
861 struct gdbarch *prev_gdbarch;
862 CORE_ADDR pc = 0;
863 int pc_p = 0;
864
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
870
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
882
883 TRY
884 {
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886 pc_p = 1;
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 if (ex.error == NOT_AVAILABLE_ERROR)
891 {
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894 if (frame_debug)
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
898 this_frame->level);
899 }
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
901 {
902 this_frame->prev_pc.status = CC_NOT_SAVED;
903
904 if (frame_debug)
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
908 this_frame->level);
909 }
910 else
911 throw_exception (ex);
912 }
913 END_CATCH
914
915 if (pc_p)
916 {
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
919 if (frame_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
922 "-> %s }\n",
923 this_frame->level,
924 hex_string (this_frame->prev_pc.value));
925 }
926 }
927 else
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929 }
930
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937 else
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946 this_frame = skip_artificial_frames (this_frame);
947
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950 in this case. */
951 gdb_assert (this_frame != NULL);
952
953 return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959 struct frame_info *next_frame = this_frame->next;
960
961 if (!next_frame->prev_func.p)
962 {
963 CORE_ADDR addr_in_block;
964
965 /* Make certain that this, and not the adjacent, function is
966 found. */
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968 {
969 next_frame->prev_func.p = -1;
970 if (frame_debug)
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
974 this_frame->level);
975 }
976 else
977 {
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980 if (frame_debug)
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
983 this_frame->level,
984 hex_string (next_frame->prev_func.addr));
985 }
986 }
987
988 if (next_frame->prev_func.p < 0)
989 {
990 *pc = -1;
991 return 0;
992 }
993 else
994 {
995 *pc = next_frame->prev_func.addr;
996 return 1;
997 }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003 CORE_ADDR pc;
1004
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008 return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1016 else
1017 return REG_VALID;
1018 }
1019
1020 struct regcache *
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023 struct address_space *aspace = get_frame_address_space (this_frame);
1024 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
1025 aspace);
1026 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1027
1028 regcache_save (regcache, do_frame_register_read, this_frame);
1029 discard_cleanups (cleanups);
1030 return regcache;
1031 }
1032
1033 void
1034 frame_pop (struct frame_info *this_frame)
1035 {
1036 struct frame_info *prev_frame;
1037 struct regcache *scratch;
1038 struct cleanup *cleanups;
1039
1040 if (get_frame_type (this_frame) == DUMMY_FRAME)
1041 {
1042 /* Popping a dummy frame involves restoring more than just registers.
1043 dummy_frame_pop does all the work. */
1044 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1045 return;
1046 }
1047
1048 /* Ensure that we have a frame to pop to. */
1049 prev_frame = get_prev_frame_always (this_frame);
1050
1051 if (!prev_frame)
1052 error (_("Cannot pop the initial frame."));
1053
1054 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1055 entering THISFRAME. */
1056 prev_frame = skip_tailcall_frames (prev_frame);
1057
1058 if (prev_frame == NULL)
1059 error (_("Cannot find the caller frame."));
1060
1061 /* Make a copy of all the register values unwound from this frame.
1062 Save them in a scratch buffer so that there isn't a race between
1063 trying to extract the old values from the current regcache while
1064 at the same time writing new values into that same cache. */
1065 scratch = frame_save_as_regcache (prev_frame);
1066 cleanups = make_cleanup_regcache_xfree (scratch);
1067
1068 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1069 target's register cache that it is about to be hit with a burst
1070 register transfer and that the sequence of register writes should
1071 be batched. The pair target_prepare_to_store() and
1072 target_store_registers() kind of suggest this functionality.
1073 Unfortunately, they don't implement it. Their lack of a formal
1074 definition can lead to targets writing back bogus values
1075 (arguably a bug in the target code mind). */
1076 /* Now copy those saved registers into the current regcache.
1077 Here, regcache_cpy() calls regcache_restore(). */
1078 regcache_cpy (get_current_regcache (), scratch);
1079 do_cleanups (cleanups);
1080
1081 /* We've made right mess of GDB's local state, just discard
1082 everything. */
1083 reinit_frame_cache ();
1084 }
1085
1086 void
1087 frame_register_unwind (struct frame_info *frame, int regnum,
1088 int *optimizedp, int *unavailablep,
1089 enum lval_type *lvalp, CORE_ADDR *addrp,
1090 int *realnump, gdb_byte *bufferp)
1091 {
1092 struct value *value;
1093
1094 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1095 that the value proper does not need to be fetched. */
1096 gdb_assert (optimizedp != NULL);
1097 gdb_assert (lvalp != NULL);
1098 gdb_assert (addrp != NULL);
1099 gdb_assert (realnump != NULL);
1100 /* gdb_assert (bufferp != NULL); */
1101
1102 value = frame_unwind_register_value (frame, regnum);
1103
1104 gdb_assert (value != NULL);
1105
1106 *optimizedp = value_optimized_out (value);
1107 *unavailablep = !value_entirely_available (value);
1108 *lvalp = VALUE_LVAL (value);
1109 *addrp = value_address (value);
1110 if (*lvalp == lval_register)
1111 *realnump = VALUE_REGNUM (value);
1112 else
1113 *realnump = -1;
1114
1115 if (bufferp)
1116 {
1117 if (!*optimizedp && !*unavailablep)
1118 memcpy (bufferp, value_contents_all (value),
1119 TYPE_LENGTH (value_type (value)));
1120 else
1121 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1122 }
1123
1124 /* Dispose of the new value. This prevents watchpoints from
1125 trying to watch the saved frame pointer. */
1126 release_value (value);
1127 value_free (value);
1128 }
1129
1130 void
1131 frame_register (struct frame_info *frame, int regnum,
1132 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1133 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1134 {
1135 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1136 that the value proper does not need to be fetched. */
1137 gdb_assert (optimizedp != NULL);
1138 gdb_assert (lvalp != NULL);
1139 gdb_assert (addrp != NULL);
1140 gdb_assert (realnump != NULL);
1141 /* gdb_assert (bufferp != NULL); */
1142
1143 /* Obtain the register value by unwinding the register from the next
1144 (more inner frame). */
1145 gdb_assert (frame != NULL && frame->next != NULL);
1146 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1147 lvalp, addrp, realnump, bufferp);
1148 }
1149
1150 void
1151 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1152 {
1153 int optimized;
1154 int unavailable;
1155 CORE_ADDR addr;
1156 int realnum;
1157 enum lval_type lval;
1158
1159 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1160 &lval, &addr, &realnum, buf);
1161
1162 if (optimized)
1163 throw_error (OPTIMIZED_OUT_ERROR,
1164 _("Register %d was not saved"), regnum);
1165 if (unavailable)
1166 throw_error (NOT_AVAILABLE_ERROR,
1167 _("Register %d is not available"), regnum);
1168 }
1169
1170 void
1171 get_frame_register (struct frame_info *frame,
1172 int regnum, gdb_byte *buf)
1173 {
1174 frame_unwind_register (frame->next, regnum, buf);
1175 }
1176
1177 struct value *
1178 frame_unwind_register_value (struct frame_info *frame, int regnum)
1179 {
1180 struct gdbarch *gdbarch;
1181 struct value *value;
1182
1183 gdb_assert (frame != NULL);
1184 gdbarch = frame_unwind_arch (frame);
1185
1186 if (frame_debug)
1187 {
1188 fprintf_unfiltered (gdb_stdlog,
1189 "{ frame_unwind_register_value "
1190 "(frame=%d,regnum=%d(%s),...) ",
1191 frame->level, regnum,
1192 user_reg_map_regnum_to_name (gdbarch, regnum));
1193 }
1194
1195 /* Find the unwinder. */
1196 if (frame->unwind == NULL)
1197 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1198
1199 /* Ask this frame to unwind its register. */
1200 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1201
1202 if (frame_debug)
1203 {
1204 fprintf_unfiltered (gdb_stdlog, "->");
1205 if (value_optimized_out (value))
1206 {
1207 fprintf_unfiltered (gdb_stdlog, " ");
1208 val_print_optimized_out (value, gdb_stdlog);
1209 }
1210 else
1211 {
1212 if (VALUE_LVAL (value) == lval_register)
1213 fprintf_unfiltered (gdb_stdlog, " register=%d",
1214 VALUE_REGNUM (value));
1215 else if (VALUE_LVAL (value) == lval_memory)
1216 fprintf_unfiltered (gdb_stdlog, " address=%s",
1217 paddress (gdbarch,
1218 value_address (value)));
1219 else
1220 fprintf_unfiltered (gdb_stdlog, " computed");
1221
1222 if (value_lazy (value))
1223 fprintf_unfiltered (gdb_stdlog, " lazy");
1224 else
1225 {
1226 int i;
1227 const gdb_byte *buf = value_contents (value);
1228
1229 fprintf_unfiltered (gdb_stdlog, " bytes=");
1230 fprintf_unfiltered (gdb_stdlog, "[");
1231 for (i = 0; i < register_size (gdbarch, regnum); i++)
1232 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1233 fprintf_unfiltered (gdb_stdlog, "]");
1234 }
1235 }
1236
1237 fprintf_unfiltered (gdb_stdlog, " }\n");
1238 }
1239
1240 return value;
1241 }
1242
1243 struct value *
1244 get_frame_register_value (struct frame_info *frame, int regnum)
1245 {
1246 return frame_unwind_register_value (frame->next, regnum);
1247 }
1248
1249 LONGEST
1250 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1251 {
1252 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1254 int size = register_size (gdbarch, regnum);
1255 gdb_byte buf[MAX_REGISTER_SIZE];
1256
1257 frame_unwind_register (frame, regnum, buf);
1258 return extract_signed_integer (buf, size, byte_order);
1259 }
1260
1261 LONGEST
1262 get_frame_register_signed (struct frame_info *frame, int regnum)
1263 {
1264 return frame_unwind_register_signed (frame->next, regnum);
1265 }
1266
1267 ULONGEST
1268 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1269 {
1270 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1272 int size = register_size (gdbarch, regnum);
1273 struct value *value = frame_unwind_register_value (frame, regnum);
1274
1275 gdb_assert (value != NULL);
1276
1277 if (value_optimized_out (value))
1278 {
1279 throw_error (OPTIMIZED_OUT_ERROR,
1280 _("Register %d was not saved"), regnum);
1281 }
1282 if (!value_entirely_available (value))
1283 {
1284 throw_error (NOT_AVAILABLE_ERROR,
1285 _("Register %d is not available"), regnum);
1286 }
1287
1288 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1289 byte_order);
1290
1291 release_value (value);
1292 value_free (value);
1293 return r;
1294 }
1295
1296 ULONGEST
1297 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1298 {
1299 return frame_unwind_register_unsigned (frame->next, regnum);
1300 }
1301
1302 int
1303 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1304 ULONGEST *val)
1305 {
1306 struct value *regval = get_frame_register_value (frame, regnum);
1307
1308 if (!value_optimized_out (regval)
1309 && value_entirely_available (regval))
1310 {
1311 struct gdbarch *gdbarch = get_frame_arch (frame);
1312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1313 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1314
1315 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1316 return 1;
1317 }
1318
1319 return 0;
1320 }
1321
1322 void
1323 put_frame_register (struct frame_info *frame, int regnum,
1324 const gdb_byte *buf)
1325 {
1326 struct gdbarch *gdbarch = get_frame_arch (frame);
1327 int realnum;
1328 int optim;
1329 int unavail;
1330 enum lval_type lval;
1331 CORE_ADDR addr;
1332
1333 frame_register (frame, regnum, &optim, &unavail,
1334 &lval, &addr, &realnum, NULL);
1335 if (optim)
1336 error (_("Attempt to assign to a register that was not saved."));
1337 switch (lval)
1338 {
1339 case lval_memory:
1340 {
1341 write_memory (addr, buf, register_size (gdbarch, regnum));
1342 break;
1343 }
1344 case lval_register:
1345 regcache_cooked_write (get_current_regcache (), realnum, buf);
1346 break;
1347 default:
1348 error (_("Attempt to assign to an unmodifiable value."));
1349 }
1350 }
1351
1352 /* This function is deprecated. Use get_frame_register_value instead,
1353 which provides more accurate information.
1354
1355 Find and return the value of REGNUM for the specified stack frame.
1356 The number of bytes copied is REGISTER_SIZE (REGNUM).
1357
1358 Returns 0 if the register value could not be found. */
1359
1360 int
1361 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1362 gdb_byte *myaddr)
1363 {
1364 int optimized;
1365 int unavailable;
1366 enum lval_type lval;
1367 CORE_ADDR addr;
1368 int realnum;
1369
1370 frame_register (frame, regnum, &optimized, &unavailable,
1371 &lval, &addr, &realnum, myaddr);
1372
1373 return !optimized && !unavailable;
1374 }
1375
1376 int
1377 get_frame_register_bytes (struct frame_info *frame, int regnum,
1378 CORE_ADDR offset, int len, gdb_byte *myaddr,
1379 int *optimizedp, int *unavailablep)
1380 {
1381 struct gdbarch *gdbarch = get_frame_arch (frame);
1382 int i;
1383 int maxsize;
1384 int numregs;
1385
1386 /* Skip registers wholly inside of OFFSET. */
1387 while (offset >= register_size (gdbarch, regnum))
1388 {
1389 offset -= register_size (gdbarch, regnum);
1390 regnum++;
1391 }
1392
1393 /* Ensure that we will not read beyond the end of the register file.
1394 This can only ever happen if the debug information is bad. */
1395 maxsize = -offset;
1396 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1397 for (i = regnum; i < numregs; i++)
1398 {
1399 int thissize = register_size (gdbarch, i);
1400
1401 if (thissize == 0)
1402 break; /* This register is not available on this architecture. */
1403 maxsize += thissize;
1404 }
1405 if (len > maxsize)
1406 error (_("Bad debug information detected: "
1407 "Attempt to read %d bytes from registers."), len);
1408
1409 /* Copy the data. */
1410 while (len > 0)
1411 {
1412 int curr_len = register_size (gdbarch, regnum) - offset;
1413
1414 if (curr_len > len)
1415 curr_len = len;
1416
1417 if (curr_len == register_size (gdbarch, regnum))
1418 {
1419 enum lval_type lval;
1420 CORE_ADDR addr;
1421 int realnum;
1422
1423 frame_register (frame, regnum, optimizedp, unavailablep,
1424 &lval, &addr, &realnum, myaddr);
1425 if (*optimizedp || *unavailablep)
1426 return 0;
1427 }
1428 else
1429 {
1430 struct value *value = frame_unwind_register_value (frame->next,
1431 regnum);
1432 gdb_assert (value != NULL);
1433 *optimizedp = value_optimized_out (value);
1434 *unavailablep = !value_entirely_available (value);
1435
1436 if (*optimizedp || *unavailablep)
1437 {
1438 release_value (value);
1439 value_free (value);
1440 return 0;
1441 }
1442 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1443 release_value (value);
1444 value_free (value);
1445 }
1446
1447 myaddr += curr_len;
1448 len -= curr_len;
1449 offset = 0;
1450 regnum++;
1451 }
1452
1453 *optimizedp = 0;
1454 *unavailablep = 0;
1455 return 1;
1456 }
1457
1458 void
1459 put_frame_register_bytes (struct frame_info *frame, int regnum,
1460 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1461 {
1462 struct gdbarch *gdbarch = get_frame_arch (frame);
1463
1464 /* Skip registers wholly inside of OFFSET. */
1465 while (offset >= register_size (gdbarch, regnum))
1466 {
1467 offset -= register_size (gdbarch, regnum);
1468 regnum++;
1469 }
1470
1471 /* Copy the data. */
1472 while (len > 0)
1473 {
1474 int curr_len = register_size (gdbarch, regnum) - offset;
1475
1476 if (curr_len > len)
1477 curr_len = len;
1478
1479 if (curr_len == register_size (gdbarch, regnum))
1480 {
1481 put_frame_register (frame, regnum, myaddr);
1482 }
1483 else
1484 {
1485 struct value *value = frame_unwind_register_value (frame->next,
1486 regnum);
1487 gdb_assert (value != NULL);
1488
1489 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1490 curr_len);
1491 put_frame_register (frame, regnum, value_contents_raw (value));
1492 release_value (value);
1493 value_free (value);
1494 }
1495
1496 myaddr += curr_len;
1497 len -= curr_len;
1498 offset = 0;
1499 regnum++;
1500 }
1501 }
1502
1503 /* Create a sentinel frame. */
1504
1505 static struct frame_info *
1506 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1507 {
1508 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1509
1510 frame->level = -1;
1511 frame->pspace = pspace;
1512 frame->aspace = get_regcache_aspace (regcache);
1513 /* Explicitly initialize the sentinel frame's cache. Provide it
1514 with the underlying regcache. In the future additional
1515 information, such as the frame's thread will be added. */
1516 frame->prologue_cache = sentinel_frame_cache (regcache);
1517 /* For the moment there is only one sentinel frame implementation. */
1518 frame->unwind = &sentinel_frame_unwind;
1519 /* Link this frame back to itself. The frame is self referential
1520 (the unwound PC is the same as the pc), so make it so. */
1521 frame->next = frame;
1522 /* The sentinel frame has a special ID. */
1523 frame->this_id.p = 1;
1524 frame->this_id.value = sentinel_frame_id;
1525 if (frame_debug)
1526 {
1527 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1528 fprint_frame (gdb_stdlog, frame);
1529 fprintf_unfiltered (gdb_stdlog, " }\n");
1530 }
1531 return frame;
1532 }
1533
1534 /* Cache for frame addresses already read by gdb. Valid only while
1535 inferior is stopped. Control variables for the frame cache should
1536 be local to this module. */
1537
1538 static struct obstack frame_cache_obstack;
1539
1540 void *
1541 frame_obstack_zalloc (unsigned long size)
1542 {
1543 void *data = obstack_alloc (&frame_cache_obstack, size);
1544
1545 memset (data, 0, size);
1546 return data;
1547 }
1548
1549 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1550
1551 struct frame_info *
1552 get_current_frame (void)
1553 {
1554 struct frame_info *current_frame;
1555
1556 /* First check, and report, the lack of registers. Having GDB
1557 report "No stack!" or "No memory" when the target doesn't even
1558 have registers is very confusing. Besides, "printcmd.exp"
1559 explicitly checks that ``print $pc'' with no registers prints "No
1560 registers". */
1561 if (!target_has_registers)
1562 error (_("No registers."));
1563 if (!target_has_stack)
1564 error (_("No stack."));
1565 if (!target_has_memory)
1566 error (_("No memory."));
1567 /* Traceframes are effectively a substitute for the live inferior. */
1568 if (get_traceframe_number () < 0)
1569 validate_registers_access ();
1570
1571 if (sentinel_frame == NULL)
1572 sentinel_frame =
1573 create_sentinel_frame (current_program_space, get_current_regcache ());
1574
1575 /* Set the current frame before computing the frame id, to avoid
1576 recursion inside compute_frame_id, in case the frame's
1577 unwinder decides to do a symbol lookup (which depends on the
1578 selected frame's block).
1579
1580 This call must always succeed. In particular, nothing inside
1581 get_prev_frame_always_1 should try to unwind from the
1582 sentinel frame, because that could fail/throw, and we always
1583 want to leave with the current frame created and linked in --
1584 we should never end up with the sentinel frame as outermost
1585 frame. */
1586 current_frame = get_prev_frame_always_1 (sentinel_frame);
1587 gdb_assert (current_frame != NULL);
1588
1589 return current_frame;
1590 }
1591
1592 /* The "selected" stack frame is used by default for local and arg
1593 access. May be zero, for no selected frame. */
1594
1595 static struct frame_info *selected_frame;
1596
1597 int
1598 has_stack_frames (void)
1599 {
1600 if (!target_has_registers || !target_has_stack || !target_has_memory)
1601 return 0;
1602
1603 /* Traceframes are effectively a substitute for the live inferior. */
1604 if (get_traceframe_number () < 0)
1605 {
1606 /* No current inferior, no frame. */
1607 if (ptid_equal (inferior_ptid, null_ptid))
1608 return 0;
1609
1610 /* Don't try to read from a dead thread. */
1611 if (is_exited (inferior_ptid))
1612 return 0;
1613
1614 /* ... or from a spinning thread. */
1615 if (is_executing (inferior_ptid))
1616 return 0;
1617 }
1618
1619 return 1;
1620 }
1621
1622 /* Return the selected frame. Always non-NULL (unless there isn't an
1623 inferior sufficient for creating a frame) in which case an error is
1624 thrown. */
1625
1626 struct frame_info *
1627 get_selected_frame (const char *message)
1628 {
1629 if (selected_frame == NULL)
1630 {
1631 if (message != NULL && !has_stack_frames ())
1632 error (("%s"), message);
1633 /* Hey! Don't trust this. It should really be re-finding the
1634 last selected frame of the currently selected thread. This,
1635 though, is better than nothing. */
1636 select_frame (get_current_frame ());
1637 }
1638 /* There is always a frame. */
1639 gdb_assert (selected_frame != NULL);
1640 return selected_frame;
1641 }
1642
1643 /* If there is a selected frame, return it. Otherwise, return NULL. */
1644
1645 struct frame_info *
1646 get_selected_frame_if_set (void)
1647 {
1648 return selected_frame;
1649 }
1650
1651 /* This is a variant of get_selected_frame() which can be called when
1652 the inferior does not have a frame; in that case it will return
1653 NULL instead of calling error(). */
1654
1655 struct frame_info *
1656 deprecated_safe_get_selected_frame (void)
1657 {
1658 if (!has_stack_frames ())
1659 return NULL;
1660 return get_selected_frame (NULL);
1661 }
1662
1663 /* Select frame FI (or NULL - to invalidate the current frame). */
1664
1665 void
1666 select_frame (struct frame_info *fi)
1667 {
1668 selected_frame = fi;
1669 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1670 frame is being invalidated. */
1671
1672 /* FIXME: kseitz/2002-08-28: It would be nice to call
1673 selected_frame_level_changed_event() right here, but due to limitations
1674 in the current interfaces, we would end up flooding UIs with events
1675 because select_frame() is used extensively internally.
1676
1677 Once we have frame-parameterized frame (and frame-related) commands,
1678 the event notification can be moved here, since this function will only
1679 be called when the user's selected frame is being changed. */
1680
1681 /* Ensure that symbols for this frame are read in. Also, determine the
1682 source language of this frame, and switch to it if desired. */
1683 if (fi)
1684 {
1685 CORE_ADDR pc;
1686
1687 /* We retrieve the frame's symtab by using the frame PC.
1688 However we cannot use the frame PC as-is, because it usually
1689 points to the instruction following the "call", which is
1690 sometimes the first instruction of another function. So we
1691 rely on get_frame_address_in_block() which provides us with a
1692 PC which is guaranteed to be inside the frame's code
1693 block. */
1694 if (get_frame_address_in_block_if_available (fi, &pc))
1695 {
1696 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1697
1698 if (cust != NULL
1699 && compunit_language (cust) != current_language->la_language
1700 && compunit_language (cust) != language_unknown
1701 && language_mode == language_mode_auto)
1702 set_language (compunit_language (cust));
1703 }
1704 }
1705 }
1706
1707 #if GDB_SELF_TEST
1708 struct frame_info *
1709 create_test_frame (struct regcache *regcache)
1710 {
1711 struct frame_info *this_frame = XCNEW (struct frame_info);
1712
1713 sentinel_frame = create_sentinel_frame (NULL, regcache);
1714 sentinel_frame->prev = this_frame;
1715 sentinel_frame->prev_p = 1;;
1716 this_frame->prev_arch.p = 1;
1717 this_frame->prev_arch.arch = get_regcache_arch (regcache);
1718 this_frame->next = sentinel_frame;
1719
1720 return this_frame;
1721 }
1722 #endif
1723
1724 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1725 Always returns a non-NULL value. */
1726
1727 struct frame_info *
1728 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1729 {
1730 struct frame_info *fi;
1731
1732 if (frame_debug)
1733 {
1734 fprintf_unfiltered (gdb_stdlog,
1735 "{ create_new_frame (addr=%s, pc=%s) ",
1736 hex_string (addr), hex_string (pc));
1737 }
1738
1739 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1740
1741 fi->next = create_sentinel_frame (current_program_space,
1742 get_current_regcache ());
1743
1744 /* Set/update this frame's cached PC value, found in the next frame.
1745 Do this before looking for this frame's unwinder. A sniffer is
1746 very likely to read this, and the corresponding unwinder is
1747 entitled to rely that the PC doesn't magically change. */
1748 fi->next->prev_pc.value = pc;
1749 fi->next->prev_pc.status = CC_VALUE;
1750
1751 /* We currently assume that frame chain's can't cross spaces. */
1752 fi->pspace = fi->next->pspace;
1753 fi->aspace = fi->next->aspace;
1754
1755 /* Select/initialize both the unwind function and the frame's type
1756 based on the PC. */
1757 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1758
1759 fi->this_id.p = 1;
1760 fi->this_id.value = frame_id_build (addr, pc);
1761
1762 if (frame_debug)
1763 {
1764 fprintf_unfiltered (gdb_stdlog, "-> ");
1765 fprint_frame (gdb_stdlog, fi);
1766 fprintf_unfiltered (gdb_stdlog, " }\n");
1767 }
1768
1769 return fi;
1770 }
1771
1772 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1773 innermost frame). Be careful to not fall off the bottom of the
1774 frame chain and onto the sentinel frame. */
1775
1776 struct frame_info *
1777 get_next_frame (struct frame_info *this_frame)
1778 {
1779 if (this_frame->level > 0)
1780 return this_frame->next;
1781 else
1782 return NULL;
1783 }
1784
1785 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1786 innermost (i.e. current) frame, return the sentinel frame. Thus,
1787 unlike get_next_frame(), NULL will never be returned. */
1788
1789 struct frame_info *
1790 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1791 {
1792 gdb_assert (this_frame != NULL);
1793
1794 /* Note that, due to the manner in which the sentinel frame is
1795 constructed, this_frame->next still works even when this_frame
1796 is the sentinel frame. But we disallow it here anyway because
1797 calling get_next_frame_sentinel_okay() on the sentinel frame
1798 is likely a coding error. */
1799 gdb_assert (this_frame != sentinel_frame);
1800
1801 return this_frame->next;
1802 }
1803
1804 /* Observer for the target_changed event. */
1805
1806 static void
1807 frame_observer_target_changed (struct target_ops *target)
1808 {
1809 reinit_frame_cache ();
1810 }
1811
1812 /* Flush the entire frame cache. */
1813
1814 void
1815 reinit_frame_cache (void)
1816 {
1817 struct frame_info *fi;
1818
1819 /* Tear down all frame caches. */
1820 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1821 {
1822 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1823 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1824 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1825 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1826 }
1827
1828 /* Since we can't really be sure what the first object allocated was. */
1829 obstack_free (&frame_cache_obstack, 0);
1830 obstack_init (&frame_cache_obstack);
1831
1832 if (sentinel_frame != NULL)
1833 annotate_frames_invalid ();
1834
1835 sentinel_frame = NULL; /* Invalidate cache */
1836 select_frame (NULL);
1837 frame_stash_invalidate ();
1838 if (frame_debug)
1839 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1840 }
1841
1842 /* Find where a register is saved (in memory or another register).
1843 The result of frame_register_unwind is just where it is saved
1844 relative to this particular frame. */
1845
1846 static void
1847 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1848 int *optimizedp, enum lval_type *lvalp,
1849 CORE_ADDR *addrp, int *realnump)
1850 {
1851 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1852
1853 while (this_frame != NULL)
1854 {
1855 int unavailable;
1856
1857 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1858 lvalp, addrp, realnump, NULL);
1859
1860 if (*optimizedp)
1861 break;
1862
1863 if (*lvalp != lval_register)
1864 break;
1865
1866 regnum = *realnump;
1867 this_frame = get_next_frame (this_frame);
1868 }
1869 }
1870
1871 /* Called during frame unwinding to remove a previous frame pointer from a
1872 frame passed in ARG. */
1873
1874 static void
1875 remove_prev_frame (void *arg)
1876 {
1877 struct frame_info *this_frame, *prev_frame;
1878
1879 this_frame = (struct frame_info *) arg;
1880 prev_frame = this_frame->prev;
1881 gdb_assert (prev_frame != NULL);
1882
1883 prev_frame->next = NULL;
1884 this_frame->prev = NULL;
1885 }
1886
1887 /* Get the previous raw frame, and check that it is not identical to
1888 same other frame frame already in the chain. If it is, there is
1889 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1890 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1891 validity tests, that compare THIS_FRAME and the next frame, we do
1892 this right after creating the previous frame, to avoid ever ending
1893 up with two frames with the same id in the frame chain. */
1894
1895 static struct frame_info *
1896 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1897 {
1898 struct frame_info *prev_frame;
1899 struct cleanup *prev_frame_cleanup;
1900
1901 prev_frame = get_prev_frame_raw (this_frame);
1902
1903 /* Don't compute the frame id of the current frame yet. Unwinding
1904 the sentinel frame can fail (e.g., if the thread is gone and we
1905 can't thus read its registers). If we let the cycle detection
1906 code below try to compute a frame ID, then an error thrown from
1907 within the frame ID computation would result in the sentinel
1908 frame as outermost frame, which is bogus. Instead, we'll compute
1909 the current frame's ID lazily in get_frame_id. Note that there's
1910 no point in doing cycle detection when there's only one frame, so
1911 nothing is lost here. */
1912 if (prev_frame->level == 0)
1913 return prev_frame;
1914
1915 /* The cleanup will remove the previous frame that get_prev_frame_raw
1916 linked onto THIS_FRAME. */
1917 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1918
1919 compute_frame_id (prev_frame);
1920 if (!frame_stash_add (prev_frame))
1921 {
1922 /* Another frame with the same id was already in the stash. We just
1923 detected a cycle. */
1924 if (frame_debug)
1925 {
1926 fprintf_unfiltered (gdb_stdlog, "-> ");
1927 fprint_frame (gdb_stdlog, NULL);
1928 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1929 }
1930 this_frame->stop_reason = UNWIND_SAME_ID;
1931 /* Unlink. */
1932 prev_frame->next = NULL;
1933 this_frame->prev = NULL;
1934 prev_frame = NULL;
1935 }
1936
1937 discard_cleanups (prev_frame_cleanup);
1938 return prev_frame;
1939 }
1940
1941 /* Helper function for get_prev_frame_always, this is called inside a
1942 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1943 there is no such frame. This may throw an exception. */
1944
1945 static struct frame_info *
1946 get_prev_frame_always_1 (struct frame_info *this_frame)
1947 {
1948 struct gdbarch *gdbarch;
1949
1950 gdb_assert (this_frame != NULL);
1951 gdbarch = get_frame_arch (this_frame);
1952
1953 if (frame_debug)
1954 {
1955 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1956 if (this_frame != NULL)
1957 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1958 else
1959 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1960 fprintf_unfiltered (gdb_stdlog, ") ");
1961 }
1962
1963 /* Only try to do the unwind once. */
1964 if (this_frame->prev_p)
1965 {
1966 if (frame_debug)
1967 {
1968 fprintf_unfiltered (gdb_stdlog, "-> ");
1969 fprint_frame (gdb_stdlog, this_frame->prev);
1970 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1971 }
1972 return this_frame->prev;
1973 }
1974
1975 /* If the frame unwinder hasn't been selected yet, we must do so
1976 before setting prev_p; otherwise the check for misbehaved
1977 sniffers will think that this frame's sniffer tried to unwind
1978 further (see frame_cleanup_after_sniffer). */
1979 if (this_frame->unwind == NULL)
1980 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1981
1982 this_frame->prev_p = 1;
1983 this_frame->stop_reason = UNWIND_NO_REASON;
1984
1985 /* If we are unwinding from an inline frame, all of the below tests
1986 were already performed when we unwound from the next non-inline
1987 frame. We must skip them, since we can not get THIS_FRAME's ID
1988 until we have unwound all the way down to the previous non-inline
1989 frame. */
1990 if (get_frame_type (this_frame) == INLINE_FRAME)
1991 return get_prev_frame_if_no_cycle (this_frame);
1992
1993 /* Check that this frame is unwindable. If it isn't, don't try to
1994 unwind to the prev frame. */
1995 this_frame->stop_reason
1996 = this_frame->unwind->stop_reason (this_frame,
1997 &this_frame->prologue_cache);
1998
1999 if (this_frame->stop_reason != UNWIND_NO_REASON)
2000 {
2001 if (frame_debug)
2002 {
2003 enum unwind_stop_reason reason = this_frame->stop_reason;
2004
2005 fprintf_unfiltered (gdb_stdlog, "-> ");
2006 fprint_frame (gdb_stdlog, NULL);
2007 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2008 frame_stop_reason_symbol_string (reason));
2009 }
2010 return NULL;
2011 }
2012
2013 /* Check that this frame's ID isn't inner to (younger, below, next)
2014 the next frame. This happens when a frame unwind goes backwards.
2015 This check is valid only if this frame and the next frame are NORMAL.
2016 See the comment at frame_id_inner for details. */
2017 if (get_frame_type (this_frame) == NORMAL_FRAME
2018 && this_frame->next->unwind->type == NORMAL_FRAME
2019 && frame_id_inner (get_frame_arch (this_frame->next),
2020 get_frame_id (this_frame),
2021 get_frame_id (this_frame->next)))
2022 {
2023 CORE_ADDR this_pc_in_block;
2024 struct minimal_symbol *morestack_msym;
2025 const char *morestack_name = NULL;
2026
2027 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2028 this_pc_in_block = get_frame_address_in_block (this_frame);
2029 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2030 if (morestack_msym)
2031 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2032 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2033 {
2034 if (frame_debug)
2035 {
2036 fprintf_unfiltered (gdb_stdlog, "-> ");
2037 fprint_frame (gdb_stdlog, NULL);
2038 fprintf_unfiltered (gdb_stdlog,
2039 " // this frame ID is inner }\n");
2040 }
2041 this_frame->stop_reason = UNWIND_INNER_ID;
2042 return NULL;
2043 }
2044 }
2045
2046 /* Check that this and the next frame do not unwind the PC register
2047 to the same memory location. If they do, then even though they
2048 have different frame IDs, the new frame will be bogus; two
2049 functions can't share a register save slot for the PC. This can
2050 happen when the prologue analyzer finds a stack adjustment, but
2051 no PC save.
2052
2053 This check does assume that the "PC register" is roughly a
2054 traditional PC, even if the gdbarch_unwind_pc method adjusts
2055 it (we do not rely on the value, only on the unwound PC being
2056 dependent on this value). A potential improvement would be
2057 to have the frame prev_pc method and the gdbarch unwind_pc
2058 method set the same lval and location information as
2059 frame_register_unwind. */
2060 if (this_frame->level > 0
2061 && gdbarch_pc_regnum (gdbarch) >= 0
2062 && get_frame_type (this_frame) == NORMAL_FRAME
2063 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2064 || get_frame_type (this_frame->next) == INLINE_FRAME))
2065 {
2066 int optimized, realnum, nrealnum;
2067 enum lval_type lval, nlval;
2068 CORE_ADDR addr, naddr;
2069
2070 frame_register_unwind_location (this_frame,
2071 gdbarch_pc_regnum (gdbarch),
2072 &optimized, &lval, &addr, &realnum);
2073 frame_register_unwind_location (get_next_frame (this_frame),
2074 gdbarch_pc_regnum (gdbarch),
2075 &optimized, &nlval, &naddr, &nrealnum);
2076
2077 if ((lval == lval_memory && lval == nlval && addr == naddr)
2078 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2079 {
2080 if (frame_debug)
2081 {
2082 fprintf_unfiltered (gdb_stdlog, "-> ");
2083 fprint_frame (gdb_stdlog, NULL);
2084 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2085 }
2086
2087 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2088 this_frame->prev = NULL;
2089 return NULL;
2090 }
2091 }
2092
2093 return get_prev_frame_if_no_cycle (this_frame);
2094 }
2095
2096 /* Return a "struct frame_info" corresponding to the frame that called
2097 THIS_FRAME. Returns NULL if there is no such frame.
2098
2099 Unlike get_prev_frame, this function always tries to unwind the
2100 frame. */
2101
2102 struct frame_info *
2103 get_prev_frame_always (struct frame_info *this_frame)
2104 {
2105 struct frame_info *prev_frame = NULL;
2106
2107 TRY
2108 {
2109 prev_frame = get_prev_frame_always_1 (this_frame);
2110 }
2111 CATCH (ex, RETURN_MASK_ERROR)
2112 {
2113 if (ex.error == MEMORY_ERROR)
2114 {
2115 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2116 if (ex.message != NULL)
2117 {
2118 char *stop_string;
2119 size_t size;
2120
2121 /* The error needs to live as long as the frame does.
2122 Allocate using stack local STOP_STRING then assign the
2123 pointer to the frame, this allows the STOP_STRING on the
2124 frame to be of type 'const char *'. */
2125 size = strlen (ex.message) + 1;
2126 stop_string = (char *) frame_obstack_zalloc (size);
2127 memcpy (stop_string, ex.message, size);
2128 this_frame->stop_string = stop_string;
2129 }
2130 prev_frame = NULL;
2131 }
2132 else
2133 throw_exception (ex);
2134 }
2135 END_CATCH
2136
2137 return prev_frame;
2138 }
2139
2140 /* Construct a new "struct frame_info" and link it previous to
2141 this_frame. */
2142
2143 static struct frame_info *
2144 get_prev_frame_raw (struct frame_info *this_frame)
2145 {
2146 struct frame_info *prev_frame;
2147
2148 /* Allocate the new frame but do not wire it in to the frame chain.
2149 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2150 frame->next to pull some fancy tricks (of course such code is, by
2151 definition, recursive). Try to prevent it.
2152
2153 There is no reason to worry about memory leaks, should the
2154 remainder of the function fail. The allocated memory will be
2155 quickly reclaimed when the frame cache is flushed, and the `we've
2156 been here before' check above will stop repeated memory
2157 allocation calls. */
2158 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2159 prev_frame->level = this_frame->level + 1;
2160
2161 /* For now, assume we don't have frame chains crossing address
2162 spaces. */
2163 prev_frame->pspace = this_frame->pspace;
2164 prev_frame->aspace = this_frame->aspace;
2165
2166 /* Don't yet compute ->unwind (and hence ->type). It is computed
2167 on-demand in get_frame_type, frame_register_unwind, and
2168 get_frame_id. */
2169
2170 /* Don't yet compute the frame's ID. It is computed on-demand by
2171 get_frame_id(). */
2172
2173 /* The unwound frame ID is validate at the start of this function,
2174 as part of the logic to decide if that frame should be further
2175 unwound, and not here while the prev frame is being created.
2176 Doing this makes it possible for the user to examine a frame that
2177 has an invalid frame ID.
2178
2179 Some very old VAX code noted: [...] For the sake of argument,
2180 suppose that the stack is somewhat trashed (which is one reason
2181 that "info frame" exists). So, return 0 (indicating we don't
2182 know the address of the arglist) if we don't know what frame this
2183 frame calls. */
2184
2185 /* Link it in. */
2186 this_frame->prev = prev_frame;
2187 prev_frame->next = this_frame;
2188
2189 if (frame_debug)
2190 {
2191 fprintf_unfiltered (gdb_stdlog, "-> ");
2192 fprint_frame (gdb_stdlog, prev_frame);
2193 fprintf_unfiltered (gdb_stdlog, " }\n");
2194 }
2195
2196 return prev_frame;
2197 }
2198
2199 /* Debug routine to print a NULL frame being returned. */
2200
2201 static void
2202 frame_debug_got_null_frame (struct frame_info *this_frame,
2203 const char *reason)
2204 {
2205 if (frame_debug)
2206 {
2207 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2208 if (this_frame != NULL)
2209 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2210 else
2211 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2212 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2213 }
2214 }
2215
2216 /* Is this (non-sentinel) frame in the "main"() function? */
2217
2218 static int
2219 inside_main_func (struct frame_info *this_frame)
2220 {
2221 struct bound_minimal_symbol msymbol;
2222 CORE_ADDR maddr;
2223
2224 if (symfile_objfile == 0)
2225 return 0;
2226 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2227 if (msymbol.minsym == NULL)
2228 return 0;
2229 /* Make certain that the code, and not descriptor, address is
2230 returned. */
2231 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2232 BMSYMBOL_VALUE_ADDRESS (msymbol),
2233 &current_target);
2234 return maddr == get_frame_func (this_frame);
2235 }
2236
2237 /* Test whether THIS_FRAME is inside the process entry point function. */
2238
2239 static int
2240 inside_entry_func (struct frame_info *this_frame)
2241 {
2242 CORE_ADDR entry_point;
2243
2244 if (!entry_point_address_query (&entry_point))
2245 return 0;
2246
2247 return get_frame_func (this_frame) == entry_point;
2248 }
2249
2250 /* Return a structure containing various interesting information about
2251 the frame that called THIS_FRAME. Returns NULL if there is entier
2252 no such frame or the frame fails any of a set of target-independent
2253 condition that should terminate the frame chain (e.g., as unwinding
2254 past main()).
2255
2256 This function should not contain target-dependent tests, such as
2257 checking whether the program-counter is zero. */
2258
2259 struct frame_info *
2260 get_prev_frame (struct frame_info *this_frame)
2261 {
2262 CORE_ADDR frame_pc;
2263 int frame_pc_p;
2264
2265 /* There is always a frame. If this assertion fails, suspect that
2266 something should be calling get_selected_frame() or
2267 get_current_frame(). */
2268 gdb_assert (this_frame != NULL);
2269
2270 /* If this_frame is the current frame, then compute and stash
2271 its frame id prior to fetching and computing the frame id of the
2272 previous frame. Otherwise, the cycle detection code in
2273 get_prev_frame_if_no_cycle() will not work correctly. When
2274 get_frame_id() is called later on, an assertion error will
2275 be triggered in the event of a cycle between the current
2276 frame and its previous frame. */
2277 if (this_frame->level == 0)
2278 get_frame_id (this_frame);
2279
2280 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2281
2282 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2283 sense to stop unwinding at a dummy frame. One place where a dummy
2284 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2285 pcsqh register (space register for the instruction at the head of the
2286 instruction queue) cannot be written directly; the only way to set it
2287 is to branch to code that is in the target space. In order to implement
2288 frame dummies on HPUX, the called function is made to jump back to where
2289 the inferior was when the user function was called. If gdb was inside
2290 the main function when we created the dummy frame, the dummy frame will
2291 point inside the main function. */
2292 if (this_frame->level >= 0
2293 && get_frame_type (this_frame) == NORMAL_FRAME
2294 && !backtrace_past_main
2295 && frame_pc_p
2296 && inside_main_func (this_frame))
2297 /* Don't unwind past main(). Note, this is done _before_ the
2298 frame has been marked as previously unwound. That way if the
2299 user later decides to enable unwinds past main(), that will
2300 automatically happen. */
2301 {
2302 frame_debug_got_null_frame (this_frame, "inside main func");
2303 return NULL;
2304 }
2305
2306 /* If the user's backtrace limit has been exceeded, stop. We must
2307 add two to the current level; one of those accounts for backtrace_limit
2308 being 1-based and the level being 0-based, and the other accounts for
2309 the level of the new frame instead of the level of the current
2310 frame. */
2311 if (this_frame->level + 2 > backtrace_limit)
2312 {
2313 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2314 return NULL;
2315 }
2316
2317 /* If we're already inside the entry function for the main objfile,
2318 then it isn't valid. Don't apply this test to a dummy frame -
2319 dummy frame PCs typically land in the entry func. Don't apply
2320 this test to the sentinel frame. Sentinel frames should always
2321 be allowed to unwind. */
2322 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2323 wasn't checking for "main" in the minimal symbols. With that
2324 fixed asm-source tests now stop in "main" instead of halting the
2325 backtrace in weird and wonderful ways somewhere inside the entry
2326 file. Suspect that tests for inside the entry file/func were
2327 added to work around that (now fixed) case. */
2328 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2329 suggested having the inside_entry_func test use the
2330 inside_main_func() msymbol trick (along with entry_point_address()
2331 I guess) to determine the address range of the start function.
2332 That should provide a far better stopper than the current
2333 heuristics. */
2334 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2335 applied tail-call optimizations to main so that a function called
2336 from main returns directly to the caller of main. Since we don't
2337 stop at main, we should at least stop at the entry point of the
2338 application. */
2339 if (this_frame->level >= 0
2340 && get_frame_type (this_frame) == NORMAL_FRAME
2341 && !backtrace_past_entry
2342 && frame_pc_p
2343 && inside_entry_func (this_frame))
2344 {
2345 frame_debug_got_null_frame (this_frame, "inside entry func");
2346 return NULL;
2347 }
2348
2349 /* Assume that the only way to get a zero PC is through something
2350 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2351 will never unwind a zero PC. */
2352 if (this_frame->level > 0
2353 && (get_frame_type (this_frame) == NORMAL_FRAME
2354 || get_frame_type (this_frame) == INLINE_FRAME)
2355 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2356 && frame_pc_p && frame_pc == 0)
2357 {
2358 frame_debug_got_null_frame (this_frame, "zero PC");
2359 return NULL;
2360 }
2361
2362 return get_prev_frame_always (this_frame);
2363 }
2364
2365 struct frame_id
2366 get_prev_frame_id_by_id (struct frame_id id)
2367 {
2368 struct frame_id prev_id;
2369 struct frame_info *frame;
2370
2371 frame = frame_find_by_id (id);
2372
2373 if (frame != NULL)
2374 prev_id = get_frame_id (get_prev_frame (frame));
2375 else
2376 prev_id = null_frame_id;
2377
2378 return prev_id;
2379 }
2380
2381 CORE_ADDR
2382 get_frame_pc (struct frame_info *frame)
2383 {
2384 gdb_assert (frame->next != NULL);
2385 return frame_unwind_pc (frame->next);
2386 }
2387
2388 int
2389 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2390 {
2391
2392 gdb_assert (frame->next != NULL);
2393
2394 TRY
2395 {
2396 *pc = frame_unwind_pc (frame->next);
2397 }
2398 CATCH (ex, RETURN_MASK_ERROR)
2399 {
2400 if (ex.error == NOT_AVAILABLE_ERROR)
2401 return 0;
2402 else
2403 throw_exception (ex);
2404 }
2405 END_CATCH
2406
2407 return 1;
2408 }
2409
2410 /* Return an address that falls within THIS_FRAME's code block. */
2411
2412 CORE_ADDR
2413 get_frame_address_in_block (struct frame_info *this_frame)
2414 {
2415 /* A draft address. */
2416 CORE_ADDR pc = get_frame_pc (this_frame);
2417
2418 struct frame_info *next_frame = this_frame->next;
2419
2420 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2421 Normally the resume address is inside the body of the function
2422 associated with THIS_FRAME, but there is a special case: when
2423 calling a function which the compiler knows will never return
2424 (for instance abort), the call may be the very last instruction
2425 in the calling function. The resume address will point after the
2426 call and may be at the beginning of a different function
2427 entirely.
2428
2429 If THIS_FRAME is a signal frame or dummy frame, then we should
2430 not adjust the unwound PC. For a dummy frame, GDB pushed the
2431 resume address manually onto the stack. For a signal frame, the
2432 OS may have pushed the resume address manually and invoked the
2433 handler (e.g. GNU/Linux), or invoked the trampoline which called
2434 the signal handler - but in either case the signal handler is
2435 expected to return to the trampoline. So in both of these
2436 cases we know that the resume address is executable and
2437 related. So we only need to adjust the PC if THIS_FRAME
2438 is a normal function.
2439
2440 If the program has been interrupted while THIS_FRAME is current,
2441 then clearly the resume address is inside the associated
2442 function. There are three kinds of interruption: debugger stop
2443 (next frame will be SENTINEL_FRAME), operating system
2444 signal or exception (next frame will be SIGTRAMP_FRAME),
2445 or debugger-induced function call (next frame will be
2446 DUMMY_FRAME). So we only need to adjust the PC if
2447 NEXT_FRAME is a normal function.
2448
2449 We check the type of NEXT_FRAME first, since it is already
2450 known; frame type is determined by the unwinder, and since
2451 we have THIS_FRAME we've already selected an unwinder for
2452 NEXT_FRAME.
2453
2454 If the next frame is inlined, we need to keep going until we find
2455 the real function - for instance, if a signal handler is invoked
2456 while in an inlined function, then the code address of the
2457 "calling" normal function should not be adjusted either. */
2458
2459 while (get_frame_type (next_frame) == INLINE_FRAME)
2460 next_frame = next_frame->next;
2461
2462 if ((get_frame_type (next_frame) == NORMAL_FRAME
2463 || get_frame_type (next_frame) == TAILCALL_FRAME)
2464 && (get_frame_type (this_frame) == NORMAL_FRAME
2465 || get_frame_type (this_frame) == TAILCALL_FRAME
2466 || get_frame_type (this_frame) == INLINE_FRAME))
2467 return pc - 1;
2468
2469 return pc;
2470 }
2471
2472 int
2473 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2474 CORE_ADDR *pc)
2475 {
2476
2477 TRY
2478 {
2479 *pc = get_frame_address_in_block (this_frame);
2480 }
2481 CATCH (ex, RETURN_MASK_ERROR)
2482 {
2483 if (ex.error == NOT_AVAILABLE_ERROR)
2484 return 0;
2485 throw_exception (ex);
2486 }
2487 END_CATCH
2488
2489 return 1;
2490 }
2491
2492 void
2493 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2494 {
2495 struct frame_info *next_frame;
2496 int notcurrent;
2497 CORE_ADDR pc;
2498
2499 /* If the next frame represents an inlined function call, this frame's
2500 sal is the "call site" of that inlined function, which can not
2501 be inferred from get_frame_pc. */
2502 next_frame = get_next_frame (frame);
2503 if (frame_inlined_callees (frame) > 0)
2504 {
2505 struct symbol *sym;
2506
2507 if (next_frame)
2508 sym = get_frame_function (next_frame);
2509 else
2510 sym = inline_skipped_symbol (inferior_ptid);
2511
2512 /* If frame is inline, it certainly has symbols. */
2513 gdb_assert (sym);
2514 init_sal (sal);
2515 if (SYMBOL_LINE (sym) != 0)
2516 {
2517 sal->symtab = symbol_symtab (sym);
2518 sal->line = SYMBOL_LINE (sym);
2519 }
2520 else
2521 /* If the symbol does not have a location, we don't know where
2522 the call site is. Do not pretend to. This is jarring, but
2523 we can't do much better. */
2524 sal->pc = get_frame_pc (frame);
2525
2526 sal->pspace = get_frame_program_space (frame);
2527
2528 return;
2529 }
2530
2531 /* If FRAME is not the innermost frame, that normally means that
2532 FRAME->pc points at the return instruction (which is *after* the
2533 call instruction), and we want to get the line containing the
2534 call (because the call is where the user thinks the program is).
2535 However, if the next frame is either a SIGTRAMP_FRAME or a
2536 DUMMY_FRAME, then the next frame will contain a saved interrupt
2537 PC and such a PC indicates the current (rather than next)
2538 instruction/line, consequently, for such cases, want to get the
2539 line containing fi->pc. */
2540 if (!get_frame_pc_if_available (frame, &pc))
2541 {
2542 init_sal (sal);
2543 return;
2544 }
2545
2546 notcurrent = (pc != get_frame_address_in_block (frame));
2547 (*sal) = find_pc_line (pc, notcurrent);
2548 }
2549
2550 /* Per "frame.h", return the ``address'' of the frame. Code should
2551 really be using get_frame_id(). */
2552 CORE_ADDR
2553 get_frame_base (struct frame_info *fi)
2554 {
2555 return get_frame_id (fi).stack_addr;
2556 }
2557
2558 /* High-level offsets into the frame. Used by the debug info. */
2559
2560 CORE_ADDR
2561 get_frame_base_address (struct frame_info *fi)
2562 {
2563 if (get_frame_type (fi) != NORMAL_FRAME)
2564 return 0;
2565 if (fi->base == NULL)
2566 fi->base = frame_base_find_by_frame (fi);
2567 /* Sneaky: If the low-level unwind and high-level base code share a
2568 common unwinder, let them share the prologue cache. */
2569 if (fi->base->unwind == fi->unwind)
2570 return fi->base->this_base (fi, &fi->prologue_cache);
2571 return fi->base->this_base (fi, &fi->base_cache);
2572 }
2573
2574 CORE_ADDR
2575 get_frame_locals_address (struct frame_info *fi)
2576 {
2577 if (get_frame_type (fi) != NORMAL_FRAME)
2578 return 0;
2579 /* If there isn't a frame address method, find it. */
2580 if (fi->base == NULL)
2581 fi->base = frame_base_find_by_frame (fi);
2582 /* Sneaky: If the low-level unwind and high-level base code share a
2583 common unwinder, let them share the prologue cache. */
2584 if (fi->base->unwind == fi->unwind)
2585 return fi->base->this_locals (fi, &fi->prologue_cache);
2586 return fi->base->this_locals (fi, &fi->base_cache);
2587 }
2588
2589 CORE_ADDR
2590 get_frame_args_address (struct frame_info *fi)
2591 {
2592 if (get_frame_type (fi) != NORMAL_FRAME)
2593 return 0;
2594 /* If there isn't a frame address method, find it. */
2595 if (fi->base == NULL)
2596 fi->base = frame_base_find_by_frame (fi);
2597 /* Sneaky: If the low-level unwind and high-level base code share a
2598 common unwinder, let them share the prologue cache. */
2599 if (fi->base->unwind == fi->unwind)
2600 return fi->base->this_args (fi, &fi->prologue_cache);
2601 return fi->base->this_args (fi, &fi->base_cache);
2602 }
2603
2604 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2605 otherwise. */
2606
2607 int
2608 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2609 {
2610 if (fi->unwind == NULL)
2611 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2612 return fi->unwind == unwinder;
2613 }
2614
2615 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2616 or -1 for a NULL frame. */
2617
2618 int
2619 frame_relative_level (struct frame_info *fi)
2620 {
2621 if (fi == NULL)
2622 return -1;
2623 else
2624 return fi->level;
2625 }
2626
2627 enum frame_type
2628 get_frame_type (struct frame_info *frame)
2629 {
2630 if (frame->unwind == NULL)
2631 /* Initialize the frame's unwinder because that's what
2632 provides the frame's type. */
2633 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2634 return frame->unwind->type;
2635 }
2636
2637 struct program_space *
2638 get_frame_program_space (struct frame_info *frame)
2639 {
2640 return frame->pspace;
2641 }
2642
2643 struct program_space *
2644 frame_unwind_program_space (struct frame_info *this_frame)
2645 {
2646 gdb_assert (this_frame);
2647
2648 /* This is really a placeholder to keep the API consistent --- we
2649 assume for now that we don't have frame chains crossing
2650 spaces. */
2651 return this_frame->pspace;
2652 }
2653
2654 struct address_space *
2655 get_frame_address_space (struct frame_info *frame)
2656 {
2657 return frame->aspace;
2658 }
2659
2660 /* Memory access methods. */
2661
2662 void
2663 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2664 gdb_byte *buf, int len)
2665 {
2666 read_memory (addr, buf, len);
2667 }
2668
2669 LONGEST
2670 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2671 int len)
2672 {
2673 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2675
2676 return read_memory_integer (addr, len, byte_order);
2677 }
2678
2679 ULONGEST
2680 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2681 int len)
2682 {
2683 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2685
2686 return read_memory_unsigned_integer (addr, len, byte_order);
2687 }
2688
2689 int
2690 safe_frame_unwind_memory (struct frame_info *this_frame,
2691 CORE_ADDR addr, gdb_byte *buf, int len)
2692 {
2693 /* NOTE: target_read_memory returns zero on success! */
2694 return !target_read_memory (addr, buf, len);
2695 }
2696
2697 /* Architecture methods. */
2698
2699 struct gdbarch *
2700 get_frame_arch (struct frame_info *this_frame)
2701 {
2702 return frame_unwind_arch (this_frame->next);
2703 }
2704
2705 struct gdbarch *
2706 frame_unwind_arch (struct frame_info *next_frame)
2707 {
2708 if (!next_frame->prev_arch.p)
2709 {
2710 struct gdbarch *arch;
2711
2712 if (next_frame->unwind == NULL)
2713 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2714
2715 if (next_frame->unwind->prev_arch != NULL)
2716 arch = next_frame->unwind->prev_arch (next_frame,
2717 &next_frame->prologue_cache);
2718 else
2719 arch = get_frame_arch (next_frame);
2720
2721 next_frame->prev_arch.arch = arch;
2722 next_frame->prev_arch.p = 1;
2723 if (frame_debug)
2724 fprintf_unfiltered (gdb_stdlog,
2725 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2726 next_frame->level,
2727 gdbarch_bfd_arch_info (arch)->printable_name);
2728 }
2729
2730 return next_frame->prev_arch.arch;
2731 }
2732
2733 struct gdbarch *
2734 frame_unwind_caller_arch (struct frame_info *next_frame)
2735 {
2736 next_frame = skip_artificial_frames (next_frame);
2737
2738 /* We must have a non-artificial frame. The caller is supposed to check
2739 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2740 in this case. */
2741 gdb_assert (next_frame != NULL);
2742
2743 return frame_unwind_arch (next_frame);
2744 }
2745
2746 /* Gets the language of FRAME. */
2747
2748 enum language
2749 get_frame_language (struct frame_info *frame)
2750 {
2751 CORE_ADDR pc = 0;
2752 int pc_p = 0;
2753
2754 gdb_assert (frame!= NULL);
2755
2756 /* We determine the current frame language by looking up its
2757 associated symtab. To retrieve this symtab, we use the frame
2758 PC. However we cannot use the frame PC as is, because it
2759 usually points to the instruction following the "call", which
2760 is sometimes the first instruction of another function. So
2761 we rely on get_frame_address_in_block(), it provides us with
2762 a PC that is guaranteed to be inside the frame's code
2763 block. */
2764
2765 TRY
2766 {
2767 pc = get_frame_address_in_block (frame);
2768 pc_p = 1;
2769 }
2770 CATCH (ex, RETURN_MASK_ERROR)
2771 {
2772 if (ex.error != NOT_AVAILABLE_ERROR)
2773 throw_exception (ex);
2774 }
2775 END_CATCH
2776
2777 if (pc_p)
2778 {
2779 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2780
2781 if (cust != NULL)
2782 return compunit_language (cust);
2783 }
2784
2785 return language_unknown;
2786 }
2787
2788 /* Stack pointer methods. */
2789
2790 CORE_ADDR
2791 get_frame_sp (struct frame_info *this_frame)
2792 {
2793 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2794
2795 /* Normality - an architecture that provides a way of obtaining any
2796 frame inner-most address. */
2797 if (gdbarch_unwind_sp_p (gdbarch))
2798 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2799 operate on THIS_FRAME now. */
2800 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2801 /* Now things are really are grim. Hope that the value returned by
2802 the gdbarch_sp_regnum register is meaningful. */
2803 if (gdbarch_sp_regnum (gdbarch) >= 0)
2804 return get_frame_register_unsigned (this_frame,
2805 gdbarch_sp_regnum (gdbarch));
2806 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2807 }
2808
2809 /* Return the reason why we can't unwind past FRAME. */
2810
2811 enum unwind_stop_reason
2812 get_frame_unwind_stop_reason (struct frame_info *frame)
2813 {
2814 /* Fill-in STOP_REASON. */
2815 get_prev_frame_always (frame);
2816 gdb_assert (frame->prev_p);
2817
2818 return frame->stop_reason;
2819 }
2820
2821 /* Return a string explaining REASON. */
2822
2823 const char *
2824 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2825 {
2826 switch (reason)
2827 {
2828 #define SET(name, description) \
2829 case name: return _(description);
2830 #include "unwind_stop_reasons.def"
2831 #undef SET
2832
2833 default:
2834 internal_error (__FILE__, __LINE__,
2835 "Invalid frame stop reason");
2836 }
2837 }
2838
2839 const char *
2840 frame_stop_reason_string (struct frame_info *fi)
2841 {
2842 gdb_assert (fi->prev_p);
2843 gdb_assert (fi->prev == NULL);
2844
2845 /* Return the specific string if we have one. */
2846 if (fi->stop_string != NULL)
2847 return fi->stop_string;
2848
2849 /* Return the generic string if we have nothing better. */
2850 return unwind_stop_reason_to_string (fi->stop_reason);
2851 }
2852
2853 /* Return the enum symbol name of REASON as a string, to use in debug
2854 output. */
2855
2856 static const char *
2857 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2858 {
2859 switch (reason)
2860 {
2861 #define SET(name, description) \
2862 case name: return #name;
2863 #include "unwind_stop_reasons.def"
2864 #undef SET
2865
2866 default:
2867 internal_error (__FILE__, __LINE__,
2868 "Invalid frame stop reason");
2869 }
2870 }
2871
2872 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2873 FRAME. */
2874
2875 static void
2876 frame_cleanup_after_sniffer (void *arg)
2877 {
2878 struct frame_info *frame = (struct frame_info *) arg;
2879
2880 /* The sniffer should not allocate a prologue cache if it did not
2881 match this frame. */
2882 gdb_assert (frame->prologue_cache == NULL);
2883
2884 /* No sniffer should extend the frame chain; sniff based on what is
2885 already certain. */
2886 gdb_assert (!frame->prev_p);
2887
2888 /* The sniffer should not check the frame's ID; that's circular. */
2889 gdb_assert (!frame->this_id.p);
2890
2891 /* Clear cached fields dependent on the unwinder.
2892
2893 The previous PC is independent of the unwinder, but the previous
2894 function is not (see get_frame_address_in_block). */
2895 frame->prev_func.p = 0;
2896 frame->prev_func.addr = 0;
2897
2898 /* Discard the unwinder last, so that we can easily find it if an assertion
2899 in this function triggers. */
2900 frame->unwind = NULL;
2901 }
2902
2903 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2904 Return a cleanup which should be called if unwinding fails, and
2905 discarded if it succeeds. */
2906
2907 struct cleanup *
2908 frame_prepare_for_sniffer (struct frame_info *frame,
2909 const struct frame_unwind *unwind)
2910 {
2911 gdb_assert (frame->unwind == NULL);
2912 frame->unwind = unwind;
2913 return make_cleanup (frame_cleanup_after_sniffer, frame);
2914 }
2915
2916 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2917
2918 static struct cmd_list_element *set_backtrace_cmdlist;
2919 static struct cmd_list_element *show_backtrace_cmdlist;
2920
2921 static void
2922 set_backtrace_cmd (char *args, int from_tty)
2923 {
2924 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2925 gdb_stdout);
2926 }
2927
2928 static void
2929 show_backtrace_cmd (char *args, int from_tty)
2930 {
2931 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2932 }
2933
2934 void
2935 _initialize_frame (void)
2936 {
2937 obstack_init (&frame_cache_obstack);
2938
2939 frame_stash_create ();
2940
2941 observer_attach_target_changed (frame_observer_target_changed);
2942
2943 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2944 Set backtrace specific variables.\n\
2945 Configure backtrace variables such as the backtrace limit"),
2946 &set_backtrace_cmdlist, "set backtrace ",
2947 0/*allow-unknown*/, &setlist);
2948 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2949 Show backtrace specific variables\n\
2950 Show backtrace variables such as the backtrace limit"),
2951 &show_backtrace_cmdlist, "show backtrace ",
2952 0/*allow-unknown*/, &showlist);
2953
2954 add_setshow_boolean_cmd ("past-main", class_obscure,
2955 &backtrace_past_main, _("\
2956 Set whether backtraces should continue past \"main\"."), _("\
2957 Show whether backtraces should continue past \"main\"."), _("\
2958 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2959 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2960 of the stack trace."),
2961 NULL,
2962 show_backtrace_past_main,
2963 &set_backtrace_cmdlist,
2964 &show_backtrace_cmdlist);
2965
2966 add_setshow_boolean_cmd ("past-entry", class_obscure,
2967 &backtrace_past_entry, _("\
2968 Set whether backtraces should continue past the entry point of a program."),
2969 _("\
2970 Show whether backtraces should continue past the entry point of a program."),
2971 _("\
2972 Normally there are no callers beyond the entry point of a program, so GDB\n\
2973 will terminate the backtrace there. Set this variable if you need to see\n\
2974 the rest of the stack trace."),
2975 NULL,
2976 show_backtrace_past_entry,
2977 &set_backtrace_cmdlist,
2978 &show_backtrace_cmdlist);
2979
2980 add_setshow_uinteger_cmd ("limit", class_obscure,
2981 &backtrace_limit, _("\
2982 Set an upper bound on the number of backtrace levels."), _("\
2983 Show the upper bound on the number of backtrace levels."), _("\
2984 No more than the specified number of frames can be displayed or examined.\n\
2985 Literal \"unlimited\" or zero means no limit."),
2986 NULL,
2987 show_backtrace_limit,
2988 &set_backtrace_cmdlist,
2989 &show_backtrace_cmdlist);
2990
2991 /* Debug this files internals. */
2992 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2993 Set frame debugging."), _("\
2994 Show frame debugging."), _("\
2995 When non-zero, frame specific internal debugging is enabled."),
2996 NULL,
2997 show_frame_debug,
2998 &setdebuglist, &showdebuglist);
2999 }
This page took 0.09698 seconds and 4 git commands to generate.