f77ce75a0985dc52015829a5c9b0f5a37b10f54c
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "gdb_assert.h"
27 #include <string.h>
28 #include "user-regs.h"
29 #include "gdb_obstack.h"
30 #include "dummy-frame.h"
31 #include "sentinel-frame.h"
32 #include "gdbcore.h"
33 #include "annotate.h"
34 #include "language.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "command.h"
38 #include "gdbcmd.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "exceptions.h"
42 #include "gdbthread.h"
43 #include "block.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "hashtab.h"
47
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50
51 /* We keep a cache of stack frames, each of which is a "struct
52 frame_info". The innermost one gets allocated (in
53 wait_for_inferior) each time the inferior stops; current_frame
54 points to it. Additional frames get allocated (in get_prev_frame)
55 as needed, and are chained through the next and prev fields. Any
56 time that the frame cache becomes invalid (most notably when we
57 execute something, but also if we change how we interpret the
58 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59 which reads new symbols)), we should call reinit_frame_cache. */
60
61 struct frame_info
62 {
63 /* Level of this frame. The inner-most (youngest) frame is at level
64 0. As you move towards the outer-most (oldest) frame, the level
65 increases. This is a cached value. It could just as easily be
66 computed by counting back from the selected frame to the inner
67 most frame. */
68 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69 reserved to indicate a bogus frame - one that has been created
70 just to keep GDB happy (GDB always needs a frame). For the
71 moment leave this as speculation. */
72 int level;
73
74 /* The frame's program space. */
75 struct program_space *pspace;
76
77 /* The frame's address space. */
78 struct address_space *aspace;
79
80 /* The frame's low-level unwinder and corresponding cache. The
81 low-level unwinder is responsible for unwinding register values
82 for the previous frame. The low-level unwind methods are
83 selected based on the presence, or otherwise, of register unwind
84 information such as CFI. */
85 void *prologue_cache;
86 const struct frame_unwind *unwind;
87
88 /* Cached copy of the previous frame's architecture. */
89 struct
90 {
91 int p;
92 struct gdbarch *arch;
93 } prev_arch;
94
95 /* Cached copy of the previous frame's resume address. */
96 struct {
97 int p;
98 CORE_ADDR value;
99 } prev_pc;
100
101 /* Cached copy of the previous frame's function address. */
102 struct
103 {
104 CORE_ADDR addr;
105 int p;
106 } prev_func;
107
108 /* This frame's ID. */
109 struct
110 {
111 int p;
112 struct frame_id value;
113 } this_id;
114
115 /* The frame's high-level base methods, and corresponding cache.
116 The high level base methods are selected based on the frame's
117 debug info. */
118 const struct frame_base *base;
119 void *base_cache;
120
121 /* Pointers to the next (down, inner, younger) and previous (up,
122 outer, older) frame_info's in the frame cache. */
123 struct frame_info *next; /* down, inner, younger */
124 int prev_p;
125 struct frame_info *prev; /* up, outer, older */
126
127 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128 could. Only valid when PREV_P is set. */
129 enum unwind_stop_reason stop_reason;
130 };
131
132 /* A frame stash used to speed up frame lookups. Create a hash table
133 to stash frames previously accessed from the frame cache for
134 quicker subsequent retrieval. The hash table is emptied whenever
135 the frame cache is invalidated. */
136
137 static htab_t frame_stash;
138
139 /* Internal function to calculate a hash from the frame_id addresses,
140 using as many valid addresses as possible. Frames below level 0
141 are not stored in the hash table. */
142
143 static hashval_t
144 frame_addr_hash (const void *ap)
145 {
146 const struct frame_info *frame = ap;
147 const struct frame_id f_id = frame->this_id.value;
148 hashval_t hash = 0;
149
150 gdb_assert (f_id.stack_addr_p || f_id.code_addr_p
151 || f_id.special_addr_p);
152
153 if (f_id.stack_addr_p)
154 hash = iterative_hash (&f_id.stack_addr,
155 sizeof (f_id.stack_addr), hash);
156 if (f_id.code_addr_p)
157 hash = iterative_hash (&f_id.code_addr,
158 sizeof (f_id.code_addr), hash);
159 if (f_id.special_addr_p)
160 hash = iterative_hash (&f_id.special_addr,
161 sizeof (f_id.special_addr), hash);
162
163 return hash;
164 }
165
166 /* Internal equality function for the hash table. This function
167 defers equality operations to frame_id_eq. */
168
169 static int
170 frame_addr_hash_eq (const void *a, const void *b)
171 {
172 const struct frame_info *f_entry = a;
173 const struct frame_info *f_element = b;
174
175 return frame_id_eq (f_entry->this_id.value,
176 f_element->this_id.value);
177 }
178
179 /* Internal function to create the frame_stash hash table. 100 seems
180 to be a good compromise to start the hash table at. */
181
182 static void
183 frame_stash_create (void)
184 {
185 frame_stash = htab_create (100,
186 frame_addr_hash,
187 frame_addr_hash_eq,
188 NULL);
189 }
190
191 /* Internal function to add a frame to the frame_stash hash table.
192 Returns false if a frame with the same ID was already stashed, true
193 otherwise. */
194
195 static int
196 frame_stash_add (struct frame_info *frame)
197 {
198 struct frame_info **slot;
199
200 /* Do not try to stash the sentinel frame. */
201 gdb_assert (frame->level >= 0);
202
203 slot = (struct frame_info **) htab_find_slot (frame_stash,
204 frame,
205 INSERT);
206
207 /* If we already have a frame in the stack with the same id, we
208 either have a stack cycle (corrupted stack?), or some bug
209 elsewhere in GDB. In any case, ignore the duplicate and return
210 an indication to the caller. */
211 if (*slot != NULL)
212 return 0;
213
214 *slot = frame;
215 return 1;
216 }
217
218 /* Internal function to search the frame stash for an entry with the
219 given frame ID. If found, return that frame. Otherwise return
220 NULL. */
221
222 static struct frame_info *
223 frame_stash_find (struct frame_id id)
224 {
225 struct frame_info dummy;
226 struct frame_info *frame;
227
228 dummy.this_id.value = id;
229 frame = htab_find (frame_stash, &dummy);
230 return frame;
231 }
232
233 /* Internal function to invalidate the frame stash by removing all
234 entries in it. This only occurs when the frame cache is
235 invalidated. */
236
237 static void
238 frame_stash_invalidate (void)
239 {
240 htab_empty (frame_stash);
241 }
242
243 /* Flag to control debugging. */
244
245 unsigned int frame_debug;
246 static void
247 show_frame_debug (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
251 }
252
253 /* Flag to indicate whether backtraces should stop at main et.al. */
254
255 static int backtrace_past_main;
256 static void
257 show_backtrace_past_main (struct ui_file *file, int from_tty,
258 struct cmd_list_element *c, const char *value)
259 {
260 fprintf_filtered (file,
261 _("Whether backtraces should "
262 "continue past \"main\" is %s.\n"),
263 value);
264 }
265
266 static int backtrace_past_entry;
267 static void
268 show_backtrace_past_entry (struct ui_file *file, int from_tty,
269 struct cmd_list_element *c, const char *value)
270 {
271 fprintf_filtered (file, _("Whether backtraces should continue past the "
272 "entry point of a program is %s.\n"),
273 value);
274 }
275
276 static unsigned int backtrace_limit = UINT_MAX;
277 static void
278 show_backtrace_limit (struct ui_file *file, int from_tty,
279 struct cmd_list_element *c, const char *value)
280 {
281 fprintf_filtered (file,
282 _("An upper bound on the number "
283 "of backtrace levels is %s.\n"),
284 value);
285 }
286
287
288 static void
289 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
290 {
291 if (p)
292 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
293 else
294 fprintf_unfiltered (file, "!%s", name);
295 }
296
297 void
298 fprint_frame_id (struct ui_file *file, struct frame_id id)
299 {
300 fprintf_unfiltered (file, "{");
301 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
302 fprintf_unfiltered (file, ",");
303 fprint_field (file, "code", id.code_addr_p, id.code_addr);
304 fprintf_unfiltered (file, ",");
305 fprint_field (file, "special", id.special_addr_p, id.special_addr);
306 if (id.artificial_depth)
307 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
308 fprintf_unfiltered (file, "}");
309 }
310
311 static void
312 fprint_frame_type (struct ui_file *file, enum frame_type type)
313 {
314 switch (type)
315 {
316 case NORMAL_FRAME:
317 fprintf_unfiltered (file, "NORMAL_FRAME");
318 return;
319 case DUMMY_FRAME:
320 fprintf_unfiltered (file, "DUMMY_FRAME");
321 return;
322 case INLINE_FRAME:
323 fprintf_unfiltered (file, "INLINE_FRAME");
324 return;
325 case TAILCALL_FRAME:
326 fprintf_unfiltered (file, "TAILCALL_FRAME");
327 return;
328 case SIGTRAMP_FRAME:
329 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
330 return;
331 case ARCH_FRAME:
332 fprintf_unfiltered (file, "ARCH_FRAME");
333 return;
334 case SENTINEL_FRAME:
335 fprintf_unfiltered (file, "SENTINEL_FRAME");
336 return;
337 default:
338 fprintf_unfiltered (file, "<unknown type>");
339 return;
340 };
341 }
342
343 static void
344 fprint_frame (struct ui_file *file, struct frame_info *fi)
345 {
346 if (fi == NULL)
347 {
348 fprintf_unfiltered (file, "<NULL frame>");
349 return;
350 }
351 fprintf_unfiltered (file, "{");
352 fprintf_unfiltered (file, "level=%d", fi->level);
353 fprintf_unfiltered (file, ",");
354 fprintf_unfiltered (file, "type=");
355 if (fi->unwind != NULL)
356 fprint_frame_type (file, fi->unwind->type);
357 else
358 fprintf_unfiltered (file, "<unknown>");
359 fprintf_unfiltered (file, ",");
360 fprintf_unfiltered (file, "unwind=");
361 if (fi->unwind != NULL)
362 gdb_print_host_address (fi->unwind, file);
363 else
364 fprintf_unfiltered (file, "<unknown>");
365 fprintf_unfiltered (file, ",");
366 fprintf_unfiltered (file, "pc=");
367 if (fi->next != NULL && fi->next->prev_pc.p)
368 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
369 else
370 fprintf_unfiltered (file, "<unknown>");
371 fprintf_unfiltered (file, ",");
372 fprintf_unfiltered (file, "id=");
373 if (fi->this_id.p)
374 fprint_frame_id (file, fi->this_id.value);
375 else
376 fprintf_unfiltered (file, "<unknown>");
377 fprintf_unfiltered (file, ",");
378 fprintf_unfiltered (file, "func=");
379 if (fi->next != NULL && fi->next->prev_func.p)
380 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
381 else
382 fprintf_unfiltered (file, "<unknown>");
383 fprintf_unfiltered (file, "}");
384 }
385
386 /* Given FRAME, return the enclosing frame as found in real frames read-in from
387 inferior memory. Skip any previous frames which were made up by GDB.
388 Return the original frame if no immediate previous frames exist. */
389
390 static struct frame_info *
391 skip_artificial_frames (struct frame_info *frame)
392 {
393 while (get_frame_type (frame) == INLINE_FRAME
394 || get_frame_type (frame) == TAILCALL_FRAME)
395 frame = get_prev_frame (frame);
396
397 return frame;
398 }
399
400 /* Compute the frame's uniq ID that can be used to, later, re-find the
401 frame. */
402
403 static void
404 compute_frame_id (struct frame_info *fi)
405 {
406 gdb_assert (!fi->this_id.p);
407
408 if (frame_debug)
409 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
410 fi->level);
411 /* Find the unwinder. */
412 if (fi->unwind == NULL)
413 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
414 /* Find THIS frame's ID. */
415 /* Default to outermost if no ID is found. */
416 fi->this_id.value = outer_frame_id;
417 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
418 gdb_assert (frame_id_p (fi->this_id.value));
419 fi->this_id.p = 1;
420 if (frame_debug)
421 {
422 fprintf_unfiltered (gdb_stdlog, "-> ");
423 fprint_frame_id (gdb_stdlog, fi->this_id.value);
424 fprintf_unfiltered (gdb_stdlog, " }\n");
425 }
426 }
427
428 /* Return a frame uniq ID that can be used to, later, re-find the
429 frame. */
430
431 struct frame_id
432 get_frame_id (struct frame_info *fi)
433 {
434 if (fi == NULL)
435 return null_frame_id;
436
437 gdb_assert (fi->this_id.p);
438 return fi->this_id.value;
439 }
440
441 struct frame_id
442 get_stack_frame_id (struct frame_info *next_frame)
443 {
444 return get_frame_id (skip_artificial_frames (next_frame));
445 }
446
447 struct frame_id
448 frame_unwind_caller_id (struct frame_info *next_frame)
449 {
450 struct frame_info *this_frame;
451
452 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
453 the frame chain, leading to this function unintentionally
454 returning a null_frame_id (e.g., when a caller requests the frame
455 ID of "main()"s caller. */
456
457 next_frame = skip_artificial_frames (next_frame);
458 this_frame = get_prev_frame_1 (next_frame);
459 if (this_frame)
460 return get_frame_id (skip_artificial_frames (this_frame));
461 else
462 return null_frame_id;
463 }
464
465 const struct frame_id null_frame_id; /* All zeros. */
466 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
467
468 struct frame_id
469 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
470 CORE_ADDR special_addr)
471 {
472 struct frame_id id = null_frame_id;
473
474 id.stack_addr = stack_addr;
475 id.stack_addr_p = 1;
476 id.code_addr = code_addr;
477 id.code_addr_p = 1;
478 id.special_addr = special_addr;
479 id.special_addr_p = 1;
480 return id;
481 }
482
483 struct frame_id
484 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
485 {
486 struct frame_id id = null_frame_id;
487
488 id.stack_addr = stack_addr;
489 id.stack_addr_p = 1;
490 id.code_addr = code_addr;
491 id.code_addr_p = 1;
492 return id;
493 }
494
495 struct frame_id
496 frame_id_build_wild (CORE_ADDR stack_addr)
497 {
498 struct frame_id id = null_frame_id;
499
500 id.stack_addr = stack_addr;
501 id.stack_addr_p = 1;
502 return id;
503 }
504
505 int
506 frame_id_p (struct frame_id l)
507 {
508 int p;
509
510 /* The frame is valid iff it has a valid stack address. */
511 p = l.stack_addr_p;
512 /* outer_frame_id is also valid. */
513 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
514 p = 1;
515 if (frame_debug)
516 {
517 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
518 fprint_frame_id (gdb_stdlog, l);
519 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
520 }
521 return p;
522 }
523
524 int
525 frame_id_artificial_p (struct frame_id l)
526 {
527 if (!frame_id_p (l))
528 return 0;
529
530 return (l.artificial_depth != 0);
531 }
532
533 int
534 frame_id_eq (struct frame_id l, struct frame_id r)
535 {
536 int eq;
537
538 if (!l.stack_addr_p && l.special_addr_p
539 && !r.stack_addr_p && r.special_addr_p)
540 /* The outermost frame marker is equal to itself. This is the
541 dodgy thing about outer_frame_id, since between execution steps
542 we might step into another function - from which we can't
543 unwind either. More thought required to get rid of
544 outer_frame_id. */
545 eq = 1;
546 else if (!l.stack_addr_p || !r.stack_addr_p)
547 /* Like a NaN, if either ID is invalid, the result is false.
548 Note that a frame ID is invalid iff it is the null frame ID. */
549 eq = 0;
550 else if (l.stack_addr != r.stack_addr)
551 /* If .stack addresses are different, the frames are different. */
552 eq = 0;
553 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
554 /* An invalid code addr is a wild card. If .code addresses are
555 different, the frames are different. */
556 eq = 0;
557 else if (l.special_addr_p && r.special_addr_p
558 && l.special_addr != r.special_addr)
559 /* An invalid special addr is a wild card (or unused). Otherwise
560 if special addresses are different, the frames are different. */
561 eq = 0;
562 else if (l.artificial_depth != r.artificial_depth)
563 /* If artifical depths are different, the frames must be different. */
564 eq = 0;
565 else
566 /* Frames are equal. */
567 eq = 1;
568
569 if (frame_debug)
570 {
571 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
572 fprint_frame_id (gdb_stdlog, l);
573 fprintf_unfiltered (gdb_stdlog, ",r=");
574 fprint_frame_id (gdb_stdlog, r);
575 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
576 }
577 return eq;
578 }
579
580 /* Safety net to check whether frame ID L should be inner to
581 frame ID R, according to their stack addresses.
582
583 This method cannot be used to compare arbitrary frames, as the
584 ranges of valid stack addresses may be discontiguous (e.g. due
585 to sigaltstack).
586
587 However, it can be used as safety net to discover invalid frame
588 IDs in certain circumstances. Assuming that NEXT is the immediate
589 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
590
591 * The stack address of NEXT must be inner-than-or-equal to the stack
592 address of THIS.
593
594 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
595 error has occurred.
596
597 * If NEXT and THIS have different stack addresses, no other frame
598 in the frame chain may have a stack address in between.
599
600 Therefore, if frame_id_inner (TEST, THIS) holds, but
601 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
602 to a valid frame in the frame chain.
603
604 The sanity checks above cannot be performed when a SIGTRAMP frame
605 is involved, because signal handlers might be executed on a different
606 stack than the stack used by the routine that caused the signal
607 to be raised. This can happen for instance when a thread exceeds
608 its maximum stack size. In this case, certain compilers implement
609 a stack overflow strategy that cause the handler to be run on a
610 different stack. */
611
612 static int
613 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
614 {
615 int inner;
616
617 if (!l.stack_addr_p || !r.stack_addr_p)
618 /* Like NaN, any operation involving an invalid ID always fails. */
619 inner = 0;
620 else if (l.artificial_depth > r.artificial_depth
621 && l.stack_addr == r.stack_addr
622 && l.code_addr_p == r.code_addr_p
623 && l.special_addr_p == r.special_addr_p
624 && l.special_addr == r.special_addr)
625 {
626 /* Same function, different inlined functions. */
627 struct block *lb, *rb;
628
629 gdb_assert (l.code_addr_p && r.code_addr_p);
630
631 lb = block_for_pc (l.code_addr);
632 rb = block_for_pc (r.code_addr);
633
634 if (lb == NULL || rb == NULL)
635 /* Something's gone wrong. */
636 inner = 0;
637 else
638 /* This will return true if LB and RB are the same block, or
639 if the block with the smaller depth lexically encloses the
640 block with the greater depth. */
641 inner = contained_in (lb, rb);
642 }
643 else
644 /* Only return non-zero when strictly inner than. Note that, per
645 comment in "frame.h", there is some fuzz here. Frameless
646 functions are not strictly inner than (same .stack but
647 different .code and/or .special address). */
648 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
649 if (frame_debug)
650 {
651 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
652 fprint_frame_id (gdb_stdlog, l);
653 fprintf_unfiltered (gdb_stdlog, ",r=");
654 fprint_frame_id (gdb_stdlog, r);
655 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
656 }
657 return inner;
658 }
659
660 struct frame_info *
661 frame_find_by_id (struct frame_id id)
662 {
663 struct frame_info *frame, *prev_frame;
664
665 /* ZERO denotes the null frame, let the caller decide what to do
666 about it. Should it instead return get_current_frame()? */
667 if (!frame_id_p (id))
668 return NULL;
669
670 /* Try using the frame stash first. Finding it there removes the need
671 to perform the search by looping over all frames, which can be very
672 CPU-intensive if the number of frames is very high (the loop is O(n)
673 and get_prev_frame performs a series of checks that are relatively
674 expensive). This optimization is particularly useful when this function
675 is called from another function (such as value_fetch_lazy, case
676 VALUE_LVAL (val) == lval_register) which already loops over all frames,
677 making the overall behavior O(n^2). */
678 frame = frame_stash_find (id);
679 if (frame)
680 return frame;
681
682 for (frame = get_current_frame (); ; frame = prev_frame)
683 {
684 struct frame_id this = get_frame_id (frame);
685
686 if (frame_id_eq (id, this))
687 /* An exact match. */
688 return frame;
689
690 prev_frame = get_prev_frame (frame);
691 if (!prev_frame)
692 return NULL;
693
694 /* As a safety net to avoid unnecessary backtracing while trying
695 to find an invalid ID, we check for a common situation where
696 we can detect from comparing stack addresses that no other
697 frame in the current frame chain can have this ID. See the
698 comment at frame_id_inner for details. */
699 if (get_frame_type (frame) == NORMAL_FRAME
700 && !frame_id_inner (get_frame_arch (frame), id, this)
701 && frame_id_inner (get_frame_arch (prev_frame), id,
702 get_frame_id (prev_frame)))
703 return NULL;
704 }
705 return NULL;
706 }
707
708 static int
709 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
710 {
711 if (!this_frame->prev_pc.p)
712 {
713 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
714 {
715 volatile struct gdb_exception ex;
716 struct gdbarch *prev_gdbarch;
717 CORE_ADDR pc = 0;
718
719 /* The right way. The `pure' way. The one true way. This
720 method depends solely on the register-unwind code to
721 determine the value of registers in THIS frame, and hence
722 the value of this frame's PC (resume address). A typical
723 implementation is no more than:
724
725 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
726 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
727
728 Note: this method is very heavily dependent on a correct
729 register-unwind implementation, it pays to fix that
730 method first; this method is frame type agnostic, since
731 it only deals with register values, it works with any
732 frame. This is all in stark contrast to the old
733 FRAME_SAVED_PC which would try to directly handle all the
734 different ways that a PC could be unwound. */
735 prev_gdbarch = frame_unwind_arch (this_frame);
736
737 TRY_CATCH (ex, RETURN_MASK_ERROR)
738 {
739 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
740 }
741 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
742 {
743 this_frame->prev_pc.p = -1;
744
745 if (frame_debug)
746 fprintf_unfiltered (gdb_stdlog,
747 "{ frame_unwind_pc (this_frame=%d)"
748 " -> <unavailable> }\n",
749 this_frame->level);
750 }
751 else if (ex.reason < 0)
752 {
753 throw_exception (ex);
754 }
755 else
756 {
757 this_frame->prev_pc.value = pc;
758 this_frame->prev_pc.p = 1;
759 if (frame_debug)
760 fprintf_unfiltered (gdb_stdlog,
761 "{ frame_unwind_pc (this_frame=%d) "
762 "-> %s }\n",
763 this_frame->level,
764 hex_string (this_frame->prev_pc.value));
765 }
766 }
767 else
768 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
769 }
770 if (this_frame->prev_pc.p < 0)
771 {
772 *pc = -1;
773 return 0;
774 }
775 else
776 {
777 *pc = this_frame->prev_pc.value;
778 return 1;
779 }
780 }
781
782 static CORE_ADDR
783 frame_unwind_pc (struct frame_info *this_frame)
784 {
785 CORE_ADDR pc;
786
787 if (!frame_unwind_pc_if_available (this_frame, &pc))
788 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
789 else
790 return pc;
791 }
792
793 CORE_ADDR
794 frame_unwind_caller_pc (struct frame_info *this_frame)
795 {
796 return frame_unwind_pc (skip_artificial_frames (this_frame));
797 }
798
799 int
800 frame_unwind_caller_pc_if_available (struct frame_info *this_frame,
801 CORE_ADDR *pc)
802 {
803 return frame_unwind_pc_if_available (skip_artificial_frames (this_frame), pc);
804 }
805
806 int
807 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
808 {
809 struct frame_info *next_frame = this_frame->next;
810
811 if (!next_frame->prev_func.p)
812 {
813 CORE_ADDR addr_in_block;
814
815 /* Make certain that this, and not the adjacent, function is
816 found. */
817 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
818 {
819 next_frame->prev_func.p = -1;
820 if (frame_debug)
821 fprintf_unfiltered (gdb_stdlog,
822 "{ get_frame_func (this_frame=%d)"
823 " -> unavailable }\n",
824 this_frame->level);
825 }
826 else
827 {
828 next_frame->prev_func.p = 1;
829 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
830 if (frame_debug)
831 fprintf_unfiltered (gdb_stdlog,
832 "{ get_frame_func (this_frame=%d) -> %s }\n",
833 this_frame->level,
834 hex_string (next_frame->prev_func.addr));
835 }
836 }
837
838 if (next_frame->prev_func.p < 0)
839 {
840 *pc = -1;
841 return 0;
842 }
843 else
844 {
845 *pc = next_frame->prev_func.addr;
846 return 1;
847 }
848 }
849
850 CORE_ADDR
851 get_frame_func (struct frame_info *this_frame)
852 {
853 CORE_ADDR pc;
854
855 if (!get_frame_func_if_available (this_frame, &pc))
856 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
857
858 return pc;
859 }
860
861 static enum register_status
862 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
863 {
864 if (!deprecated_frame_register_read (src, regnum, buf))
865 return REG_UNAVAILABLE;
866 else
867 return REG_VALID;
868 }
869
870 struct regcache *
871 frame_save_as_regcache (struct frame_info *this_frame)
872 {
873 struct address_space *aspace = get_frame_address_space (this_frame);
874 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
875 aspace);
876 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
877
878 regcache_save (regcache, do_frame_register_read, this_frame);
879 discard_cleanups (cleanups);
880 return regcache;
881 }
882
883 void
884 frame_pop (struct frame_info *this_frame)
885 {
886 struct frame_info *prev_frame;
887 struct regcache *scratch;
888 struct cleanup *cleanups;
889
890 if (get_frame_type (this_frame) == DUMMY_FRAME)
891 {
892 /* Popping a dummy frame involves restoring more than just registers.
893 dummy_frame_pop does all the work. */
894 dummy_frame_pop (get_frame_id (this_frame));
895 return;
896 }
897
898 /* Ensure that we have a frame to pop to. */
899 prev_frame = get_prev_frame_1 (this_frame);
900
901 if (!prev_frame)
902 error (_("Cannot pop the initial frame."));
903
904 /* Ignore TAILCALL_FRAME type frames, they were executed already before
905 entering THISFRAME. */
906 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
907 prev_frame = get_prev_frame (prev_frame);
908
909 /* Make a copy of all the register values unwound from this frame.
910 Save them in a scratch buffer so that there isn't a race between
911 trying to extract the old values from the current regcache while
912 at the same time writing new values into that same cache. */
913 scratch = frame_save_as_regcache (prev_frame);
914 cleanups = make_cleanup_regcache_xfree (scratch);
915
916 /* FIXME: cagney/2003-03-16: It should be possible to tell the
917 target's register cache that it is about to be hit with a burst
918 register transfer and that the sequence of register writes should
919 be batched. The pair target_prepare_to_store() and
920 target_store_registers() kind of suggest this functionality.
921 Unfortunately, they don't implement it. Their lack of a formal
922 definition can lead to targets writing back bogus values
923 (arguably a bug in the target code mind). */
924 /* Now copy those saved registers into the current regcache.
925 Here, regcache_cpy() calls regcache_restore(). */
926 regcache_cpy (get_current_regcache (), scratch);
927 do_cleanups (cleanups);
928
929 /* We've made right mess of GDB's local state, just discard
930 everything. */
931 reinit_frame_cache ();
932 }
933
934 void
935 frame_register_unwind (struct frame_info *frame, int regnum,
936 int *optimizedp, int *unavailablep,
937 enum lval_type *lvalp, CORE_ADDR *addrp,
938 int *realnump, gdb_byte *bufferp)
939 {
940 struct value *value;
941
942 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
943 that the value proper does not need to be fetched. */
944 gdb_assert (optimizedp != NULL);
945 gdb_assert (lvalp != NULL);
946 gdb_assert (addrp != NULL);
947 gdb_assert (realnump != NULL);
948 /* gdb_assert (bufferp != NULL); */
949
950 value = frame_unwind_register_value (frame, regnum);
951
952 gdb_assert (value != NULL);
953
954 *optimizedp = value_optimized_out (value);
955 *unavailablep = !value_entirely_available (value);
956 *lvalp = VALUE_LVAL (value);
957 *addrp = value_address (value);
958 *realnump = VALUE_REGNUM (value);
959
960 if (bufferp)
961 {
962 if (!*optimizedp && !*unavailablep)
963 memcpy (bufferp, value_contents_all (value),
964 TYPE_LENGTH (value_type (value)));
965 else
966 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
967 }
968
969 /* Dispose of the new value. This prevents watchpoints from
970 trying to watch the saved frame pointer. */
971 release_value (value);
972 value_free (value);
973 }
974
975 void
976 frame_register (struct frame_info *frame, int regnum,
977 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
978 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
979 {
980 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
981 that the value proper does not need to be fetched. */
982 gdb_assert (optimizedp != NULL);
983 gdb_assert (lvalp != NULL);
984 gdb_assert (addrp != NULL);
985 gdb_assert (realnump != NULL);
986 /* gdb_assert (bufferp != NULL); */
987
988 /* Obtain the register value by unwinding the register from the next
989 (more inner frame). */
990 gdb_assert (frame != NULL && frame->next != NULL);
991 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
992 lvalp, addrp, realnump, bufferp);
993 }
994
995 void
996 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
997 {
998 int optimized;
999 int unavailable;
1000 CORE_ADDR addr;
1001 int realnum;
1002 enum lval_type lval;
1003
1004 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1005 &lval, &addr, &realnum, buf);
1006
1007 if (optimized)
1008 error (_("Register %d was optimized out"), regnum);
1009 if (unavailable)
1010 throw_error (NOT_AVAILABLE_ERROR,
1011 _("Register %d is not available"), regnum);
1012 }
1013
1014 void
1015 get_frame_register (struct frame_info *frame,
1016 int regnum, gdb_byte *buf)
1017 {
1018 frame_unwind_register (frame->next, regnum, buf);
1019 }
1020
1021 struct value *
1022 frame_unwind_register_value (struct frame_info *frame, int regnum)
1023 {
1024 struct gdbarch *gdbarch;
1025 struct value *value;
1026
1027 gdb_assert (frame != NULL);
1028 gdbarch = frame_unwind_arch (frame);
1029
1030 if (frame_debug)
1031 {
1032 fprintf_unfiltered (gdb_stdlog,
1033 "{ frame_unwind_register_value "
1034 "(frame=%d,regnum=%d(%s),...) ",
1035 frame->level, regnum,
1036 user_reg_map_regnum_to_name (gdbarch, regnum));
1037 }
1038
1039 /* Find the unwinder. */
1040 if (frame->unwind == NULL)
1041 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1042
1043 /* Ask this frame to unwind its register. */
1044 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1045
1046 if (frame_debug)
1047 {
1048 fprintf_unfiltered (gdb_stdlog, "->");
1049 if (value_optimized_out (value))
1050 fprintf_unfiltered (gdb_stdlog, " optimized out");
1051 else
1052 {
1053 if (VALUE_LVAL (value) == lval_register)
1054 fprintf_unfiltered (gdb_stdlog, " register=%d",
1055 VALUE_REGNUM (value));
1056 else if (VALUE_LVAL (value) == lval_memory)
1057 fprintf_unfiltered (gdb_stdlog, " address=%s",
1058 paddress (gdbarch,
1059 value_address (value)));
1060 else
1061 fprintf_unfiltered (gdb_stdlog, " computed");
1062
1063 if (value_lazy (value))
1064 fprintf_unfiltered (gdb_stdlog, " lazy");
1065 else
1066 {
1067 int i;
1068 const gdb_byte *buf = value_contents (value);
1069
1070 fprintf_unfiltered (gdb_stdlog, " bytes=");
1071 fprintf_unfiltered (gdb_stdlog, "[");
1072 for (i = 0; i < register_size (gdbarch, regnum); i++)
1073 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1074 fprintf_unfiltered (gdb_stdlog, "]");
1075 }
1076 }
1077
1078 fprintf_unfiltered (gdb_stdlog, " }\n");
1079 }
1080
1081 return value;
1082 }
1083
1084 struct value *
1085 get_frame_register_value (struct frame_info *frame, int regnum)
1086 {
1087 return frame_unwind_register_value (frame->next, regnum);
1088 }
1089
1090 LONGEST
1091 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1092 {
1093 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1094 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1095 int size = register_size (gdbarch, regnum);
1096 gdb_byte buf[MAX_REGISTER_SIZE];
1097
1098 frame_unwind_register (frame, regnum, buf);
1099 return extract_signed_integer (buf, size, byte_order);
1100 }
1101
1102 LONGEST
1103 get_frame_register_signed (struct frame_info *frame, int regnum)
1104 {
1105 return frame_unwind_register_signed (frame->next, regnum);
1106 }
1107
1108 ULONGEST
1109 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1110 {
1111 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1113 int size = register_size (gdbarch, regnum);
1114 gdb_byte buf[MAX_REGISTER_SIZE];
1115
1116 frame_unwind_register (frame, regnum, buf);
1117 return extract_unsigned_integer (buf, size, byte_order);
1118 }
1119
1120 ULONGEST
1121 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1122 {
1123 return frame_unwind_register_unsigned (frame->next, regnum);
1124 }
1125
1126 int
1127 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1128 ULONGEST *val)
1129 {
1130 struct value *regval = get_frame_register_value (frame, regnum);
1131
1132 if (!value_optimized_out (regval)
1133 && value_entirely_available (regval))
1134 {
1135 struct gdbarch *gdbarch = get_frame_arch (frame);
1136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1137 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1138
1139 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1140 return 1;
1141 }
1142
1143 return 0;
1144 }
1145
1146 void
1147 put_frame_register (struct frame_info *frame, int regnum,
1148 const gdb_byte *buf)
1149 {
1150 struct gdbarch *gdbarch = get_frame_arch (frame);
1151 int realnum;
1152 int optim;
1153 int unavail;
1154 enum lval_type lval;
1155 CORE_ADDR addr;
1156
1157 frame_register (frame, regnum, &optim, &unavail,
1158 &lval, &addr, &realnum, NULL);
1159 if (optim)
1160 error (_("Attempt to assign to a register that was not saved."));
1161 switch (lval)
1162 {
1163 case lval_memory:
1164 {
1165 write_memory (addr, buf, register_size (gdbarch, regnum));
1166 break;
1167 }
1168 case lval_register:
1169 regcache_cooked_write (get_current_regcache (), realnum, buf);
1170 break;
1171 default:
1172 error (_("Attempt to assign to an unmodifiable value."));
1173 }
1174 }
1175
1176 /* This function is deprecated. Use get_frame_register_value instead,
1177 which provides more accurate information.
1178
1179 Find and return the value of REGNUM for the specified stack frame.
1180 The number of bytes copied is REGISTER_SIZE (REGNUM).
1181
1182 Returns 0 if the register value could not be found. */
1183
1184 int
1185 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1186 gdb_byte *myaddr)
1187 {
1188 int optimized;
1189 int unavailable;
1190 enum lval_type lval;
1191 CORE_ADDR addr;
1192 int realnum;
1193
1194 frame_register (frame, regnum, &optimized, &unavailable,
1195 &lval, &addr, &realnum, myaddr);
1196
1197 return !optimized && !unavailable;
1198 }
1199
1200 int
1201 get_frame_register_bytes (struct frame_info *frame, int regnum,
1202 CORE_ADDR offset, int len, gdb_byte *myaddr,
1203 int *optimizedp, int *unavailablep)
1204 {
1205 struct gdbarch *gdbarch = get_frame_arch (frame);
1206 int i;
1207 int maxsize;
1208 int numregs;
1209
1210 /* Skip registers wholly inside of OFFSET. */
1211 while (offset >= register_size (gdbarch, regnum))
1212 {
1213 offset -= register_size (gdbarch, regnum);
1214 regnum++;
1215 }
1216
1217 /* Ensure that we will not read beyond the end of the register file.
1218 This can only ever happen if the debug information is bad. */
1219 maxsize = -offset;
1220 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1221 for (i = regnum; i < numregs; i++)
1222 {
1223 int thissize = register_size (gdbarch, i);
1224
1225 if (thissize == 0)
1226 break; /* This register is not available on this architecture. */
1227 maxsize += thissize;
1228 }
1229 if (len > maxsize)
1230 error (_("Bad debug information detected: "
1231 "Attempt to read %d bytes from registers."), len);
1232
1233 /* Copy the data. */
1234 while (len > 0)
1235 {
1236 int curr_len = register_size (gdbarch, regnum) - offset;
1237
1238 if (curr_len > len)
1239 curr_len = len;
1240
1241 if (curr_len == register_size (gdbarch, regnum))
1242 {
1243 enum lval_type lval;
1244 CORE_ADDR addr;
1245 int realnum;
1246
1247 frame_register (frame, regnum, optimizedp, unavailablep,
1248 &lval, &addr, &realnum, myaddr);
1249 if (*optimizedp || *unavailablep)
1250 return 0;
1251 }
1252 else
1253 {
1254 gdb_byte buf[MAX_REGISTER_SIZE];
1255 enum lval_type lval;
1256 CORE_ADDR addr;
1257 int realnum;
1258
1259 frame_register (frame, regnum, optimizedp, unavailablep,
1260 &lval, &addr, &realnum, buf);
1261 if (*optimizedp || *unavailablep)
1262 return 0;
1263 memcpy (myaddr, buf + offset, curr_len);
1264 }
1265
1266 myaddr += curr_len;
1267 len -= curr_len;
1268 offset = 0;
1269 regnum++;
1270 }
1271
1272 *optimizedp = 0;
1273 *unavailablep = 0;
1274 return 1;
1275 }
1276
1277 void
1278 put_frame_register_bytes (struct frame_info *frame, int regnum,
1279 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1280 {
1281 struct gdbarch *gdbarch = get_frame_arch (frame);
1282
1283 /* Skip registers wholly inside of OFFSET. */
1284 while (offset >= register_size (gdbarch, regnum))
1285 {
1286 offset -= register_size (gdbarch, regnum);
1287 regnum++;
1288 }
1289
1290 /* Copy the data. */
1291 while (len > 0)
1292 {
1293 int curr_len = register_size (gdbarch, regnum) - offset;
1294
1295 if (curr_len > len)
1296 curr_len = len;
1297
1298 if (curr_len == register_size (gdbarch, regnum))
1299 {
1300 put_frame_register (frame, regnum, myaddr);
1301 }
1302 else
1303 {
1304 gdb_byte buf[MAX_REGISTER_SIZE];
1305
1306 deprecated_frame_register_read (frame, regnum, buf);
1307 memcpy (buf + offset, myaddr, curr_len);
1308 put_frame_register (frame, regnum, buf);
1309 }
1310
1311 myaddr += curr_len;
1312 len -= curr_len;
1313 offset = 0;
1314 regnum++;
1315 }
1316 }
1317
1318 /* Create a sentinel frame. */
1319
1320 static struct frame_info *
1321 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1322 {
1323 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1324
1325 frame->level = -1;
1326 frame->pspace = pspace;
1327 frame->aspace = get_regcache_aspace (regcache);
1328 /* Explicitly initialize the sentinel frame's cache. Provide it
1329 with the underlying regcache. In the future additional
1330 information, such as the frame's thread will be added. */
1331 frame->prologue_cache = sentinel_frame_cache (regcache);
1332 /* For the moment there is only one sentinel frame implementation. */
1333 frame->unwind = &sentinel_frame_unwind;
1334 /* Link this frame back to itself. The frame is self referential
1335 (the unwound PC is the same as the pc), so make it so. */
1336 frame->next = frame;
1337 /* Make the sentinel frame's ID valid, but invalid. That way all
1338 comparisons with it should fail. */
1339 frame->this_id.p = 1;
1340 frame->this_id.value = null_frame_id;
1341 if (frame_debug)
1342 {
1343 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1344 fprint_frame (gdb_stdlog, frame);
1345 fprintf_unfiltered (gdb_stdlog, " }\n");
1346 }
1347 return frame;
1348 }
1349
1350 /* Info about the innermost stack frame (contents of FP register). */
1351
1352 static struct frame_info *current_frame;
1353
1354 /* Cache for frame addresses already read by gdb. Valid only while
1355 inferior is stopped. Control variables for the frame cache should
1356 be local to this module. */
1357
1358 static struct obstack frame_cache_obstack;
1359
1360 void *
1361 frame_obstack_zalloc (unsigned long size)
1362 {
1363 void *data = obstack_alloc (&frame_cache_obstack, size);
1364
1365 memset (data, 0, size);
1366 return data;
1367 }
1368
1369 /* Return the innermost (currently executing) stack frame. This is
1370 split into two functions. The function unwind_to_current_frame()
1371 is wrapped in catch exceptions so that, even when the unwind of the
1372 sentinel frame fails, the function still returns a stack frame. */
1373
1374 static int
1375 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1376 {
1377 struct frame_info *frame = get_prev_frame (args);
1378
1379 /* A sentinel frame can fail to unwind, e.g., because its PC value
1380 lands in somewhere like start. */
1381 if (frame == NULL)
1382 return 1;
1383 current_frame = frame;
1384 return 0;
1385 }
1386
1387 struct frame_info *
1388 get_current_frame (void)
1389 {
1390 /* First check, and report, the lack of registers. Having GDB
1391 report "No stack!" or "No memory" when the target doesn't even
1392 have registers is very confusing. Besides, "printcmd.exp"
1393 explicitly checks that ``print $pc'' with no registers prints "No
1394 registers". */
1395 if (!target_has_registers)
1396 error (_("No registers."));
1397 if (!target_has_stack)
1398 error (_("No stack."));
1399 if (!target_has_memory)
1400 error (_("No memory."));
1401 /* Traceframes are effectively a substitute for the live inferior. */
1402 if (get_traceframe_number () < 0)
1403 {
1404 if (ptid_equal (inferior_ptid, null_ptid))
1405 error (_("No selected thread."));
1406 if (is_exited (inferior_ptid))
1407 error (_("Invalid selected thread."));
1408 if (is_executing (inferior_ptid))
1409 error (_("Target is executing."));
1410 }
1411
1412 if (current_frame == NULL)
1413 {
1414 struct frame_info *sentinel_frame =
1415 create_sentinel_frame (current_program_space, get_current_regcache ());
1416 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1417 sentinel_frame, RETURN_MASK_ERROR) != 0)
1418 {
1419 /* Oops! Fake a current frame? Is this useful? It has a PC
1420 of zero, for instance. */
1421 current_frame = sentinel_frame;
1422 }
1423 }
1424 return current_frame;
1425 }
1426
1427 /* The "selected" stack frame is used by default for local and arg
1428 access. May be zero, for no selected frame. */
1429
1430 static struct frame_info *selected_frame;
1431
1432 int
1433 has_stack_frames (void)
1434 {
1435 if (!target_has_registers || !target_has_stack || !target_has_memory)
1436 return 0;
1437
1438 /* Traceframes are effectively a substitute for the live inferior. */
1439 if (get_traceframe_number () < 0)
1440 {
1441 /* No current inferior, no frame. */
1442 if (ptid_equal (inferior_ptid, null_ptid))
1443 return 0;
1444
1445 /* Don't try to read from a dead thread. */
1446 if (is_exited (inferior_ptid))
1447 return 0;
1448
1449 /* ... or from a spinning thread. */
1450 if (is_executing (inferior_ptid))
1451 return 0;
1452 }
1453
1454 return 1;
1455 }
1456
1457 /* Return the selected frame. Always non-NULL (unless there isn't an
1458 inferior sufficient for creating a frame) in which case an error is
1459 thrown. */
1460
1461 struct frame_info *
1462 get_selected_frame (const char *message)
1463 {
1464 if (selected_frame == NULL)
1465 {
1466 if (message != NULL && !has_stack_frames ())
1467 error (("%s"), message);
1468 /* Hey! Don't trust this. It should really be re-finding the
1469 last selected frame of the currently selected thread. This,
1470 though, is better than nothing. */
1471 select_frame (get_current_frame ());
1472 }
1473 /* There is always a frame. */
1474 gdb_assert (selected_frame != NULL);
1475 return selected_frame;
1476 }
1477
1478 /* If there is a selected frame, return it. Otherwise, return NULL. */
1479
1480 struct frame_info *
1481 get_selected_frame_if_set (void)
1482 {
1483 return selected_frame;
1484 }
1485
1486 /* This is a variant of get_selected_frame() which can be called when
1487 the inferior does not have a frame; in that case it will return
1488 NULL instead of calling error(). */
1489
1490 struct frame_info *
1491 deprecated_safe_get_selected_frame (void)
1492 {
1493 if (!has_stack_frames ())
1494 return NULL;
1495 return get_selected_frame (NULL);
1496 }
1497
1498 /* Select frame FI (or NULL - to invalidate the current frame). */
1499
1500 void
1501 select_frame (struct frame_info *fi)
1502 {
1503 selected_frame = fi;
1504 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1505 frame is being invalidated. */
1506 if (deprecated_selected_frame_level_changed_hook)
1507 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1508
1509 /* FIXME: kseitz/2002-08-28: It would be nice to call
1510 selected_frame_level_changed_event() right here, but due to limitations
1511 in the current interfaces, we would end up flooding UIs with events
1512 because select_frame() is used extensively internally.
1513
1514 Once we have frame-parameterized frame (and frame-related) commands,
1515 the event notification can be moved here, since this function will only
1516 be called when the user's selected frame is being changed. */
1517
1518 /* Ensure that symbols for this frame are read in. Also, determine the
1519 source language of this frame, and switch to it if desired. */
1520 if (fi)
1521 {
1522 CORE_ADDR pc;
1523
1524 /* We retrieve the frame's symtab by using the frame PC.
1525 However we cannot use the frame PC as-is, because it usually
1526 points to the instruction following the "call", which is
1527 sometimes the first instruction of another function. So we
1528 rely on get_frame_address_in_block() which provides us with a
1529 PC which is guaranteed to be inside the frame's code
1530 block. */
1531 if (get_frame_address_in_block_if_available (fi, &pc))
1532 {
1533 struct symtab *s = find_pc_symtab (pc);
1534
1535 if (s
1536 && s->language != current_language->la_language
1537 && s->language != language_unknown
1538 && language_mode == language_mode_auto)
1539 set_language (s->language);
1540 }
1541 }
1542 }
1543
1544 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1545 Always returns a non-NULL value. */
1546
1547 struct frame_info *
1548 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1549 {
1550 struct frame_info *fi;
1551
1552 if (frame_debug)
1553 {
1554 fprintf_unfiltered (gdb_stdlog,
1555 "{ create_new_frame (addr=%s, pc=%s) ",
1556 hex_string (addr), hex_string (pc));
1557 }
1558
1559 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1560
1561 fi->next = create_sentinel_frame (current_program_space,
1562 get_current_regcache ());
1563
1564 /* Set/update this frame's cached PC value, found in the next frame.
1565 Do this before looking for this frame's unwinder. A sniffer is
1566 very likely to read this, and the corresponding unwinder is
1567 entitled to rely that the PC doesn't magically change. */
1568 fi->next->prev_pc.value = pc;
1569 fi->next->prev_pc.p = 1;
1570
1571 /* We currently assume that frame chain's can't cross spaces. */
1572 fi->pspace = fi->next->pspace;
1573 fi->aspace = fi->next->aspace;
1574
1575 /* Select/initialize both the unwind function and the frame's type
1576 based on the PC. */
1577 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1578
1579 fi->this_id.p = 1;
1580 fi->this_id.value = frame_id_build (addr, pc);
1581
1582 if (frame_debug)
1583 {
1584 fprintf_unfiltered (gdb_stdlog, "-> ");
1585 fprint_frame (gdb_stdlog, fi);
1586 fprintf_unfiltered (gdb_stdlog, " }\n");
1587 }
1588
1589 return fi;
1590 }
1591
1592 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1593 innermost frame). Be careful to not fall off the bottom of the
1594 frame chain and onto the sentinel frame. */
1595
1596 struct frame_info *
1597 get_next_frame (struct frame_info *this_frame)
1598 {
1599 if (this_frame->level > 0)
1600 return this_frame->next;
1601 else
1602 return NULL;
1603 }
1604
1605 /* Observer for the target_changed event. */
1606
1607 static void
1608 frame_observer_target_changed (struct target_ops *target)
1609 {
1610 reinit_frame_cache ();
1611 }
1612
1613 /* Flush the entire frame cache. */
1614
1615 void
1616 reinit_frame_cache (void)
1617 {
1618 struct frame_info *fi;
1619
1620 /* Tear down all frame caches. */
1621 for (fi = current_frame; fi != NULL; fi = fi->prev)
1622 {
1623 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1624 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1625 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1626 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1627 }
1628
1629 /* Since we can't really be sure what the first object allocated was. */
1630 obstack_free (&frame_cache_obstack, 0);
1631 obstack_init (&frame_cache_obstack);
1632
1633 if (current_frame != NULL)
1634 annotate_frames_invalid ();
1635
1636 current_frame = NULL; /* Invalidate cache */
1637 select_frame (NULL);
1638 frame_stash_invalidate ();
1639 if (frame_debug)
1640 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1641 }
1642
1643 /* Find where a register is saved (in memory or another register).
1644 The result of frame_register_unwind is just where it is saved
1645 relative to this particular frame. */
1646
1647 static void
1648 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1649 int *optimizedp, enum lval_type *lvalp,
1650 CORE_ADDR *addrp, int *realnump)
1651 {
1652 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1653
1654 while (this_frame != NULL)
1655 {
1656 int unavailable;
1657
1658 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1659 lvalp, addrp, realnump, NULL);
1660
1661 if (*optimizedp)
1662 break;
1663
1664 if (*lvalp != lval_register)
1665 break;
1666
1667 regnum = *realnump;
1668 this_frame = get_next_frame (this_frame);
1669 }
1670 }
1671
1672 /* Get the previous raw frame, and check that it is not identical to
1673 same other frame frame already in the chain. If it is, there is
1674 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1675 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1676 validity tests, that compare THIS_FRAME and the next frame, we do
1677 this right after creating the previous frame, to avoid ever ending
1678 up with two frames with the same id in the frame chain. */
1679
1680 static struct frame_info *
1681 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1682 {
1683 struct frame_info *prev_frame;
1684
1685 prev_frame = get_prev_frame_raw (this_frame);
1686 if (prev_frame == NULL)
1687 return NULL;
1688
1689 compute_frame_id (prev_frame);
1690 if (frame_stash_add (prev_frame))
1691 return prev_frame;
1692
1693 /* Another frame with the same id was already in the stash. We just
1694 detected a cycle. */
1695 if (frame_debug)
1696 {
1697 fprintf_unfiltered (gdb_stdlog, "-> ");
1698 fprint_frame (gdb_stdlog, NULL);
1699 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1700 }
1701 this_frame->stop_reason = UNWIND_SAME_ID;
1702 /* Unlink. */
1703 prev_frame->next = NULL;
1704 this_frame->prev = NULL;
1705 return NULL;
1706 }
1707
1708 /* Return a "struct frame_info" corresponding to the frame that called
1709 THIS_FRAME. Returns NULL if there is no such frame.
1710
1711 Unlike get_prev_frame, this function always tries to unwind the
1712 frame. */
1713
1714 static struct frame_info *
1715 get_prev_frame_1 (struct frame_info *this_frame)
1716 {
1717 struct frame_id this_id;
1718 struct gdbarch *gdbarch;
1719
1720 gdb_assert (this_frame != NULL);
1721 gdbarch = get_frame_arch (this_frame);
1722
1723 if (frame_debug)
1724 {
1725 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1726 if (this_frame != NULL)
1727 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1728 else
1729 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1730 fprintf_unfiltered (gdb_stdlog, ") ");
1731 }
1732
1733 /* Only try to do the unwind once. */
1734 if (this_frame->prev_p)
1735 {
1736 if (frame_debug)
1737 {
1738 fprintf_unfiltered (gdb_stdlog, "-> ");
1739 fprint_frame (gdb_stdlog, this_frame->prev);
1740 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1741 }
1742 return this_frame->prev;
1743 }
1744
1745 /* If the frame unwinder hasn't been selected yet, we must do so
1746 before setting prev_p; otherwise the check for misbehaved
1747 sniffers will think that this frame's sniffer tried to unwind
1748 further (see frame_cleanup_after_sniffer). */
1749 if (this_frame->unwind == NULL)
1750 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1751
1752 this_frame->prev_p = 1;
1753 this_frame->stop_reason = UNWIND_NO_REASON;
1754
1755 /* If we are unwinding from an inline frame, all of the below tests
1756 were already performed when we unwound from the next non-inline
1757 frame. We must skip them, since we can not get THIS_FRAME's ID
1758 until we have unwound all the way down to the previous non-inline
1759 frame. */
1760 if (get_frame_type (this_frame) == INLINE_FRAME)
1761 return get_prev_frame_if_no_cycle (this_frame);
1762
1763 /* Check that this frame is unwindable. If it isn't, don't try to
1764 unwind to the prev frame. */
1765 this_frame->stop_reason
1766 = this_frame->unwind->stop_reason (this_frame,
1767 &this_frame->prologue_cache);
1768
1769 if (this_frame->stop_reason != UNWIND_NO_REASON)
1770 return NULL;
1771
1772 /* Check that this frame's ID was valid. If it wasn't, don't try to
1773 unwind to the prev frame. Be careful to not apply this test to
1774 the sentinel frame. */
1775 this_id = get_frame_id (this_frame);
1776 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1777 {
1778 if (frame_debug)
1779 {
1780 fprintf_unfiltered (gdb_stdlog, "-> ");
1781 fprint_frame (gdb_stdlog, NULL);
1782 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1783 }
1784 this_frame->stop_reason = UNWIND_NULL_ID;
1785 return NULL;
1786 }
1787
1788 /* Check that this frame's ID isn't inner to (younger, below, next)
1789 the next frame. This happens when a frame unwind goes backwards.
1790 This check is valid only if this frame and the next frame are NORMAL.
1791 See the comment at frame_id_inner for details. */
1792 if (get_frame_type (this_frame) == NORMAL_FRAME
1793 && this_frame->next->unwind->type == NORMAL_FRAME
1794 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1795 get_frame_id (this_frame->next)))
1796 {
1797 CORE_ADDR this_pc_in_block;
1798 struct minimal_symbol *morestack_msym;
1799 const char *morestack_name = NULL;
1800
1801 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1802 this_pc_in_block = get_frame_address_in_block (this_frame);
1803 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1804 if (morestack_msym)
1805 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1806 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1807 {
1808 if (frame_debug)
1809 {
1810 fprintf_unfiltered (gdb_stdlog, "-> ");
1811 fprint_frame (gdb_stdlog, NULL);
1812 fprintf_unfiltered (gdb_stdlog,
1813 " // this frame ID is inner }\n");
1814 }
1815 this_frame->stop_reason = UNWIND_INNER_ID;
1816 return NULL;
1817 }
1818 }
1819
1820 /* Check that this and the next frame do not unwind the PC register
1821 to the same memory location. If they do, then even though they
1822 have different frame IDs, the new frame will be bogus; two
1823 functions can't share a register save slot for the PC. This can
1824 happen when the prologue analyzer finds a stack adjustment, but
1825 no PC save.
1826
1827 This check does assume that the "PC register" is roughly a
1828 traditional PC, even if the gdbarch_unwind_pc method adjusts
1829 it (we do not rely on the value, only on the unwound PC being
1830 dependent on this value). A potential improvement would be
1831 to have the frame prev_pc method and the gdbarch unwind_pc
1832 method set the same lval and location information as
1833 frame_register_unwind. */
1834 if (this_frame->level > 0
1835 && gdbarch_pc_regnum (gdbarch) >= 0
1836 && get_frame_type (this_frame) == NORMAL_FRAME
1837 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1838 || get_frame_type (this_frame->next) == INLINE_FRAME))
1839 {
1840 int optimized, realnum, nrealnum;
1841 enum lval_type lval, nlval;
1842 CORE_ADDR addr, naddr;
1843
1844 frame_register_unwind_location (this_frame,
1845 gdbarch_pc_regnum (gdbarch),
1846 &optimized, &lval, &addr, &realnum);
1847 frame_register_unwind_location (get_next_frame (this_frame),
1848 gdbarch_pc_regnum (gdbarch),
1849 &optimized, &nlval, &naddr, &nrealnum);
1850
1851 if ((lval == lval_memory && lval == nlval && addr == naddr)
1852 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1853 {
1854 if (frame_debug)
1855 {
1856 fprintf_unfiltered (gdb_stdlog, "-> ");
1857 fprint_frame (gdb_stdlog, NULL);
1858 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1859 }
1860
1861 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1862 this_frame->prev = NULL;
1863 return NULL;
1864 }
1865 }
1866
1867 return get_prev_frame_if_no_cycle (this_frame);
1868 }
1869
1870 /* Construct a new "struct frame_info" and link it previous to
1871 this_frame. */
1872
1873 static struct frame_info *
1874 get_prev_frame_raw (struct frame_info *this_frame)
1875 {
1876 struct frame_info *prev_frame;
1877
1878 /* Allocate the new frame but do not wire it in to the frame chain.
1879 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1880 frame->next to pull some fancy tricks (of course such code is, by
1881 definition, recursive). Try to prevent it.
1882
1883 There is no reason to worry about memory leaks, should the
1884 remainder of the function fail. The allocated memory will be
1885 quickly reclaimed when the frame cache is flushed, and the `we've
1886 been here before' check above will stop repeated memory
1887 allocation calls. */
1888 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1889 prev_frame->level = this_frame->level + 1;
1890
1891 /* For now, assume we don't have frame chains crossing address
1892 spaces. */
1893 prev_frame->pspace = this_frame->pspace;
1894 prev_frame->aspace = this_frame->aspace;
1895
1896 /* Don't yet compute ->unwind (and hence ->type). It is computed
1897 on-demand in get_frame_type, frame_register_unwind, and
1898 get_frame_id. */
1899
1900 /* Don't yet compute the frame's ID. It is computed on-demand by
1901 get_frame_id(). */
1902
1903 /* The unwound frame ID is validate at the start of this function,
1904 as part of the logic to decide if that frame should be further
1905 unwound, and not here while the prev frame is being created.
1906 Doing this makes it possible for the user to examine a frame that
1907 has an invalid frame ID.
1908
1909 Some very old VAX code noted: [...] For the sake of argument,
1910 suppose that the stack is somewhat trashed (which is one reason
1911 that "info frame" exists). So, return 0 (indicating we don't
1912 know the address of the arglist) if we don't know what frame this
1913 frame calls. */
1914
1915 /* Link it in. */
1916 this_frame->prev = prev_frame;
1917 prev_frame->next = this_frame;
1918
1919 if (frame_debug)
1920 {
1921 fprintf_unfiltered (gdb_stdlog, "-> ");
1922 fprint_frame (gdb_stdlog, prev_frame);
1923 fprintf_unfiltered (gdb_stdlog, " }\n");
1924 }
1925
1926 return prev_frame;
1927 }
1928
1929 /* Debug routine to print a NULL frame being returned. */
1930
1931 static void
1932 frame_debug_got_null_frame (struct frame_info *this_frame,
1933 const char *reason)
1934 {
1935 if (frame_debug)
1936 {
1937 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1938 if (this_frame != NULL)
1939 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1940 else
1941 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1942 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1943 }
1944 }
1945
1946 /* Is this (non-sentinel) frame in the "main"() function? */
1947
1948 static int
1949 inside_main_func (struct frame_info *this_frame)
1950 {
1951 struct minimal_symbol *msymbol;
1952 CORE_ADDR maddr;
1953
1954 if (symfile_objfile == 0)
1955 return 0;
1956 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1957 if (msymbol == NULL)
1958 return 0;
1959 /* Make certain that the code, and not descriptor, address is
1960 returned. */
1961 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1962 SYMBOL_VALUE_ADDRESS (msymbol),
1963 &current_target);
1964 return maddr == get_frame_func (this_frame);
1965 }
1966
1967 /* Test whether THIS_FRAME is inside the process entry point function. */
1968
1969 static int
1970 inside_entry_func (struct frame_info *this_frame)
1971 {
1972 CORE_ADDR entry_point;
1973
1974 if (!entry_point_address_query (&entry_point))
1975 return 0;
1976
1977 return get_frame_func (this_frame) == entry_point;
1978 }
1979
1980 /* Return a structure containing various interesting information about
1981 the frame that called THIS_FRAME. Returns NULL if there is entier
1982 no such frame or the frame fails any of a set of target-independent
1983 condition that should terminate the frame chain (e.g., as unwinding
1984 past main()).
1985
1986 This function should not contain target-dependent tests, such as
1987 checking whether the program-counter is zero. */
1988
1989 struct frame_info *
1990 get_prev_frame (struct frame_info *this_frame)
1991 {
1992 CORE_ADDR frame_pc;
1993 int frame_pc_p;
1994
1995 /* There is always a frame. If this assertion fails, suspect that
1996 something should be calling get_selected_frame() or
1997 get_current_frame(). */
1998 gdb_assert (this_frame != NULL);
1999 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2000
2001 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2002 sense to stop unwinding at a dummy frame. One place where a dummy
2003 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2004 pcsqh register (space register for the instruction at the head of the
2005 instruction queue) cannot be written directly; the only way to set it
2006 is to branch to code that is in the target space. In order to implement
2007 frame dummies on HPUX, the called function is made to jump back to where
2008 the inferior was when the user function was called. If gdb was inside
2009 the main function when we created the dummy frame, the dummy frame will
2010 point inside the main function. */
2011 if (this_frame->level >= 0
2012 && get_frame_type (this_frame) == NORMAL_FRAME
2013 && !backtrace_past_main
2014 && frame_pc_p
2015 && inside_main_func (this_frame))
2016 /* Don't unwind past main(). Note, this is done _before_ the
2017 frame has been marked as previously unwound. That way if the
2018 user later decides to enable unwinds past main(), that will
2019 automatically happen. */
2020 {
2021 frame_debug_got_null_frame (this_frame, "inside main func");
2022 return NULL;
2023 }
2024
2025 /* If the user's backtrace limit has been exceeded, stop. We must
2026 add two to the current level; one of those accounts for backtrace_limit
2027 being 1-based and the level being 0-based, and the other accounts for
2028 the level of the new frame instead of the level of the current
2029 frame. */
2030 if (this_frame->level + 2 > backtrace_limit)
2031 {
2032 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2033 return NULL;
2034 }
2035
2036 /* If we're already inside the entry function for the main objfile,
2037 then it isn't valid. Don't apply this test to a dummy frame -
2038 dummy frame PCs typically land in the entry func. Don't apply
2039 this test to the sentinel frame. Sentinel frames should always
2040 be allowed to unwind. */
2041 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2042 wasn't checking for "main" in the minimal symbols. With that
2043 fixed asm-source tests now stop in "main" instead of halting the
2044 backtrace in weird and wonderful ways somewhere inside the entry
2045 file. Suspect that tests for inside the entry file/func were
2046 added to work around that (now fixed) case. */
2047 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2048 suggested having the inside_entry_func test use the
2049 inside_main_func() msymbol trick (along with entry_point_address()
2050 I guess) to determine the address range of the start function.
2051 That should provide a far better stopper than the current
2052 heuristics. */
2053 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2054 applied tail-call optimizations to main so that a function called
2055 from main returns directly to the caller of main. Since we don't
2056 stop at main, we should at least stop at the entry point of the
2057 application. */
2058 if (this_frame->level >= 0
2059 && get_frame_type (this_frame) == NORMAL_FRAME
2060 && !backtrace_past_entry
2061 && frame_pc_p
2062 && inside_entry_func (this_frame))
2063 {
2064 frame_debug_got_null_frame (this_frame, "inside entry func");
2065 return NULL;
2066 }
2067
2068 /* Assume that the only way to get a zero PC is through something
2069 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2070 will never unwind a zero PC. */
2071 if (this_frame->level > 0
2072 && (get_frame_type (this_frame) == NORMAL_FRAME
2073 || get_frame_type (this_frame) == INLINE_FRAME)
2074 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2075 && frame_pc_p && frame_pc == 0)
2076 {
2077 frame_debug_got_null_frame (this_frame, "zero PC");
2078 return NULL;
2079 }
2080
2081 return get_prev_frame_1 (this_frame);
2082 }
2083
2084 CORE_ADDR
2085 get_frame_pc (struct frame_info *frame)
2086 {
2087 gdb_assert (frame->next != NULL);
2088 return frame_unwind_pc (frame->next);
2089 }
2090
2091 int
2092 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2093 {
2094 volatile struct gdb_exception ex;
2095
2096 gdb_assert (frame->next != NULL);
2097
2098 TRY_CATCH (ex, RETURN_MASK_ERROR)
2099 {
2100 *pc = frame_unwind_pc (frame->next);
2101 }
2102 if (ex.reason < 0)
2103 {
2104 if (ex.error == NOT_AVAILABLE_ERROR)
2105 return 0;
2106 else
2107 throw_exception (ex);
2108 }
2109
2110 return 1;
2111 }
2112
2113 /* Return an address that falls within THIS_FRAME's code block. */
2114
2115 CORE_ADDR
2116 get_frame_address_in_block (struct frame_info *this_frame)
2117 {
2118 /* A draft address. */
2119 CORE_ADDR pc = get_frame_pc (this_frame);
2120
2121 struct frame_info *next_frame = this_frame->next;
2122
2123 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2124 Normally the resume address is inside the body of the function
2125 associated with THIS_FRAME, but there is a special case: when
2126 calling a function which the compiler knows will never return
2127 (for instance abort), the call may be the very last instruction
2128 in the calling function. The resume address will point after the
2129 call and may be at the beginning of a different function
2130 entirely.
2131
2132 If THIS_FRAME is a signal frame or dummy frame, then we should
2133 not adjust the unwound PC. For a dummy frame, GDB pushed the
2134 resume address manually onto the stack. For a signal frame, the
2135 OS may have pushed the resume address manually and invoked the
2136 handler (e.g. GNU/Linux), or invoked the trampoline which called
2137 the signal handler - but in either case the signal handler is
2138 expected to return to the trampoline. So in both of these
2139 cases we know that the resume address is executable and
2140 related. So we only need to adjust the PC if THIS_FRAME
2141 is a normal function.
2142
2143 If the program has been interrupted while THIS_FRAME is current,
2144 then clearly the resume address is inside the associated
2145 function. There are three kinds of interruption: debugger stop
2146 (next frame will be SENTINEL_FRAME), operating system
2147 signal or exception (next frame will be SIGTRAMP_FRAME),
2148 or debugger-induced function call (next frame will be
2149 DUMMY_FRAME). So we only need to adjust the PC if
2150 NEXT_FRAME is a normal function.
2151
2152 We check the type of NEXT_FRAME first, since it is already
2153 known; frame type is determined by the unwinder, and since
2154 we have THIS_FRAME we've already selected an unwinder for
2155 NEXT_FRAME.
2156
2157 If the next frame is inlined, we need to keep going until we find
2158 the real function - for instance, if a signal handler is invoked
2159 while in an inlined function, then the code address of the
2160 "calling" normal function should not be adjusted either. */
2161
2162 while (get_frame_type (next_frame) == INLINE_FRAME)
2163 next_frame = next_frame->next;
2164
2165 if ((get_frame_type (next_frame) == NORMAL_FRAME
2166 || get_frame_type (next_frame) == TAILCALL_FRAME)
2167 && (get_frame_type (this_frame) == NORMAL_FRAME
2168 || get_frame_type (this_frame) == TAILCALL_FRAME
2169 || get_frame_type (this_frame) == INLINE_FRAME))
2170 return pc - 1;
2171
2172 return pc;
2173 }
2174
2175 int
2176 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2177 CORE_ADDR *pc)
2178 {
2179 volatile struct gdb_exception ex;
2180
2181 TRY_CATCH (ex, RETURN_MASK_ERROR)
2182 {
2183 *pc = get_frame_address_in_block (this_frame);
2184 }
2185 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2186 return 0;
2187 else if (ex.reason < 0)
2188 throw_exception (ex);
2189 else
2190 return 1;
2191 }
2192
2193 void
2194 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2195 {
2196 struct frame_info *next_frame;
2197 int notcurrent;
2198 CORE_ADDR pc;
2199
2200 /* If the next frame represents an inlined function call, this frame's
2201 sal is the "call site" of that inlined function, which can not
2202 be inferred from get_frame_pc. */
2203 next_frame = get_next_frame (frame);
2204 if (frame_inlined_callees (frame) > 0)
2205 {
2206 struct symbol *sym;
2207
2208 if (next_frame)
2209 sym = get_frame_function (next_frame);
2210 else
2211 sym = inline_skipped_symbol (inferior_ptid);
2212
2213 /* If frame is inline, it certainly has symbols. */
2214 gdb_assert (sym);
2215 init_sal (sal);
2216 if (SYMBOL_LINE (sym) != 0)
2217 {
2218 sal->symtab = SYMBOL_SYMTAB (sym);
2219 sal->line = SYMBOL_LINE (sym);
2220 }
2221 else
2222 /* If the symbol does not have a location, we don't know where
2223 the call site is. Do not pretend to. This is jarring, but
2224 we can't do much better. */
2225 sal->pc = get_frame_pc (frame);
2226
2227 sal->pspace = get_frame_program_space (frame);
2228
2229 return;
2230 }
2231
2232 /* If FRAME is not the innermost frame, that normally means that
2233 FRAME->pc points at the return instruction (which is *after* the
2234 call instruction), and we want to get the line containing the
2235 call (because the call is where the user thinks the program is).
2236 However, if the next frame is either a SIGTRAMP_FRAME or a
2237 DUMMY_FRAME, then the next frame will contain a saved interrupt
2238 PC and such a PC indicates the current (rather than next)
2239 instruction/line, consequently, for such cases, want to get the
2240 line containing fi->pc. */
2241 if (!get_frame_pc_if_available (frame, &pc))
2242 {
2243 init_sal (sal);
2244 return;
2245 }
2246
2247 notcurrent = (pc != get_frame_address_in_block (frame));
2248 (*sal) = find_pc_line (pc, notcurrent);
2249 }
2250
2251 /* Per "frame.h", return the ``address'' of the frame. Code should
2252 really be using get_frame_id(). */
2253 CORE_ADDR
2254 get_frame_base (struct frame_info *fi)
2255 {
2256 return get_frame_id (fi).stack_addr;
2257 }
2258
2259 /* High-level offsets into the frame. Used by the debug info. */
2260
2261 CORE_ADDR
2262 get_frame_base_address (struct frame_info *fi)
2263 {
2264 if (get_frame_type (fi) != NORMAL_FRAME)
2265 return 0;
2266 if (fi->base == NULL)
2267 fi->base = frame_base_find_by_frame (fi);
2268 /* Sneaky: If the low-level unwind and high-level base code share a
2269 common unwinder, let them share the prologue cache. */
2270 if (fi->base->unwind == fi->unwind)
2271 return fi->base->this_base (fi, &fi->prologue_cache);
2272 return fi->base->this_base (fi, &fi->base_cache);
2273 }
2274
2275 CORE_ADDR
2276 get_frame_locals_address (struct frame_info *fi)
2277 {
2278 if (get_frame_type (fi) != NORMAL_FRAME)
2279 return 0;
2280 /* If there isn't a frame address method, find it. */
2281 if (fi->base == NULL)
2282 fi->base = frame_base_find_by_frame (fi);
2283 /* Sneaky: If the low-level unwind and high-level base code share a
2284 common unwinder, let them share the prologue cache. */
2285 if (fi->base->unwind == fi->unwind)
2286 return fi->base->this_locals (fi, &fi->prologue_cache);
2287 return fi->base->this_locals (fi, &fi->base_cache);
2288 }
2289
2290 CORE_ADDR
2291 get_frame_args_address (struct frame_info *fi)
2292 {
2293 if (get_frame_type (fi) != NORMAL_FRAME)
2294 return 0;
2295 /* If there isn't a frame address method, find it. */
2296 if (fi->base == NULL)
2297 fi->base = frame_base_find_by_frame (fi);
2298 /* Sneaky: If the low-level unwind and high-level base code share a
2299 common unwinder, let them share the prologue cache. */
2300 if (fi->base->unwind == fi->unwind)
2301 return fi->base->this_args (fi, &fi->prologue_cache);
2302 return fi->base->this_args (fi, &fi->base_cache);
2303 }
2304
2305 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2306 otherwise. */
2307
2308 int
2309 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2310 {
2311 if (fi->unwind == NULL)
2312 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2313 return fi->unwind == unwinder;
2314 }
2315
2316 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2317 or -1 for a NULL frame. */
2318
2319 int
2320 frame_relative_level (struct frame_info *fi)
2321 {
2322 if (fi == NULL)
2323 return -1;
2324 else
2325 return fi->level;
2326 }
2327
2328 enum frame_type
2329 get_frame_type (struct frame_info *frame)
2330 {
2331 if (frame->unwind == NULL)
2332 /* Initialize the frame's unwinder because that's what
2333 provides the frame's type. */
2334 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2335 return frame->unwind->type;
2336 }
2337
2338 struct program_space *
2339 get_frame_program_space (struct frame_info *frame)
2340 {
2341 return frame->pspace;
2342 }
2343
2344 struct program_space *
2345 frame_unwind_program_space (struct frame_info *this_frame)
2346 {
2347 gdb_assert (this_frame);
2348
2349 /* This is really a placeholder to keep the API consistent --- we
2350 assume for now that we don't have frame chains crossing
2351 spaces. */
2352 return this_frame->pspace;
2353 }
2354
2355 struct address_space *
2356 get_frame_address_space (struct frame_info *frame)
2357 {
2358 return frame->aspace;
2359 }
2360
2361 /* Memory access methods. */
2362
2363 void
2364 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2365 gdb_byte *buf, int len)
2366 {
2367 read_memory (addr, buf, len);
2368 }
2369
2370 LONGEST
2371 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2372 int len)
2373 {
2374 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2375 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2376
2377 return read_memory_integer (addr, len, byte_order);
2378 }
2379
2380 ULONGEST
2381 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2382 int len)
2383 {
2384 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2385 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2386
2387 return read_memory_unsigned_integer (addr, len, byte_order);
2388 }
2389
2390 int
2391 safe_frame_unwind_memory (struct frame_info *this_frame,
2392 CORE_ADDR addr, gdb_byte *buf, int len)
2393 {
2394 /* NOTE: target_read_memory returns zero on success! */
2395 return !target_read_memory (addr, buf, len);
2396 }
2397
2398 /* Architecture methods. */
2399
2400 struct gdbarch *
2401 get_frame_arch (struct frame_info *this_frame)
2402 {
2403 return frame_unwind_arch (this_frame->next);
2404 }
2405
2406 struct gdbarch *
2407 frame_unwind_arch (struct frame_info *next_frame)
2408 {
2409 if (!next_frame->prev_arch.p)
2410 {
2411 struct gdbarch *arch;
2412
2413 if (next_frame->unwind == NULL)
2414 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2415
2416 if (next_frame->unwind->prev_arch != NULL)
2417 arch = next_frame->unwind->prev_arch (next_frame,
2418 &next_frame->prologue_cache);
2419 else
2420 arch = get_frame_arch (next_frame);
2421
2422 next_frame->prev_arch.arch = arch;
2423 next_frame->prev_arch.p = 1;
2424 if (frame_debug)
2425 fprintf_unfiltered (gdb_stdlog,
2426 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2427 next_frame->level,
2428 gdbarch_bfd_arch_info (arch)->printable_name);
2429 }
2430
2431 return next_frame->prev_arch.arch;
2432 }
2433
2434 struct gdbarch *
2435 frame_unwind_caller_arch (struct frame_info *next_frame)
2436 {
2437 return frame_unwind_arch (skip_artificial_frames (next_frame));
2438 }
2439
2440 /* Stack pointer methods. */
2441
2442 CORE_ADDR
2443 get_frame_sp (struct frame_info *this_frame)
2444 {
2445 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2446
2447 /* Normality - an architecture that provides a way of obtaining any
2448 frame inner-most address. */
2449 if (gdbarch_unwind_sp_p (gdbarch))
2450 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2451 operate on THIS_FRAME now. */
2452 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2453 /* Now things are really are grim. Hope that the value returned by
2454 the gdbarch_sp_regnum register is meaningful. */
2455 if (gdbarch_sp_regnum (gdbarch) >= 0)
2456 return get_frame_register_unsigned (this_frame,
2457 gdbarch_sp_regnum (gdbarch));
2458 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2459 }
2460
2461 /* Return the reason why we can't unwind past FRAME. */
2462
2463 enum unwind_stop_reason
2464 get_frame_unwind_stop_reason (struct frame_info *frame)
2465 {
2466 /* If we haven't tried to unwind past this point yet, then assume
2467 that unwinding would succeed. */
2468 if (frame->prev_p == 0)
2469 return UNWIND_NO_REASON;
2470
2471 /* Otherwise, we set a reason when we succeeded (or failed) to
2472 unwind. */
2473 return frame->stop_reason;
2474 }
2475
2476 /* Return a string explaining REASON. */
2477
2478 const char *
2479 frame_stop_reason_string (enum unwind_stop_reason reason)
2480 {
2481 switch (reason)
2482 {
2483 #define SET(name, description) \
2484 case name: return _(description);
2485 #include "unwind_stop_reasons.def"
2486 #undef SET
2487
2488 default:
2489 internal_error (__FILE__, __LINE__,
2490 "Invalid frame stop reason");
2491 }
2492 }
2493
2494 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2495 FRAME. */
2496
2497 static void
2498 frame_cleanup_after_sniffer (void *arg)
2499 {
2500 struct frame_info *frame = arg;
2501
2502 /* The sniffer should not allocate a prologue cache if it did not
2503 match this frame. */
2504 gdb_assert (frame->prologue_cache == NULL);
2505
2506 /* No sniffer should extend the frame chain; sniff based on what is
2507 already certain. */
2508 gdb_assert (!frame->prev_p);
2509
2510 /* The sniffer should not check the frame's ID; that's circular. */
2511 gdb_assert (!frame->this_id.p);
2512
2513 /* Clear cached fields dependent on the unwinder.
2514
2515 The previous PC is independent of the unwinder, but the previous
2516 function is not (see get_frame_address_in_block). */
2517 frame->prev_func.p = 0;
2518 frame->prev_func.addr = 0;
2519
2520 /* Discard the unwinder last, so that we can easily find it if an assertion
2521 in this function triggers. */
2522 frame->unwind = NULL;
2523 }
2524
2525 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2526 Return a cleanup which should be called if unwinding fails, and
2527 discarded if it succeeds. */
2528
2529 struct cleanup *
2530 frame_prepare_for_sniffer (struct frame_info *frame,
2531 const struct frame_unwind *unwind)
2532 {
2533 gdb_assert (frame->unwind == NULL);
2534 frame->unwind = unwind;
2535 return make_cleanup (frame_cleanup_after_sniffer, frame);
2536 }
2537
2538 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2539
2540 static struct cmd_list_element *set_backtrace_cmdlist;
2541 static struct cmd_list_element *show_backtrace_cmdlist;
2542
2543 static void
2544 set_backtrace_cmd (char *args, int from_tty)
2545 {
2546 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2547 }
2548
2549 static void
2550 show_backtrace_cmd (char *args, int from_tty)
2551 {
2552 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2553 }
2554
2555 void
2556 _initialize_frame (void)
2557 {
2558 obstack_init (&frame_cache_obstack);
2559
2560 frame_stash_create ();
2561
2562 observer_attach_target_changed (frame_observer_target_changed);
2563
2564 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2565 Set backtrace specific variables.\n\
2566 Configure backtrace variables such as the backtrace limit"),
2567 &set_backtrace_cmdlist, "set backtrace ",
2568 0/*allow-unknown*/, &setlist);
2569 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2570 Show backtrace specific variables\n\
2571 Show backtrace variables such as the backtrace limit"),
2572 &show_backtrace_cmdlist, "show backtrace ",
2573 0/*allow-unknown*/, &showlist);
2574
2575 add_setshow_boolean_cmd ("past-main", class_obscure,
2576 &backtrace_past_main, _("\
2577 Set whether backtraces should continue past \"main\"."), _("\
2578 Show whether backtraces should continue past \"main\"."), _("\
2579 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2580 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2581 of the stack trace."),
2582 NULL,
2583 show_backtrace_past_main,
2584 &set_backtrace_cmdlist,
2585 &show_backtrace_cmdlist);
2586
2587 add_setshow_boolean_cmd ("past-entry", class_obscure,
2588 &backtrace_past_entry, _("\
2589 Set whether backtraces should continue past the entry point of a program."),
2590 _("\
2591 Show whether backtraces should continue past the entry point of a program."),
2592 _("\
2593 Normally there are no callers beyond the entry point of a program, so GDB\n\
2594 will terminate the backtrace there. Set this variable if you need to see\n\
2595 the rest of the stack trace."),
2596 NULL,
2597 show_backtrace_past_entry,
2598 &set_backtrace_cmdlist,
2599 &show_backtrace_cmdlist);
2600
2601 add_setshow_uinteger_cmd ("limit", class_obscure,
2602 &backtrace_limit, _("\
2603 Set an upper bound on the number of backtrace levels."), _("\
2604 Show the upper bound on the number of backtrace levels."), _("\
2605 No more than the specified number of frames can be displayed or examined.\n\
2606 Literal \"unlimited\" or zero means no limit."),
2607 NULL,
2608 show_backtrace_limit,
2609 &set_backtrace_cmdlist,
2610 &show_backtrace_cmdlist);
2611
2612 /* Debug this files internals. */
2613 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2614 Set frame debugging."), _("\
2615 Show frame debugging."), _("\
2616 When non-zero, frame specific internal debugging is enabled."),
2617 NULL,
2618 show_frame_debug,
2619 &setdebuglist, &showdebuglist);
2620 }
This page took 0.079296 seconds and 3 git commands to generate.