Rename regcache_cooked_read_ftype and make a function_view
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 const address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* See frame.h */
273 scoped_restore_selected_frame::scoped_restore_selected_frame ()
274 {
275 m_fid = get_frame_id (get_selected_frame (NULL));
276 }
277
278 /* See frame.h */
279 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
280 {
281 frame_info *frame = frame_find_by_id (m_fid);
282 if (frame == NULL)
283 warning (_("Unable to restore previously selected frame."));
284 else
285 select_frame (frame);
286 }
287
288 /* Flag to control debugging. */
289
290 unsigned int frame_debug;
291 static void
292 show_frame_debug (struct ui_file *file, int from_tty,
293 struct cmd_list_element *c, const char *value)
294 {
295 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
296 }
297
298 /* Flag to indicate whether backtraces should stop at main et.al. */
299
300 static int backtrace_past_main;
301 static void
302 show_backtrace_past_main (struct ui_file *file, int from_tty,
303 struct cmd_list_element *c, const char *value)
304 {
305 fprintf_filtered (file,
306 _("Whether backtraces should "
307 "continue past \"main\" is %s.\n"),
308 value);
309 }
310
311 static int backtrace_past_entry;
312 static void
313 show_backtrace_past_entry (struct ui_file *file, int from_tty,
314 struct cmd_list_element *c, const char *value)
315 {
316 fprintf_filtered (file, _("Whether backtraces should continue past the "
317 "entry point of a program is %s.\n"),
318 value);
319 }
320
321 static unsigned int backtrace_limit = UINT_MAX;
322 static void
323 show_backtrace_limit (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325 {
326 fprintf_filtered (file,
327 _("An upper bound on the number "
328 "of backtrace levels is %s.\n"),
329 value);
330 }
331
332
333 static void
334 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
335 {
336 if (p)
337 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
338 else
339 fprintf_unfiltered (file, "!%s", name);
340 }
341
342 void
343 fprint_frame_id (struct ui_file *file, struct frame_id id)
344 {
345 fprintf_unfiltered (file, "{");
346
347 if (id.stack_status == FID_STACK_INVALID)
348 fprintf_unfiltered (file, "!stack");
349 else if (id.stack_status == FID_STACK_UNAVAILABLE)
350 fprintf_unfiltered (file, "stack=<unavailable>");
351 else if (id.stack_status == FID_STACK_SENTINEL)
352 fprintf_unfiltered (file, "stack=<sentinel>");
353 else
354 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
355 fprintf_unfiltered (file, ",");
356
357 fprint_field (file, "code", id.code_addr_p, id.code_addr);
358 fprintf_unfiltered (file, ",");
359
360 fprint_field (file, "special", id.special_addr_p, id.special_addr);
361
362 if (id.artificial_depth)
363 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
364
365 fprintf_unfiltered (file, "}");
366 }
367
368 static void
369 fprint_frame_type (struct ui_file *file, enum frame_type type)
370 {
371 switch (type)
372 {
373 case NORMAL_FRAME:
374 fprintf_unfiltered (file, "NORMAL_FRAME");
375 return;
376 case DUMMY_FRAME:
377 fprintf_unfiltered (file, "DUMMY_FRAME");
378 return;
379 case INLINE_FRAME:
380 fprintf_unfiltered (file, "INLINE_FRAME");
381 return;
382 case TAILCALL_FRAME:
383 fprintf_unfiltered (file, "TAILCALL_FRAME");
384 return;
385 case SIGTRAMP_FRAME:
386 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
387 return;
388 case ARCH_FRAME:
389 fprintf_unfiltered (file, "ARCH_FRAME");
390 return;
391 case SENTINEL_FRAME:
392 fprintf_unfiltered (file, "SENTINEL_FRAME");
393 return;
394 default:
395 fprintf_unfiltered (file, "<unknown type>");
396 return;
397 };
398 }
399
400 static void
401 fprint_frame (struct ui_file *file, struct frame_info *fi)
402 {
403 if (fi == NULL)
404 {
405 fprintf_unfiltered (file, "<NULL frame>");
406 return;
407 }
408 fprintf_unfiltered (file, "{");
409 fprintf_unfiltered (file, "level=%d", fi->level);
410 fprintf_unfiltered (file, ",");
411 fprintf_unfiltered (file, "type=");
412 if (fi->unwind != NULL)
413 fprint_frame_type (file, fi->unwind->type);
414 else
415 fprintf_unfiltered (file, "<unknown>");
416 fprintf_unfiltered (file, ",");
417 fprintf_unfiltered (file, "unwind=");
418 if (fi->unwind != NULL)
419 gdb_print_host_address (fi->unwind, file);
420 else
421 fprintf_unfiltered (file, "<unknown>");
422 fprintf_unfiltered (file, ",");
423 fprintf_unfiltered (file, "pc=");
424 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
425 fprintf_unfiltered (file, "<unknown>");
426 else if (fi->next->prev_pc.status == CC_VALUE)
427 fprintf_unfiltered (file, "%s",
428 hex_string (fi->next->prev_pc.value));
429 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
430 val_print_not_saved (file);
431 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
432 val_print_unavailable (file);
433 fprintf_unfiltered (file, ",");
434 fprintf_unfiltered (file, "id=");
435 if (fi->this_id.p)
436 fprint_frame_id (file, fi->this_id.value);
437 else
438 fprintf_unfiltered (file, "<unknown>");
439 fprintf_unfiltered (file, ",");
440 fprintf_unfiltered (file, "func=");
441 if (fi->next != NULL && fi->next->prev_func.p)
442 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
443 else
444 fprintf_unfiltered (file, "<unknown>");
445 fprintf_unfiltered (file, "}");
446 }
447
448 /* Given FRAME, return the enclosing frame as found in real frames read-in from
449 inferior memory. Skip any previous frames which were made up by GDB.
450 Return FRAME if FRAME is a non-artificial frame.
451 Return NULL if FRAME is the start of an artificial-only chain. */
452
453 static struct frame_info *
454 skip_artificial_frames (struct frame_info *frame)
455 {
456 /* Note we use get_prev_frame_always, and not get_prev_frame. The
457 latter will truncate the frame chain, leading to this function
458 unintentionally returning a null_frame_id (e.g., when the user
459 sets a backtrace limit).
460
461 Note that for record targets we may get a frame chain that consists
462 of artificial frames only. */
463 while (get_frame_type (frame) == INLINE_FRAME
464 || get_frame_type (frame) == TAILCALL_FRAME)
465 {
466 frame = get_prev_frame_always (frame);
467 if (frame == NULL)
468 break;
469 }
470
471 return frame;
472 }
473
474 struct frame_info *
475 skip_unwritable_frames (struct frame_info *frame)
476 {
477 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
478 {
479 frame = get_prev_frame (frame);
480 if (frame == NULL)
481 break;
482 }
483
484 return frame;
485 }
486
487 /* See frame.h. */
488
489 struct frame_info *
490 skip_tailcall_frames (struct frame_info *frame)
491 {
492 while (get_frame_type (frame) == TAILCALL_FRAME)
493 {
494 /* Note that for record targets we may get a frame chain that consists of
495 tailcall frames only. */
496 frame = get_prev_frame (frame);
497 if (frame == NULL)
498 break;
499 }
500
501 return frame;
502 }
503
504 /* Compute the frame's uniq ID that can be used to, later, re-find the
505 frame. */
506
507 static void
508 compute_frame_id (struct frame_info *fi)
509 {
510 gdb_assert (!fi->this_id.p);
511
512 if (frame_debug)
513 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
514 fi->level);
515 /* Find the unwinder. */
516 if (fi->unwind == NULL)
517 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
518 /* Find THIS frame's ID. */
519 /* Default to outermost if no ID is found. */
520 fi->this_id.value = outer_frame_id;
521 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
522 gdb_assert (frame_id_p (fi->this_id.value));
523 fi->this_id.p = 1;
524 if (frame_debug)
525 {
526 fprintf_unfiltered (gdb_stdlog, "-> ");
527 fprint_frame_id (gdb_stdlog, fi->this_id.value);
528 fprintf_unfiltered (gdb_stdlog, " }\n");
529 }
530 }
531
532 /* Return a frame uniq ID that can be used to, later, re-find the
533 frame. */
534
535 struct frame_id
536 get_frame_id (struct frame_info *fi)
537 {
538 if (fi == NULL)
539 return null_frame_id;
540
541 if (!fi->this_id.p)
542 {
543 int stashed;
544
545 /* If we haven't computed the frame id yet, then it must be that
546 this is the current frame. Compute it now, and stash the
547 result. The IDs of other frames are computed as soon as
548 they're created, in order to detect cycles. See
549 get_prev_frame_if_no_cycle. */
550 gdb_assert (fi->level == 0);
551
552 /* Compute. */
553 compute_frame_id (fi);
554
555 /* Since this is the first frame in the chain, this should
556 always succeed. */
557 stashed = frame_stash_add (fi);
558 gdb_assert (stashed);
559 }
560
561 return fi->this_id.value;
562 }
563
564 struct frame_id
565 get_stack_frame_id (struct frame_info *next_frame)
566 {
567 return get_frame_id (skip_artificial_frames (next_frame));
568 }
569
570 struct frame_id
571 frame_unwind_caller_id (struct frame_info *next_frame)
572 {
573 struct frame_info *this_frame;
574
575 /* Use get_prev_frame_always, and not get_prev_frame. The latter
576 will truncate the frame chain, leading to this function
577 unintentionally returning a null_frame_id (e.g., when a caller
578 requests the frame ID of "main()"s caller. */
579
580 next_frame = skip_artificial_frames (next_frame);
581 if (next_frame == NULL)
582 return null_frame_id;
583
584 this_frame = get_prev_frame_always (next_frame);
585 if (this_frame)
586 return get_frame_id (skip_artificial_frames (this_frame));
587 else
588 return null_frame_id;
589 }
590
591 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
592 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
593 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
594
595 struct frame_id
596 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
597 CORE_ADDR special_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_addr = stack_addr;
602 id.stack_status = FID_STACK_VALID;
603 id.code_addr = code_addr;
604 id.code_addr_p = 1;
605 id.special_addr = special_addr;
606 id.special_addr_p = 1;
607 return id;
608 }
609
610 /* See frame.h. */
611
612 struct frame_id
613 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
614 {
615 struct frame_id id = null_frame_id;
616
617 id.stack_status = FID_STACK_UNAVAILABLE;
618 id.code_addr = code_addr;
619 id.code_addr_p = 1;
620 return id;
621 }
622
623 /* See frame.h. */
624
625 struct frame_id
626 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
627 CORE_ADDR special_addr)
628 {
629 struct frame_id id = null_frame_id;
630
631 id.stack_status = FID_STACK_UNAVAILABLE;
632 id.code_addr = code_addr;
633 id.code_addr_p = 1;
634 id.special_addr = special_addr;
635 id.special_addr_p = 1;
636 return id;
637 }
638
639 struct frame_id
640 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
641 {
642 struct frame_id id = null_frame_id;
643
644 id.stack_addr = stack_addr;
645 id.stack_status = FID_STACK_VALID;
646 id.code_addr = code_addr;
647 id.code_addr_p = 1;
648 return id;
649 }
650
651 struct frame_id
652 frame_id_build_wild (CORE_ADDR stack_addr)
653 {
654 struct frame_id id = null_frame_id;
655
656 id.stack_addr = stack_addr;
657 id.stack_status = FID_STACK_VALID;
658 return id;
659 }
660
661 int
662 frame_id_p (struct frame_id l)
663 {
664 int p;
665
666 /* The frame is valid iff it has a valid stack address. */
667 p = l.stack_status != FID_STACK_INVALID;
668 /* outer_frame_id is also valid. */
669 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
670 p = 1;
671 if (frame_debug)
672 {
673 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
674 fprint_frame_id (gdb_stdlog, l);
675 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
676 }
677 return p;
678 }
679
680 int
681 frame_id_artificial_p (struct frame_id l)
682 {
683 if (!frame_id_p (l))
684 return 0;
685
686 return (l.artificial_depth != 0);
687 }
688
689 int
690 frame_id_eq (struct frame_id l, struct frame_id r)
691 {
692 int eq;
693
694 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
695 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
696 /* The outermost frame marker is equal to itself. This is the
697 dodgy thing about outer_frame_id, since between execution steps
698 we might step into another function - from which we can't
699 unwind either. More thought required to get rid of
700 outer_frame_id. */
701 eq = 1;
702 else if (l.stack_status == FID_STACK_INVALID
703 || r.stack_status == FID_STACK_INVALID)
704 /* Like a NaN, if either ID is invalid, the result is false.
705 Note that a frame ID is invalid iff it is the null frame ID. */
706 eq = 0;
707 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
708 /* If .stack addresses are different, the frames are different. */
709 eq = 0;
710 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
711 /* An invalid code addr is a wild card. If .code addresses are
712 different, the frames are different. */
713 eq = 0;
714 else if (l.special_addr_p && r.special_addr_p
715 && l.special_addr != r.special_addr)
716 /* An invalid special addr is a wild card (or unused). Otherwise
717 if special addresses are different, the frames are different. */
718 eq = 0;
719 else if (l.artificial_depth != r.artificial_depth)
720 /* If artifical depths are different, the frames must be different. */
721 eq = 0;
722 else
723 /* Frames are equal. */
724 eq = 1;
725
726 if (frame_debug)
727 {
728 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
729 fprint_frame_id (gdb_stdlog, l);
730 fprintf_unfiltered (gdb_stdlog, ",r=");
731 fprint_frame_id (gdb_stdlog, r);
732 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
733 }
734 return eq;
735 }
736
737 /* Safety net to check whether frame ID L should be inner to
738 frame ID R, according to their stack addresses.
739
740 This method cannot be used to compare arbitrary frames, as the
741 ranges of valid stack addresses may be discontiguous (e.g. due
742 to sigaltstack).
743
744 However, it can be used as safety net to discover invalid frame
745 IDs in certain circumstances. Assuming that NEXT is the immediate
746 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
747
748 * The stack address of NEXT must be inner-than-or-equal to the stack
749 address of THIS.
750
751 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
752 error has occurred.
753
754 * If NEXT and THIS have different stack addresses, no other frame
755 in the frame chain may have a stack address in between.
756
757 Therefore, if frame_id_inner (TEST, THIS) holds, but
758 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
759 to a valid frame in the frame chain.
760
761 The sanity checks above cannot be performed when a SIGTRAMP frame
762 is involved, because signal handlers might be executed on a different
763 stack than the stack used by the routine that caused the signal
764 to be raised. This can happen for instance when a thread exceeds
765 its maximum stack size. In this case, certain compilers implement
766 a stack overflow strategy that cause the handler to be run on a
767 different stack. */
768
769 static int
770 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
771 {
772 int inner;
773
774 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
775 /* Like NaN, any operation involving an invalid ID always fails.
776 Likewise if either ID has an unavailable stack address. */
777 inner = 0;
778 else if (l.artificial_depth > r.artificial_depth
779 && l.stack_addr == r.stack_addr
780 && l.code_addr_p == r.code_addr_p
781 && l.special_addr_p == r.special_addr_p
782 && l.special_addr == r.special_addr)
783 {
784 /* Same function, different inlined functions. */
785 const struct block *lb, *rb;
786
787 gdb_assert (l.code_addr_p && r.code_addr_p);
788
789 lb = block_for_pc (l.code_addr);
790 rb = block_for_pc (r.code_addr);
791
792 if (lb == NULL || rb == NULL)
793 /* Something's gone wrong. */
794 inner = 0;
795 else
796 /* This will return true if LB and RB are the same block, or
797 if the block with the smaller depth lexically encloses the
798 block with the greater depth. */
799 inner = contained_in (lb, rb);
800 }
801 else
802 /* Only return non-zero when strictly inner than. Note that, per
803 comment in "frame.h", there is some fuzz here. Frameless
804 functions are not strictly inner than (same .stack but
805 different .code and/or .special address). */
806 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
807 if (frame_debug)
808 {
809 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
810 fprint_frame_id (gdb_stdlog, l);
811 fprintf_unfiltered (gdb_stdlog, ",r=");
812 fprint_frame_id (gdb_stdlog, r);
813 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
814 }
815 return inner;
816 }
817
818 struct frame_info *
819 frame_find_by_id (struct frame_id id)
820 {
821 struct frame_info *frame, *prev_frame;
822
823 /* ZERO denotes the null frame, let the caller decide what to do
824 about it. Should it instead return get_current_frame()? */
825 if (!frame_id_p (id))
826 return NULL;
827
828 /* Check for the sentinel frame. */
829 if (frame_id_eq (id, sentinel_frame_id))
830 return sentinel_frame;
831
832 /* Try using the frame stash first. Finding it there removes the need
833 to perform the search by looping over all frames, which can be very
834 CPU-intensive if the number of frames is very high (the loop is O(n)
835 and get_prev_frame performs a series of checks that are relatively
836 expensive). This optimization is particularly useful when this function
837 is called from another function (such as value_fetch_lazy, case
838 VALUE_LVAL (val) == lval_register) which already loops over all frames,
839 making the overall behavior O(n^2). */
840 frame = frame_stash_find (id);
841 if (frame)
842 return frame;
843
844 for (frame = get_current_frame (); ; frame = prev_frame)
845 {
846 struct frame_id self = get_frame_id (frame);
847
848 if (frame_id_eq (id, self))
849 /* An exact match. */
850 return frame;
851
852 prev_frame = get_prev_frame (frame);
853 if (!prev_frame)
854 return NULL;
855
856 /* As a safety net to avoid unnecessary backtracing while trying
857 to find an invalid ID, we check for a common situation where
858 we can detect from comparing stack addresses that no other
859 frame in the current frame chain can have this ID. See the
860 comment at frame_id_inner for details. */
861 if (get_frame_type (frame) == NORMAL_FRAME
862 && !frame_id_inner (get_frame_arch (frame), id, self)
863 && frame_id_inner (get_frame_arch (prev_frame), id,
864 get_frame_id (prev_frame)))
865 return NULL;
866 }
867 return NULL;
868 }
869
870 static CORE_ADDR
871 frame_unwind_pc (struct frame_info *this_frame)
872 {
873 if (this_frame->prev_pc.status == CC_UNKNOWN)
874 {
875 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
876 {
877 struct gdbarch *prev_gdbarch;
878 CORE_ADDR pc = 0;
879 int pc_p = 0;
880
881 /* The right way. The `pure' way. The one true way. This
882 method depends solely on the register-unwind code to
883 determine the value of registers in THIS frame, and hence
884 the value of this frame's PC (resume address). A typical
885 implementation is no more than:
886
887 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
888 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
889
890 Note: this method is very heavily dependent on a correct
891 register-unwind implementation, it pays to fix that
892 method first; this method is frame type agnostic, since
893 it only deals with register values, it works with any
894 frame. This is all in stark contrast to the old
895 FRAME_SAVED_PC which would try to directly handle all the
896 different ways that a PC could be unwound. */
897 prev_gdbarch = frame_unwind_arch (this_frame);
898
899 TRY
900 {
901 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
902 pc_p = 1;
903 }
904 CATCH (ex, RETURN_MASK_ERROR)
905 {
906 if (ex.error == NOT_AVAILABLE_ERROR)
907 {
908 this_frame->prev_pc.status = CC_UNAVAILABLE;
909
910 if (frame_debug)
911 fprintf_unfiltered (gdb_stdlog,
912 "{ frame_unwind_pc (this_frame=%d)"
913 " -> <unavailable> }\n",
914 this_frame->level);
915 }
916 else if (ex.error == OPTIMIZED_OUT_ERROR)
917 {
918 this_frame->prev_pc.status = CC_NOT_SAVED;
919
920 if (frame_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "{ frame_unwind_pc (this_frame=%d)"
923 " -> <not saved> }\n",
924 this_frame->level);
925 }
926 else
927 throw_exception (ex);
928 }
929 END_CATCH
930
931 if (pc_p)
932 {
933 this_frame->prev_pc.value = pc;
934 this_frame->prev_pc.status = CC_VALUE;
935 if (frame_debug)
936 fprintf_unfiltered (gdb_stdlog,
937 "{ frame_unwind_pc (this_frame=%d) "
938 "-> %s }\n",
939 this_frame->level,
940 hex_string (this_frame->prev_pc.value));
941 }
942 }
943 else
944 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
945 }
946
947 if (this_frame->prev_pc.status == CC_VALUE)
948 return this_frame->prev_pc.value;
949 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
950 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
951 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
952 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
953 else
954 internal_error (__FILE__, __LINE__,
955 "unexpected prev_pc status: %d",
956 (int) this_frame->prev_pc.status);
957 }
958
959 CORE_ADDR
960 frame_unwind_caller_pc (struct frame_info *this_frame)
961 {
962 this_frame = skip_artificial_frames (this_frame);
963
964 /* We must have a non-artificial frame. The caller is supposed to check
965 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
966 in this case. */
967 gdb_assert (this_frame != NULL);
968
969 return frame_unwind_pc (this_frame);
970 }
971
972 int
973 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
974 {
975 struct frame_info *next_frame = this_frame->next;
976
977 if (!next_frame->prev_func.p)
978 {
979 CORE_ADDR addr_in_block;
980
981 /* Make certain that this, and not the adjacent, function is
982 found. */
983 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
984 {
985 next_frame->prev_func.p = -1;
986 if (frame_debug)
987 fprintf_unfiltered (gdb_stdlog,
988 "{ get_frame_func (this_frame=%d)"
989 " -> unavailable }\n",
990 this_frame->level);
991 }
992 else
993 {
994 next_frame->prev_func.p = 1;
995 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
996 if (frame_debug)
997 fprintf_unfiltered (gdb_stdlog,
998 "{ get_frame_func (this_frame=%d) -> %s }\n",
999 this_frame->level,
1000 hex_string (next_frame->prev_func.addr));
1001 }
1002 }
1003
1004 if (next_frame->prev_func.p < 0)
1005 {
1006 *pc = -1;
1007 return 0;
1008 }
1009 else
1010 {
1011 *pc = next_frame->prev_func.addr;
1012 return 1;
1013 }
1014 }
1015
1016 CORE_ADDR
1017 get_frame_func (struct frame_info *this_frame)
1018 {
1019 CORE_ADDR pc;
1020
1021 if (!get_frame_func_if_available (this_frame, &pc))
1022 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1023
1024 return pc;
1025 }
1026
1027 std::unique_ptr<readonly_detached_regcache>
1028 frame_save_as_regcache (struct frame_info *this_frame)
1029 {
1030 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1031 {
1032 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1033 return REG_UNAVAILABLE;
1034 else
1035 return REG_VALID;
1036 };
1037
1038 std::unique_ptr<readonly_detached_regcache> regcache
1039 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1040
1041 return regcache;
1042 }
1043
1044 void
1045 frame_pop (struct frame_info *this_frame)
1046 {
1047 struct frame_info *prev_frame;
1048
1049 if (get_frame_type (this_frame) == DUMMY_FRAME)
1050 {
1051 /* Popping a dummy frame involves restoring more than just registers.
1052 dummy_frame_pop does all the work. */
1053 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1054 return;
1055 }
1056
1057 /* Ensure that we have a frame to pop to. */
1058 prev_frame = get_prev_frame_always (this_frame);
1059
1060 if (!prev_frame)
1061 error (_("Cannot pop the initial frame."));
1062
1063 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1064 entering THISFRAME. */
1065 prev_frame = skip_tailcall_frames (prev_frame);
1066
1067 if (prev_frame == NULL)
1068 error (_("Cannot find the caller frame."));
1069
1070 /* Make a copy of all the register values unwound from this frame.
1071 Save them in a scratch buffer so that there isn't a race between
1072 trying to extract the old values from the current regcache while
1073 at the same time writing new values into that same cache. */
1074 std::unique_ptr<readonly_detached_regcache> scratch
1075 = frame_save_as_regcache (prev_frame);
1076
1077 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1078 target's register cache that it is about to be hit with a burst
1079 register transfer and that the sequence of register writes should
1080 be batched. The pair target_prepare_to_store() and
1081 target_store_registers() kind of suggest this functionality.
1082 Unfortunately, they don't implement it. Their lack of a formal
1083 definition can lead to targets writing back bogus values
1084 (arguably a bug in the target code mind). */
1085 /* Now copy those saved registers into the current regcache. */
1086 get_current_regcache ()->restore (scratch.get ());
1087
1088 /* We've made right mess of GDB's local state, just discard
1089 everything. */
1090 reinit_frame_cache ();
1091 }
1092
1093 void
1094 frame_register_unwind (struct frame_info *frame, int regnum,
1095 int *optimizedp, int *unavailablep,
1096 enum lval_type *lvalp, CORE_ADDR *addrp,
1097 int *realnump, gdb_byte *bufferp)
1098 {
1099 struct value *value;
1100
1101 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1102 that the value proper does not need to be fetched. */
1103 gdb_assert (optimizedp != NULL);
1104 gdb_assert (lvalp != NULL);
1105 gdb_assert (addrp != NULL);
1106 gdb_assert (realnump != NULL);
1107 /* gdb_assert (bufferp != NULL); */
1108
1109 value = frame_unwind_register_value (frame, regnum);
1110
1111 gdb_assert (value != NULL);
1112
1113 *optimizedp = value_optimized_out (value);
1114 *unavailablep = !value_entirely_available (value);
1115 *lvalp = VALUE_LVAL (value);
1116 *addrp = value_address (value);
1117 if (*lvalp == lval_register)
1118 *realnump = VALUE_REGNUM (value);
1119 else
1120 *realnump = -1;
1121
1122 if (bufferp)
1123 {
1124 if (!*optimizedp && !*unavailablep)
1125 memcpy (bufferp, value_contents_all (value),
1126 TYPE_LENGTH (value_type (value)));
1127 else
1128 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1129 }
1130
1131 /* Dispose of the new value. This prevents watchpoints from
1132 trying to watch the saved frame pointer. */
1133 release_value (value);
1134 }
1135
1136 void
1137 frame_register (struct frame_info *frame, int regnum,
1138 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1139 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1140 {
1141 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1142 that the value proper does not need to be fetched. */
1143 gdb_assert (optimizedp != NULL);
1144 gdb_assert (lvalp != NULL);
1145 gdb_assert (addrp != NULL);
1146 gdb_assert (realnump != NULL);
1147 /* gdb_assert (bufferp != NULL); */
1148
1149 /* Obtain the register value by unwinding the register from the next
1150 (more inner frame). */
1151 gdb_assert (frame != NULL && frame->next != NULL);
1152 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1153 lvalp, addrp, realnump, bufferp);
1154 }
1155
1156 void
1157 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1158 {
1159 int optimized;
1160 int unavailable;
1161 CORE_ADDR addr;
1162 int realnum;
1163 enum lval_type lval;
1164
1165 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1166 &lval, &addr, &realnum, buf);
1167
1168 if (optimized)
1169 throw_error (OPTIMIZED_OUT_ERROR,
1170 _("Register %d was not saved"), regnum);
1171 if (unavailable)
1172 throw_error (NOT_AVAILABLE_ERROR,
1173 _("Register %d is not available"), regnum);
1174 }
1175
1176 void
1177 get_frame_register (struct frame_info *frame,
1178 int regnum, gdb_byte *buf)
1179 {
1180 frame_unwind_register (frame->next, regnum, buf);
1181 }
1182
1183 struct value *
1184 frame_unwind_register_value (struct frame_info *frame, int regnum)
1185 {
1186 struct gdbarch *gdbarch;
1187 struct value *value;
1188
1189 gdb_assert (frame != NULL);
1190 gdbarch = frame_unwind_arch (frame);
1191
1192 if (frame_debug)
1193 {
1194 fprintf_unfiltered (gdb_stdlog,
1195 "{ frame_unwind_register_value "
1196 "(frame=%d,regnum=%d(%s),...) ",
1197 frame->level, regnum,
1198 user_reg_map_regnum_to_name (gdbarch, regnum));
1199 }
1200
1201 /* Find the unwinder. */
1202 if (frame->unwind == NULL)
1203 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1204
1205 /* Ask this frame to unwind its register. */
1206 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1207
1208 if (frame_debug)
1209 {
1210 fprintf_unfiltered (gdb_stdlog, "->");
1211 if (value_optimized_out (value))
1212 {
1213 fprintf_unfiltered (gdb_stdlog, " ");
1214 val_print_optimized_out (value, gdb_stdlog);
1215 }
1216 else
1217 {
1218 if (VALUE_LVAL (value) == lval_register)
1219 fprintf_unfiltered (gdb_stdlog, " register=%d",
1220 VALUE_REGNUM (value));
1221 else if (VALUE_LVAL (value) == lval_memory)
1222 fprintf_unfiltered (gdb_stdlog, " address=%s",
1223 paddress (gdbarch,
1224 value_address (value)));
1225 else
1226 fprintf_unfiltered (gdb_stdlog, " computed");
1227
1228 if (value_lazy (value))
1229 fprintf_unfiltered (gdb_stdlog, " lazy");
1230 else
1231 {
1232 int i;
1233 const gdb_byte *buf = value_contents (value);
1234
1235 fprintf_unfiltered (gdb_stdlog, " bytes=");
1236 fprintf_unfiltered (gdb_stdlog, "[");
1237 for (i = 0; i < register_size (gdbarch, regnum); i++)
1238 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1239 fprintf_unfiltered (gdb_stdlog, "]");
1240 }
1241 }
1242
1243 fprintf_unfiltered (gdb_stdlog, " }\n");
1244 }
1245
1246 return value;
1247 }
1248
1249 struct value *
1250 get_frame_register_value (struct frame_info *frame, int regnum)
1251 {
1252 return frame_unwind_register_value (frame->next, regnum);
1253 }
1254
1255 LONGEST
1256 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1257 {
1258 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1259 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1260 int size = register_size (gdbarch, regnum);
1261 struct value *value = frame_unwind_register_value (frame, regnum);
1262
1263 gdb_assert (value != NULL);
1264
1265 if (value_optimized_out (value))
1266 {
1267 throw_error (OPTIMIZED_OUT_ERROR,
1268 _("Register %d was not saved"), regnum);
1269 }
1270 if (!value_entirely_available (value))
1271 {
1272 throw_error (NOT_AVAILABLE_ERROR,
1273 _("Register %d is not available"), regnum);
1274 }
1275
1276 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1277 byte_order);
1278
1279 release_value (value);
1280 return r;
1281 }
1282
1283 LONGEST
1284 get_frame_register_signed (struct frame_info *frame, int regnum)
1285 {
1286 return frame_unwind_register_signed (frame->next, regnum);
1287 }
1288
1289 ULONGEST
1290 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1291 {
1292 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1293 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1294 int size = register_size (gdbarch, regnum);
1295 struct value *value = frame_unwind_register_value (frame, regnum);
1296
1297 gdb_assert (value != NULL);
1298
1299 if (value_optimized_out (value))
1300 {
1301 throw_error (OPTIMIZED_OUT_ERROR,
1302 _("Register %d was not saved"), regnum);
1303 }
1304 if (!value_entirely_available (value))
1305 {
1306 throw_error (NOT_AVAILABLE_ERROR,
1307 _("Register %d is not available"), regnum);
1308 }
1309
1310 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1311 byte_order);
1312
1313 release_value (value);
1314 return r;
1315 }
1316
1317 ULONGEST
1318 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1319 {
1320 return frame_unwind_register_unsigned (frame->next, regnum);
1321 }
1322
1323 int
1324 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1325 ULONGEST *val)
1326 {
1327 struct value *regval = get_frame_register_value (frame, regnum);
1328
1329 if (!value_optimized_out (regval)
1330 && value_entirely_available (regval))
1331 {
1332 struct gdbarch *gdbarch = get_frame_arch (frame);
1333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1334 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1335
1336 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1337 return 1;
1338 }
1339
1340 return 0;
1341 }
1342
1343 void
1344 put_frame_register (struct frame_info *frame, int regnum,
1345 const gdb_byte *buf)
1346 {
1347 struct gdbarch *gdbarch = get_frame_arch (frame);
1348 int realnum;
1349 int optim;
1350 int unavail;
1351 enum lval_type lval;
1352 CORE_ADDR addr;
1353
1354 frame_register (frame, regnum, &optim, &unavail,
1355 &lval, &addr, &realnum, NULL);
1356 if (optim)
1357 error (_("Attempt to assign to a register that was not saved."));
1358 switch (lval)
1359 {
1360 case lval_memory:
1361 {
1362 write_memory (addr, buf, register_size (gdbarch, regnum));
1363 break;
1364 }
1365 case lval_register:
1366 get_current_regcache ()->cooked_write (realnum, buf);
1367 break;
1368 default:
1369 error (_("Attempt to assign to an unmodifiable value."));
1370 }
1371 }
1372
1373 /* This function is deprecated. Use get_frame_register_value instead,
1374 which provides more accurate information.
1375
1376 Find and return the value of REGNUM for the specified stack frame.
1377 The number of bytes copied is REGISTER_SIZE (REGNUM).
1378
1379 Returns 0 if the register value could not be found. */
1380
1381 int
1382 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1383 gdb_byte *myaddr)
1384 {
1385 int optimized;
1386 int unavailable;
1387 enum lval_type lval;
1388 CORE_ADDR addr;
1389 int realnum;
1390
1391 frame_register (frame, regnum, &optimized, &unavailable,
1392 &lval, &addr, &realnum, myaddr);
1393
1394 return !optimized && !unavailable;
1395 }
1396
1397 int
1398 get_frame_register_bytes (struct frame_info *frame, int regnum,
1399 CORE_ADDR offset, int len, gdb_byte *myaddr,
1400 int *optimizedp, int *unavailablep)
1401 {
1402 struct gdbarch *gdbarch = get_frame_arch (frame);
1403 int i;
1404 int maxsize;
1405 int numregs;
1406
1407 /* Skip registers wholly inside of OFFSET. */
1408 while (offset >= register_size (gdbarch, regnum))
1409 {
1410 offset -= register_size (gdbarch, regnum);
1411 regnum++;
1412 }
1413
1414 /* Ensure that we will not read beyond the end of the register file.
1415 This can only ever happen if the debug information is bad. */
1416 maxsize = -offset;
1417 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1418 for (i = regnum; i < numregs; i++)
1419 {
1420 int thissize = register_size (gdbarch, i);
1421
1422 if (thissize == 0)
1423 break; /* This register is not available on this architecture. */
1424 maxsize += thissize;
1425 }
1426 if (len > maxsize)
1427 error (_("Bad debug information detected: "
1428 "Attempt to read %d bytes from registers."), len);
1429
1430 /* Copy the data. */
1431 while (len > 0)
1432 {
1433 int curr_len = register_size (gdbarch, regnum) - offset;
1434
1435 if (curr_len > len)
1436 curr_len = len;
1437
1438 if (curr_len == register_size (gdbarch, regnum))
1439 {
1440 enum lval_type lval;
1441 CORE_ADDR addr;
1442 int realnum;
1443
1444 frame_register (frame, regnum, optimizedp, unavailablep,
1445 &lval, &addr, &realnum, myaddr);
1446 if (*optimizedp || *unavailablep)
1447 return 0;
1448 }
1449 else
1450 {
1451 struct value *value = frame_unwind_register_value (frame->next,
1452 regnum);
1453 gdb_assert (value != NULL);
1454 *optimizedp = value_optimized_out (value);
1455 *unavailablep = !value_entirely_available (value);
1456
1457 if (*optimizedp || *unavailablep)
1458 {
1459 release_value (value);
1460 return 0;
1461 }
1462 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1463 release_value (value);
1464 }
1465
1466 myaddr += curr_len;
1467 len -= curr_len;
1468 offset = 0;
1469 regnum++;
1470 }
1471
1472 *optimizedp = 0;
1473 *unavailablep = 0;
1474 return 1;
1475 }
1476
1477 void
1478 put_frame_register_bytes (struct frame_info *frame, int regnum,
1479 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1480 {
1481 struct gdbarch *gdbarch = get_frame_arch (frame);
1482
1483 /* Skip registers wholly inside of OFFSET. */
1484 while (offset >= register_size (gdbarch, regnum))
1485 {
1486 offset -= register_size (gdbarch, regnum);
1487 regnum++;
1488 }
1489
1490 /* Copy the data. */
1491 while (len > 0)
1492 {
1493 int curr_len = register_size (gdbarch, regnum) - offset;
1494
1495 if (curr_len > len)
1496 curr_len = len;
1497
1498 if (curr_len == register_size (gdbarch, regnum))
1499 {
1500 put_frame_register (frame, regnum, myaddr);
1501 }
1502 else
1503 {
1504 struct value *value = frame_unwind_register_value (frame->next,
1505 regnum);
1506 gdb_assert (value != NULL);
1507
1508 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1509 curr_len);
1510 put_frame_register (frame, regnum, value_contents_raw (value));
1511 release_value (value);
1512 }
1513
1514 myaddr += curr_len;
1515 len -= curr_len;
1516 offset = 0;
1517 regnum++;
1518 }
1519 }
1520
1521 /* Create a sentinel frame. */
1522
1523 static struct frame_info *
1524 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1525 {
1526 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1527
1528 frame->level = -1;
1529 frame->pspace = pspace;
1530 frame->aspace = regcache->aspace ();
1531 /* Explicitly initialize the sentinel frame's cache. Provide it
1532 with the underlying regcache. In the future additional
1533 information, such as the frame's thread will be added. */
1534 frame->prologue_cache = sentinel_frame_cache (regcache);
1535 /* For the moment there is only one sentinel frame implementation. */
1536 frame->unwind = &sentinel_frame_unwind;
1537 /* Link this frame back to itself. The frame is self referential
1538 (the unwound PC is the same as the pc), so make it so. */
1539 frame->next = frame;
1540 /* The sentinel frame has a special ID. */
1541 frame->this_id.p = 1;
1542 frame->this_id.value = sentinel_frame_id;
1543 if (frame_debug)
1544 {
1545 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1546 fprint_frame (gdb_stdlog, frame);
1547 fprintf_unfiltered (gdb_stdlog, " }\n");
1548 }
1549 return frame;
1550 }
1551
1552 /* Cache for frame addresses already read by gdb. Valid only while
1553 inferior is stopped. Control variables for the frame cache should
1554 be local to this module. */
1555
1556 static struct obstack frame_cache_obstack;
1557
1558 void *
1559 frame_obstack_zalloc (unsigned long size)
1560 {
1561 void *data = obstack_alloc (&frame_cache_obstack, size);
1562
1563 memset (data, 0, size);
1564 return data;
1565 }
1566
1567 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1568
1569 struct frame_info *
1570 get_current_frame (void)
1571 {
1572 struct frame_info *current_frame;
1573
1574 /* First check, and report, the lack of registers. Having GDB
1575 report "No stack!" or "No memory" when the target doesn't even
1576 have registers is very confusing. Besides, "printcmd.exp"
1577 explicitly checks that ``print $pc'' with no registers prints "No
1578 registers". */
1579 if (!target_has_registers)
1580 error (_("No registers."));
1581 if (!target_has_stack)
1582 error (_("No stack."));
1583 if (!target_has_memory)
1584 error (_("No memory."));
1585 /* Traceframes are effectively a substitute for the live inferior. */
1586 if (get_traceframe_number () < 0)
1587 validate_registers_access ();
1588
1589 if (sentinel_frame == NULL)
1590 sentinel_frame =
1591 create_sentinel_frame (current_program_space, get_current_regcache ());
1592
1593 /* Set the current frame before computing the frame id, to avoid
1594 recursion inside compute_frame_id, in case the frame's
1595 unwinder decides to do a symbol lookup (which depends on the
1596 selected frame's block).
1597
1598 This call must always succeed. In particular, nothing inside
1599 get_prev_frame_always_1 should try to unwind from the
1600 sentinel frame, because that could fail/throw, and we always
1601 want to leave with the current frame created and linked in --
1602 we should never end up with the sentinel frame as outermost
1603 frame. */
1604 current_frame = get_prev_frame_always_1 (sentinel_frame);
1605 gdb_assert (current_frame != NULL);
1606
1607 return current_frame;
1608 }
1609
1610 /* The "selected" stack frame is used by default for local and arg
1611 access. May be zero, for no selected frame. */
1612
1613 static struct frame_info *selected_frame;
1614
1615 int
1616 has_stack_frames (void)
1617 {
1618 if (!target_has_registers || !target_has_stack || !target_has_memory)
1619 return 0;
1620
1621 /* Traceframes are effectively a substitute for the live inferior. */
1622 if (get_traceframe_number () < 0)
1623 {
1624 /* No current inferior, no frame. */
1625 if (ptid_equal (inferior_ptid, null_ptid))
1626 return 0;
1627
1628 /* Don't try to read from a dead thread. */
1629 if (is_exited (inferior_ptid))
1630 return 0;
1631
1632 /* ... or from a spinning thread. */
1633 if (is_executing (inferior_ptid))
1634 return 0;
1635 }
1636
1637 return 1;
1638 }
1639
1640 /* Return the selected frame. Always non-NULL (unless there isn't an
1641 inferior sufficient for creating a frame) in which case an error is
1642 thrown. */
1643
1644 struct frame_info *
1645 get_selected_frame (const char *message)
1646 {
1647 if (selected_frame == NULL)
1648 {
1649 if (message != NULL && !has_stack_frames ())
1650 error (("%s"), message);
1651 /* Hey! Don't trust this. It should really be re-finding the
1652 last selected frame of the currently selected thread. This,
1653 though, is better than nothing. */
1654 select_frame (get_current_frame ());
1655 }
1656 /* There is always a frame. */
1657 gdb_assert (selected_frame != NULL);
1658 return selected_frame;
1659 }
1660
1661 /* If there is a selected frame, return it. Otherwise, return NULL. */
1662
1663 struct frame_info *
1664 get_selected_frame_if_set (void)
1665 {
1666 return selected_frame;
1667 }
1668
1669 /* This is a variant of get_selected_frame() which can be called when
1670 the inferior does not have a frame; in that case it will return
1671 NULL instead of calling error(). */
1672
1673 struct frame_info *
1674 deprecated_safe_get_selected_frame (void)
1675 {
1676 if (!has_stack_frames ())
1677 return NULL;
1678 return get_selected_frame (NULL);
1679 }
1680
1681 /* Select frame FI (or NULL - to invalidate the current frame). */
1682
1683 void
1684 select_frame (struct frame_info *fi)
1685 {
1686 selected_frame = fi;
1687 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1688 frame is being invalidated. */
1689
1690 /* FIXME: kseitz/2002-08-28: It would be nice to call
1691 selected_frame_level_changed_event() right here, but due to limitations
1692 in the current interfaces, we would end up flooding UIs with events
1693 because select_frame() is used extensively internally.
1694
1695 Once we have frame-parameterized frame (and frame-related) commands,
1696 the event notification can be moved here, since this function will only
1697 be called when the user's selected frame is being changed. */
1698
1699 /* Ensure that symbols for this frame are read in. Also, determine the
1700 source language of this frame, and switch to it if desired. */
1701 if (fi)
1702 {
1703 CORE_ADDR pc;
1704
1705 /* We retrieve the frame's symtab by using the frame PC.
1706 However we cannot use the frame PC as-is, because it usually
1707 points to the instruction following the "call", which is
1708 sometimes the first instruction of another function. So we
1709 rely on get_frame_address_in_block() which provides us with a
1710 PC which is guaranteed to be inside the frame's code
1711 block. */
1712 if (get_frame_address_in_block_if_available (fi, &pc))
1713 {
1714 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1715
1716 if (cust != NULL
1717 && compunit_language (cust) != current_language->la_language
1718 && compunit_language (cust) != language_unknown
1719 && language_mode == language_mode_auto)
1720 set_language (compunit_language (cust));
1721 }
1722 }
1723 }
1724
1725 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1726 Always returns a non-NULL value. */
1727
1728 struct frame_info *
1729 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1730 {
1731 struct frame_info *fi;
1732
1733 if (frame_debug)
1734 {
1735 fprintf_unfiltered (gdb_stdlog,
1736 "{ create_new_frame (addr=%s, pc=%s) ",
1737 hex_string (addr), hex_string (pc));
1738 }
1739
1740 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1741
1742 fi->next = create_sentinel_frame (current_program_space,
1743 get_current_regcache ());
1744
1745 /* Set/update this frame's cached PC value, found in the next frame.
1746 Do this before looking for this frame's unwinder. A sniffer is
1747 very likely to read this, and the corresponding unwinder is
1748 entitled to rely that the PC doesn't magically change. */
1749 fi->next->prev_pc.value = pc;
1750 fi->next->prev_pc.status = CC_VALUE;
1751
1752 /* We currently assume that frame chain's can't cross spaces. */
1753 fi->pspace = fi->next->pspace;
1754 fi->aspace = fi->next->aspace;
1755
1756 /* Select/initialize both the unwind function and the frame's type
1757 based on the PC. */
1758 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1759
1760 fi->this_id.p = 1;
1761 fi->this_id.value = frame_id_build (addr, pc);
1762
1763 if (frame_debug)
1764 {
1765 fprintf_unfiltered (gdb_stdlog, "-> ");
1766 fprint_frame (gdb_stdlog, fi);
1767 fprintf_unfiltered (gdb_stdlog, " }\n");
1768 }
1769
1770 return fi;
1771 }
1772
1773 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1774 innermost frame). Be careful to not fall off the bottom of the
1775 frame chain and onto the sentinel frame. */
1776
1777 struct frame_info *
1778 get_next_frame (struct frame_info *this_frame)
1779 {
1780 if (this_frame->level > 0)
1781 return this_frame->next;
1782 else
1783 return NULL;
1784 }
1785
1786 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1787 innermost (i.e. current) frame, return the sentinel frame. Thus,
1788 unlike get_next_frame(), NULL will never be returned. */
1789
1790 struct frame_info *
1791 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1792 {
1793 gdb_assert (this_frame != NULL);
1794
1795 /* Note that, due to the manner in which the sentinel frame is
1796 constructed, this_frame->next still works even when this_frame
1797 is the sentinel frame. But we disallow it here anyway because
1798 calling get_next_frame_sentinel_okay() on the sentinel frame
1799 is likely a coding error. */
1800 gdb_assert (this_frame != sentinel_frame);
1801
1802 return this_frame->next;
1803 }
1804
1805 /* Observer for the target_changed event. */
1806
1807 static void
1808 frame_observer_target_changed (struct target_ops *target)
1809 {
1810 reinit_frame_cache ();
1811 }
1812
1813 /* Flush the entire frame cache. */
1814
1815 void
1816 reinit_frame_cache (void)
1817 {
1818 struct frame_info *fi;
1819
1820 /* Tear down all frame caches. */
1821 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1822 {
1823 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1824 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1825 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1826 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1827 }
1828
1829 /* Since we can't really be sure what the first object allocated was. */
1830 obstack_free (&frame_cache_obstack, 0);
1831 obstack_init (&frame_cache_obstack);
1832
1833 if (sentinel_frame != NULL)
1834 annotate_frames_invalid ();
1835
1836 sentinel_frame = NULL; /* Invalidate cache */
1837 select_frame (NULL);
1838 frame_stash_invalidate ();
1839 if (frame_debug)
1840 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1841 }
1842
1843 /* Find where a register is saved (in memory or another register).
1844 The result of frame_register_unwind is just where it is saved
1845 relative to this particular frame. */
1846
1847 static void
1848 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1849 int *optimizedp, enum lval_type *lvalp,
1850 CORE_ADDR *addrp, int *realnump)
1851 {
1852 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1853
1854 while (this_frame != NULL)
1855 {
1856 int unavailable;
1857
1858 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1859 lvalp, addrp, realnump, NULL);
1860
1861 if (*optimizedp)
1862 break;
1863
1864 if (*lvalp != lval_register)
1865 break;
1866
1867 regnum = *realnump;
1868 this_frame = get_next_frame (this_frame);
1869 }
1870 }
1871
1872 /* Get the previous raw frame, and check that it is not identical to
1873 same other frame frame already in the chain. If it is, there is
1874 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1875 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1876 validity tests, that compare THIS_FRAME and the next frame, we do
1877 this right after creating the previous frame, to avoid ever ending
1878 up with two frames with the same id in the frame chain. */
1879
1880 static struct frame_info *
1881 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1882 {
1883 struct frame_info *prev_frame;
1884
1885 prev_frame = get_prev_frame_raw (this_frame);
1886
1887 /* Don't compute the frame id of the current frame yet. Unwinding
1888 the sentinel frame can fail (e.g., if the thread is gone and we
1889 can't thus read its registers). If we let the cycle detection
1890 code below try to compute a frame ID, then an error thrown from
1891 within the frame ID computation would result in the sentinel
1892 frame as outermost frame, which is bogus. Instead, we'll compute
1893 the current frame's ID lazily in get_frame_id. Note that there's
1894 no point in doing cycle detection when there's only one frame, so
1895 nothing is lost here. */
1896 if (prev_frame->level == 0)
1897 return prev_frame;
1898
1899 TRY
1900 {
1901 compute_frame_id (prev_frame);
1902 if (!frame_stash_add (prev_frame))
1903 {
1904 /* Another frame with the same id was already in the stash. We just
1905 detected a cycle. */
1906 if (frame_debug)
1907 {
1908 fprintf_unfiltered (gdb_stdlog, "-> ");
1909 fprint_frame (gdb_stdlog, NULL);
1910 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1911 }
1912 this_frame->stop_reason = UNWIND_SAME_ID;
1913 /* Unlink. */
1914 prev_frame->next = NULL;
1915 this_frame->prev = NULL;
1916 prev_frame = NULL;
1917 }
1918 }
1919 CATCH (ex, RETURN_MASK_ALL)
1920 {
1921 prev_frame->next = NULL;
1922 this_frame->prev = NULL;
1923
1924 throw_exception (ex);
1925 }
1926 END_CATCH
1927
1928 return prev_frame;
1929 }
1930
1931 /* Helper function for get_prev_frame_always, this is called inside a
1932 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1933 there is no such frame. This may throw an exception. */
1934
1935 static struct frame_info *
1936 get_prev_frame_always_1 (struct frame_info *this_frame)
1937 {
1938 struct gdbarch *gdbarch;
1939
1940 gdb_assert (this_frame != NULL);
1941 gdbarch = get_frame_arch (this_frame);
1942
1943 if (frame_debug)
1944 {
1945 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1946 if (this_frame != NULL)
1947 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1948 else
1949 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1950 fprintf_unfiltered (gdb_stdlog, ") ");
1951 }
1952
1953 /* Only try to do the unwind once. */
1954 if (this_frame->prev_p)
1955 {
1956 if (frame_debug)
1957 {
1958 fprintf_unfiltered (gdb_stdlog, "-> ");
1959 fprint_frame (gdb_stdlog, this_frame->prev);
1960 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1961 }
1962 return this_frame->prev;
1963 }
1964
1965 /* If the frame unwinder hasn't been selected yet, we must do so
1966 before setting prev_p; otherwise the check for misbehaved
1967 sniffers will think that this frame's sniffer tried to unwind
1968 further (see frame_cleanup_after_sniffer). */
1969 if (this_frame->unwind == NULL)
1970 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1971
1972 this_frame->prev_p = 1;
1973 this_frame->stop_reason = UNWIND_NO_REASON;
1974
1975 /* If we are unwinding from an inline frame, all of the below tests
1976 were already performed when we unwound from the next non-inline
1977 frame. We must skip them, since we can not get THIS_FRAME's ID
1978 until we have unwound all the way down to the previous non-inline
1979 frame. */
1980 if (get_frame_type (this_frame) == INLINE_FRAME)
1981 return get_prev_frame_if_no_cycle (this_frame);
1982
1983 /* Check that this frame is unwindable. If it isn't, don't try to
1984 unwind to the prev frame. */
1985 this_frame->stop_reason
1986 = this_frame->unwind->stop_reason (this_frame,
1987 &this_frame->prologue_cache);
1988
1989 if (this_frame->stop_reason != UNWIND_NO_REASON)
1990 {
1991 if (frame_debug)
1992 {
1993 enum unwind_stop_reason reason = this_frame->stop_reason;
1994
1995 fprintf_unfiltered (gdb_stdlog, "-> ");
1996 fprint_frame (gdb_stdlog, NULL);
1997 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1998 frame_stop_reason_symbol_string (reason));
1999 }
2000 return NULL;
2001 }
2002
2003 /* Check that this frame's ID isn't inner to (younger, below, next)
2004 the next frame. This happens when a frame unwind goes backwards.
2005 This check is valid only if this frame and the next frame are NORMAL.
2006 See the comment at frame_id_inner for details. */
2007 if (get_frame_type (this_frame) == NORMAL_FRAME
2008 && this_frame->next->unwind->type == NORMAL_FRAME
2009 && frame_id_inner (get_frame_arch (this_frame->next),
2010 get_frame_id (this_frame),
2011 get_frame_id (this_frame->next)))
2012 {
2013 CORE_ADDR this_pc_in_block;
2014 struct minimal_symbol *morestack_msym;
2015 const char *morestack_name = NULL;
2016
2017 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2018 this_pc_in_block = get_frame_address_in_block (this_frame);
2019 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2020 if (morestack_msym)
2021 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2022 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2023 {
2024 if (frame_debug)
2025 {
2026 fprintf_unfiltered (gdb_stdlog, "-> ");
2027 fprint_frame (gdb_stdlog, NULL);
2028 fprintf_unfiltered (gdb_stdlog,
2029 " // this frame ID is inner }\n");
2030 }
2031 this_frame->stop_reason = UNWIND_INNER_ID;
2032 return NULL;
2033 }
2034 }
2035
2036 /* Check that this and the next frame do not unwind the PC register
2037 to the same memory location. If they do, then even though they
2038 have different frame IDs, the new frame will be bogus; two
2039 functions can't share a register save slot for the PC. This can
2040 happen when the prologue analyzer finds a stack adjustment, but
2041 no PC save.
2042
2043 This check does assume that the "PC register" is roughly a
2044 traditional PC, even if the gdbarch_unwind_pc method adjusts
2045 it (we do not rely on the value, only on the unwound PC being
2046 dependent on this value). A potential improvement would be
2047 to have the frame prev_pc method and the gdbarch unwind_pc
2048 method set the same lval and location information as
2049 frame_register_unwind. */
2050 if (this_frame->level > 0
2051 && gdbarch_pc_regnum (gdbarch) >= 0
2052 && get_frame_type (this_frame) == NORMAL_FRAME
2053 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2054 || get_frame_type (this_frame->next) == INLINE_FRAME))
2055 {
2056 int optimized, realnum, nrealnum;
2057 enum lval_type lval, nlval;
2058 CORE_ADDR addr, naddr;
2059
2060 frame_register_unwind_location (this_frame,
2061 gdbarch_pc_regnum (gdbarch),
2062 &optimized, &lval, &addr, &realnum);
2063 frame_register_unwind_location (get_next_frame (this_frame),
2064 gdbarch_pc_regnum (gdbarch),
2065 &optimized, &nlval, &naddr, &nrealnum);
2066
2067 if ((lval == lval_memory && lval == nlval && addr == naddr)
2068 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2069 {
2070 if (frame_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog, "-> ");
2073 fprint_frame (gdb_stdlog, NULL);
2074 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2075 }
2076
2077 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2078 this_frame->prev = NULL;
2079 return NULL;
2080 }
2081 }
2082
2083 return get_prev_frame_if_no_cycle (this_frame);
2084 }
2085
2086 /* Return a "struct frame_info" corresponding to the frame that called
2087 THIS_FRAME. Returns NULL if there is no such frame.
2088
2089 Unlike get_prev_frame, this function always tries to unwind the
2090 frame. */
2091
2092 struct frame_info *
2093 get_prev_frame_always (struct frame_info *this_frame)
2094 {
2095 struct frame_info *prev_frame = NULL;
2096
2097 TRY
2098 {
2099 prev_frame = get_prev_frame_always_1 (this_frame);
2100 }
2101 CATCH (ex, RETURN_MASK_ERROR)
2102 {
2103 if (ex.error == MEMORY_ERROR)
2104 {
2105 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2106 if (ex.message != NULL)
2107 {
2108 char *stop_string;
2109 size_t size;
2110
2111 /* The error needs to live as long as the frame does.
2112 Allocate using stack local STOP_STRING then assign the
2113 pointer to the frame, this allows the STOP_STRING on the
2114 frame to be of type 'const char *'. */
2115 size = strlen (ex.message) + 1;
2116 stop_string = (char *) frame_obstack_zalloc (size);
2117 memcpy (stop_string, ex.message, size);
2118 this_frame->stop_string = stop_string;
2119 }
2120 prev_frame = NULL;
2121 }
2122 else
2123 throw_exception (ex);
2124 }
2125 END_CATCH
2126
2127 return prev_frame;
2128 }
2129
2130 /* Construct a new "struct frame_info" and link it previous to
2131 this_frame. */
2132
2133 static struct frame_info *
2134 get_prev_frame_raw (struct frame_info *this_frame)
2135 {
2136 struct frame_info *prev_frame;
2137
2138 /* Allocate the new frame but do not wire it in to the frame chain.
2139 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2140 frame->next to pull some fancy tricks (of course such code is, by
2141 definition, recursive). Try to prevent it.
2142
2143 There is no reason to worry about memory leaks, should the
2144 remainder of the function fail. The allocated memory will be
2145 quickly reclaimed when the frame cache is flushed, and the `we've
2146 been here before' check above will stop repeated memory
2147 allocation calls. */
2148 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2149 prev_frame->level = this_frame->level + 1;
2150
2151 /* For now, assume we don't have frame chains crossing address
2152 spaces. */
2153 prev_frame->pspace = this_frame->pspace;
2154 prev_frame->aspace = this_frame->aspace;
2155
2156 /* Don't yet compute ->unwind (and hence ->type). It is computed
2157 on-demand in get_frame_type, frame_register_unwind, and
2158 get_frame_id. */
2159
2160 /* Don't yet compute the frame's ID. It is computed on-demand by
2161 get_frame_id(). */
2162
2163 /* The unwound frame ID is validate at the start of this function,
2164 as part of the logic to decide if that frame should be further
2165 unwound, and not here while the prev frame is being created.
2166 Doing this makes it possible for the user to examine a frame that
2167 has an invalid frame ID.
2168
2169 Some very old VAX code noted: [...] For the sake of argument,
2170 suppose that the stack is somewhat trashed (which is one reason
2171 that "info frame" exists). So, return 0 (indicating we don't
2172 know the address of the arglist) if we don't know what frame this
2173 frame calls. */
2174
2175 /* Link it in. */
2176 this_frame->prev = prev_frame;
2177 prev_frame->next = this_frame;
2178
2179 if (frame_debug)
2180 {
2181 fprintf_unfiltered (gdb_stdlog, "-> ");
2182 fprint_frame (gdb_stdlog, prev_frame);
2183 fprintf_unfiltered (gdb_stdlog, " }\n");
2184 }
2185
2186 return prev_frame;
2187 }
2188
2189 /* Debug routine to print a NULL frame being returned. */
2190
2191 static void
2192 frame_debug_got_null_frame (struct frame_info *this_frame,
2193 const char *reason)
2194 {
2195 if (frame_debug)
2196 {
2197 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2198 if (this_frame != NULL)
2199 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2200 else
2201 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2202 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2203 }
2204 }
2205
2206 /* Is this (non-sentinel) frame in the "main"() function? */
2207
2208 static int
2209 inside_main_func (struct frame_info *this_frame)
2210 {
2211 struct bound_minimal_symbol msymbol;
2212 CORE_ADDR maddr;
2213
2214 if (symfile_objfile == 0)
2215 return 0;
2216 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2217 if (msymbol.minsym == NULL)
2218 return 0;
2219 /* Make certain that the code, and not descriptor, address is
2220 returned. */
2221 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2222 BMSYMBOL_VALUE_ADDRESS (msymbol),
2223 current_top_target ());
2224 return maddr == get_frame_func (this_frame);
2225 }
2226
2227 /* Test whether THIS_FRAME is inside the process entry point function. */
2228
2229 static int
2230 inside_entry_func (struct frame_info *this_frame)
2231 {
2232 CORE_ADDR entry_point;
2233
2234 if (!entry_point_address_query (&entry_point))
2235 return 0;
2236
2237 return get_frame_func (this_frame) == entry_point;
2238 }
2239
2240 /* Return a structure containing various interesting information about
2241 the frame that called THIS_FRAME. Returns NULL if there is entier
2242 no such frame or the frame fails any of a set of target-independent
2243 condition that should terminate the frame chain (e.g., as unwinding
2244 past main()).
2245
2246 This function should not contain target-dependent tests, such as
2247 checking whether the program-counter is zero. */
2248
2249 struct frame_info *
2250 get_prev_frame (struct frame_info *this_frame)
2251 {
2252 CORE_ADDR frame_pc;
2253 int frame_pc_p;
2254
2255 /* There is always a frame. If this assertion fails, suspect that
2256 something should be calling get_selected_frame() or
2257 get_current_frame(). */
2258 gdb_assert (this_frame != NULL);
2259
2260 /* If this_frame is the current frame, then compute and stash
2261 its frame id prior to fetching and computing the frame id of the
2262 previous frame. Otherwise, the cycle detection code in
2263 get_prev_frame_if_no_cycle() will not work correctly. When
2264 get_frame_id() is called later on, an assertion error will
2265 be triggered in the event of a cycle between the current
2266 frame and its previous frame. */
2267 if (this_frame->level == 0)
2268 get_frame_id (this_frame);
2269
2270 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2271
2272 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2273 sense to stop unwinding at a dummy frame. One place where a dummy
2274 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2275 pcsqh register (space register for the instruction at the head of the
2276 instruction queue) cannot be written directly; the only way to set it
2277 is to branch to code that is in the target space. In order to implement
2278 frame dummies on HPUX, the called function is made to jump back to where
2279 the inferior was when the user function was called. If gdb was inside
2280 the main function when we created the dummy frame, the dummy frame will
2281 point inside the main function. */
2282 if (this_frame->level >= 0
2283 && get_frame_type (this_frame) == NORMAL_FRAME
2284 && !backtrace_past_main
2285 && frame_pc_p
2286 && inside_main_func (this_frame))
2287 /* Don't unwind past main(). Note, this is done _before_ the
2288 frame has been marked as previously unwound. That way if the
2289 user later decides to enable unwinds past main(), that will
2290 automatically happen. */
2291 {
2292 frame_debug_got_null_frame (this_frame, "inside main func");
2293 return NULL;
2294 }
2295
2296 /* If the user's backtrace limit has been exceeded, stop. We must
2297 add two to the current level; one of those accounts for backtrace_limit
2298 being 1-based and the level being 0-based, and the other accounts for
2299 the level of the new frame instead of the level of the current
2300 frame. */
2301 if (this_frame->level + 2 > backtrace_limit)
2302 {
2303 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2304 return NULL;
2305 }
2306
2307 /* If we're already inside the entry function for the main objfile,
2308 then it isn't valid. Don't apply this test to a dummy frame -
2309 dummy frame PCs typically land in the entry func. Don't apply
2310 this test to the sentinel frame. Sentinel frames should always
2311 be allowed to unwind. */
2312 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2313 wasn't checking for "main" in the minimal symbols. With that
2314 fixed asm-source tests now stop in "main" instead of halting the
2315 backtrace in weird and wonderful ways somewhere inside the entry
2316 file. Suspect that tests for inside the entry file/func were
2317 added to work around that (now fixed) case. */
2318 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2319 suggested having the inside_entry_func test use the
2320 inside_main_func() msymbol trick (along with entry_point_address()
2321 I guess) to determine the address range of the start function.
2322 That should provide a far better stopper than the current
2323 heuristics. */
2324 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2325 applied tail-call optimizations to main so that a function called
2326 from main returns directly to the caller of main. Since we don't
2327 stop at main, we should at least stop at the entry point of the
2328 application. */
2329 if (this_frame->level >= 0
2330 && get_frame_type (this_frame) == NORMAL_FRAME
2331 && !backtrace_past_entry
2332 && frame_pc_p
2333 && inside_entry_func (this_frame))
2334 {
2335 frame_debug_got_null_frame (this_frame, "inside entry func");
2336 return NULL;
2337 }
2338
2339 /* Assume that the only way to get a zero PC is through something
2340 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2341 will never unwind a zero PC. */
2342 if (this_frame->level > 0
2343 && (get_frame_type (this_frame) == NORMAL_FRAME
2344 || get_frame_type (this_frame) == INLINE_FRAME)
2345 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2346 && frame_pc_p && frame_pc == 0)
2347 {
2348 frame_debug_got_null_frame (this_frame, "zero PC");
2349 return NULL;
2350 }
2351
2352 return get_prev_frame_always (this_frame);
2353 }
2354
2355 struct frame_id
2356 get_prev_frame_id_by_id (struct frame_id id)
2357 {
2358 struct frame_id prev_id;
2359 struct frame_info *frame;
2360
2361 frame = frame_find_by_id (id);
2362
2363 if (frame != NULL)
2364 prev_id = get_frame_id (get_prev_frame (frame));
2365 else
2366 prev_id = null_frame_id;
2367
2368 return prev_id;
2369 }
2370
2371 CORE_ADDR
2372 get_frame_pc (struct frame_info *frame)
2373 {
2374 gdb_assert (frame->next != NULL);
2375 return frame_unwind_pc (frame->next);
2376 }
2377
2378 int
2379 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2380 {
2381
2382 gdb_assert (frame->next != NULL);
2383
2384 TRY
2385 {
2386 *pc = frame_unwind_pc (frame->next);
2387 }
2388 CATCH (ex, RETURN_MASK_ERROR)
2389 {
2390 if (ex.error == NOT_AVAILABLE_ERROR)
2391 return 0;
2392 else
2393 throw_exception (ex);
2394 }
2395 END_CATCH
2396
2397 return 1;
2398 }
2399
2400 /* Return an address that falls within THIS_FRAME's code block. */
2401
2402 CORE_ADDR
2403 get_frame_address_in_block (struct frame_info *this_frame)
2404 {
2405 /* A draft address. */
2406 CORE_ADDR pc = get_frame_pc (this_frame);
2407
2408 struct frame_info *next_frame = this_frame->next;
2409
2410 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2411 Normally the resume address is inside the body of the function
2412 associated with THIS_FRAME, but there is a special case: when
2413 calling a function which the compiler knows will never return
2414 (for instance abort), the call may be the very last instruction
2415 in the calling function. The resume address will point after the
2416 call and may be at the beginning of a different function
2417 entirely.
2418
2419 If THIS_FRAME is a signal frame or dummy frame, then we should
2420 not adjust the unwound PC. For a dummy frame, GDB pushed the
2421 resume address manually onto the stack. For a signal frame, the
2422 OS may have pushed the resume address manually and invoked the
2423 handler (e.g. GNU/Linux), or invoked the trampoline which called
2424 the signal handler - but in either case the signal handler is
2425 expected to return to the trampoline. So in both of these
2426 cases we know that the resume address is executable and
2427 related. So we only need to adjust the PC if THIS_FRAME
2428 is a normal function.
2429
2430 If the program has been interrupted while THIS_FRAME is current,
2431 then clearly the resume address is inside the associated
2432 function. There are three kinds of interruption: debugger stop
2433 (next frame will be SENTINEL_FRAME), operating system
2434 signal or exception (next frame will be SIGTRAMP_FRAME),
2435 or debugger-induced function call (next frame will be
2436 DUMMY_FRAME). So we only need to adjust the PC if
2437 NEXT_FRAME is a normal function.
2438
2439 We check the type of NEXT_FRAME first, since it is already
2440 known; frame type is determined by the unwinder, and since
2441 we have THIS_FRAME we've already selected an unwinder for
2442 NEXT_FRAME.
2443
2444 If the next frame is inlined, we need to keep going until we find
2445 the real function - for instance, if a signal handler is invoked
2446 while in an inlined function, then the code address of the
2447 "calling" normal function should not be adjusted either. */
2448
2449 while (get_frame_type (next_frame) == INLINE_FRAME)
2450 next_frame = next_frame->next;
2451
2452 if ((get_frame_type (next_frame) == NORMAL_FRAME
2453 || get_frame_type (next_frame) == TAILCALL_FRAME)
2454 && (get_frame_type (this_frame) == NORMAL_FRAME
2455 || get_frame_type (this_frame) == TAILCALL_FRAME
2456 || get_frame_type (this_frame) == INLINE_FRAME))
2457 return pc - 1;
2458
2459 return pc;
2460 }
2461
2462 int
2463 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2464 CORE_ADDR *pc)
2465 {
2466
2467 TRY
2468 {
2469 *pc = get_frame_address_in_block (this_frame);
2470 }
2471 CATCH (ex, RETURN_MASK_ERROR)
2472 {
2473 if (ex.error == NOT_AVAILABLE_ERROR)
2474 return 0;
2475 throw_exception (ex);
2476 }
2477 END_CATCH
2478
2479 return 1;
2480 }
2481
2482 symtab_and_line
2483 find_frame_sal (frame_info *frame)
2484 {
2485 struct frame_info *next_frame;
2486 int notcurrent;
2487 CORE_ADDR pc;
2488
2489 /* If the next frame represents an inlined function call, this frame's
2490 sal is the "call site" of that inlined function, which can not
2491 be inferred from get_frame_pc. */
2492 next_frame = get_next_frame (frame);
2493 if (frame_inlined_callees (frame) > 0)
2494 {
2495 struct symbol *sym;
2496
2497 if (next_frame)
2498 sym = get_frame_function (next_frame);
2499 else
2500 sym = inline_skipped_symbol (inferior_ptid);
2501
2502 /* If frame is inline, it certainly has symbols. */
2503 gdb_assert (sym);
2504
2505 symtab_and_line sal;
2506 if (SYMBOL_LINE (sym) != 0)
2507 {
2508 sal.symtab = symbol_symtab (sym);
2509 sal.line = SYMBOL_LINE (sym);
2510 }
2511 else
2512 /* If the symbol does not have a location, we don't know where
2513 the call site is. Do not pretend to. This is jarring, but
2514 we can't do much better. */
2515 sal.pc = get_frame_pc (frame);
2516
2517 sal.pspace = get_frame_program_space (frame);
2518 return sal;
2519 }
2520
2521 /* If FRAME is not the innermost frame, that normally means that
2522 FRAME->pc points at the return instruction (which is *after* the
2523 call instruction), and we want to get the line containing the
2524 call (because the call is where the user thinks the program is).
2525 However, if the next frame is either a SIGTRAMP_FRAME or a
2526 DUMMY_FRAME, then the next frame will contain a saved interrupt
2527 PC and such a PC indicates the current (rather than next)
2528 instruction/line, consequently, for such cases, want to get the
2529 line containing fi->pc. */
2530 if (!get_frame_pc_if_available (frame, &pc))
2531 return {};
2532
2533 notcurrent = (pc != get_frame_address_in_block (frame));
2534 return find_pc_line (pc, notcurrent);
2535 }
2536
2537 /* Per "frame.h", return the ``address'' of the frame. Code should
2538 really be using get_frame_id(). */
2539 CORE_ADDR
2540 get_frame_base (struct frame_info *fi)
2541 {
2542 return get_frame_id (fi).stack_addr;
2543 }
2544
2545 /* High-level offsets into the frame. Used by the debug info. */
2546
2547 CORE_ADDR
2548 get_frame_base_address (struct frame_info *fi)
2549 {
2550 if (get_frame_type (fi) != NORMAL_FRAME)
2551 return 0;
2552 if (fi->base == NULL)
2553 fi->base = frame_base_find_by_frame (fi);
2554 /* Sneaky: If the low-level unwind and high-level base code share a
2555 common unwinder, let them share the prologue cache. */
2556 if (fi->base->unwind == fi->unwind)
2557 return fi->base->this_base (fi, &fi->prologue_cache);
2558 return fi->base->this_base (fi, &fi->base_cache);
2559 }
2560
2561 CORE_ADDR
2562 get_frame_locals_address (struct frame_info *fi)
2563 {
2564 if (get_frame_type (fi) != NORMAL_FRAME)
2565 return 0;
2566 /* If there isn't a frame address method, find it. */
2567 if (fi->base == NULL)
2568 fi->base = frame_base_find_by_frame (fi);
2569 /* Sneaky: If the low-level unwind and high-level base code share a
2570 common unwinder, let them share the prologue cache. */
2571 if (fi->base->unwind == fi->unwind)
2572 return fi->base->this_locals (fi, &fi->prologue_cache);
2573 return fi->base->this_locals (fi, &fi->base_cache);
2574 }
2575
2576 CORE_ADDR
2577 get_frame_args_address (struct frame_info *fi)
2578 {
2579 if (get_frame_type (fi) != NORMAL_FRAME)
2580 return 0;
2581 /* If there isn't a frame address method, find it. */
2582 if (fi->base == NULL)
2583 fi->base = frame_base_find_by_frame (fi);
2584 /* Sneaky: If the low-level unwind and high-level base code share a
2585 common unwinder, let them share the prologue cache. */
2586 if (fi->base->unwind == fi->unwind)
2587 return fi->base->this_args (fi, &fi->prologue_cache);
2588 return fi->base->this_args (fi, &fi->base_cache);
2589 }
2590
2591 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2592 otherwise. */
2593
2594 int
2595 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2596 {
2597 if (fi->unwind == NULL)
2598 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2599 return fi->unwind == unwinder;
2600 }
2601
2602 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2603 or -1 for a NULL frame. */
2604
2605 int
2606 frame_relative_level (struct frame_info *fi)
2607 {
2608 if (fi == NULL)
2609 return -1;
2610 else
2611 return fi->level;
2612 }
2613
2614 enum frame_type
2615 get_frame_type (struct frame_info *frame)
2616 {
2617 if (frame->unwind == NULL)
2618 /* Initialize the frame's unwinder because that's what
2619 provides the frame's type. */
2620 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2621 return frame->unwind->type;
2622 }
2623
2624 struct program_space *
2625 get_frame_program_space (struct frame_info *frame)
2626 {
2627 return frame->pspace;
2628 }
2629
2630 struct program_space *
2631 frame_unwind_program_space (struct frame_info *this_frame)
2632 {
2633 gdb_assert (this_frame);
2634
2635 /* This is really a placeholder to keep the API consistent --- we
2636 assume for now that we don't have frame chains crossing
2637 spaces. */
2638 return this_frame->pspace;
2639 }
2640
2641 const address_space *
2642 get_frame_address_space (struct frame_info *frame)
2643 {
2644 return frame->aspace;
2645 }
2646
2647 /* Memory access methods. */
2648
2649 void
2650 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2651 gdb_byte *buf, int len)
2652 {
2653 read_memory (addr, buf, len);
2654 }
2655
2656 LONGEST
2657 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2658 int len)
2659 {
2660 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2662
2663 return read_memory_integer (addr, len, byte_order);
2664 }
2665
2666 ULONGEST
2667 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2668 int len)
2669 {
2670 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2671 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2672
2673 return read_memory_unsigned_integer (addr, len, byte_order);
2674 }
2675
2676 int
2677 safe_frame_unwind_memory (struct frame_info *this_frame,
2678 CORE_ADDR addr, gdb_byte *buf, int len)
2679 {
2680 /* NOTE: target_read_memory returns zero on success! */
2681 return !target_read_memory (addr, buf, len);
2682 }
2683
2684 /* Architecture methods. */
2685
2686 struct gdbarch *
2687 get_frame_arch (struct frame_info *this_frame)
2688 {
2689 return frame_unwind_arch (this_frame->next);
2690 }
2691
2692 struct gdbarch *
2693 frame_unwind_arch (struct frame_info *next_frame)
2694 {
2695 if (!next_frame->prev_arch.p)
2696 {
2697 struct gdbarch *arch;
2698
2699 if (next_frame->unwind == NULL)
2700 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2701
2702 if (next_frame->unwind->prev_arch != NULL)
2703 arch = next_frame->unwind->prev_arch (next_frame,
2704 &next_frame->prologue_cache);
2705 else
2706 arch = get_frame_arch (next_frame);
2707
2708 next_frame->prev_arch.arch = arch;
2709 next_frame->prev_arch.p = 1;
2710 if (frame_debug)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2713 next_frame->level,
2714 gdbarch_bfd_arch_info (arch)->printable_name);
2715 }
2716
2717 return next_frame->prev_arch.arch;
2718 }
2719
2720 struct gdbarch *
2721 frame_unwind_caller_arch (struct frame_info *next_frame)
2722 {
2723 next_frame = skip_artificial_frames (next_frame);
2724
2725 /* We must have a non-artificial frame. The caller is supposed to check
2726 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2727 in this case. */
2728 gdb_assert (next_frame != NULL);
2729
2730 return frame_unwind_arch (next_frame);
2731 }
2732
2733 /* Gets the language of FRAME. */
2734
2735 enum language
2736 get_frame_language (struct frame_info *frame)
2737 {
2738 CORE_ADDR pc = 0;
2739 int pc_p = 0;
2740
2741 gdb_assert (frame!= NULL);
2742
2743 /* We determine the current frame language by looking up its
2744 associated symtab. To retrieve this symtab, we use the frame
2745 PC. However we cannot use the frame PC as is, because it
2746 usually points to the instruction following the "call", which
2747 is sometimes the first instruction of another function. So
2748 we rely on get_frame_address_in_block(), it provides us with
2749 a PC that is guaranteed to be inside the frame's code
2750 block. */
2751
2752 TRY
2753 {
2754 pc = get_frame_address_in_block (frame);
2755 pc_p = 1;
2756 }
2757 CATCH (ex, RETURN_MASK_ERROR)
2758 {
2759 if (ex.error != NOT_AVAILABLE_ERROR)
2760 throw_exception (ex);
2761 }
2762 END_CATCH
2763
2764 if (pc_p)
2765 {
2766 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2767
2768 if (cust != NULL)
2769 return compunit_language (cust);
2770 }
2771
2772 return language_unknown;
2773 }
2774
2775 /* Stack pointer methods. */
2776
2777 CORE_ADDR
2778 get_frame_sp (struct frame_info *this_frame)
2779 {
2780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2781
2782 /* Normality - an architecture that provides a way of obtaining any
2783 frame inner-most address. */
2784 if (gdbarch_unwind_sp_p (gdbarch))
2785 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2786 operate on THIS_FRAME now. */
2787 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2788 /* Now things are really are grim. Hope that the value returned by
2789 the gdbarch_sp_regnum register is meaningful. */
2790 if (gdbarch_sp_regnum (gdbarch) >= 0)
2791 return get_frame_register_unsigned (this_frame,
2792 gdbarch_sp_regnum (gdbarch));
2793 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2794 }
2795
2796 /* Return the reason why we can't unwind past FRAME. */
2797
2798 enum unwind_stop_reason
2799 get_frame_unwind_stop_reason (struct frame_info *frame)
2800 {
2801 /* Fill-in STOP_REASON. */
2802 get_prev_frame_always (frame);
2803 gdb_assert (frame->prev_p);
2804
2805 return frame->stop_reason;
2806 }
2807
2808 /* Return a string explaining REASON. */
2809
2810 const char *
2811 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2812 {
2813 switch (reason)
2814 {
2815 #define SET(name, description) \
2816 case name: return _(description);
2817 #include "unwind_stop_reasons.def"
2818 #undef SET
2819
2820 default:
2821 internal_error (__FILE__, __LINE__,
2822 "Invalid frame stop reason");
2823 }
2824 }
2825
2826 const char *
2827 frame_stop_reason_string (struct frame_info *fi)
2828 {
2829 gdb_assert (fi->prev_p);
2830 gdb_assert (fi->prev == NULL);
2831
2832 /* Return the specific string if we have one. */
2833 if (fi->stop_string != NULL)
2834 return fi->stop_string;
2835
2836 /* Return the generic string if we have nothing better. */
2837 return unwind_stop_reason_to_string (fi->stop_reason);
2838 }
2839
2840 /* Return the enum symbol name of REASON as a string, to use in debug
2841 output. */
2842
2843 static const char *
2844 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2845 {
2846 switch (reason)
2847 {
2848 #define SET(name, description) \
2849 case name: return #name;
2850 #include "unwind_stop_reasons.def"
2851 #undef SET
2852
2853 default:
2854 internal_error (__FILE__, __LINE__,
2855 "Invalid frame stop reason");
2856 }
2857 }
2858
2859 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2860 FRAME. */
2861
2862 void
2863 frame_cleanup_after_sniffer (struct frame_info *frame)
2864 {
2865 /* The sniffer should not allocate a prologue cache if it did not
2866 match this frame. */
2867 gdb_assert (frame->prologue_cache == NULL);
2868
2869 /* No sniffer should extend the frame chain; sniff based on what is
2870 already certain. */
2871 gdb_assert (!frame->prev_p);
2872
2873 /* The sniffer should not check the frame's ID; that's circular. */
2874 gdb_assert (!frame->this_id.p);
2875
2876 /* Clear cached fields dependent on the unwinder.
2877
2878 The previous PC is independent of the unwinder, but the previous
2879 function is not (see get_frame_address_in_block). */
2880 frame->prev_func.p = 0;
2881 frame->prev_func.addr = 0;
2882
2883 /* Discard the unwinder last, so that we can easily find it if an assertion
2884 in this function triggers. */
2885 frame->unwind = NULL;
2886 }
2887
2888 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2889 If sniffing fails, the caller should be sure to call
2890 frame_cleanup_after_sniffer. */
2891
2892 void
2893 frame_prepare_for_sniffer (struct frame_info *frame,
2894 const struct frame_unwind *unwind)
2895 {
2896 gdb_assert (frame->unwind == NULL);
2897 frame->unwind = unwind;
2898 }
2899
2900 static struct cmd_list_element *set_backtrace_cmdlist;
2901 static struct cmd_list_element *show_backtrace_cmdlist;
2902
2903 static void
2904 set_backtrace_cmd (const char *args, int from_tty)
2905 {
2906 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2907 gdb_stdout);
2908 }
2909
2910 static void
2911 show_backtrace_cmd (const char *args, int from_tty)
2912 {
2913 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2914 }
2915
2916 void
2917 _initialize_frame (void)
2918 {
2919 obstack_init (&frame_cache_obstack);
2920
2921 frame_stash_create ();
2922
2923 gdb::observers::target_changed.attach (frame_observer_target_changed);
2924
2925 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2926 Set backtrace specific variables.\n\
2927 Configure backtrace variables such as the backtrace limit"),
2928 &set_backtrace_cmdlist, "set backtrace ",
2929 0/*allow-unknown*/, &setlist);
2930 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2931 Show backtrace specific variables\n\
2932 Show backtrace variables such as the backtrace limit"),
2933 &show_backtrace_cmdlist, "show backtrace ",
2934 0/*allow-unknown*/, &showlist);
2935
2936 add_setshow_boolean_cmd ("past-main", class_obscure,
2937 &backtrace_past_main, _("\
2938 Set whether backtraces should continue past \"main\"."), _("\
2939 Show whether backtraces should continue past \"main\"."), _("\
2940 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2941 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2942 of the stack trace."),
2943 NULL,
2944 show_backtrace_past_main,
2945 &set_backtrace_cmdlist,
2946 &show_backtrace_cmdlist);
2947
2948 add_setshow_boolean_cmd ("past-entry", class_obscure,
2949 &backtrace_past_entry, _("\
2950 Set whether backtraces should continue past the entry point of a program."),
2951 _("\
2952 Show whether backtraces should continue past the entry point of a program."),
2953 _("\
2954 Normally there are no callers beyond the entry point of a program, so GDB\n\
2955 will terminate the backtrace there. Set this variable if you need to see\n\
2956 the rest of the stack trace."),
2957 NULL,
2958 show_backtrace_past_entry,
2959 &set_backtrace_cmdlist,
2960 &show_backtrace_cmdlist);
2961
2962 add_setshow_uinteger_cmd ("limit", class_obscure,
2963 &backtrace_limit, _("\
2964 Set an upper bound on the number of backtrace levels."), _("\
2965 Show the upper bound on the number of backtrace levels."), _("\
2966 No more than the specified number of frames can be displayed or examined.\n\
2967 Literal \"unlimited\" or zero means no limit."),
2968 NULL,
2969 show_backtrace_limit,
2970 &set_backtrace_cmdlist,
2971 &show_backtrace_cmdlist);
2972
2973 /* Debug this files internals. */
2974 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2975 Set frame debugging."), _("\
2976 Show frame debugging."), _("\
2977 When non-zero, frame specific internal debugging is enabled."),
2978 NULL,
2979 show_frame_debug,
2980 &setdebuglist, &showdebuglist);
2981 }
This page took 0.09003 seconds and 5 git commands to generate.