2007-06-28 Michael Snyder <msnyder@access-company.com>
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "arch-utils.h"
27 #include "regcache.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "dis-asm.h"
33 #include "gdb_assert.h"
34 #include "sim-regno.h"
35 #include "gdb/sim-frv.h"
36 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
37 #include "symtab.h"
38 #include "elf-bfd.h"
39 #include "elf/frv.h"
40 #include "osabi.h"
41 #include "infcall.h"
42 #include "frv-tdep.h"
43
44 extern void _initialize_frv_tdep (void);
45
46 struct frv_unwind_cache /* was struct frame_extra_info */
47 {
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
51
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
57 };
58
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74 struct gdbarch_tdep
75 {
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93 };
94
95 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
96
97 /* Return the FR-V ABI associated with GDBARCH. */
98 enum frv_abi
99 frv_abi (struct gdbarch *gdbarch)
100 {
101 return gdbarch_tdep (gdbarch)->frv_abi;
102 }
103
104 /* Fetch the interpreter and executable loadmap addresses (for shared
105 library support) for the FDPIC ABI. Return 0 if successful, -1 if
106 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
107 int
108 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
109 CORE_ADDR *exec_addr)
110 {
111 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
112 return -1;
113 else
114 {
115 struct regcache *regcache = get_current_regcache ();
116
117 if (interp_addr != NULL)
118 {
119 ULONGEST val;
120 regcache_cooked_read_unsigned (regcache,
121 fdpic_loadmap_interp_regnum, &val);
122 *interp_addr = val;
123 }
124 if (exec_addr != NULL)
125 {
126 ULONGEST val;
127 regcache_cooked_read_unsigned (regcache,
128 fdpic_loadmap_exec_regnum, &val);
129 *exec_addr = val;
130 }
131 return 0;
132 }
133 }
134
135 /* Allocate a new variant structure, and set up default values for all
136 the fields. */
137 static struct gdbarch_tdep *
138 new_variant (void)
139 {
140 struct gdbarch_tdep *var;
141 int r;
142 char buf[20];
143
144 var = xmalloc (sizeof (*var));
145 memset (var, 0, sizeof (*var));
146
147 var->frv_abi = FRV_ABI_EABI;
148 var->num_gprs = 64;
149 var->num_fprs = 64;
150 var->num_hw_watchpoints = 0;
151 var->num_hw_breakpoints = 0;
152
153 /* By default, don't supply any general-purpose or floating-point
154 register names. */
155 var->register_names
156 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
157 * sizeof (char *));
158 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
159 var->register_names[r] = "";
160
161 /* Do, however, supply default names for the known special-purpose
162 registers. */
163
164 var->register_names[pc_regnum] = "pc";
165 var->register_names[lr_regnum] = "lr";
166 var->register_names[lcr_regnum] = "lcr";
167
168 var->register_names[psr_regnum] = "psr";
169 var->register_names[ccr_regnum] = "ccr";
170 var->register_names[cccr_regnum] = "cccr";
171 var->register_names[tbr_regnum] = "tbr";
172
173 /* Debug registers. */
174 var->register_names[brr_regnum] = "brr";
175 var->register_names[dbar0_regnum] = "dbar0";
176 var->register_names[dbar1_regnum] = "dbar1";
177 var->register_names[dbar2_regnum] = "dbar2";
178 var->register_names[dbar3_regnum] = "dbar3";
179
180 /* iacc0 (Only found on MB93405.) */
181 var->register_names[iacc0h_regnum] = "iacc0h";
182 var->register_names[iacc0l_regnum] = "iacc0l";
183 var->register_names[iacc0_regnum] = "iacc0";
184
185 /* fsr0 (Found on FR555 and FR501.) */
186 var->register_names[fsr0_regnum] = "fsr0";
187
188 /* acc0 - acc7. The architecture provides for the possibility of many
189 more (up to 64 total), but we don't want to make that big of a hole
190 in the G packet. If we need more in the future, we'll add them
191 elsewhere. */
192 for (r = acc0_regnum; r <= acc7_regnum; r++)
193 {
194 char *buf;
195 buf = xstrprintf ("acc%d", r - acc0_regnum);
196 var->register_names[r] = buf;
197 }
198
199 /* accg0 - accg7: These are one byte registers. The remote protocol
200 provides the raw values packed four into a slot. accg0123 and
201 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
202 We don't provide names for accg0123 and accg4567 since the user will
203 likely not want to see these raw values. */
204
205 for (r = accg0_regnum; r <= accg7_regnum; r++)
206 {
207 char *buf;
208 buf = xstrprintf ("accg%d", r - accg0_regnum);
209 var->register_names[r] = buf;
210 }
211
212 /* msr0 and msr1. */
213
214 var->register_names[msr0_regnum] = "msr0";
215 var->register_names[msr1_regnum] = "msr1";
216
217 /* gner and fner registers. */
218 var->register_names[gner0_regnum] = "gner0";
219 var->register_names[gner1_regnum] = "gner1";
220 var->register_names[fner0_regnum] = "fner0";
221 var->register_names[fner1_regnum] = "fner1";
222
223 return var;
224 }
225
226
227 /* Indicate that the variant VAR has NUM_GPRS general-purpose
228 registers, and fill in the names array appropriately. */
229 static void
230 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
231 {
232 int r;
233
234 var->num_gprs = num_gprs;
235
236 for (r = 0; r < num_gprs; ++r)
237 {
238 char buf[20];
239
240 sprintf (buf, "gr%d", r);
241 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
242 }
243 }
244
245
246 /* Indicate that the variant VAR has NUM_FPRS floating-point
247 registers, and fill in the names array appropriately. */
248 static void
249 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
250 {
251 int r;
252
253 var->num_fprs = num_fprs;
254
255 for (r = 0; r < num_fprs; ++r)
256 {
257 char buf[20];
258
259 sprintf (buf, "fr%d", r);
260 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
261 }
262 }
263
264 static void
265 set_variant_abi_fdpic (struct gdbarch_tdep *var)
266 {
267 var->frv_abi = FRV_ABI_FDPIC;
268 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
269 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
270 }
271
272 static void
273 set_variant_scratch_registers (struct gdbarch_tdep *var)
274 {
275 var->register_names[scr0_regnum] = xstrdup ("scr0");
276 var->register_names[scr1_regnum] = xstrdup ("scr1");
277 var->register_names[scr2_regnum] = xstrdup ("scr2");
278 var->register_names[scr3_regnum] = xstrdup ("scr3");
279 }
280
281 static const char *
282 frv_register_name (int reg)
283 {
284 if (reg < 0)
285 return "?toosmall?";
286 if (reg >= frv_num_regs + frv_num_pseudo_regs)
287 return "?toolarge?";
288
289 return CURRENT_VARIANT->register_names[reg];
290 }
291
292
293 static struct type *
294 frv_register_type (struct gdbarch *gdbarch, int reg)
295 {
296 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
297 return builtin_type_float;
298 else if (reg == iacc0_regnum)
299 return builtin_type_int64;
300 else
301 return builtin_type_int32;
302 }
303
304 static void
305 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
306 int reg, gdb_byte *buffer)
307 {
308 if (reg == iacc0_regnum)
309 {
310 regcache_raw_read (regcache, iacc0h_regnum, buffer);
311 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
312 }
313 else if (accg0_regnum <= reg && reg <= accg7_regnum)
314 {
315 /* The accg raw registers have four values in each slot with the
316 lowest register number occupying the first byte. */
317
318 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
319 int byte_num = (reg - accg0_regnum) % 4;
320 bfd_byte buf[4];
321
322 regcache_raw_read (regcache, raw_regnum, buf);
323 memset (buffer, 0, 4);
324 /* FR-V is big endian, so put the requested byte in the first byte
325 of the buffer allocated to hold the pseudo-register. */
326 ((bfd_byte *) buffer)[0] = buf[byte_num];
327 }
328 }
329
330 static void
331 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
332 int reg, const gdb_byte *buffer)
333 {
334 if (reg == iacc0_regnum)
335 {
336 regcache_raw_write (regcache, iacc0h_regnum, buffer);
337 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
338 }
339 else if (accg0_regnum <= reg && reg <= accg7_regnum)
340 {
341 /* The accg raw registers have four values in each slot with the
342 lowest register number occupying the first byte. */
343
344 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
345 int byte_num = (reg - accg0_regnum) % 4;
346 char buf[4];
347
348 regcache_raw_read (regcache, raw_regnum, buf);
349 buf[byte_num] = ((bfd_byte *) buffer)[0];
350 regcache_raw_write (regcache, raw_regnum, buf);
351 }
352 }
353
354 static int
355 frv_register_sim_regno (int reg)
356 {
357 static const int spr_map[] =
358 {
359 H_SPR_PSR, /* psr_regnum */
360 H_SPR_CCR, /* ccr_regnum */
361 H_SPR_CCCR, /* cccr_regnum */
362 -1, /* fdpic_loadmap_exec_regnum */
363 -1, /* fdpic_loadmap_interp_regnum */
364 -1, /* 134 */
365 H_SPR_TBR, /* tbr_regnum */
366 H_SPR_BRR, /* brr_regnum */
367 H_SPR_DBAR0, /* dbar0_regnum */
368 H_SPR_DBAR1, /* dbar1_regnum */
369 H_SPR_DBAR2, /* dbar2_regnum */
370 H_SPR_DBAR3, /* dbar3_regnum */
371 H_SPR_SCR0, /* scr0_regnum */
372 H_SPR_SCR1, /* scr1_regnum */
373 H_SPR_SCR2, /* scr2_regnum */
374 H_SPR_SCR3, /* scr3_regnum */
375 H_SPR_LR, /* lr_regnum */
376 H_SPR_LCR, /* lcr_regnum */
377 H_SPR_IACC0H, /* iacc0h_regnum */
378 H_SPR_IACC0L, /* iacc0l_regnum */
379 H_SPR_FSR0, /* fsr0_regnum */
380 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
381 -1, /* acc0_regnum */
382 -1, /* acc1_regnum */
383 -1, /* acc2_regnum */
384 -1, /* acc3_regnum */
385 -1, /* acc4_regnum */
386 -1, /* acc5_regnum */
387 -1, /* acc6_regnum */
388 -1, /* acc7_regnum */
389 -1, /* acc0123_regnum */
390 -1, /* acc4567_regnum */
391 H_SPR_MSR0, /* msr0_regnum */
392 H_SPR_MSR1, /* msr1_regnum */
393 H_SPR_GNER0, /* gner0_regnum */
394 H_SPR_GNER1, /* gner1_regnum */
395 H_SPR_FNER0, /* fner0_regnum */
396 H_SPR_FNER1, /* fner1_regnum */
397 };
398
399 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
400
401 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
402 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
403 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
404 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
405 else if (pc_regnum == reg)
406 return SIM_FRV_PC_REGNUM;
407 else if (reg >= first_spr_regnum
408 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
409 {
410 int spr_reg_offset = spr_map[reg - first_spr_regnum];
411
412 if (spr_reg_offset < 0)
413 return SIM_REGNO_DOES_NOT_EXIST;
414 else
415 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
416 }
417
418 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
419 }
420
421 static const unsigned char *
422 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
423 {
424 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
425 *lenp = sizeof (breakpoint);
426 return breakpoint;
427 }
428
429 /* Define the maximum number of instructions which may be packed into a
430 bundle (VLIW instruction). */
431 static const int max_instrs_per_bundle = 8;
432
433 /* Define the size (in bytes) of an FR-V instruction. */
434 static const int frv_instr_size = 4;
435
436 /* Adjust a breakpoint's address to account for the FR-V architecture's
437 constraint that a break instruction must not appear as any but the
438 first instruction in the bundle. */
439 static CORE_ADDR
440 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
441 {
442 int count = max_instrs_per_bundle;
443 CORE_ADDR addr = bpaddr - frv_instr_size;
444 CORE_ADDR func_start = get_pc_function_start (bpaddr);
445
446 /* Find the end of the previous packing sequence. This will be indicated
447 by either attempting to access some inaccessible memory or by finding
448 an instruction word whose packing bit is set to one. */
449 while (count-- > 0 && addr >= func_start)
450 {
451 char instr[frv_instr_size];
452 int status;
453
454 status = read_memory_nobpt (addr, instr, sizeof instr);
455
456 if (status != 0)
457 break;
458
459 /* This is a big endian architecture, so byte zero will have most
460 significant byte. The most significant bit of this byte is the
461 packing bit. */
462 if (instr[0] & 0x80)
463 break;
464
465 addr -= frv_instr_size;
466 }
467
468 if (count > 0)
469 bpaddr = addr + frv_instr_size;
470
471 return bpaddr;
472 }
473
474
475 /* Return true if REG is a caller-saves ("scratch") register,
476 false otherwise. */
477 static int
478 is_caller_saves_reg (int reg)
479 {
480 return ((4 <= reg && reg <= 7)
481 || (14 <= reg && reg <= 15)
482 || (32 <= reg && reg <= 47));
483 }
484
485
486 /* Return true if REG is a callee-saves register, false otherwise. */
487 static int
488 is_callee_saves_reg (int reg)
489 {
490 return ((16 <= reg && reg <= 31)
491 || (48 <= reg && reg <= 63));
492 }
493
494
495 /* Return true if REG is an argument register, false otherwise. */
496 static int
497 is_argument_reg (int reg)
498 {
499 return (8 <= reg && reg <= 13);
500 }
501
502 /* Scan an FR-V prologue, starting at PC, until frame->PC.
503 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
504 We assume FRAME's saved_regs array has already been allocated and cleared.
505 Return the first PC value after the prologue.
506
507 Note that, for unoptimized code, we almost don't need this function
508 at all; all arguments and locals live on the stack, so we just need
509 the FP to find everything. The catch: structures passed by value
510 have their addresses living in registers; they're never spilled to
511 the stack. So if you ever want to be able to get to these
512 arguments in any frame but the top, you'll need to do this serious
513 prologue analysis. */
514 static CORE_ADDR
515 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
516 struct frv_unwind_cache *info)
517 {
518 /* When writing out instruction bitpatterns, we use the following
519 letters to label instruction fields:
520 P - The parallel bit. We don't use this.
521 J - The register number of GRj in the instruction description.
522 K - The register number of GRk in the instruction description.
523 I - The register number of GRi.
524 S - a signed imediate offset.
525 U - an unsigned immediate offset.
526
527 The dots below the numbers indicate where hex digit boundaries
528 fall, to make it easier to check the numbers. */
529
530 /* Non-zero iff we've seen the instruction that initializes the
531 frame pointer for this function's frame. */
532 int fp_set = 0;
533
534 /* If fp_set is non_zero, then this is the distance from
535 the stack pointer to frame pointer: fp = sp + fp_offset. */
536 int fp_offset = 0;
537
538 /* Total size of frame prior to any alloca operations. */
539 int framesize = 0;
540
541 /* Flag indicating if lr has been saved on the stack. */
542 int lr_saved_on_stack = 0;
543
544 /* The number of the general-purpose register we saved the return
545 address ("link register") in, or -1 if we haven't moved it yet. */
546 int lr_save_reg = -1;
547
548 /* Offset (from sp) at which lr has been saved on the stack. */
549
550 int lr_sp_offset = 0;
551
552 /* If gr_saved[i] is non-zero, then we've noticed that general
553 register i has been saved at gr_sp_offset[i] from the stack
554 pointer. */
555 char gr_saved[64];
556 int gr_sp_offset[64];
557
558 /* The address of the most recently scanned prologue instruction. */
559 CORE_ADDR last_prologue_pc;
560
561 /* The address of the next instruction. */
562 CORE_ADDR next_pc;
563
564 /* The upper bound to of the pc values to scan. */
565 CORE_ADDR lim_pc;
566
567 memset (gr_saved, 0, sizeof (gr_saved));
568
569 last_prologue_pc = pc;
570
571 /* Try to compute an upper limit (on how far to scan) based on the
572 line number info. */
573 lim_pc = skip_prologue_using_sal (pc);
574 /* If there's no line number info, lim_pc will be 0. In that case,
575 set the limit to be 100 instructions away from pc. Hopefully, this
576 will be far enough away to account for the entire prologue. Don't
577 worry about overshooting the end of the function. The scan loop
578 below contains some checks to avoid scanning unreasonably far. */
579 if (lim_pc == 0)
580 lim_pc = pc + 400;
581
582 /* If we have a frame, we don't want to scan past the frame's pc. This
583 will catch those cases where the pc is in the prologue. */
584 if (next_frame)
585 {
586 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
587 if (frame_pc < lim_pc)
588 lim_pc = frame_pc;
589 }
590
591 /* Scan the prologue. */
592 while (pc < lim_pc)
593 {
594 char buf[frv_instr_size];
595 LONGEST op;
596
597 if (target_read_memory (pc, buf, sizeof buf) != 0)
598 break;
599 op = extract_signed_integer (buf, sizeof buf);
600
601 next_pc = pc + 4;
602
603 /* The tests in this chain of ifs should be in order of
604 decreasing selectivity, so that more particular patterns get
605 to fire before less particular patterns. */
606
607 /* Some sort of control transfer instruction: stop scanning prologue.
608 Integer Conditional Branch:
609 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
610 Floating-point / media Conditional Branch:
611 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
612 LCR Conditional Branch to LR
613 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
614 Integer conditional Branches to LR
615 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
616 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
617 Floating-point/Media Branches to LR
618 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
619 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
620 Jump and Link
621 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
622 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
623 Call
624 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
625 Return from Trap
626 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
627 Integer Conditional Trap
628 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
629 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
630 Floating-point /media Conditional Trap
631 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
632 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
633 Break
634 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
635 Media Trap
636 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
637 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
638 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
639 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
640 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
641 {
642 /* Stop scanning; not in prologue any longer. */
643 break;
644 }
645
646 /* Loading something from memory into fp probably means that
647 we're in the epilogue. Stop scanning the prologue.
648 ld @(GRi, GRk), fp
649 X 000010 0000010 XXXXXX 000100 XXXXXX
650 ldi @(GRi, d12), fp
651 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
652 else if ((op & 0x7ffc0fc0) == 0x04080100
653 || (op & 0x7ffc0000) == 0x04c80000)
654 {
655 break;
656 }
657
658 /* Setting the FP from the SP:
659 ori sp, 0, fp
660 P 000010 0100010 000001 000000000000 = 0x04881000
661 0 111111 1111111 111111 111111111111 = 0x7fffffff
662 . . . . . . . .
663 We treat this as part of the prologue. */
664 else if ((op & 0x7fffffff) == 0x04881000)
665 {
666 fp_set = 1;
667 fp_offset = 0;
668 last_prologue_pc = next_pc;
669 }
670
671 /* Move the link register to the scratch register grJ, before saving:
672 movsg lr, grJ
673 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
674 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
675 . . . . . . . .
676 We treat this as part of the prologue. */
677 else if ((op & 0x7fffffc0) == 0x080d01c0)
678 {
679 int gr_j = op & 0x3f;
680
681 /* If we're moving it to a scratch register, that's fine. */
682 if (is_caller_saves_reg (gr_j))
683 {
684 lr_save_reg = gr_j;
685 last_prologue_pc = next_pc;
686 }
687 }
688
689 /* To save multiple callee-saves registers on the stack, at
690 offset zero:
691
692 std grK,@(sp,gr0)
693 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
694 0 000000 1111111 111111 111111 111111 = 0x01ffffff
695
696 stq grK,@(sp,gr0)
697 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
698 0 000000 1111111 111111 111111 111111 = 0x01ffffff
699 . . . . . . . .
700 We treat this as part of the prologue, and record the register's
701 saved address in the frame structure. */
702 else if ((op & 0x01ffffff) == 0x000c10c0
703 || (op & 0x01ffffff) == 0x000c1100)
704 {
705 int gr_k = ((op >> 25) & 0x3f);
706 int ope = ((op >> 6) & 0x3f);
707 int count;
708 int i;
709
710 /* Is it an std or an stq? */
711 if (ope == 0x03)
712 count = 2;
713 else
714 count = 4;
715
716 /* Is it really a callee-saves register? */
717 if (is_callee_saves_reg (gr_k))
718 {
719 for (i = 0; i < count; i++)
720 {
721 gr_saved[gr_k + i] = 1;
722 gr_sp_offset[gr_k + i] = 4 * i;
723 }
724 last_prologue_pc = next_pc;
725 }
726 }
727
728 /* Adjusting the stack pointer. (The stack pointer is GR1.)
729 addi sp, S, sp
730 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
731 0 111111 1111111 111111 000000000000 = 0x7ffff000
732 . . . . . . . .
733 We treat this as part of the prologue. */
734 else if ((op & 0x7ffff000) == 0x02401000)
735 {
736 if (framesize == 0)
737 {
738 /* Sign-extend the twelve-bit field.
739 (Isn't there a better way to do this?) */
740 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
741
742 framesize -= s;
743 last_prologue_pc = pc;
744 }
745 else
746 {
747 /* If the prologue is being adjusted again, we've
748 likely gone too far; i.e. we're probably in the
749 epilogue. */
750 break;
751 }
752 }
753
754 /* Setting the FP to a constant distance from the SP:
755 addi sp, S, fp
756 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
757 0 111111 1111111 111111 000000000000 = 0x7ffff000
758 . . . . . . . .
759 We treat this as part of the prologue. */
760 else if ((op & 0x7ffff000) == 0x04401000)
761 {
762 /* Sign-extend the twelve-bit field.
763 (Isn't there a better way to do this?) */
764 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
765 fp_set = 1;
766 fp_offset = s;
767 last_prologue_pc = pc;
768 }
769
770 /* To spill an argument register to a scratch register:
771 ori GRi, 0, GRk
772 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
773 0 000000 1111111 000000 111111111111 = 0x01fc0fff
774 . . . . . . . .
775 For the time being, we treat this as a prologue instruction,
776 assuming that GRi is an argument register. This one's kind
777 of suspicious, because it seems like it could be part of a
778 legitimate body instruction. But we only come here when the
779 source info wasn't helpful, so we have to do the best we can.
780 Hopefully once GCC and GDB agree on how to emit line number
781 info for prologues, then this code will never come into play. */
782 else if ((op & 0x01fc0fff) == 0x00880000)
783 {
784 int gr_i = ((op >> 12) & 0x3f);
785
786 /* Make sure that the source is an arg register; if it is, we'll
787 treat it as a prologue instruction. */
788 if (is_argument_reg (gr_i))
789 last_prologue_pc = next_pc;
790 }
791
792 /* To spill 16-bit values to the stack:
793 sthi GRk, @(fp, s)
794 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
795 0 000000 1111111 111111 000000000000 = 0x01fff000
796 . . . . . . . .
797 And for 8-bit values, we use STB instructions.
798 stbi GRk, @(fp, s)
799 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
801 . . . . . . . .
802 We check that GRk is really an argument register, and treat
803 all such as part of the prologue. */
804 else if ( (op & 0x01fff000) == 0x01442000
805 || (op & 0x01fff000) == 0x01402000)
806 {
807 int gr_k = ((op >> 25) & 0x3f);
808
809 /* Make sure that GRk is really an argument register; treat
810 it as a prologue instruction if so. */
811 if (is_argument_reg (gr_k))
812 last_prologue_pc = next_pc;
813 }
814
815 /* To save multiple callee-saves register on the stack, at a
816 non-zero offset:
817
818 stdi GRk, @(sp, s)
819 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
820 0 000000 1111111 111111 000000000000 = 0x01fff000
821 . . . . . . . .
822 stqi GRk, @(sp, s)
823 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
824 0 000000 1111111 111111 000000000000 = 0x01fff000
825 . . . . . . . .
826 We treat this as part of the prologue, and record the register's
827 saved address in the frame structure. */
828 else if ((op & 0x01fff000) == 0x014c1000
829 || (op & 0x01fff000) == 0x01501000)
830 {
831 int gr_k = ((op >> 25) & 0x3f);
832 int count;
833 int i;
834
835 /* Is it a stdi or a stqi? */
836 if ((op & 0x01fff000) == 0x014c1000)
837 count = 2;
838 else
839 count = 4;
840
841 /* Is it really a callee-saves register? */
842 if (is_callee_saves_reg (gr_k))
843 {
844 /* Sign-extend the twelve-bit field.
845 (Isn't there a better way to do this?) */
846 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
847
848 for (i = 0; i < count; i++)
849 {
850 gr_saved[gr_k + i] = 1;
851 gr_sp_offset[gr_k + i] = s + (4 * i);
852 }
853 last_prologue_pc = next_pc;
854 }
855 }
856
857 /* Storing any kind of integer register at any constant offset
858 from any other register.
859
860 st GRk, @(GRi, gr0)
861 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
862 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
863 . . . . . . . .
864 sti GRk, @(GRi, d12)
865 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
866 0 000000 1111111 000000 000000000000 = 0x01fc0000
867 . . . . . . . .
868 These could be almost anything, but a lot of prologue
869 instructions fall into this pattern, so let's decode the
870 instruction once, and then work at a higher level. */
871 else if (((op & 0x01fc0fff) == 0x000c0080)
872 || ((op & 0x01fc0000) == 0x01480000))
873 {
874 int gr_k = ((op >> 25) & 0x3f);
875 int gr_i = ((op >> 12) & 0x3f);
876 int offset;
877
878 /* Are we storing with gr0 as an offset, or using an
879 immediate value? */
880 if ((op & 0x01fc0fff) == 0x000c0080)
881 offset = 0;
882 else
883 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
884
885 /* If the address isn't relative to the SP or FP, it's not a
886 prologue instruction. */
887 if (gr_i != sp_regnum && gr_i != fp_regnum)
888 {
889 /* Do nothing; not a prologue instruction. */
890 }
891
892 /* Saving the old FP in the new frame (relative to the SP). */
893 else if (gr_k == fp_regnum && gr_i == sp_regnum)
894 {
895 gr_saved[fp_regnum] = 1;
896 gr_sp_offset[fp_regnum] = offset;
897 last_prologue_pc = next_pc;
898 }
899
900 /* Saving callee-saves register(s) on the stack, relative to
901 the SP. */
902 else if (gr_i == sp_regnum
903 && is_callee_saves_reg (gr_k))
904 {
905 gr_saved[gr_k] = 1;
906 if (gr_i == sp_regnum)
907 gr_sp_offset[gr_k] = offset;
908 else
909 gr_sp_offset[gr_k] = offset + fp_offset;
910 last_prologue_pc = next_pc;
911 }
912
913 /* Saving the scratch register holding the return address. */
914 else if (lr_save_reg != -1
915 && gr_k == lr_save_reg)
916 {
917 lr_saved_on_stack = 1;
918 if (gr_i == sp_regnum)
919 lr_sp_offset = offset;
920 else
921 lr_sp_offset = offset + fp_offset;
922 last_prologue_pc = next_pc;
923 }
924
925 /* Spilling int-sized arguments to the stack. */
926 else if (is_argument_reg (gr_k))
927 last_prologue_pc = next_pc;
928 }
929 pc = next_pc;
930 }
931
932 if (next_frame && info)
933 {
934 int i;
935 ULONGEST this_base;
936
937 /* If we know the relationship between the stack and frame
938 pointers, record the addresses of the registers we noticed.
939 Note that we have to do this as a separate step at the end,
940 because instructions may save relative to the SP, but we need
941 their addresses relative to the FP. */
942 if (fp_set)
943 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
944 else
945 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
946
947 for (i = 0; i < 64; i++)
948 if (gr_saved[i])
949 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
950
951 info->prev_sp = this_base - fp_offset + framesize;
952 info->base = this_base;
953
954 /* If LR was saved on the stack, record its location. */
955 if (lr_saved_on_stack)
956 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
957
958 /* The call instruction moves the caller's PC in the callee's LR.
959 Since this is an unwind, do the reverse. Copy the location of LR
960 into PC (the address / regnum) so that a request for PC will be
961 converted into a request for the LR. */
962 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
963
964 /* Save the previous frame's computed SP value. */
965 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
966 }
967
968 return last_prologue_pc;
969 }
970
971
972 static CORE_ADDR
973 frv_skip_prologue (CORE_ADDR pc)
974 {
975 CORE_ADDR func_addr, func_end, new_pc;
976
977 new_pc = pc;
978
979 /* If the line table has entry for a line *within* the function
980 (i.e., not in the prologue, and not past the end), then that's
981 our location. */
982 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
983 {
984 struct symtab_and_line sal;
985
986 sal = find_pc_line (func_addr, 0);
987
988 if (sal.line != 0 && sal.end < func_end)
989 {
990 new_pc = sal.end;
991 }
992 }
993
994 /* The FR-V prologue is at least five instructions long (twenty bytes).
995 If we didn't find a real source location past that, then
996 do a full analysis of the prologue. */
997 if (new_pc < pc + 20)
998 new_pc = frv_analyze_prologue (pc, 0, 0);
999
1000 return new_pc;
1001 }
1002
1003
1004 static struct frv_unwind_cache *
1005 frv_frame_unwind_cache (struct frame_info *next_frame,
1006 void **this_prologue_cache)
1007 {
1008 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1009 CORE_ADDR pc;
1010 ULONGEST this_base;
1011 struct frv_unwind_cache *info;
1012
1013 if ((*this_prologue_cache))
1014 return (*this_prologue_cache);
1015
1016 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1017 (*this_prologue_cache) = info;
1018 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1019
1020 /* Prologue analysis does the rest... */
1021 frv_analyze_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
1022 next_frame, info);
1023
1024 return info;
1025 }
1026
1027 static void
1028 frv_extract_return_value (struct type *type, struct regcache *regcache,
1029 gdb_byte *valbuf)
1030 {
1031 int len = TYPE_LENGTH (type);
1032
1033 if (len <= 4)
1034 {
1035 ULONGEST gpr8_val;
1036 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1037 store_unsigned_integer (valbuf, len, gpr8_val);
1038 }
1039 else if (len == 8)
1040 {
1041 ULONGEST regval;
1042 regcache_cooked_read_unsigned (regcache, 8, &regval);
1043 store_unsigned_integer (valbuf, 4, regval);
1044 regcache_cooked_read_unsigned (regcache, 9, &regval);
1045 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1046 }
1047 else
1048 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
1049 }
1050
1051 static CORE_ADDR
1052 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1053 {
1054 /* Require dword alignment. */
1055 return align_down (sp, 8);
1056 }
1057
1058 static CORE_ADDR
1059 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1060 {
1061 CORE_ADDR descr;
1062 char valbuf[4];
1063 CORE_ADDR start_addr;
1064
1065 /* If we can't find the function in the symbol table, then we assume
1066 that the function address is already in descriptor form. */
1067 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1068 || entry_point != start_addr)
1069 return entry_point;
1070
1071 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1072
1073 if (descr != 0)
1074 return descr;
1075
1076 /* Construct a non-canonical descriptor from space allocated on
1077 the stack. */
1078
1079 descr = value_as_long (value_allocate_space_in_inferior (8));
1080 store_unsigned_integer (valbuf, 4, entry_point);
1081 write_memory (descr, valbuf, 4);
1082 store_unsigned_integer (valbuf, 4,
1083 frv_fdpic_find_global_pointer (entry_point));
1084 write_memory (descr + 4, valbuf, 4);
1085 return descr;
1086 }
1087
1088 static CORE_ADDR
1089 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1090 struct target_ops *targ)
1091 {
1092 CORE_ADDR entry_point;
1093 CORE_ADDR got_address;
1094
1095 entry_point = get_target_memory_unsigned (targ, addr, 4);
1096 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1097
1098 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1099 return entry_point;
1100 else
1101 return addr;
1102 }
1103
1104 static CORE_ADDR
1105 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1106 struct regcache *regcache, CORE_ADDR bp_addr,
1107 int nargs, struct value **args, CORE_ADDR sp,
1108 int struct_return, CORE_ADDR struct_addr)
1109 {
1110 int argreg;
1111 int argnum;
1112 char *val;
1113 char valbuf[4];
1114 struct value *arg;
1115 struct type *arg_type;
1116 int len;
1117 enum type_code typecode;
1118 CORE_ADDR regval;
1119 int stack_space;
1120 int stack_offset;
1121 enum frv_abi abi = frv_abi (gdbarch);
1122 CORE_ADDR func_addr = find_function_addr (function, NULL);
1123
1124 #if 0
1125 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1126 nargs, (int) sp, struct_return, struct_addr);
1127 #endif
1128
1129 stack_space = 0;
1130 for (argnum = 0; argnum < nargs; ++argnum)
1131 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1132
1133 stack_space -= (6 * 4);
1134 if (stack_space > 0)
1135 sp -= stack_space;
1136
1137 /* Make sure stack is dword aligned. */
1138 sp = align_down (sp, 8);
1139
1140 stack_offset = 0;
1141
1142 argreg = 8;
1143
1144 if (struct_return)
1145 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1146 struct_addr);
1147
1148 for (argnum = 0; argnum < nargs; ++argnum)
1149 {
1150 arg = args[argnum];
1151 arg_type = check_typedef (value_type (arg));
1152 len = TYPE_LENGTH (arg_type);
1153 typecode = TYPE_CODE (arg_type);
1154
1155 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1156 {
1157 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1158 typecode = TYPE_CODE_PTR;
1159 len = 4;
1160 val = valbuf;
1161 }
1162 else if (abi == FRV_ABI_FDPIC
1163 && len == 4
1164 && typecode == TYPE_CODE_PTR
1165 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1166 {
1167 /* The FDPIC ABI requires function descriptors to be passed instead
1168 of entry points. */
1169 store_unsigned_integer
1170 (valbuf, 4,
1171 find_func_descr (gdbarch,
1172 extract_unsigned_integer (value_contents (arg),
1173 4)));
1174 typecode = TYPE_CODE_PTR;
1175 len = 4;
1176 val = valbuf;
1177 }
1178 else
1179 {
1180 val = (char *) value_contents (arg);
1181 }
1182
1183 while (len > 0)
1184 {
1185 int partial_len = (len < 4 ? len : 4);
1186
1187 if (argreg < 14)
1188 {
1189 regval = extract_unsigned_integer (val, partial_len);
1190 #if 0
1191 printf(" Argnum %d data %x -> reg %d\n",
1192 argnum, (int) regval, argreg);
1193 #endif
1194 regcache_cooked_write_unsigned (regcache, argreg, regval);
1195 ++argreg;
1196 }
1197 else
1198 {
1199 #if 0
1200 printf(" Argnum %d data %x -> offset %d (%x)\n",
1201 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1202 #endif
1203 write_memory (sp + stack_offset, val, partial_len);
1204 stack_offset += align_up (partial_len, 4);
1205 }
1206 len -= partial_len;
1207 val += partial_len;
1208 }
1209 }
1210
1211 /* Set the return address. For the frv, the return breakpoint is
1212 always at BP_ADDR. */
1213 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1214
1215 if (abi == FRV_ABI_FDPIC)
1216 {
1217 /* Set the GOT register for the FDPIC ABI. */
1218 regcache_cooked_write_unsigned
1219 (regcache, first_gpr_regnum + 15,
1220 frv_fdpic_find_global_pointer (func_addr));
1221 }
1222
1223 /* Finally, update the SP register. */
1224 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1225
1226 return sp;
1227 }
1228
1229 static void
1230 frv_store_return_value (struct type *type, struct regcache *regcache,
1231 const gdb_byte *valbuf)
1232 {
1233 int len = TYPE_LENGTH (type);
1234
1235 if (len <= 4)
1236 {
1237 bfd_byte val[4];
1238 memset (val, 0, sizeof (val));
1239 memcpy (val + (4 - len), valbuf, len);
1240 regcache_cooked_write (regcache, 8, val);
1241 }
1242 else if (len == 8)
1243 {
1244 regcache_cooked_write (regcache, 8, valbuf);
1245 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1246 }
1247 else
1248 internal_error (__FILE__, __LINE__,
1249 _("Don't know how to return a %d-byte value."), len);
1250 }
1251
1252
1253 /* Hardware watchpoint / breakpoint support for the FR500
1254 and FR400. */
1255
1256 int
1257 frv_check_watch_resources (int type, int cnt, int ot)
1258 {
1259 struct gdbarch_tdep *var = CURRENT_VARIANT;
1260
1261 /* Watchpoints not supported on simulator. */
1262 if (strcmp (target_shortname, "sim") == 0)
1263 return 0;
1264
1265 if (type == bp_hardware_breakpoint)
1266 {
1267 if (var->num_hw_breakpoints == 0)
1268 return 0;
1269 else if (cnt <= var->num_hw_breakpoints)
1270 return 1;
1271 }
1272 else
1273 {
1274 if (var->num_hw_watchpoints == 0)
1275 return 0;
1276 else if (ot)
1277 return -1;
1278 else if (cnt <= var->num_hw_watchpoints)
1279 return 1;
1280 }
1281 return -1;
1282 }
1283
1284
1285 int
1286 frv_stopped_data_address (CORE_ADDR *addr_p)
1287 {
1288 struct frame_info *frame = get_current_frame ();
1289 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1290
1291 brr = get_frame_register_unsigned (frame, brr_regnum);
1292 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1293 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1294 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1295 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
1296
1297 if (brr & (1<<11))
1298 *addr_p = dbar0;
1299 else if (brr & (1<<10))
1300 *addr_p = dbar1;
1301 else if (brr & (1<<9))
1302 *addr_p = dbar2;
1303 else if (brr & (1<<8))
1304 *addr_p = dbar3;
1305 else
1306 return 0;
1307
1308 return 1;
1309 }
1310
1311 int
1312 frv_have_stopped_data_address (void)
1313 {
1314 CORE_ADDR addr = 0;
1315 return frv_stopped_data_address (&addr);
1316 }
1317
1318 static CORE_ADDR
1319 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1320 {
1321 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1322 }
1323
1324 /* Given a GDB frame, determine the address of the calling function's
1325 frame. This will be used to create a new GDB frame struct. */
1326
1327 static void
1328 frv_frame_this_id (struct frame_info *next_frame,
1329 void **this_prologue_cache, struct frame_id *this_id)
1330 {
1331 struct frv_unwind_cache *info
1332 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1333 CORE_ADDR base;
1334 CORE_ADDR func;
1335 struct minimal_symbol *msym_stack;
1336 struct frame_id id;
1337
1338 /* The FUNC is easy. */
1339 func = frame_func_unwind (next_frame, NORMAL_FRAME);
1340
1341 /* Check if the stack is empty. */
1342 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1343 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1344 return;
1345
1346 /* Hopefully the prologue analysis either correctly determined the
1347 frame's base (which is the SP from the previous frame), or set
1348 that base to "NULL". */
1349 base = info->prev_sp;
1350 if (base == 0)
1351 return;
1352
1353 id = frame_id_build (base, func);
1354 (*this_id) = id;
1355 }
1356
1357 static void
1358 frv_frame_prev_register (struct frame_info *next_frame,
1359 void **this_prologue_cache,
1360 int regnum, int *optimizedp,
1361 enum lval_type *lvalp, CORE_ADDR *addrp,
1362 int *realnump, gdb_byte *bufferp)
1363 {
1364 struct frv_unwind_cache *info
1365 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1366 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1367 optimizedp, lvalp, addrp, realnump, bufferp);
1368 }
1369
1370 static const struct frame_unwind frv_frame_unwind = {
1371 NORMAL_FRAME,
1372 frv_frame_this_id,
1373 frv_frame_prev_register
1374 };
1375
1376 static const struct frame_unwind *
1377 frv_frame_sniffer (struct frame_info *next_frame)
1378 {
1379 return &frv_frame_unwind;
1380 }
1381
1382 static CORE_ADDR
1383 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1384 {
1385 struct frv_unwind_cache *info
1386 = frv_frame_unwind_cache (next_frame, this_cache);
1387 return info->base;
1388 }
1389
1390 static const struct frame_base frv_frame_base = {
1391 &frv_frame_unwind,
1392 frv_frame_base_address,
1393 frv_frame_base_address,
1394 frv_frame_base_address
1395 };
1396
1397 static CORE_ADDR
1398 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1399 {
1400 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1401 }
1402
1403
1404 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1405 dummy frame. The frame ID's base needs to match the TOS value
1406 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1407 breakpoint. */
1408
1409 static struct frame_id
1410 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1411 {
1412 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1413 frame_pc_unwind (next_frame));
1414 }
1415
1416 static struct gdbarch *
1417 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1418 {
1419 struct gdbarch *gdbarch;
1420 struct gdbarch_tdep *var;
1421 int elf_flags = 0;
1422
1423 /* Check to see if we've already built an appropriate architecture
1424 object for this executable. */
1425 arches = gdbarch_list_lookup_by_info (arches, &info);
1426 if (arches)
1427 return arches->gdbarch;
1428
1429 /* Select the right tdep structure for this variant. */
1430 var = new_variant ();
1431 switch (info.bfd_arch_info->mach)
1432 {
1433 case bfd_mach_frv:
1434 case bfd_mach_frvsimple:
1435 case bfd_mach_fr500:
1436 case bfd_mach_frvtomcat:
1437 case bfd_mach_fr550:
1438 set_variant_num_gprs (var, 64);
1439 set_variant_num_fprs (var, 64);
1440 break;
1441
1442 case bfd_mach_fr400:
1443 case bfd_mach_fr450:
1444 set_variant_num_gprs (var, 32);
1445 set_variant_num_fprs (var, 32);
1446 break;
1447
1448 default:
1449 /* Never heard of this variant. */
1450 return 0;
1451 }
1452
1453 /* Extract the ELF flags, if available. */
1454 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1455 elf_flags = elf_elfheader (info.abfd)->e_flags;
1456
1457 if (elf_flags & EF_FRV_FDPIC)
1458 set_variant_abi_fdpic (var);
1459
1460 if (elf_flags & EF_FRV_CPU_FR450)
1461 set_variant_scratch_registers (var);
1462
1463 gdbarch = gdbarch_alloc (&info, var);
1464
1465 set_gdbarch_short_bit (gdbarch, 16);
1466 set_gdbarch_int_bit (gdbarch, 32);
1467 set_gdbarch_long_bit (gdbarch, 32);
1468 set_gdbarch_long_long_bit (gdbarch, 64);
1469 set_gdbarch_float_bit (gdbarch, 32);
1470 set_gdbarch_double_bit (gdbarch, 64);
1471 set_gdbarch_long_double_bit (gdbarch, 64);
1472 set_gdbarch_ptr_bit (gdbarch, 32);
1473
1474 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1475 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1476
1477 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1478 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1479 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1480
1481 set_gdbarch_register_name (gdbarch, frv_register_name);
1482 set_gdbarch_register_type (gdbarch, frv_register_type);
1483 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1484
1485 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1486 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1487
1488 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1489 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1490 set_gdbarch_adjust_breakpoint_address
1491 (gdbarch, frv_adjust_breakpoint_address);
1492
1493 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
1494 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1495
1496 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1497
1498 /* Frame stuff. */
1499 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1500 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1501 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1502 frame_base_set_default (gdbarch, &frv_frame_base);
1503 /* We set the sniffer lower down after the OSABI hooks have been
1504 established. */
1505
1506 /* Settings for calling functions in the inferior. */
1507 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1508 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1509
1510 /* Settings that should be unnecessary. */
1511 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1512
1513 /* Hardware watchpoint / breakpoint support. */
1514 switch (info.bfd_arch_info->mach)
1515 {
1516 case bfd_mach_frv:
1517 case bfd_mach_frvsimple:
1518 case bfd_mach_fr500:
1519 case bfd_mach_frvtomcat:
1520 /* fr500-style hardware debugging support. */
1521 var->num_hw_watchpoints = 4;
1522 var->num_hw_breakpoints = 4;
1523 break;
1524
1525 case bfd_mach_fr400:
1526 case bfd_mach_fr450:
1527 /* fr400-style hardware debugging support. */
1528 var->num_hw_watchpoints = 2;
1529 var->num_hw_breakpoints = 4;
1530 break;
1531
1532 default:
1533 /* Otherwise, assume we don't have hardware debugging support. */
1534 var->num_hw_watchpoints = 0;
1535 var->num_hw_breakpoints = 0;
1536 break;
1537 }
1538
1539 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1540 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1541 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1542 frv_convert_from_func_ptr_addr);
1543
1544 /* Hook in ABI-specific overrides, if they have been registered. */
1545 gdbarch_init_osabi (info, gdbarch);
1546
1547 /* Set the fallback (prologue based) frame sniffer. */
1548 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1549
1550 /* Enable TLS support. */
1551 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1552 frv_fetch_objfile_link_map);
1553
1554 return gdbarch;
1555 }
1556
1557 void
1558 _initialize_frv_tdep (void)
1559 {
1560 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1561 }
This page took 0.075692 seconds and 4 git commands to generate.