5cb038fb3ea8bd5c3ab3bdc4da2a77f78ea1e4f9
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/frv.h"
39 #include "osabi.h"
40 #include "frv-tdep.h"
41
42 extern void _initialize_frv_tdep (void);
43
44 static gdbarch_init_ftype frv_gdbarch_init;
45
46 static gdbarch_register_name_ftype frv_register_name;
47 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
48 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
49 static gdbarch_skip_prologue_ftype frv_skip_prologue;
50
51
52 struct frv_unwind_cache /* was struct frame_extra_info */
53 {
54 /* The previous frame's inner-most stack address. Used as this
55 frame ID's stack_addr. */
56 CORE_ADDR prev_sp;
57
58 /* The frame's base, optionally used by the high-level debug info. */
59 CORE_ADDR base;
60
61 /* Table indicating the location of each and every register. */
62 struct trad_frame_saved_reg *saved_regs;
63 };
64
65 /* A structure describing a particular variant of the FRV.
66 We allocate and initialize one of these structures when we create
67 the gdbarch object for a variant.
68
69 At the moment, all the FR variants we support differ only in which
70 registers are present; the portable code of GDB knows that
71 registers whose names are the empty string don't exist, so the
72 `register_names' array captures all the per-variant information we
73 need.
74
75 in the future, if we need to have per-variant maps for raw size,
76 virtual type, etc., we should replace register_names with an array
77 of structures, each of which gives all the necessary info for one
78 register. Don't stick parallel arrays in here --- that's so
79 Fortran. */
80 struct gdbarch_tdep
81 {
82 /* Which ABI is in use? */
83 enum frv_abi frv_abi;
84
85 /* How many general-purpose registers does this variant have? */
86 int num_gprs;
87
88 /* How many floating-point registers does this variant have? */
89 int num_fprs;
90
91 /* How many hardware watchpoints can it support? */
92 int num_hw_watchpoints;
93
94 /* How many hardware breakpoints can it support? */
95 int num_hw_breakpoints;
96
97 /* Register names. */
98 char **register_names;
99 };
100
101 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
102
103 /* Return the FR-V ABI associated with GDBARCH. */
104 enum frv_abi
105 frv_abi (struct gdbarch *gdbarch)
106 {
107 return gdbarch_tdep (gdbarch)->frv_abi;
108 }
109
110 /* Fetch the interpreter and executable loadmap addresses (for shared
111 library support) for the FDPIC ABI. Return 0 if successful, -1 if
112 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
113 int
114 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
115 CORE_ADDR *exec_addr)
116 {
117 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
118 return -1;
119 else
120 {
121 if (interp_addr != NULL)
122 {
123 ULONGEST val;
124 regcache_cooked_read_unsigned (current_regcache,
125 fdpic_loadmap_interp_regnum, &val);
126 *interp_addr = val;
127 }
128 if (exec_addr != NULL)
129 {
130 ULONGEST val;
131 regcache_cooked_read_unsigned (current_regcache,
132 fdpic_loadmap_exec_regnum, &val);
133 *exec_addr = val;
134 }
135 return 0;
136 }
137 }
138
139 /* Allocate a new variant structure, and set up default values for all
140 the fields. */
141 static struct gdbarch_tdep *
142 new_variant (void)
143 {
144 struct gdbarch_tdep *var;
145 int r;
146 char buf[20];
147
148 var = xmalloc (sizeof (*var));
149 memset (var, 0, sizeof (*var));
150
151 var->frv_abi = FRV_ABI_EABI;
152 var->num_gprs = 64;
153 var->num_fprs = 64;
154 var->num_hw_watchpoints = 0;
155 var->num_hw_breakpoints = 0;
156
157 /* By default, don't supply any general-purpose or floating-point
158 register names. */
159 var->register_names
160 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
161 * sizeof (char *));
162 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
163 var->register_names[r] = "";
164
165 /* Do, however, supply default names for the known special-purpose
166 registers. */
167
168 var->register_names[pc_regnum] = "pc";
169 var->register_names[lr_regnum] = "lr";
170 var->register_names[lcr_regnum] = "lcr";
171
172 var->register_names[psr_regnum] = "psr";
173 var->register_names[ccr_regnum] = "ccr";
174 var->register_names[cccr_regnum] = "cccr";
175 var->register_names[tbr_regnum] = "tbr";
176
177 /* Debug registers. */
178 var->register_names[brr_regnum] = "brr";
179 var->register_names[dbar0_regnum] = "dbar0";
180 var->register_names[dbar1_regnum] = "dbar1";
181 var->register_names[dbar2_regnum] = "dbar2";
182 var->register_names[dbar3_regnum] = "dbar3";
183
184 /* iacc0 (Only found on MB93405.) */
185 var->register_names[iacc0h_regnum] = "iacc0h";
186 var->register_names[iacc0l_regnum] = "iacc0l";
187 var->register_names[iacc0_regnum] = "iacc0";
188
189 return var;
190 }
191
192
193 /* Indicate that the variant VAR has NUM_GPRS general-purpose
194 registers, and fill in the names array appropriately. */
195 static void
196 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
197 {
198 int r;
199
200 var->num_gprs = num_gprs;
201
202 for (r = 0; r < num_gprs; ++r)
203 {
204 char buf[20];
205
206 sprintf (buf, "gr%d", r);
207 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
208 }
209 }
210
211
212 /* Indicate that the variant VAR has NUM_FPRS floating-point
213 registers, and fill in the names array appropriately. */
214 static void
215 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
216 {
217 int r;
218
219 var->num_fprs = num_fprs;
220
221 for (r = 0; r < num_fprs; ++r)
222 {
223 char buf[20];
224
225 sprintf (buf, "fr%d", r);
226 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
227 }
228 }
229
230 static void
231 set_variant_abi_fdpic (struct gdbarch_tdep *var)
232 {
233 var->frv_abi = FRV_ABI_FDPIC;
234 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
235 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
236 }
237
238 static void
239 set_variant_scratch_registers (struct gdbarch_tdep *var)
240 {
241 var->register_names[scr0_regnum] = xstrdup ("scr0");
242 var->register_names[scr1_regnum] = xstrdup ("scr1");
243 var->register_names[scr2_regnum] = xstrdup ("scr2");
244 var->register_names[scr3_regnum] = xstrdup ("scr3");
245 }
246
247 static const char *
248 frv_register_name (int reg)
249 {
250 if (reg < 0)
251 return "?toosmall?";
252 if (reg >= frv_num_regs + frv_num_pseudo_regs)
253 return "?toolarge?";
254
255 return CURRENT_VARIANT->register_names[reg];
256 }
257
258
259 static struct type *
260 frv_register_type (struct gdbarch *gdbarch, int reg)
261 {
262 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
263 return builtin_type_float;
264 else if (reg == iacc0_regnum)
265 return builtin_type_int64;
266 else
267 return builtin_type_int32;
268 }
269
270 static void
271 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
272 int reg, void *buffer)
273 {
274 if (reg == iacc0_regnum)
275 {
276 regcache_raw_read (regcache, iacc0h_regnum, buffer);
277 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
278 }
279 }
280
281 static void
282 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
283 int reg, const void *buffer)
284 {
285 if (reg == iacc0_regnum)
286 {
287 regcache_raw_write (regcache, iacc0h_regnum, buffer);
288 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
289 }
290 }
291
292 static int
293 frv_register_sim_regno (int reg)
294 {
295 static const int spr_map[] =
296 {
297 H_SPR_PSR, /* psr_regnum */
298 H_SPR_CCR, /* ccr_regnum */
299 H_SPR_CCCR, /* cccr_regnum */
300 -1, /* 132 */
301 -1, /* 133 */
302 -1, /* 134 */
303 H_SPR_TBR, /* tbr_regnum */
304 H_SPR_BRR, /* brr_regnum */
305 H_SPR_DBAR0, /* dbar0_regnum */
306 H_SPR_DBAR1, /* dbar1_regnum */
307 H_SPR_DBAR2, /* dbar2_regnum */
308 H_SPR_DBAR3, /* dbar3_regnum */
309 -1, /* 141 */
310 -1, /* 142 */
311 -1, /* 143 */
312 -1, /* 144 */
313 H_SPR_LR, /* lr_regnum */
314 H_SPR_LCR, /* lcr_regnum */
315 H_SPR_IACC0H, /* iacc0h_regnum */
316 H_SPR_IACC0L /* iacc0l_regnum */
317 };
318
319 gdb_assert (reg >= 0 && reg < NUM_REGS);
320
321 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
322 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
323 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
324 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
325 else if (pc_regnum == reg)
326 return SIM_FRV_PC_REGNUM;
327 else if (reg >= first_spr_regnum
328 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
329 {
330 int spr_reg_offset = spr_map[reg - first_spr_regnum];
331
332 if (spr_reg_offset < 0)
333 return SIM_REGNO_DOES_NOT_EXIST;
334 else
335 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
336 }
337
338 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
339 }
340
341 static const unsigned char *
342 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
343 {
344 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
345 *lenp = sizeof (breakpoint);
346 return breakpoint;
347 }
348
349 /* Define the maximum number of instructions which may be packed into a
350 bundle (VLIW instruction). */
351 static const int max_instrs_per_bundle = 8;
352
353 /* Define the size (in bytes) of an FR-V instruction. */
354 static const int frv_instr_size = 4;
355
356 /* Adjust a breakpoint's address to account for the FR-V architecture's
357 constraint that a break instruction must not appear as any but the
358 first instruction in the bundle. */
359 static CORE_ADDR
360 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
361 {
362 int count = max_instrs_per_bundle;
363 CORE_ADDR addr = bpaddr - frv_instr_size;
364 CORE_ADDR func_start = get_pc_function_start (bpaddr);
365
366 /* Find the end of the previous packing sequence. This will be indicated
367 by either attempting to access some inaccessible memory or by finding
368 an instruction word whose packing bit is set to one. */
369 while (count-- > 0 && addr >= func_start)
370 {
371 char instr[frv_instr_size];
372 int status;
373
374 status = read_memory_nobpt (addr, instr, sizeof instr);
375
376 if (status != 0)
377 break;
378
379 /* This is a big endian architecture, so byte zero will have most
380 significant byte. The most significant bit of this byte is the
381 packing bit. */
382 if (instr[0] & 0x80)
383 break;
384
385 addr -= frv_instr_size;
386 }
387
388 if (count > 0)
389 bpaddr = addr + frv_instr_size;
390
391 return bpaddr;
392 }
393
394
395 /* Return true if REG is a caller-saves ("scratch") register,
396 false otherwise. */
397 static int
398 is_caller_saves_reg (int reg)
399 {
400 return ((4 <= reg && reg <= 7)
401 || (14 <= reg && reg <= 15)
402 || (32 <= reg && reg <= 47));
403 }
404
405
406 /* Return true if REG is a callee-saves register, false otherwise. */
407 static int
408 is_callee_saves_reg (int reg)
409 {
410 return ((16 <= reg && reg <= 31)
411 || (48 <= reg && reg <= 63));
412 }
413
414
415 /* Return true if REG is an argument register, false otherwise. */
416 static int
417 is_argument_reg (int reg)
418 {
419 return (8 <= reg && reg <= 13);
420 }
421
422 /* Scan an FR-V prologue, starting at PC, until frame->PC.
423 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
424 We assume FRAME's saved_regs array has already been allocated and cleared.
425 Return the first PC value after the prologue.
426
427 Note that, for unoptimized code, we almost don't need this function
428 at all; all arguments and locals live on the stack, so we just need
429 the FP to find everything. The catch: structures passed by value
430 have their addresses living in registers; they're never spilled to
431 the stack. So if you ever want to be able to get to these
432 arguments in any frame but the top, you'll need to do this serious
433 prologue analysis. */
434 static CORE_ADDR
435 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
436 struct frv_unwind_cache *info)
437 {
438 /* When writing out instruction bitpatterns, we use the following
439 letters to label instruction fields:
440 P - The parallel bit. We don't use this.
441 J - The register number of GRj in the instruction description.
442 K - The register number of GRk in the instruction description.
443 I - The register number of GRi.
444 S - a signed imediate offset.
445 U - an unsigned immediate offset.
446
447 The dots below the numbers indicate where hex digit boundaries
448 fall, to make it easier to check the numbers. */
449
450 /* Non-zero iff we've seen the instruction that initializes the
451 frame pointer for this function's frame. */
452 int fp_set = 0;
453
454 /* If fp_set is non_zero, then this is the distance from
455 the stack pointer to frame pointer: fp = sp + fp_offset. */
456 int fp_offset = 0;
457
458 /* Total size of frame prior to any alloca operations. */
459 int framesize = 0;
460
461 /* Flag indicating if lr has been saved on the stack. */
462 int lr_saved_on_stack = 0;
463
464 /* The number of the general-purpose register we saved the return
465 address ("link register") in, or -1 if we haven't moved it yet. */
466 int lr_save_reg = -1;
467
468 /* Offset (from sp) at which lr has been saved on the stack. */
469
470 int lr_sp_offset = 0;
471
472 /* If gr_saved[i] is non-zero, then we've noticed that general
473 register i has been saved at gr_sp_offset[i] from the stack
474 pointer. */
475 char gr_saved[64];
476 int gr_sp_offset[64];
477
478 /* The address of the most recently scanned prologue instruction. */
479 CORE_ADDR last_prologue_pc;
480
481 /* The address of the next instruction. */
482 CORE_ADDR next_pc;
483
484 /* The upper bound to of the pc values to scan. */
485 CORE_ADDR lim_pc;
486
487 memset (gr_saved, 0, sizeof (gr_saved));
488
489 last_prologue_pc = pc;
490
491 /* Try to compute an upper limit (on how far to scan) based on the
492 line number info. */
493 lim_pc = skip_prologue_using_sal (pc);
494 /* If there's no line number info, lim_pc will be 0. In that case,
495 set the limit to be 100 instructions away from pc. Hopefully, this
496 will be far enough away to account for the entire prologue. Don't
497 worry about overshooting the end of the function. The scan loop
498 below contains some checks to avoid scanning unreasonably far. */
499 if (lim_pc == 0)
500 lim_pc = pc + 400;
501
502 /* If we have a frame, we don't want to scan past the frame's pc. This
503 will catch those cases where the pc is in the prologue. */
504 if (next_frame)
505 {
506 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
507 if (frame_pc < lim_pc)
508 lim_pc = frame_pc;
509 }
510
511 /* Scan the prologue. */
512 while (pc < lim_pc)
513 {
514 LONGEST op = read_memory_integer (pc, 4);
515 next_pc = pc + 4;
516
517 /* The tests in this chain of ifs should be in order of
518 decreasing selectivity, so that more particular patterns get
519 to fire before less particular patterns. */
520
521 /* Some sort of control transfer instruction: stop scanning prologue.
522 Integer Conditional Branch:
523 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
524 Floating-point / media Conditional Branch:
525 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
526 LCR Conditional Branch to LR
527 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
528 Integer conditional Branches to LR
529 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
530 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
531 Floating-point/Media Branches to LR
532 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
533 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
534 Jump and Link
535 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
536 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
537 Call
538 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
539 Return from Trap
540 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
541 Integer Conditional Trap
542 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
543 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
544 Floating-point /media Conditional Trap
545 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
546 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
547 Break
548 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
549 Media Trap
550 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
551 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
552 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
553 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
554 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
555 {
556 /* Stop scanning; not in prologue any longer. */
557 break;
558 }
559
560 /* Loading something from memory into fp probably means that
561 we're in the epilogue. Stop scanning the prologue.
562 ld @(GRi, GRk), fp
563 X 000010 0000010 XXXXXX 000100 XXXXXX
564 ldi @(GRi, d12), fp
565 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
566 else if ((op & 0x7ffc0fc0) == 0x04080100
567 || (op & 0x7ffc0000) == 0x04c80000)
568 {
569 break;
570 }
571
572 /* Setting the FP from the SP:
573 ori sp, 0, fp
574 P 000010 0100010 000001 000000000000 = 0x04881000
575 0 111111 1111111 111111 111111111111 = 0x7fffffff
576 . . . . . . . .
577 We treat this as part of the prologue. */
578 else if ((op & 0x7fffffff) == 0x04881000)
579 {
580 fp_set = 1;
581 fp_offset = 0;
582 last_prologue_pc = next_pc;
583 }
584
585 /* Move the link register to the scratch register grJ, before saving:
586 movsg lr, grJ
587 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
588 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
589 . . . . . . . .
590 We treat this as part of the prologue. */
591 else if ((op & 0x7fffffc0) == 0x080d01c0)
592 {
593 int gr_j = op & 0x3f;
594
595 /* If we're moving it to a scratch register, that's fine. */
596 if (is_caller_saves_reg (gr_j))
597 {
598 lr_save_reg = gr_j;
599 last_prologue_pc = next_pc;
600 }
601 }
602
603 /* To save multiple callee-saves registers on the stack, at
604 offset zero:
605
606 std grK,@(sp,gr0)
607 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
608 0 000000 1111111 111111 111111 111111 = 0x01ffffff
609
610 stq grK,@(sp,gr0)
611 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
612 0 000000 1111111 111111 111111 111111 = 0x01ffffff
613 . . . . . . . .
614 We treat this as part of the prologue, and record the register's
615 saved address in the frame structure. */
616 else if ((op & 0x01ffffff) == 0x000c10c0
617 || (op & 0x01ffffff) == 0x000c1100)
618 {
619 int gr_k = ((op >> 25) & 0x3f);
620 int ope = ((op >> 6) & 0x3f);
621 int count;
622 int i;
623
624 /* Is it an std or an stq? */
625 if (ope == 0x03)
626 count = 2;
627 else
628 count = 4;
629
630 /* Is it really a callee-saves register? */
631 if (is_callee_saves_reg (gr_k))
632 {
633 for (i = 0; i < count; i++)
634 {
635 gr_saved[gr_k + i] = 1;
636 gr_sp_offset[gr_k + i] = 4 * i;
637 }
638 last_prologue_pc = next_pc;
639 }
640 }
641
642 /* Adjusting the stack pointer. (The stack pointer is GR1.)
643 addi sp, S, sp
644 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
645 0 111111 1111111 111111 000000000000 = 0x7ffff000
646 . . . . . . . .
647 We treat this as part of the prologue. */
648 else if ((op & 0x7ffff000) == 0x02401000)
649 {
650 if (framesize == 0)
651 {
652 /* Sign-extend the twelve-bit field.
653 (Isn't there a better way to do this?) */
654 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
655
656 framesize -= s;
657 last_prologue_pc = pc;
658 }
659 else
660 {
661 /* If the prologue is being adjusted again, we've
662 likely gone too far; i.e. we're probably in the
663 epilogue. */
664 break;
665 }
666 }
667
668 /* Setting the FP to a constant distance from the SP:
669 addi sp, S, fp
670 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
671 0 111111 1111111 111111 000000000000 = 0x7ffff000
672 . . . . . . . .
673 We treat this as part of the prologue. */
674 else if ((op & 0x7ffff000) == 0x04401000)
675 {
676 /* Sign-extend the twelve-bit field.
677 (Isn't there a better way to do this?) */
678 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
679 fp_set = 1;
680 fp_offset = s;
681 last_prologue_pc = pc;
682 }
683
684 /* To spill an argument register to a scratch register:
685 ori GRi, 0, GRk
686 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
687 0 000000 1111111 000000 111111111111 = 0x01fc0fff
688 . . . . . . . .
689 For the time being, we treat this as a prologue instruction,
690 assuming that GRi is an argument register. This one's kind
691 of suspicious, because it seems like it could be part of a
692 legitimate body instruction. But we only come here when the
693 source info wasn't helpful, so we have to do the best we can.
694 Hopefully once GCC and GDB agree on how to emit line number
695 info for prologues, then this code will never come into play. */
696 else if ((op & 0x01fc0fff) == 0x00880000)
697 {
698 int gr_i = ((op >> 12) & 0x3f);
699
700 /* Make sure that the source is an arg register; if it is, we'll
701 treat it as a prologue instruction. */
702 if (is_argument_reg (gr_i))
703 last_prologue_pc = next_pc;
704 }
705
706 /* To spill 16-bit values to the stack:
707 sthi GRk, @(fp, s)
708 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
709 0 000000 1111111 111111 000000000000 = 0x01fff000
710 . . . . . . . .
711 And for 8-bit values, we use STB instructions.
712 stbi GRk, @(fp, s)
713 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
714 0 000000 1111111 111111 000000000000 = 0x01fff000
715 . . . . . . . .
716 We check that GRk is really an argument register, and treat
717 all such as part of the prologue. */
718 else if ( (op & 0x01fff000) == 0x01442000
719 || (op & 0x01fff000) == 0x01402000)
720 {
721 int gr_k = ((op >> 25) & 0x3f);
722
723 /* Make sure that GRk is really an argument register; treat
724 it as a prologue instruction if so. */
725 if (is_argument_reg (gr_k))
726 last_prologue_pc = next_pc;
727 }
728
729 /* To save multiple callee-saves register on the stack, at a
730 non-zero offset:
731
732 stdi GRk, @(sp, s)
733 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
734 0 000000 1111111 111111 000000000000 = 0x01fff000
735 . . . . . . . .
736 stqi GRk, @(sp, s)
737 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
738 0 000000 1111111 111111 000000000000 = 0x01fff000
739 . . . . . . . .
740 We treat this as part of the prologue, and record the register's
741 saved address in the frame structure. */
742 else if ((op & 0x01fff000) == 0x014c1000
743 || (op & 0x01fff000) == 0x01501000)
744 {
745 int gr_k = ((op >> 25) & 0x3f);
746 int count;
747 int i;
748
749 /* Is it a stdi or a stqi? */
750 if ((op & 0x01fff000) == 0x014c1000)
751 count = 2;
752 else
753 count = 4;
754
755 /* Is it really a callee-saves register? */
756 if (is_callee_saves_reg (gr_k))
757 {
758 /* Sign-extend the twelve-bit field.
759 (Isn't there a better way to do this?) */
760 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
761
762 for (i = 0; i < count; i++)
763 {
764 gr_saved[gr_k + i] = 1;
765 gr_sp_offset[gr_k + i] = s + (4 * i);
766 }
767 last_prologue_pc = next_pc;
768 }
769 }
770
771 /* Storing any kind of integer register at any constant offset
772 from any other register.
773
774 st GRk, @(GRi, gr0)
775 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
776 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
777 . . . . . . . .
778 sti GRk, @(GRi, d12)
779 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
780 0 000000 1111111 000000 000000000000 = 0x01fc0000
781 . . . . . . . .
782 These could be almost anything, but a lot of prologue
783 instructions fall into this pattern, so let's decode the
784 instruction once, and then work at a higher level. */
785 else if (((op & 0x01fc0fff) == 0x000c0080)
786 || ((op & 0x01fc0000) == 0x01480000))
787 {
788 int gr_k = ((op >> 25) & 0x3f);
789 int gr_i = ((op >> 12) & 0x3f);
790 int offset;
791
792 /* Are we storing with gr0 as an offset, or using an
793 immediate value? */
794 if ((op & 0x01fc0fff) == 0x000c0080)
795 offset = 0;
796 else
797 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
798
799 /* If the address isn't relative to the SP or FP, it's not a
800 prologue instruction. */
801 if (gr_i != sp_regnum && gr_i != fp_regnum)
802 {
803 /* Do nothing; not a prologue instruction. */
804 }
805
806 /* Saving the old FP in the new frame (relative to the SP). */
807 else if (gr_k == fp_regnum && gr_i == sp_regnum)
808 {
809 gr_saved[fp_regnum] = 1;
810 gr_sp_offset[fp_regnum] = offset;
811 last_prologue_pc = next_pc;
812 }
813
814 /* Saving callee-saves register(s) on the stack, relative to
815 the SP. */
816 else if (gr_i == sp_regnum
817 && is_callee_saves_reg (gr_k))
818 {
819 gr_saved[gr_k] = 1;
820 if (gr_i == sp_regnum)
821 gr_sp_offset[gr_k] = offset;
822 else
823 gr_sp_offset[gr_k] = offset + fp_offset;
824 last_prologue_pc = next_pc;
825 }
826
827 /* Saving the scratch register holding the return address. */
828 else if (lr_save_reg != -1
829 && gr_k == lr_save_reg)
830 {
831 lr_saved_on_stack = 1;
832 if (gr_i == sp_regnum)
833 lr_sp_offset = offset;
834 else
835 lr_sp_offset = offset + fp_offset;
836 last_prologue_pc = next_pc;
837 }
838
839 /* Spilling int-sized arguments to the stack. */
840 else if (is_argument_reg (gr_k))
841 last_prologue_pc = next_pc;
842 }
843 pc = next_pc;
844 }
845
846 if (next_frame && info)
847 {
848 int i;
849 ULONGEST this_base;
850
851 /* If we know the relationship between the stack and frame
852 pointers, record the addresses of the registers we noticed.
853 Note that we have to do this as a separate step at the end,
854 because instructions may save relative to the SP, but we need
855 their addresses relative to the FP. */
856 if (fp_set)
857 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
858 else
859 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
860
861 for (i = 0; i < 64; i++)
862 if (gr_saved[i])
863 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
864
865 info->prev_sp = this_base - fp_offset + framesize;
866 info->base = this_base;
867
868 /* If LR was saved on the stack, record its location. */
869 if (lr_saved_on_stack)
870 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
871
872 /* The call instruction moves the caller's PC in the callee's LR.
873 Since this is an unwind, do the reverse. Copy the location of LR
874 into PC (the address / regnum) so that a request for PC will be
875 converted into a request for the LR. */
876 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
877
878 /* Save the previous frame's computed SP value. */
879 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
880 }
881
882 return last_prologue_pc;
883 }
884
885
886 static CORE_ADDR
887 frv_skip_prologue (CORE_ADDR pc)
888 {
889 CORE_ADDR func_addr, func_end, new_pc;
890
891 new_pc = pc;
892
893 /* If the line table has entry for a line *within* the function
894 (i.e., not in the prologue, and not past the end), then that's
895 our location. */
896 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
897 {
898 struct symtab_and_line sal;
899
900 sal = find_pc_line (func_addr, 0);
901
902 if (sal.line != 0 && sal.end < func_end)
903 {
904 new_pc = sal.end;
905 }
906 }
907
908 /* The FR-V prologue is at least five instructions long (twenty bytes).
909 If we didn't find a real source location past that, then
910 do a full analysis of the prologue. */
911 if (new_pc < pc + 20)
912 new_pc = frv_analyze_prologue (pc, 0, 0);
913
914 return new_pc;
915 }
916
917
918 static struct frv_unwind_cache *
919 frv_frame_unwind_cache (struct frame_info *next_frame,
920 void **this_prologue_cache)
921 {
922 struct gdbarch *gdbarch = get_frame_arch (next_frame);
923 CORE_ADDR pc;
924 ULONGEST this_base;
925 struct frv_unwind_cache *info;
926
927 if ((*this_prologue_cache))
928 return (*this_prologue_cache);
929
930 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
931 (*this_prologue_cache) = info;
932 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
933
934 /* Prologue analysis does the rest... */
935 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
936
937 return info;
938 }
939
940 static void
941 frv_extract_return_value (struct type *type, struct regcache *regcache,
942 void *valbuf)
943 {
944 int len = TYPE_LENGTH (type);
945
946 if (len <= 4)
947 {
948 ULONGEST gpr8_val;
949 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
950 store_unsigned_integer (valbuf, len, gpr8_val);
951 }
952 else if (len == 8)
953 {
954 ULONGEST regval;
955 regcache_cooked_read_unsigned (regcache, 8, &regval);
956 store_unsigned_integer (valbuf, 4, regval);
957 regcache_cooked_read_unsigned (regcache, 9, &regval);
958 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
959 }
960 else
961 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
962 }
963
964 static CORE_ADDR
965 frv_extract_struct_value_address (struct regcache *regcache)
966 {
967 ULONGEST addr;
968 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
969 return addr;
970 }
971
972 static void
973 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
974 {
975 write_register (struct_return_regnum, addr);
976 }
977
978 static int
979 frv_frameless_function_invocation (struct frame_info *frame)
980 {
981 return legacy_frameless_look_for_prologue (frame);
982 }
983
984 static CORE_ADDR
985 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
986 {
987 /* Require dword alignment. */
988 return align_down (sp, 8);
989 }
990
991 static CORE_ADDR
992 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
993 {
994 CORE_ADDR descr;
995 char valbuf[4];
996
997 descr = frv_fdpic_find_canonical_descriptor (entry_point);
998
999 if (descr != 0)
1000 return descr;
1001
1002 /* Construct a non-canonical descriptor from space allocated on
1003 the stack. */
1004
1005 descr = value_as_long (value_allocate_space_in_inferior (8));
1006 store_unsigned_integer (valbuf, 4, entry_point);
1007 write_memory (descr, valbuf, 4);
1008 store_unsigned_integer (valbuf, 4,
1009 frv_fdpic_find_global_pointer (entry_point));
1010 write_memory (descr + 4, valbuf, 4);
1011 return descr;
1012 }
1013
1014 static CORE_ADDR
1015 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1016 struct target_ops *targ)
1017 {
1018 CORE_ADDR entry_point;
1019 CORE_ADDR got_address;
1020
1021 entry_point = get_target_memory_unsigned (targ, addr, 4);
1022 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1023
1024 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1025 return entry_point;
1026 else
1027 return addr;
1028 }
1029
1030 static CORE_ADDR
1031 frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1032 struct regcache *regcache, CORE_ADDR bp_addr,
1033 int nargs, struct value **args, CORE_ADDR sp,
1034 int struct_return, CORE_ADDR struct_addr)
1035 {
1036 int argreg;
1037 int argnum;
1038 char *val;
1039 char valbuf[4];
1040 struct value *arg;
1041 struct type *arg_type;
1042 int len;
1043 enum type_code typecode;
1044 CORE_ADDR regval;
1045 int stack_space;
1046 int stack_offset;
1047 enum frv_abi abi = frv_abi (gdbarch);
1048
1049 #if 0
1050 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1051 nargs, (int) sp, struct_return, struct_addr);
1052 #endif
1053
1054 stack_space = 0;
1055 for (argnum = 0; argnum < nargs; ++argnum)
1056 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1057
1058 stack_space -= (6 * 4);
1059 if (stack_space > 0)
1060 sp -= stack_space;
1061
1062 /* Make sure stack is dword aligned. */
1063 sp = align_down (sp, 8);
1064
1065 stack_offset = 0;
1066
1067 argreg = 8;
1068
1069 if (struct_return)
1070 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1071 struct_addr);
1072
1073 for (argnum = 0; argnum < nargs; ++argnum)
1074 {
1075 arg = args[argnum];
1076 arg_type = check_typedef (VALUE_TYPE (arg));
1077 len = TYPE_LENGTH (arg_type);
1078 typecode = TYPE_CODE (arg_type);
1079
1080 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1081 {
1082 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1083 typecode = TYPE_CODE_PTR;
1084 len = 4;
1085 val = valbuf;
1086 }
1087 else if (abi == FRV_ABI_FDPIC
1088 && len == 4
1089 && typecode == TYPE_CODE_PTR
1090 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1091 {
1092 /* The FDPIC ABI requires function descriptors to be passed instead
1093 of entry points. */
1094 store_unsigned_integer
1095 (valbuf, 4,
1096 find_func_descr (gdbarch,
1097 extract_unsigned_integer (VALUE_CONTENTS (arg),
1098 4)));
1099 typecode = TYPE_CODE_PTR;
1100 len = 4;
1101 val = valbuf;
1102 }
1103 else
1104 {
1105 val = (char *) VALUE_CONTENTS (arg);
1106 }
1107
1108 while (len > 0)
1109 {
1110 int partial_len = (len < 4 ? len : 4);
1111
1112 if (argreg < 14)
1113 {
1114 regval = extract_unsigned_integer (val, partial_len);
1115 #if 0
1116 printf(" Argnum %d data %x -> reg %d\n",
1117 argnum, (int) regval, argreg);
1118 #endif
1119 regcache_cooked_write_unsigned (regcache, argreg, regval);
1120 ++argreg;
1121 }
1122 else
1123 {
1124 #if 0
1125 printf(" Argnum %d data %x -> offset %d (%x)\n",
1126 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1127 #endif
1128 write_memory (sp + stack_offset, val, partial_len);
1129 stack_offset += align_up (partial_len, 4);
1130 }
1131 len -= partial_len;
1132 val += partial_len;
1133 }
1134 }
1135
1136 /* Set the return address. For the frv, the return breakpoint is
1137 always at BP_ADDR. */
1138 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1139
1140 if (abi == FRV_ABI_FDPIC)
1141 {
1142 /* Set the GOT register for the FDPIC ABI. */
1143 regcache_cooked_write_unsigned
1144 (regcache, first_gpr_regnum + 15,
1145 frv_fdpic_find_global_pointer (func_addr));
1146 }
1147
1148 /* Finally, update the SP register. */
1149 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1150
1151 return sp;
1152 }
1153
1154 static void
1155 frv_store_return_value (struct type *type, struct regcache *regcache,
1156 const void *valbuf)
1157 {
1158 int len = TYPE_LENGTH (type);
1159
1160 if (len <= 4)
1161 {
1162 bfd_byte val[4];
1163 memset (val, 0, sizeof (val));
1164 memcpy (val + (4 - len), valbuf, len);
1165 regcache_cooked_write (regcache, 8, val);
1166 }
1167 else if (len == 8)
1168 {
1169 regcache_cooked_write (regcache, 8, valbuf);
1170 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1171 }
1172 else
1173 internal_error (__FILE__, __LINE__,
1174 "Don't know how to return a %d-byte value.", len);
1175 }
1176
1177
1178 /* Hardware watchpoint / breakpoint support for the FR500
1179 and FR400. */
1180
1181 int
1182 frv_check_watch_resources (int type, int cnt, int ot)
1183 {
1184 struct gdbarch_tdep *var = CURRENT_VARIANT;
1185
1186 /* Watchpoints not supported on simulator. */
1187 if (strcmp (target_shortname, "sim") == 0)
1188 return 0;
1189
1190 if (type == bp_hardware_breakpoint)
1191 {
1192 if (var->num_hw_breakpoints == 0)
1193 return 0;
1194 else if (cnt <= var->num_hw_breakpoints)
1195 return 1;
1196 }
1197 else
1198 {
1199 if (var->num_hw_watchpoints == 0)
1200 return 0;
1201 else if (ot)
1202 return -1;
1203 else if (cnt <= var->num_hw_watchpoints)
1204 return 1;
1205 }
1206 return -1;
1207 }
1208
1209
1210 CORE_ADDR
1211 frv_stopped_data_address (void)
1212 {
1213 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1214
1215 brr = read_register (brr_regnum);
1216 dbar0 = read_register (dbar0_regnum);
1217 dbar1 = read_register (dbar1_regnum);
1218 dbar2 = read_register (dbar2_regnum);
1219 dbar3 = read_register (dbar3_regnum);
1220
1221 if (brr & (1<<11))
1222 return dbar0;
1223 else if (brr & (1<<10))
1224 return dbar1;
1225 else if (brr & (1<<9))
1226 return dbar2;
1227 else if (brr & (1<<8))
1228 return dbar3;
1229 else
1230 return 0;
1231 }
1232
1233 static CORE_ADDR
1234 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1235 {
1236 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1237 }
1238
1239 /* Given a GDB frame, determine the address of the calling function's
1240 frame. This will be used to create a new GDB frame struct. */
1241
1242 static void
1243 frv_frame_this_id (struct frame_info *next_frame,
1244 void **this_prologue_cache, struct frame_id *this_id)
1245 {
1246 struct frv_unwind_cache *info
1247 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1248 CORE_ADDR base;
1249 CORE_ADDR func;
1250 struct minimal_symbol *msym_stack;
1251 struct frame_id id;
1252
1253 /* The FUNC is easy. */
1254 func = frame_func_unwind (next_frame);
1255
1256 /* Check if the stack is empty. */
1257 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1258 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1259 return;
1260
1261 /* Hopefully the prologue analysis either correctly determined the
1262 frame's base (which is the SP from the previous frame), or set
1263 that base to "NULL". */
1264 base = info->prev_sp;
1265 if (base == 0)
1266 return;
1267
1268 id = frame_id_build (base, func);
1269
1270 /* Check that we're not going round in circles with the same frame
1271 ID (but avoid applying the test to sentinel frames which do go
1272 round in circles). Can't use frame_id_eq() as that doesn't yet
1273 compare the frame's PC value. */
1274 if (frame_relative_level (next_frame) >= 0
1275 && get_frame_type (next_frame) != DUMMY_FRAME
1276 && frame_id_eq (get_frame_id (next_frame), id))
1277 return;
1278
1279 (*this_id) = id;
1280 }
1281
1282 static void
1283 frv_frame_prev_register (struct frame_info *next_frame,
1284 void **this_prologue_cache,
1285 int regnum, int *optimizedp,
1286 enum lval_type *lvalp, CORE_ADDR *addrp,
1287 int *realnump, void *bufferp)
1288 {
1289 struct frv_unwind_cache *info
1290 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1291 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1292 optimizedp, lvalp, addrp, realnump, bufferp);
1293 }
1294
1295 static const struct frame_unwind frv_frame_unwind = {
1296 NORMAL_FRAME,
1297 frv_frame_this_id,
1298 frv_frame_prev_register
1299 };
1300
1301 static const struct frame_unwind *
1302 frv_frame_sniffer (struct frame_info *next_frame)
1303 {
1304 return &frv_frame_unwind;
1305 }
1306
1307 static CORE_ADDR
1308 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1309 {
1310 struct frv_unwind_cache *info
1311 = frv_frame_unwind_cache (next_frame, this_cache);
1312 return info->base;
1313 }
1314
1315 static const struct frame_base frv_frame_base = {
1316 &frv_frame_unwind,
1317 frv_frame_base_address,
1318 frv_frame_base_address,
1319 frv_frame_base_address
1320 };
1321
1322 static CORE_ADDR
1323 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1324 {
1325 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1326 }
1327
1328
1329 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1330 dummy frame. The frame ID's base needs to match the TOS value
1331 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1332 breakpoint. */
1333
1334 static struct frame_id
1335 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1336 {
1337 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1338 frame_pc_unwind (next_frame));
1339 }
1340
1341
1342 static struct gdbarch *
1343 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1344 {
1345 struct gdbarch *gdbarch;
1346 struct gdbarch_tdep *var;
1347 int elf_flags = 0;
1348
1349 /* Check to see if we've already built an appropriate architecture
1350 object for this executable. */
1351 arches = gdbarch_list_lookup_by_info (arches, &info);
1352 if (arches)
1353 return arches->gdbarch;
1354
1355 /* Select the right tdep structure for this variant. */
1356 var = new_variant ();
1357 switch (info.bfd_arch_info->mach)
1358 {
1359 case bfd_mach_frv:
1360 case bfd_mach_frvsimple:
1361 case bfd_mach_fr500:
1362 case bfd_mach_frvtomcat:
1363 case bfd_mach_fr550:
1364 set_variant_num_gprs (var, 64);
1365 set_variant_num_fprs (var, 64);
1366 break;
1367
1368 case bfd_mach_fr400:
1369 case bfd_mach_fr450:
1370 set_variant_num_gprs (var, 32);
1371 set_variant_num_fprs (var, 32);
1372 break;
1373
1374 default:
1375 /* Never heard of this variant. */
1376 return 0;
1377 }
1378
1379 /* Extract the ELF flags, if available. */
1380 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1381 elf_flags = elf_elfheader (info.abfd)->e_flags;
1382
1383 if (elf_flags & EF_FRV_FDPIC)
1384 set_variant_abi_fdpic (var);
1385
1386 if (elf_flags & EF_FRV_CPU_FR450)
1387 set_variant_scratch_registers (var);
1388
1389 gdbarch = gdbarch_alloc (&info, var);
1390
1391 set_gdbarch_short_bit (gdbarch, 16);
1392 set_gdbarch_int_bit (gdbarch, 32);
1393 set_gdbarch_long_bit (gdbarch, 32);
1394 set_gdbarch_long_long_bit (gdbarch, 64);
1395 set_gdbarch_float_bit (gdbarch, 32);
1396 set_gdbarch_double_bit (gdbarch, 64);
1397 set_gdbarch_long_double_bit (gdbarch, 64);
1398 set_gdbarch_ptr_bit (gdbarch, 32);
1399
1400 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1401 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1402
1403 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1404 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1405 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1406
1407 set_gdbarch_register_name (gdbarch, frv_register_name);
1408 set_gdbarch_register_type (gdbarch, frv_register_type);
1409 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1410
1411 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1412 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1413
1414 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1415 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1416 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1417
1418 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1419
1420 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1421 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1422
1423 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1424 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1425 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1426
1427 /* Frame stuff. */
1428 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1429 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1430 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1431 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1432 frame_base_set_default (gdbarch, &frv_frame_base);
1433
1434 /* Settings for calling functions in the inferior. */
1435 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1436 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1437
1438 /* Settings that should be unnecessary. */
1439 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1440
1441 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1442
1443 set_gdbarch_remote_translate_xfer_address
1444 (gdbarch, generic_remote_translate_xfer_address);
1445
1446 /* Hardware watchpoint / breakpoint support. */
1447 switch (info.bfd_arch_info->mach)
1448 {
1449 case bfd_mach_frv:
1450 case bfd_mach_frvsimple:
1451 case bfd_mach_fr500:
1452 case bfd_mach_frvtomcat:
1453 /* fr500-style hardware debugging support. */
1454 var->num_hw_watchpoints = 4;
1455 var->num_hw_breakpoints = 4;
1456 break;
1457
1458 case bfd_mach_fr400:
1459 case bfd_mach_fr450:
1460 /* fr400-style hardware debugging support. */
1461 var->num_hw_watchpoints = 2;
1462 var->num_hw_breakpoints = 4;
1463 break;
1464
1465 default:
1466 /* Otherwise, assume we don't have hardware debugging support. */
1467 var->num_hw_watchpoints = 0;
1468 var->num_hw_breakpoints = 0;
1469 break;
1470 }
1471
1472 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1473 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1474 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1475 frv_convert_from_func_ptr_addr);
1476
1477 return gdbarch;
1478 }
1479
1480 void
1481 _initialize_frv_tdep (void)
1482 {
1483 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1484 }
This page took 0.122708 seconds and 4 git commands to generate.