621848e4d46c7890b717ff0d1fde8da359593ac9
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "arch-utils.h"
26 #include "regcache.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "dis-asm.h"
32 #include "gdb_assert.h"
33 #include "sim-regno.h"
34 #include "gdb/sim-frv.h"
35 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
36
37 extern void _initialize_frv_tdep (void);
38
39 static gdbarch_init_ftype frv_gdbarch_init;
40
41 static gdbarch_register_name_ftype frv_register_name;
42 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
43 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
44 static gdbarch_skip_prologue_ftype frv_skip_prologue;
45
46 /* Register numbers. The order in which these appear define the
47 remote protocol, so take care in changing them. */
48 enum {
49 /* Register numbers 0 -- 63 are always reserved for general-purpose
50 registers. The chip at hand may have less. */
51 first_gpr_regnum = 0,
52 sp_regnum = 1,
53 fp_regnum = 2,
54 struct_return_regnum = 3,
55 last_gpr_regnum = 63,
56
57 /* Register numbers 64 -- 127 are always reserved for floating-point
58 registers. The chip at hand may have less. */
59 first_fpr_regnum = 64,
60 last_fpr_regnum = 127,
61
62 /* The PC register. */
63 pc_regnum = 128,
64
65 /* Register numbers 129 on up are always reserved for special-purpose
66 registers. */
67 first_spr_regnum = 129,
68 psr_regnum = 129,
69 ccr_regnum = 130,
70 cccr_regnum = 131,
71 tbr_regnum = 135,
72 brr_regnum = 136,
73 dbar0_regnum = 137,
74 dbar1_regnum = 138,
75 dbar2_regnum = 139,
76 dbar3_regnum = 140,
77 lr_regnum = 145,
78 lcr_regnum = 146,
79 iacc0h_regnum = 147,
80 iacc0l_regnum = 148,
81 last_spr_regnum = 148,
82
83 /* The total number of registers we know exist. */
84 frv_num_regs = last_spr_regnum + 1,
85
86 /* Pseudo registers */
87 first_pseudo_regnum = frv_num_regs,
88
89 /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
90 iacc0_regnum = first_pseudo_regnum + 0,
91
92 last_pseudo_regnum = iacc0_regnum,
93 frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
94 };
95
96 static LONGEST frv_call_dummy_words[] =
97 {0};
98
99
100 struct frv_unwind_cache /* was struct frame_extra_info */
101 {
102 /* The previous frame's inner-most stack address. Used as this
103 frame ID's stack_addr. */
104 CORE_ADDR prev_sp;
105
106 /* The frame's base, optionally used by the high-level debug info. */
107 CORE_ADDR base;
108
109 /* Table indicating the location of each and every register. */
110 struct trad_frame_saved_reg *saved_regs;
111 };
112
113
114 /* A structure describing a particular variant of the FRV.
115 We allocate and initialize one of these structures when we create
116 the gdbarch object for a variant.
117
118 At the moment, all the FR variants we support differ only in which
119 registers are present; the portable code of GDB knows that
120 registers whose names are the empty string don't exist, so the
121 `register_names' array captures all the per-variant information we
122 need.
123
124 in the future, if we need to have per-variant maps for raw size,
125 virtual type, etc., we should replace register_names with an array
126 of structures, each of which gives all the necessary info for one
127 register. Don't stick parallel arrays in here --- that's so
128 Fortran. */
129 struct gdbarch_tdep
130 {
131 /* How many general-purpose registers does this variant have? */
132 int num_gprs;
133
134 /* How many floating-point registers does this variant have? */
135 int num_fprs;
136
137 /* How many hardware watchpoints can it support? */
138 int num_hw_watchpoints;
139
140 /* How many hardware breakpoints can it support? */
141 int num_hw_breakpoints;
142
143 /* Register names. */
144 char **register_names;
145 };
146
147 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
148
149
150 /* Allocate a new variant structure, and set up default values for all
151 the fields. */
152 static struct gdbarch_tdep *
153 new_variant (void)
154 {
155 struct gdbarch_tdep *var;
156 int r;
157 char buf[20];
158
159 var = xmalloc (sizeof (*var));
160 memset (var, 0, sizeof (*var));
161
162 var->num_gprs = 64;
163 var->num_fprs = 64;
164 var->num_hw_watchpoints = 0;
165 var->num_hw_breakpoints = 0;
166
167 /* By default, don't supply any general-purpose or floating-point
168 register names. */
169 var->register_names
170 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
171 * sizeof (char *));
172 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
173 var->register_names[r] = "";
174
175 /* Do, however, supply default names for the known special-purpose
176 registers. */
177
178 var->register_names[pc_regnum] = "pc";
179 var->register_names[lr_regnum] = "lr";
180 var->register_names[lcr_regnum] = "lcr";
181
182 var->register_names[psr_regnum] = "psr";
183 var->register_names[ccr_regnum] = "ccr";
184 var->register_names[cccr_regnum] = "cccr";
185 var->register_names[tbr_regnum] = "tbr";
186
187 /* Debug registers. */
188 var->register_names[brr_regnum] = "brr";
189 var->register_names[dbar0_regnum] = "dbar0";
190 var->register_names[dbar1_regnum] = "dbar1";
191 var->register_names[dbar2_regnum] = "dbar2";
192 var->register_names[dbar3_regnum] = "dbar3";
193
194 /* iacc0 (Only found on MB93405.) */
195 var->register_names[iacc0h_regnum] = "iacc0h";
196 var->register_names[iacc0l_regnum] = "iacc0l";
197 var->register_names[iacc0_regnum] = "iacc0";
198
199 return var;
200 }
201
202
203 /* Indicate that the variant VAR has NUM_GPRS general-purpose
204 registers, and fill in the names array appropriately. */
205 static void
206 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
207 {
208 int r;
209
210 var->num_gprs = num_gprs;
211
212 for (r = 0; r < num_gprs; ++r)
213 {
214 char buf[20];
215
216 sprintf (buf, "gr%d", r);
217 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
218 }
219 }
220
221
222 /* Indicate that the variant VAR has NUM_FPRS floating-point
223 registers, and fill in the names array appropriately. */
224 static void
225 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
226 {
227 int r;
228
229 var->num_fprs = num_fprs;
230
231 for (r = 0; r < num_fprs; ++r)
232 {
233 char buf[20];
234
235 sprintf (buf, "fr%d", r);
236 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
237 }
238 }
239
240
241 static const char *
242 frv_register_name (int reg)
243 {
244 if (reg < 0)
245 return "?toosmall?";
246 if (reg >= frv_num_regs + frv_num_pseudo_regs)
247 return "?toolarge?";
248
249 return CURRENT_VARIANT->register_names[reg];
250 }
251
252
253 static struct type *
254 frv_register_type (struct gdbarch *gdbarch, int reg)
255 {
256 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
257 return builtin_type_float;
258 else if (reg == iacc0_regnum)
259 return builtin_type_int64;
260 else
261 return builtin_type_int32;
262 }
263
264 static void
265 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
266 int reg, void *buffer)
267 {
268 if (reg == iacc0_regnum)
269 {
270 regcache_raw_read (regcache, iacc0h_regnum, buffer);
271 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
272 }
273 }
274
275 static void
276 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
277 int reg, const void *buffer)
278 {
279 if (reg == iacc0_regnum)
280 {
281 regcache_raw_write (regcache, iacc0h_regnum, buffer);
282 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
283 }
284 }
285
286 static int
287 frv_register_sim_regno (int reg)
288 {
289 static const int spr_map[] =
290 {
291 H_SPR_PSR, /* psr_regnum */
292 H_SPR_CCR, /* ccr_regnum */
293 H_SPR_CCCR, /* cccr_regnum */
294 -1, /* 132 */
295 -1, /* 133 */
296 -1, /* 134 */
297 H_SPR_TBR, /* tbr_regnum */
298 H_SPR_BRR, /* brr_regnum */
299 H_SPR_DBAR0, /* dbar0_regnum */
300 H_SPR_DBAR1, /* dbar1_regnum */
301 H_SPR_DBAR2, /* dbar2_regnum */
302 H_SPR_DBAR3, /* dbar3_regnum */
303 -1, /* 141 */
304 -1, /* 142 */
305 -1, /* 143 */
306 -1, /* 144 */
307 H_SPR_LR, /* lr_regnum */
308 H_SPR_LCR, /* lcr_regnum */
309 H_SPR_IACC0H, /* iacc0h_regnum */
310 H_SPR_IACC0L /* iacc0l_regnum */
311 };
312
313 gdb_assert (reg >= 0 && reg < NUM_REGS);
314
315 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
316 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
317 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
318 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
319 else if (pc_regnum == reg)
320 return SIM_FRV_PC_REGNUM;
321 else if (reg >= first_spr_regnum
322 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
323 {
324 int spr_reg_offset = spr_map[reg - first_spr_regnum];
325
326 if (spr_reg_offset < 0)
327 return SIM_REGNO_DOES_NOT_EXIST;
328 else
329 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
330 }
331
332 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
333 }
334
335 static const unsigned char *
336 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
337 {
338 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
339 *lenp = sizeof (breakpoint);
340 return breakpoint;
341 }
342
343 /* Define the maximum number of instructions which may be packed into a
344 bundle (VLIW instruction). */
345 static const int max_instrs_per_bundle = 8;
346
347 /* Define the size (in bytes) of an FR-V instruction. */
348 static const int frv_instr_size = 4;
349
350 /* Adjust a breakpoint's address to account for the FR-V architecture's
351 constraint that a break instruction must not appear as any but the
352 first instruction in the bundle. */
353 static CORE_ADDR
354 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
355 {
356 int count = max_instrs_per_bundle;
357 CORE_ADDR addr = bpaddr - frv_instr_size;
358 CORE_ADDR func_start = get_pc_function_start (bpaddr);
359
360 /* Find the end of the previous packing sequence. This will be indicated
361 by either attempting to access some inaccessible memory or by finding
362 an instruction word whose packing bit is set to one. */
363 while (count-- > 0 && addr >= func_start)
364 {
365 char instr[frv_instr_size];
366 int status;
367
368 status = read_memory_nobpt (addr, instr, sizeof instr);
369
370 if (status != 0)
371 break;
372
373 /* This is a big endian architecture, so byte zero will have most
374 significant byte. The most significant bit of this byte is the
375 packing bit. */
376 if (instr[0] & 0x80)
377 break;
378
379 addr -= frv_instr_size;
380 }
381
382 if (count > 0)
383 bpaddr = addr + frv_instr_size;
384
385 return bpaddr;
386 }
387
388
389 /* Return true if REG is a caller-saves ("scratch") register,
390 false otherwise. */
391 static int
392 is_caller_saves_reg (int reg)
393 {
394 return ((4 <= reg && reg <= 7)
395 || (14 <= reg && reg <= 15)
396 || (32 <= reg && reg <= 47));
397 }
398
399
400 /* Return true if REG is a callee-saves register, false otherwise. */
401 static int
402 is_callee_saves_reg (int reg)
403 {
404 return ((16 <= reg && reg <= 31)
405 || (48 <= reg && reg <= 63));
406 }
407
408
409 /* Return true if REG is an argument register, false otherwise. */
410 static int
411 is_argument_reg (int reg)
412 {
413 return (8 <= reg && reg <= 13);
414 }
415
416 /* Given PC at the function's start address, attempt to find the
417 prologue end using SAL information. Return zero if the skip fails.
418
419 A non-optimized prologue traditionally has one SAL for the function
420 and a second for the function body. A single line function has
421 them both pointing at the same line.
422
423 An optimized prologue is similar but the prologue may contain
424 instructions (SALs) from the instruction body. Need to skip those
425 while not getting into the function body.
426
427 The functions end point and an increasing SAL line are used as
428 indicators of the prologue's endpoint.
429
430 This code is based on the function refine_prologue_limit (versions
431 found in both ia64 and ppc). */
432
433 static CORE_ADDR
434 skip_prologue_using_sal (CORE_ADDR func_addr)
435 {
436 struct symtab_and_line prologue_sal;
437 CORE_ADDR start_pc;
438 CORE_ADDR end_pc;
439
440 /* Get an initial range for the function. */
441 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
442 start_pc += FUNCTION_START_OFFSET;
443
444 prologue_sal = find_pc_line (start_pc, 0);
445 if (prologue_sal.line != 0)
446 {
447 while (prologue_sal.end < end_pc)
448 {
449 struct symtab_and_line sal;
450
451 sal = find_pc_line (prologue_sal.end, 0);
452 if (sal.line == 0)
453 break;
454 /* Assume that a consecutive SAL for the same (or larger)
455 line mark the prologue -> body transition. */
456 if (sal.line >= prologue_sal.line)
457 break;
458 /* The case in which compiler's optimizer/scheduler has
459 moved instructions into the prologue. We look ahead in
460 the function looking for address ranges whose
461 corresponding line number is less the first one that we
462 found for the function. This is more conservative then
463 refine_prologue_limit which scans a large number of SALs
464 looking for any in the prologue */
465 prologue_sal = sal;
466 }
467 }
468 return prologue_sal.end;
469 }
470
471
472 /* Scan an FR-V prologue, starting at PC, until frame->PC.
473 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
474 We assume FRAME's saved_regs array has already been allocated and cleared.
475 Return the first PC value after the prologue.
476
477 Note that, for unoptimized code, we almost don't need this function
478 at all; all arguments and locals live on the stack, so we just need
479 the FP to find everything. The catch: structures passed by value
480 have their addresses living in registers; they're never spilled to
481 the stack. So if you ever want to be able to get to these
482 arguments in any frame but the top, you'll need to do this serious
483 prologue analysis. */
484 static CORE_ADDR
485 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
486 struct frv_unwind_cache *info)
487 {
488 /* When writing out instruction bitpatterns, we use the following
489 letters to label instruction fields:
490 P - The parallel bit. We don't use this.
491 J - The register number of GRj in the instruction description.
492 K - The register number of GRk in the instruction description.
493 I - The register number of GRi.
494 S - a signed imediate offset.
495 U - an unsigned immediate offset.
496
497 The dots below the numbers indicate where hex digit boundaries
498 fall, to make it easier to check the numbers. */
499
500 /* Non-zero iff we've seen the instruction that initializes the
501 frame pointer for this function's frame. */
502 int fp_set = 0;
503
504 /* If fp_set is non_zero, then this is the distance from
505 the stack pointer to frame pointer: fp = sp + fp_offset. */
506 int fp_offset = 0;
507
508 /* Total size of frame prior to any alloca operations. */
509 int framesize = 0;
510
511 /* Flag indicating if lr has been saved on the stack. */
512 int lr_saved_on_stack = 0;
513
514 /* The number of the general-purpose register we saved the return
515 address ("link register") in, or -1 if we haven't moved it yet. */
516 int lr_save_reg = -1;
517
518 /* Offset (from sp) at which lr has been saved on the stack. */
519
520 int lr_sp_offset = 0;
521
522 /* If gr_saved[i] is non-zero, then we've noticed that general
523 register i has been saved at gr_sp_offset[i] from the stack
524 pointer. */
525 char gr_saved[64];
526 int gr_sp_offset[64];
527
528 /* The address of the most recently scanned prologue instruction. */
529 CORE_ADDR last_prologue_pc;
530
531 /* The address of the next instruction. */
532 CORE_ADDR next_pc;
533
534 /* The upper bound to of the pc values to scan. */
535 CORE_ADDR lim_pc;
536
537 memset (gr_saved, 0, sizeof (gr_saved));
538
539 last_prologue_pc = pc;
540
541 /* Try to compute an upper limit (on how far to scan) based on the
542 line number info. */
543 lim_pc = skip_prologue_using_sal (pc);
544 /* If there's no line number info, lim_pc will be 0. In that case,
545 set the limit to be 100 instructions away from pc. Hopefully, this
546 will be far enough away to account for the entire prologue. Don't
547 worry about overshooting the end of the function. The scan loop
548 below contains some checks to avoid scanning unreasonably far. */
549 if (lim_pc == 0)
550 lim_pc = pc + 400;
551
552 /* If we have a frame, we don't want to scan past the frame's pc. This
553 will catch those cases where the pc is in the prologue. */
554 if (next_frame)
555 {
556 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
557 if (frame_pc < lim_pc)
558 lim_pc = frame_pc;
559 }
560
561 /* Scan the prologue. */
562 while (pc < lim_pc)
563 {
564 LONGEST op = read_memory_integer (pc, 4);
565 next_pc = pc + 4;
566
567 /* The tests in this chain of ifs should be in order of
568 decreasing selectivity, so that more particular patterns get
569 to fire before less particular patterns. */
570
571 /* Some sort of control transfer instruction: stop scanning prologue.
572 Integer Conditional Branch:
573 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
574 Floating-point / media Conditional Branch:
575 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
576 LCR Conditional Branch to LR
577 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
578 Integer conditional Branches to LR
579 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
580 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
581 Floating-point/Media Branches to LR
582 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
583 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
584 Jump and Link
585 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
586 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
587 Call
588 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
589 Return from Trap
590 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
591 Integer Conditional Trap
592 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
593 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
594 Floating-point /media Conditional Trap
595 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
596 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
597 Break
598 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
599 Media Trap
600 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
601 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
602 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
603 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
604 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
605 {
606 /* Stop scanning; not in prologue any longer. */
607 break;
608 }
609
610 /* Loading something from memory into fp probably means that
611 we're in the epilogue. Stop scanning the prologue.
612 ld @(GRi, GRk), fp
613 X 000010 0000010 XXXXXX 000100 XXXXXX
614 ldi @(GRi, d12), fp
615 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
616 else if ((op & 0x7ffc0fc0) == 0x04080100
617 || (op & 0x7ffc0000) == 0x04c80000)
618 {
619 break;
620 }
621
622 /* Setting the FP from the SP:
623 ori sp, 0, fp
624 P 000010 0100010 000001 000000000000 = 0x04881000
625 0 111111 1111111 111111 111111111111 = 0x7fffffff
626 . . . . . . . .
627 We treat this as part of the prologue. */
628 else if ((op & 0x7fffffff) == 0x04881000)
629 {
630 fp_set = 1;
631 fp_offset = 0;
632 last_prologue_pc = next_pc;
633 }
634
635 /* Move the link register to the scratch register grJ, before saving:
636 movsg lr, grJ
637 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
638 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
639 . . . . . . . .
640 We treat this as part of the prologue. */
641 else if ((op & 0x7fffffc0) == 0x080d01c0)
642 {
643 int gr_j = op & 0x3f;
644
645 /* If we're moving it to a scratch register, that's fine. */
646 if (is_caller_saves_reg (gr_j))
647 {
648 lr_save_reg = gr_j;
649 last_prologue_pc = next_pc;
650 }
651 }
652
653 /* To save multiple callee-saves registers on the stack, at
654 offset zero:
655
656 std grK,@(sp,gr0)
657 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
658 0 000000 1111111 111111 111111 111111 = 0x01ffffff
659
660 stq grK,@(sp,gr0)
661 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
662 0 000000 1111111 111111 111111 111111 = 0x01ffffff
663 . . . . . . . .
664 We treat this as part of the prologue, and record the register's
665 saved address in the frame structure. */
666 else if ((op & 0x01ffffff) == 0x000c10c0
667 || (op & 0x01ffffff) == 0x000c1100)
668 {
669 int gr_k = ((op >> 25) & 0x3f);
670 int ope = ((op >> 6) & 0x3f);
671 int count;
672 int i;
673
674 /* Is it an std or an stq? */
675 if (ope == 0x03)
676 count = 2;
677 else
678 count = 4;
679
680 /* Is it really a callee-saves register? */
681 if (is_callee_saves_reg (gr_k))
682 {
683 for (i = 0; i < count; i++)
684 {
685 gr_saved[gr_k + i] = 1;
686 gr_sp_offset[gr_k + i] = 4 * i;
687 }
688 last_prologue_pc = next_pc;
689 }
690 }
691
692 /* Adjusting the stack pointer. (The stack pointer is GR1.)
693 addi sp, S, sp
694 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
695 0 111111 1111111 111111 000000000000 = 0x7ffff000
696 . . . . . . . .
697 We treat this as part of the prologue. */
698 else if ((op & 0x7ffff000) == 0x02401000)
699 {
700 if (framesize == 0)
701 {
702 /* Sign-extend the twelve-bit field.
703 (Isn't there a better way to do this?) */
704 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
705
706 framesize -= s;
707 last_prologue_pc = pc;
708 }
709 else
710 {
711 /* If the prologue is being adjusted again, we've
712 likely gone too far; i.e. we're probably in the
713 epilogue. */
714 break;
715 }
716 }
717
718 /* Setting the FP to a constant distance from the SP:
719 addi sp, S, fp
720 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
721 0 111111 1111111 111111 000000000000 = 0x7ffff000
722 . . . . . . . .
723 We treat this as part of the prologue. */
724 else if ((op & 0x7ffff000) == 0x04401000)
725 {
726 /* Sign-extend the twelve-bit field.
727 (Isn't there a better way to do this?) */
728 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
729 fp_set = 1;
730 fp_offset = s;
731 last_prologue_pc = pc;
732 }
733
734 /* To spill an argument register to a scratch register:
735 ori GRi, 0, GRk
736 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
737 0 000000 1111111 000000 111111111111 = 0x01fc0fff
738 . . . . . . . .
739 For the time being, we treat this as a prologue instruction,
740 assuming that GRi is an argument register. This one's kind
741 of suspicious, because it seems like it could be part of a
742 legitimate body instruction. But we only come here when the
743 source info wasn't helpful, so we have to do the best we can.
744 Hopefully once GCC and GDB agree on how to emit line number
745 info for prologues, then this code will never come into play. */
746 else if ((op & 0x01fc0fff) == 0x00880000)
747 {
748 int gr_i = ((op >> 12) & 0x3f);
749
750 /* Make sure that the source is an arg register; if it is, we'll
751 treat it as a prologue instruction. */
752 if (is_argument_reg (gr_i))
753 last_prologue_pc = next_pc;
754 }
755
756 /* To spill 16-bit values to the stack:
757 sthi GRk, @(fp, s)
758 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
759 0 000000 1111111 111111 000000000000 = 0x01fff000
760 . . . . . . . .
761 And for 8-bit values, we use STB instructions.
762 stbi GRk, @(fp, s)
763 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
764 0 000000 1111111 111111 000000000000 = 0x01fff000
765 . . . . . . . .
766 We check that GRk is really an argument register, and treat
767 all such as part of the prologue. */
768 else if ( (op & 0x01fff000) == 0x01442000
769 || (op & 0x01fff000) == 0x01402000)
770 {
771 int gr_k = ((op >> 25) & 0x3f);
772
773 /* Make sure that GRk is really an argument register; treat
774 it as a prologue instruction if so. */
775 if (is_argument_reg (gr_k))
776 last_prologue_pc = next_pc;
777 }
778
779 /* To save multiple callee-saves register on the stack, at a
780 non-zero offset:
781
782 stdi GRk, @(sp, s)
783 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
784 0 000000 1111111 111111 000000000000 = 0x01fff000
785 . . . . . . . .
786 stqi GRk, @(sp, s)
787 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
788 0 000000 1111111 111111 000000000000 = 0x01fff000
789 . . . . . . . .
790 We treat this as part of the prologue, and record the register's
791 saved address in the frame structure. */
792 else if ((op & 0x01fff000) == 0x014c1000
793 || (op & 0x01fff000) == 0x01501000)
794 {
795 int gr_k = ((op >> 25) & 0x3f);
796 int count;
797 int i;
798
799 /* Is it a stdi or a stqi? */
800 if ((op & 0x01fff000) == 0x014c1000)
801 count = 2;
802 else
803 count = 4;
804
805 /* Is it really a callee-saves register? */
806 if (is_callee_saves_reg (gr_k))
807 {
808 /* Sign-extend the twelve-bit field.
809 (Isn't there a better way to do this?) */
810 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
811
812 for (i = 0; i < count; i++)
813 {
814 gr_saved[gr_k + i] = 1;
815 gr_sp_offset[gr_k + i] = s + (4 * i);
816 }
817 last_prologue_pc = next_pc;
818 }
819 }
820
821 /* Storing any kind of integer register at any constant offset
822 from any other register.
823
824 st GRk, @(GRi, gr0)
825 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
826 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
827 . . . . . . . .
828 sti GRk, @(GRi, d12)
829 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
830 0 000000 1111111 000000 000000000000 = 0x01fc0000
831 . . . . . . . .
832 These could be almost anything, but a lot of prologue
833 instructions fall into this pattern, so let's decode the
834 instruction once, and then work at a higher level. */
835 else if (((op & 0x01fc0fff) == 0x000c0080)
836 || ((op & 0x01fc0000) == 0x01480000))
837 {
838 int gr_k = ((op >> 25) & 0x3f);
839 int gr_i = ((op >> 12) & 0x3f);
840 int offset;
841
842 /* Are we storing with gr0 as an offset, or using an
843 immediate value? */
844 if ((op & 0x01fc0fff) == 0x000c0080)
845 offset = 0;
846 else
847 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
848
849 /* If the address isn't relative to the SP or FP, it's not a
850 prologue instruction. */
851 if (gr_i != sp_regnum && gr_i != fp_regnum)
852 {
853 /* Do nothing; not a prologue instruction. */
854 }
855
856 /* Saving the old FP in the new frame (relative to the SP). */
857 else if (gr_k == fp_regnum && gr_i == sp_regnum)
858 {
859 gr_saved[fp_regnum] = 1;
860 gr_sp_offset[fp_regnum] = offset;
861 last_prologue_pc = next_pc;
862 }
863
864 /* Saving callee-saves register(s) on the stack, relative to
865 the SP. */
866 else if (gr_i == sp_regnum
867 && is_callee_saves_reg (gr_k))
868 {
869 gr_saved[gr_k] = 1;
870 if (gr_i == sp_regnum)
871 gr_sp_offset[gr_k] = offset;
872 else
873 gr_sp_offset[gr_k] = offset + fp_offset;
874 last_prologue_pc = next_pc;
875 }
876
877 /* Saving the scratch register holding the return address. */
878 else if (lr_save_reg != -1
879 && gr_k == lr_save_reg)
880 {
881 lr_saved_on_stack = 1;
882 if (gr_i == sp_regnum)
883 lr_sp_offset = offset;
884 else
885 lr_sp_offset = offset + fp_offset;
886 last_prologue_pc = next_pc;
887 }
888
889 /* Spilling int-sized arguments to the stack. */
890 else if (is_argument_reg (gr_k))
891 last_prologue_pc = next_pc;
892 }
893 pc = next_pc;
894 }
895
896 if (next_frame && info)
897 {
898 int i;
899 ULONGEST this_base;
900
901 /* If we know the relationship between the stack and frame
902 pointers, record the addresses of the registers we noticed.
903 Note that we have to do this as a separate step at the end,
904 because instructions may save relative to the SP, but we need
905 their addresses relative to the FP. */
906 if (fp_set)
907 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
908 else
909 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
910
911 for (i = 0; i < 64; i++)
912 if (gr_saved[i])
913 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
914
915 info->prev_sp = this_base - fp_offset + framesize;
916 info->base = this_base;
917
918 /* If LR was saved on the stack, record its location. */
919 if (lr_saved_on_stack)
920 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
921
922 /* The call instruction moves the caller's PC in the callee's LR.
923 Since this is an unwind, do the reverse. Copy the location of LR
924 into PC (the address / regnum) so that a request for PC will be
925 converted into a request for the LR. */
926 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
927
928 /* Save the previous frame's computed SP value. */
929 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
930 }
931
932 return last_prologue_pc;
933 }
934
935
936 static CORE_ADDR
937 frv_skip_prologue (CORE_ADDR pc)
938 {
939 CORE_ADDR func_addr, func_end, new_pc;
940
941 new_pc = pc;
942
943 /* If the line table has entry for a line *within* the function
944 (i.e., not in the prologue, and not past the end), then that's
945 our location. */
946 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
947 {
948 struct symtab_and_line sal;
949
950 sal = find_pc_line (func_addr, 0);
951
952 if (sal.line != 0 && sal.end < func_end)
953 {
954 new_pc = sal.end;
955 }
956 }
957
958 /* The FR-V prologue is at least five instructions long (twenty bytes).
959 If we didn't find a real source location past that, then
960 do a full analysis of the prologue. */
961 if (new_pc < pc + 20)
962 new_pc = frv_analyze_prologue (pc, 0, 0);
963
964 return new_pc;
965 }
966
967
968 static struct frv_unwind_cache *
969 frv_frame_unwind_cache (struct frame_info *next_frame,
970 void **this_prologue_cache)
971 {
972 struct gdbarch *gdbarch = get_frame_arch (next_frame);
973 CORE_ADDR pc;
974 ULONGEST prev_sp;
975 ULONGEST this_base;
976 struct frv_unwind_cache *info;
977
978 if ((*this_prologue_cache))
979 return (*this_prologue_cache);
980
981 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
982 (*this_prologue_cache) = info;
983 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
984
985 /* Prologue analysis does the rest... */
986 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
987
988 return info;
989 }
990
991 static void
992 frv_extract_return_value (struct type *type, struct regcache *regcache,
993 void *valbuf)
994 {
995 int len = TYPE_LENGTH (type);
996
997 if (len <= 4)
998 {
999 ULONGEST gpr8_val;
1000 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1001 store_unsigned_integer (valbuf, len, gpr8_val);
1002 }
1003 else if (len == 8)
1004 {
1005 ULONGEST regval;
1006 regcache_cooked_read_unsigned (regcache, 8, &regval);
1007 store_unsigned_integer (valbuf, 4, regval);
1008 regcache_cooked_read_unsigned (regcache, 9, &regval);
1009 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1010 }
1011 else
1012 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
1013 }
1014
1015 static CORE_ADDR
1016 frv_extract_struct_value_address (struct regcache *regcache)
1017 {
1018 ULONGEST addr;
1019 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1020 return addr;
1021 }
1022
1023 static void
1024 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1025 {
1026 write_register (struct_return_regnum, addr);
1027 }
1028
1029 static int
1030 frv_frameless_function_invocation (struct frame_info *frame)
1031 {
1032 return legacy_frameless_look_for_prologue (frame);
1033 }
1034
1035 static CORE_ADDR
1036 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1037 {
1038 /* Require dword alignment. */
1039 return align_down (sp, 8);
1040 }
1041
1042 static CORE_ADDR
1043 frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1044 struct regcache *regcache, CORE_ADDR bp_addr,
1045 int nargs, struct value **args, CORE_ADDR sp,
1046 int struct_return, CORE_ADDR struct_addr)
1047 {
1048 int argreg;
1049 int argnum;
1050 char *val;
1051 char valbuf[4];
1052 struct value *arg;
1053 struct type *arg_type;
1054 int len;
1055 enum type_code typecode;
1056 CORE_ADDR regval;
1057 int stack_space;
1058 int stack_offset;
1059
1060 #if 0
1061 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1062 nargs, (int) sp, struct_return, struct_addr);
1063 #endif
1064
1065 stack_space = 0;
1066 for (argnum = 0; argnum < nargs; ++argnum)
1067 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
1068
1069 stack_space -= (6 * 4);
1070 if (stack_space > 0)
1071 sp -= stack_space;
1072
1073 /* Make sure stack is dword aligned. */
1074 sp = align_down (sp, 8);
1075
1076 stack_offset = 0;
1077
1078 argreg = 8;
1079
1080 if (struct_return)
1081 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1082 struct_addr);
1083
1084 for (argnum = 0; argnum < nargs; ++argnum)
1085 {
1086 arg = args[argnum];
1087 arg_type = check_typedef (VALUE_TYPE (arg));
1088 len = TYPE_LENGTH (arg_type);
1089 typecode = TYPE_CODE (arg_type);
1090
1091 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1092 {
1093 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
1094 typecode = TYPE_CODE_PTR;
1095 len = 4;
1096 val = valbuf;
1097 }
1098 else
1099 {
1100 val = (char *) VALUE_CONTENTS (arg);
1101 }
1102
1103 while (len > 0)
1104 {
1105 int partial_len = (len < 4 ? len : 4);
1106
1107 if (argreg < 14)
1108 {
1109 regval = extract_unsigned_integer (val, partial_len);
1110 #if 0
1111 printf(" Argnum %d data %x -> reg %d\n",
1112 argnum, (int) regval, argreg);
1113 #endif
1114 regcache_cooked_write_unsigned (regcache, argreg, regval);
1115 ++argreg;
1116 }
1117 else
1118 {
1119 #if 0
1120 printf(" Argnum %d data %x -> offset %d (%x)\n",
1121 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1122 #endif
1123 write_memory (sp + stack_offset, val, partial_len);
1124 stack_offset += align_up (partial_len, 4);
1125 }
1126 len -= partial_len;
1127 val += partial_len;
1128 }
1129 }
1130
1131 /* Set the return address. For the frv, the return breakpoint is
1132 always at BP_ADDR. */
1133 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1134
1135 /* Finally, update the SP register. */
1136 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1137
1138 return sp;
1139 }
1140
1141 static void
1142 frv_store_return_value (struct type *type, struct regcache *regcache,
1143 const void *valbuf)
1144 {
1145 int len = TYPE_LENGTH (type);
1146
1147 if (len <= 4)
1148 {
1149 bfd_byte val[4];
1150 memset (val, 0, sizeof (val));
1151 memcpy (val + (4 - len), valbuf, len);
1152 regcache_cooked_write (regcache, 8, val);
1153 }
1154 else if (len == 8)
1155 {
1156 regcache_cooked_write (regcache, 8, valbuf);
1157 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1158 }
1159 else
1160 internal_error (__FILE__, __LINE__,
1161 "Don't know how to return a %d-byte value.", len);
1162 }
1163
1164
1165 /* Hardware watchpoint / breakpoint support for the FR500
1166 and FR400. */
1167
1168 int
1169 frv_check_watch_resources (int type, int cnt, int ot)
1170 {
1171 struct gdbarch_tdep *var = CURRENT_VARIANT;
1172
1173 /* Watchpoints not supported on simulator. */
1174 if (strcmp (target_shortname, "sim") == 0)
1175 return 0;
1176
1177 if (type == bp_hardware_breakpoint)
1178 {
1179 if (var->num_hw_breakpoints == 0)
1180 return 0;
1181 else if (cnt <= var->num_hw_breakpoints)
1182 return 1;
1183 }
1184 else
1185 {
1186 if (var->num_hw_watchpoints == 0)
1187 return 0;
1188 else if (ot)
1189 return -1;
1190 else if (cnt <= var->num_hw_watchpoints)
1191 return 1;
1192 }
1193 return -1;
1194 }
1195
1196
1197 CORE_ADDR
1198 frv_stopped_data_address (void)
1199 {
1200 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1201
1202 brr = read_register (brr_regnum);
1203 dbar0 = read_register (dbar0_regnum);
1204 dbar1 = read_register (dbar1_regnum);
1205 dbar2 = read_register (dbar2_regnum);
1206 dbar3 = read_register (dbar3_regnum);
1207
1208 if (brr & (1<<11))
1209 return dbar0;
1210 else if (brr & (1<<10))
1211 return dbar1;
1212 else if (brr & (1<<9))
1213 return dbar2;
1214 else if (brr & (1<<8))
1215 return dbar3;
1216 else
1217 return 0;
1218 }
1219
1220 static CORE_ADDR
1221 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1222 {
1223 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1224 }
1225
1226 /* Given a GDB frame, determine the address of the calling function's
1227 frame. This will be used to create a new GDB frame struct. */
1228
1229 static void
1230 frv_frame_this_id (struct frame_info *next_frame,
1231 void **this_prologue_cache, struct frame_id *this_id)
1232 {
1233 struct frv_unwind_cache *info
1234 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1235 CORE_ADDR base;
1236 CORE_ADDR func;
1237 struct minimal_symbol *msym_stack;
1238 struct frame_id id;
1239
1240 /* The FUNC is easy. */
1241 func = frame_func_unwind (next_frame);
1242
1243 /* Check if the stack is empty. */
1244 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1245 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1246 return;
1247
1248 /* Hopefully the prologue analysis either correctly determined the
1249 frame's base (which is the SP from the previous frame), or set
1250 that base to "NULL". */
1251 base = info->prev_sp;
1252 if (base == 0)
1253 return;
1254
1255 id = frame_id_build (base, func);
1256
1257 /* Check that we're not going round in circles with the same frame
1258 ID (but avoid applying the test to sentinel frames which do go
1259 round in circles). Can't use frame_id_eq() as that doesn't yet
1260 compare the frame's PC value. */
1261 if (frame_relative_level (next_frame) >= 0
1262 && get_frame_type (next_frame) != DUMMY_FRAME
1263 && frame_id_eq (get_frame_id (next_frame), id))
1264 return;
1265
1266 (*this_id) = id;
1267 }
1268
1269 static void
1270 frv_frame_prev_register (struct frame_info *next_frame,
1271 void **this_prologue_cache,
1272 int regnum, int *optimizedp,
1273 enum lval_type *lvalp, CORE_ADDR *addrp,
1274 int *realnump, void *bufferp)
1275 {
1276 struct frv_unwind_cache *info
1277 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1278 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1279 optimizedp, lvalp, addrp, realnump, bufferp);
1280 }
1281
1282 static const struct frame_unwind frv_frame_unwind = {
1283 NORMAL_FRAME,
1284 frv_frame_this_id,
1285 frv_frame_prev_register
1286 };
1287
1288 static const struct frame_unwind *
1289 frv_frame_sniffer (struct frame_info *next_frame)
1290 {
1291 return &frv_frame_unwind;
1292 }
1293
1294 static CORE_ADDR
1295 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1296 {
1297 struct frv_unwind_cache *info
1298 = frv_frame_unwind_cache (next_frame, this_cache);
1299 return info->base;
1300 }
1301
1302 static const struct frame_base frv_frame_base = {
1303 &frv_frame_unwind,
1304 frv_frame_base_address,
1305 frv_frame_base_address,
1306 frv_frame_base_address
1307 };
1308
1309 static CORE_ADDR
1310 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1311 {
1312 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1313 }
1314
1315
1316 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1317 dummy frame. The frame ID's base needs to match the TOS value
1318 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1319 breakpoint. */
1320
1321 static struct frame_id
1322 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1323 {
1324 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1325 frame_pc_unwind (next_frame));
1326 }
1327
1328
1329 static struct gdbarch *
1330 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1331 {
1332 struct gdbarch *gdbarch;
1333 struct gdbarch_tdep *var;
1334
1335 /* Check to see if we've already built an appropriate architecture
1336 object for this executable. */
1337 arches = gdbarch_list_lookup_by_info (arches, &info);
1338 if (arches)
1339 return arches->gdbarch;
1340
1341 /* Select the right tdep structure for this variant. */
1342 var = new_variant ();
1343 switch (info.bfd_arch_info->mach)
1344 {
1345 case bfd_mach_frv:
1346 case bfd_mach_frvsimple:
1347 case bfd_mach_fr500:
1348 case bfd_mach_frvtomcat:
1349 case bfd_mach_fr550:
1350 set_variant_num_gprs (var, 64);
1351 set_variant_num_fprs (var, 64);
1352 break;
1353
1354 case bfd_mach_fr400:
1355 set_variant_num_gprs (var, 32);
1356 set_variant_num_fprs (var, 32);
1357 break;
1358
1359 default:
1360 /* Never heard of this variant. */
1361 return 0;
1362 }
1363
1364 gdbarch = gdbarch_alloc (&info, var);
1365
1366 set_gdbarch_short_bit (gdbarch, 16);
1367 set_gdbarch_int_bit (gdbarch, 32);
1368 set_gdbarch_long_bit (gdbarch, 32);
1369 set_gdbarch_long_long_bit (gdbarch, 64);
1370 set_gdbarch_float_bit (gdbarch, 32);
1371 set_gdbarch_double_bit (gdbarch, 64);
1372 set_gdbarch_long_double_bit (gdbarch, 64);
1373 set_gdbarch_ptr_bit (gdbarch, 32);
1374
1375 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1376 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1377
1378 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1379 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1380 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1381
1382 set_gdbarch_register_name (gdbarch, frv_register_name);
1383 set_gdbarch_register_type (gdbarch, frv_register_type);
1384 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1385
1386 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1387 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1388
1389 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1390 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1391 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1392
1393 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1394
1395 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1396 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1397
1398 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1399 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1400 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1401
1402 /* Frame stuff. */
1403 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1404 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1405 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1406 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1407 frame_base_set_default (gdbarch, &frv_frame_base);
1408
1409 /* Settings for calling functions in the inferior. */
1410 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1411 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1412
1413 /* Settings that should be unnecessary. */
1414 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1415
1416 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1417
1418 set_gdbarch_remote_translate_xfer_address
1419 (gdbarch, generic_remote_translate_xfer_address);
1420
1421 /* Hardware watchpoint / breakpoint support. */
1422 switch (info.bfd_arch_info->mach)
1423 {
1424 case bfd_mach_frv:
1425 case bfd_mach_frvsimple:
1426 case bfd_mach_fr500:
1427 case bfd_mach_frvtomcat:
1428 /* fr500-style hardware debugging support. */
1429 var->num_hw_watchpoints = 4;
1430 var->num_hw_breakpoints = 4;
1431 break;
1432
1433 case bfd_mach_fr400:
1434 /* fr400-style hardware debugging support. */
1435 var->num_hw_watchpoints = 2;
1436 var->num_hw_breakpoints = 4;
1437 break;
1438
1439 default:
1440 /* Otherwise, assume we don't have hardware debugging support. */
1441 var->num_hw_watchpoints = 0;
1442 var->num_hw_breakpoints = 0;
1443 break;
1444 }
1445
1446 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1447
1448 return gdbarch;
1449 }
1450
1451 void
1452 _initialize_frv_tdep (void)
1453 {
1454 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1455 }
This page took 0.09072 seconds and 4 git commands to generate.