* frv-tdep.c (frv_frame_this_id): Eliminate call to
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2 Copyright 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "symfile.h" /* for entry_point_address */
25 #include "gdbcore.h"
26 #include "arch-utils.h"
27 #include "regcache.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "dis-asm.h"
33 #include "gdb_assert.h"
34 #include "sim-regno.h"
35 #include "gdb/sim-frv.h"
36 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
37
38 extern void _initialize_frv_tdep (void);
39
40 static gdbarch_init_ftype frv_gdbarch_init;
41
42 static gdbarch_register_name_ftype frv_register_name;
43 static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
44 static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
45 static gdbarch_skip_prologue_ftype frv_skip_prologue;
46 static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
47 static gdbarch_deprecated_push_arguments_ftype frv_push_arguments;
48 static gdbarch_deprecated_saved_pc_after_call_ftype frv_saved_pc_after_call;
49
50 /* Register numbers. The order in which these appear define the
51 remote protocol, so take care in changing them. */
52 enum {
53 /* Register numbers 0 -- 63 are always reserved for general-purpose
54 registers. The chip at hand may have less. */
55 first_gpr_regnum = 0,
56 sp_regnum = 1,
57 fp_regnum = 2,
58 struct_return_regnum = 3,
59 last_gpr_regnum = 63,
60
61 /* Register numbers 64 -- 127 are always reserved for floating-point
62 registers. The chip at hand may have less. */
63 first_fpr_regnum = 64,
64 last_fpr_regnum = 127,
65
66 /* The PC register. */
67 pc_regnum = 128,
68
69 /* Register numbers 129 on up are always reserved for special-purpose
70 registers. */
71 first_spr_regnum = 129,
72 psr_regnum = 129,
73 ccr_regnum = 130,
74 cccr_regnum = 131,
75 tbr_regnum = 135,
76 brr_regnum = 136,
77 dbar0_regnum = 137,
78 dbar1_regnum = 138,
79 dbar2_regnum = 139,
80 dbar3_regnum = 140,
81 lr_regnum = 145,
82 lcr_regnum = 146,
83 iacc0h_regnum = 147,
84 iacc0l_regnum = 148,
85 last_spr_regnum = 148,
86
87 /* The total number of registers we know exist. */
88 frv_num_regs = last_spr_regnum + 1,
89
90 /* Pseudo registers */
91 first_pseudo_regnum = frv_num_regs,
92
93 /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
94 iacc0_regnum = first_pseudo_regnum + 0,
95
96 last_pseudo_regnum = iacc0_regnum,
97 frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
98 };
99
100 static LONGEST frv_call_dummy_words[] =
101 {0};
102
103
104 struct frv_unwind_cache /* was struct frame_extra_info */
105 {
106 /* The previous frame's inner-most stack address. Used as this
107 frame ID's stack_addr. */
108 CORE_ADDR prev_sp;
109
110 /* The frame's base, optionally used by the high-level debug info. */
111 CORE_ADDR base;
112
113 /* Table indicating the location of each and every register. */
114 struct trad_frame_saved_reg *saved_regs;
115 };
116
117
118 /* A structure describing a particular variant of the FRV.
119 We allocate and initialize one of these structures when we create
120 the gdbarch object for a variant.
121
122 At the moment, all the FR variants we support differ only in which
123 registers are present; the portable code of GDB knows that
124 registers whose names are the empty string don't exist, so the
125 `register_names' array captures all the per-variant information we
126 need.
127
128 in the future, if we need to have per-variant maps for raw size,
129 virtual type, etc., we should replace register_names with an array
130 of structures, each of which gives all the necessary info for one
131 register. Don't stick parallel arrays in here --- that's so
132 Fortran. */
133 struct gdbarch_tdep
134 {
135 /* How many general-purpose registers does this variant have? */
136 int num_gprs;
137
138 /* How many floating-point registers does this variant have? */
139 int num_fprs;
140
141 /* How many hardware watchpoints can it support? */
142 int num_hw_watchpoints;
143
144 /* How many hardware breakpoints can it support? */
145 int num_hw_breakpoints;
146
147 /* Register names. */
148 char **register_names;
149 };
150
151 #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
152
153
154 /* Allocate a new variant structure, and set up default values for all
155 the fields. */
156 static struct gdbarch_tdep *
157 new_variant (void)
158 {
159 struct gdbarch_tdep *var;
160 int r;
161 char buf[20];
162
163 var = xmalloc (sizeof (*var));
164 memset (var, 0, sizeof (*var));
165
166 var->num_gprs = 64;
167 var->num_fprs = 64;
168 var->num_hw_watchpoints = 0;
169 var->num_hw_breakpoints = 0;
170
171 /* By default, don't supply any general-purpose or floating-point
172 register names. */
173 var->register_names
174 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
175 * sizeof (char *));
176 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
177 var->register_names[r] = "";
178
179 /* Do, however, supply default names for the known special-purpose
180 registers. */
181
182 var->register_names[pc_regnum] = "pc";
183 var->register_names[lr_regnum] = "lr";
184 var->register_names[lcr_regnum] = "lcr";
185
186 var->register_names[psr_regnum] = "psr";
187 var->register_names[ccr_regnum] = "ccr";
188 var->register_names[cccr_regnum] = "cccr";
189 var->register_names[tbr_regnum] = "tbr";
190
191 /* Debug registers. */
192 var->register_names[brr_regnum] = "brr";
193 var->register_names[dbar0_regnum] = "dbar0";
194 var->register_names[dbar1_regnum] = "dbar1";
195 var->register_names[dbar2_regnum] = "dbar2";
196 var->register_names[dbar3_regnum] = "dbar3";
197
198 /* iacc0 (Only found on MB93405.) */
199 var->register_names[iacc0h_regnum] = "iacc0h";
200 var->register_names[iacc0l_regnum] = "iacc0l";
201 var->register_names[iacc0_regnum] = "iacc0";
202
203 return var;
204 }
205
206
207 /* Indicate that the variant VAR has NUM_GPRS general-purpose
208 registers, and fill in the names array appropriately. */
209 static void
210 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
211 {
212 int r;
213
214 var->num_gprs = num_gprs;
215
216 for (r = 0; r < num_gprs; ++r)
217 {
218 char buf[20];
219
220 sprintf (buf, "gr%d", r);
221 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
222 }
223 }
224
225
226 /* Indicate that the variant VAR has NUM_FPRS floating-point
227 registers, and fill in the names array appropriately. */
228 static void
229 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
230 {
231 int r;
232
233 var->num_fprs = num_fprs;
234
235 for (r = 0; r < num_fprs; ++r)
236 {
237 char buf[20];
238
239 sprintf (buf, "fr%d", r);
240 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
241 }
242 }
243
244
245 static const char *
246 frv_register_name (int reg)
247 {
248 if (reg < 0)
249 return "?toosmall?";
250 if (reg >= frv_num_regs + frv_num_pseudo_regs)
251 return "?toolarge?";
252
253 return CURRENT_VARIANT->register_names[reg];
254 }
255
256
257 static struct type *
258 frv_register_type (struct gdbarch *gdbarch, int reg)
259 {
260 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
261 return builtin_type_float;
262 else if (reg == iacc0_regnum)
263 return builtin_type_int64;
264 else
265 return builtin_type_int32;
266 }
267
268 static void
269 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
270 int reg, void *buffer)
271 {
272 if (reg == iacc0_regnum)
273 {
274 regcache_raw_read (regcache, iacc0h_regnum, buffer);
275 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
276 }
277 }
278
279 static void
280 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
281 int reg, const void *buffer)
282 {
283 if (reg == iacc0_regnum)
284 {
285 regcache_raw_write (regcache, iacc0h_regnum, buffer);
286 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
287 }
288 }
289
290 static int
291 frv_register_sim_regno (int reg)
292 {
293 static const int spr_map[] =
294 {
295 H_SPR_PSR, /* psr_regnum */
296 H_SPR_CCR, /* ccr_regnum */
297 H_SPR_CCCR, /* cccr_regnum */
298 -1, /* 132 */
299 -1, /* 133 */
300 -1, /* 134 */
301 H_SPR_TBR, /* tbr_regnum */
302 H_SPR_BRR, /* brr_regnum */
303 H_SPR_DBAR0, /* dbar0_regnum */
304 H_SPR_DBAR1, /* dbar1_regnum */
305 H_SPR_DBAR2, /* dbar2_regnum */
306 H_SPR_DBAR3, /* dbar3_regnum */
307 -1, /* 141 */
308 -1, /* 142 */
309 -1, /* 143 */
310 -1, /* 144 */
311 H_SPR_LR, /* lr_regnum */
312 H_SPR_LCR, /* lcr_regnum */
313 H_SPR_IACC0H, /* iacc0h_regnum */
314 H_SPR_IACC0L /* iacc0l_regnum */
315 };
316
317 gdb_assert (reg >= 0 && reg < NUM_REGS);
318
319 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
320 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
321 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
322 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
323 else if (pc_regnum == reg)
324 return SIM_FRV_PC_REGNUM;
325 else if (reg >= first_spr_regnum
326 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
327 {
328 int spr_reg_offset = spr_map[reg - first_spr_regnum];
329
330 if (spr_reg_offset < 0)
331 return SIM_REGNO_DOES_NOT_EXIST;
332 else
333 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
334 }
335
336 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
337 }
338
339 static const unsigned char *
340 frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
341 {
342 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
343 *lenp = sizeof (breakpoint);
344 return breakpoint;
345 }
346
347 /* Define the maximum number of instructions which may be packed into a
348 bundle (VLIW instruction). */
349 static const int max_instrs_per_bundle = 8;
350
351 /* Define the size (in bytes) of an FR-V instruction. */
352 static const int frv_instr_size = 4;
353
354 /* Adjust a breakpoint's address to account for the FR-V architecture's
355 constraint that a break instruction must not appear as any but the
356 first instruction in the bundle. */
357 static CORE_ADDR
358 frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
359 {
360 int count = max_instrs_per_bundle;
361 CORE_ADDR addr = bpaddr - frv_instr_size;
362 CORE_ADDR func_start = get_pc_function_start (bpaddr);
363
364 /* Find the end of the previous packing sequence. This will be indicated
365 by either attempting to access some inaccessible memory or by finding
366 an instruction word whose packing bit is set to one. */
367 while (count-- > 0 && addr >= func_start)
368 {
369 char instr[frv_instr_size];
370 int status;
371
372 status = read_memory_nobpt (addr, instr, sizeof instr);
373
374 if (status != 0)
375 break;
376
377 /* This is a big endian architecture, so byte zero will have most
378 significant byte. The most significant bit of this byte is the
379 packing bit. */
380 if (instr[0] & 0x80)
381 break;
382
383 addr -= frv_instr_size;
384 }
385
386 if (count > 0)
387 bpaddr = addr + frv_instr_size;
388
389 return bpaddr;
390 }
391
392
393 /* Return true if REG is a caller-saves ("scratch") register,
394 false otherwise. */
395 static int
396 is_caller_saves_reg (int reg)
397 {
398 return ((4 <= reg && reg <= 7)
399 || (14 <= reg && reg <= 15)
400 || (32 <= reg && reg <= 47));
401 }
402
403
404 /* Return true if REG is a callee-saves register, false otherwise. */
405 static int
406 is_callee_saves_reg (int reg)
407 {
408 return ((16 <= reg && reg <= 31)
409 || (48 <= reg && reg <= 63));
410 }
411
412
413 /* Return true if REG is an argument register, false otherwise. */
414 static int
415 is_argument_reg (int reg)
416 {
417 return (8 <= reg && reg <= 13);
418 }
419
420
421 /* Scan an FR-V prologue, starting at PC, until frame->PC.
422 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
423 We assume FRAME's saved_regs array has already been allocated and cleared.
424 Return the first PC value after the prologue.
425
426 Note that, for unoptimized code, we almost don't need this function
427 at all; all arguments and locals live on the stack, so we just need
428 the FP to find everything. The catch: structures passed by value
429 have their addresses living in registers; they're never spilled to
430 the stack. So if you ever want to be able to get to these
431 arguments in any frame but the top, you'll need to do this serious
432 prologue analysis. */
433 static CORE_ADDR
434 frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
435 struct frv_unwind_cache *info)
436 {
437 /* When writing out instruction bitpatterns, we use the following
438 letters to label instruction fields:
439 P - The parallel bit. We don't use this.
440 J - The register number of GRj in the instruction description.
441 K - The register number of GRk in the instruction description.
442 I - The register number of GRi.
443 S - a signed imediate offset.
444 U - an unsigned immediate offset.
445
446 The dots below the numbers indicate where hex digit boundaries
447 fall, to make it easier to check the numbers. */
448
449 /* Non-zero iff we've seen the instruction that initializes the
450 frame pointer for this function's frame. */
451 int fp_set = 0;
452
453 /* If fp_set is non_zero, then this is the distance from
454 the stack pointer to frame pointer: fp = sp + fp_offset. */
455 int fp_offset = 0;
456
457 /* Total size of frame prior to any alloca operations. */
458 int framesize = 0;
459
460 /* Flag indicating if lr has been saved on the stack. */
461 int lr_saved_on_stack = 0;
462
463 /* The number of the general-purpose register we saved the return
464 address ("link register") in, or -1 if we haven't moved it yet. */
465 int lr_save_reg = -1;
466
467 /* Offset (from sp) at which lr has been saved on the stack. */
468
469 int lr_sp_offset = 0;
470
471 /* If gr_saved[i] is non-zero, then we've noticed that general
472 register i has been saved at gr_sp_offset[i] from the stack
473 pointer. */
474 char gr_saved[64];
475 int gr_sp_offset[64];
476
477 memset (gr_saved, 0, sizeof (gr_saved));
478
479 while (! next_frame || pc < frame_pc_unwind (next_frame))
480 {
481 LONGEST op = read_memory_integer (pc, 4);
482
483 /* The tests in this chain of ifs should be in order of
484 decreasing selectivity, so that more particular patterns get
485 to fire before less particular patterns. */
486
487 /* Setting the FP from the SP:
488 ori sp, 0, fp
489 P 000010 0100010 000001 000000000000 = 0x04881000
490 0 111111 1111111 111111 111111111111 = 0x7fffffff
491 . . . . . . . .
492 We treat this as part of the prologue. */
493 if ((op & 0x7fffffff) == 0x04881000)
494 {
495 fp_set = 1;
496 fp_offset = 0;
497 }
498
499 /* Move the link register to the scratch register grJ, before saving:
500 movsg lr, grJ
501 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
502 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
503 . . . . . . . .
504 We treat this as part of the prologue. */
505 else if ((op & 0x7fffffc0) == 0x080d01c0)
506 {
507 int gr_j = op & 0x3f;
508
509 /* If we're moving it to a scratch register, that's fine. */
510 if (is_caller_saves_reg (gr_j))
511 lr_save_reg = gr_j;
512 /* Otherwise it's not a prologue instruction that we
513 recognize. */
514 else
515 break;
516 }
517
518 /* To save multiple callee-saves registers on the stack, at
519 offset zero:
520
521 std grK,@(sp,gr0)
522 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
523 0 000000 1111111 111111 111111 111111 = 0x01ffffff
524
525 stq grK,@(sp,gr0)
526 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
527 0 000000 1111111 111111 111111 111111 = 0x01ffffff
528 . . . . . . . .
529 We treat this as part of the prologue, and record the register's
530 saved address in the frame structure. */
531 else if ((op & 0x01ffffff) == 0x000c10c0
532 || (op & 0x01ffffff) == 0x000c1100)
533 {
534 int gr_k = ((op >> 25) & 0x3f);
535 int ope = ((op >> 6) & 0x3f);
536 int count;
537 int i;
538
539 /* Is it an std or an stq? */
540 if (ope == 0x03)
541 count = 2;
542 else
543 count = 4;
544
545 /* Is it really a callee-saves register? */
546 if (is_callee_saves_reg (gr_k))
547 {
548 for (i = 0; i < count; i++)
549 {
550 gr_saved[gr_k + i] = 1;
551 gr_sp_offset[gr_k + i] = 4 * i;
552 }
553 }
554 else
555 /* It's not a prologue instruction. */
556 break;
557 }
558
559 /* Adjusting the stack pointer. (The stack pointer is GR1.)
560 addi sp, S, sp
561 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
562 0 111111 1111111 111111 000000000000 = 0x7ffff000
563 . . . . . . . .
564 We treat this as part of the prologue. */
565 else if ((op & 0x7ffff000) == 0x02401000)
566 {
567 /* Sign-extend the twelve-bit field.
568 (Isn't there a better way to do this?) */
569 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
570
571 framesize -= s;
572 }
573
574 /* Setting the FP to a constant distance from the SP:
575 addi sp, S, fp
576 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
577 0 111111 1111111 111111 000000000000 = 0x7ffff000
578 . . . . . . . .
579 We treat this as part of the prologue. */
580 else if ((op & 0x7ffff000) == 0x04401000)
581 {
582 /* Sign-extend the twelve-bit field.
583 (Isn't there a better way to do this?) */
584 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
585 fp_set = 1;
586 fp_offset = s;
587 }
588
589 /* To spill an argument register to a scratch register:
590 ori GRi, 0, GRk
591 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
592 0 000000 1111111 000000 111111111111 = 0x01fc0fff
593 . . . . . . . .
594 For the time being, we treat this as a prologue instruction,
595 assuming that GRi is an argument register. This one's kind
596 of suspicious, because it seems like it could be part of a
597 legitimate body instruction. But we only come here when the
598 source info wasn't helpful, so we have to do the best we can.
599 Hopefully once GCC and GDB agree on how to emit line number
600 info for prologues, then this code will never come into play. */
601 else if ((op & 0x01fc0fff) == 0x00880000)
602 {
603 int gr_i = ((op >> 12) & 0x3f);
604
605 /* If the source isn't an arg register, then this isn't a
606 prologue instruction. */
607 if (! is_argument_reg (gr_i))
608 break;
609 }
610
611 /* To spill 16-bit values to the stack:
612 sthi GRk, @(fp, s)
613 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
614 0 000000 1111111 111111 000000000000 = 0x01fff000
615 . . . . . . . .
616 And for 8-bit values, we use STB instructions.
617 stbi GRk, @(fp, s)
618 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
619 0 000000 1111111 111111 000000000000 = 0x01fff000
620 . . . . . . . .
621 We check that GRk is really an argument register, and treat
622 all such as part of the prologue. */
623 else if ( (op & 0x01fff000) == 0x01442000
624 || (op & 0x01fff000) == 0x01402000)
625 {
626 int gr_k = ((op >> 25) & 0x3f);
627
628 if (! is_argument_reg (gr_k))
629 break; /* Source isn't an arg register. */
630 }
631
632 /* To save multiple callee-saves register on the stack, at a
633 non-zero offset:
634
635 stdi GRk, @(sp, s)
636 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
637 0 000000 1111111 111111 000000000000 = 0x01fff000
638 . . . . . . . .
639 stqi GRk, @(sp, s)
640 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
641 0 000000 1111111 111111 000000000000 = 0x01fff000
642 . . . . . . . .
643 We treat this as part of the prologue, and record the register's
644 saved address in the frame structure. */
645 else if ((op & 0x01fff000) == 0x014c1000
646 || (op & 0x01fff000) == 0x01501000)
647 {
648 int gr_k = ((op >> 25) & 0x3f);
649 int count;
650 int i;
651
652 /* Is it a stdi or a stqi? */
653 if ((op & 0x01fff000) == 0x014c1000)
654 count = 2;
655 else
656 count = 4;
657
658 /* Is it really a callee-saves register? */
659 if (is_callee_saves_reg (gr_k))
660 {
661 /* Sign-extend the twelve-bit field.
662 (Isn't there a better way to do this?) */
663 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
664
665 for (i = 0; i < count; i++)
666 {
667 gr_saved[gr_k + i] = 1;
668 gr_sp_offset[gr_k + i] = s + (4 * i);
669 }
670 }
671 else
672 /* It's not a prologue instruction. */
673 break;
674 }
675
676 /* Storing any kind of integer register at any constant offset
677 from any other register.
678
679 st GRk, @(GRi, gr0)
680 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
681 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
682 . . . . . . . .
683 sti GRk, @(GRi, d12)
684 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
685 0 000000 1111111 000000 000000000000 = 0x01fc0000
686 . . . . . . . .
687 These could be almost anything, but a lot of prologue
688 instructions fall into this pattern, so let's decode the
689 instruction once, and then work at a higher level. */
690 else if (((op & 0x01fc0fff) == 0x000c0080)
691 || ((op & 0x01fc0000) == 0x01480000))
692 {
693 int gr_k = ((op >> 25) & 0x3f);
694 int gr_i = ((op >> 12) & 0x3f);
695 int offset;
696
697 /* Are we storing with gr0 as an offset, or using an
698 immediate value? */
699 if ((op & 0x01fc0fff) == 0x000c0080)
700 offset = 0;
701 else
702 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
703
704 /* If the address isn't relative to the SP or FP, it's not a
705 prologue instruction. */
706 if (gr_i != sp_regnum && gr_i != fp_regnum)
707 break;
708
709 /* Saving the old FP in the new frame (relative to the SP). */
710 if (gr_k == fp_regnum && gr_i == sp_regnum)
711 {
712 gr_saved[fp_regnum] = 1;
713 gr_sp_offset[fp_regnum] = offset;
714 }
715
716 /* Saving callee-saves register(s) on the stack, relative to
717 the SP. */
718 else if (gr_i == sp_regnum
719 && is_callee_saves_reg (gr_k))
720 {
721 gr_saved[gr_k] = 1;
722 if (gr_i == sp_regnum)
723 gr_sp_offset[gr_k] = offset;
724 else
725 gr_sp_offset[gr_k] = offset + fp_offset;
726 }
727
728 /* Saving the scratch register holding the return address. */
729 else if (lr_save_reg != -1
730 && gr_k == lr_save_reg)
731 {
732 lr_saved_on_stack = 1;
733 if (gr_i == sp_regnum)
734 lr_sp_offset = offset;
735 else
736 lr_sp_offset = offset + fp_offset;
737 }
738
739 /* Spilling int-sized arguments to the stack. */
740 else if (is_argument_reg (gr_k))
741 ;
742
743 /* It's not a store instruction we recognize, so this must
744 be the end of the prologue. */
745 else
746 break;
747 }
748
749 /* It's not any instruction we recognize, so this must be the end
750 of the prologue. */
751 else
752 break;
753
754 pc += 4;
755 }
756
757 if (next_frame && info)
758 {
759 int i;
760 ULONGEST this_base;
761
762 /* If we know the relationship between the stack and frame
763 pointers, record the addresses of the registers we noticed.
764 Note that we have to do this as a separate step at the end,
765 because instructions may save relative to the SP, but we need
766 their addresses relative to the FP. */
767 if (fp_set)
768 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
769 else
770 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
771
772 for (i = 0; i < 64; i++)
773 if (gr_saved[i])
774 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
775
776 info->prev_sp = this_base - fp_offset + framesize;
777 info->base = this_base;
778
779 /* If LR was saved on the stack, record its location. */
780 if (lr_saved_on_stack)
781 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
782
783 /* The call instruction moves the caller's PC in the callee's LR.
784 Since this is an unwind, do the reverse. Copy the location of LR
785 into PC (the address / regnum) so that a request for PC will be
786 converted into a request for the LR. */
787 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
788
789 /* Save the previous frame's computed SP value. */
790 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
791 }
792
793 return pc;
794 }
795
796
797 static CORE_ADDR
798 frv_skip_prologue (CORE_ADDR pc)
799 {
800 CORE_ADDR func_addr, func_end, new_pc;
801
802 new_pc = pc;
803
804 /* If the line table has entry for a line *within* the function
805 (i.e., not in the prologue, and not past the end), then that's
806 our location. */
807 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
808 {
809 struct symtab_and_line sal;
810
811 sal = find_pc_line (func_addr, 0);
812
813 if (sal.line != 0 && sal.end < func_end)
814 {
815 new_pc = sal.end;
816 }
817 }
818
819 /* The FR-V prologue is at least five instructions long (twenty bytes).
820 If we didn't find a real source location past that, then
821 do a full analysis of the prologue. */
822 if (new_pc < pc + 20)
823 new_pc = frv_analyze_prologue (pc, 0, 0);
824
825 return new_pc;
826 }
827
828
829 static struct frv_unwind_cache *
830 frv_frame_unwind_cache (struct frame_info *next_frame,
831 void **this_prologue_cache)
832 {
833 struct gdbarch *gdbarch = get_frame_arch (next_frame);
834 CORE_ADDR pc;
835 ULONGEST prev_sp;
836 ULONGEST this_base;
837 struct frv_unwind_cache *info;
838
839 if ((*this_prologue_cache))
840 return (*this_prologue_cache);
841
842 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
843 (*this_prologue_cache) = info;
844 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
845
846 /* Prologue analysis does the rest... */
847 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
848
849 return info;
850 }
851
852 static void
853 frv_extract_return_value (struct type *type, struct regcache *regcache,
854 void *valbuf)
855 {
856 int len = TYPE_LENGTH (type);
857
858 if (len <= 4)
859 {
860 ULONGEST gpr8_val;
861 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
862 store_unsigned_integer (valbuf, len, gpr8_val);
863 }
864 else if (len == 8)
865 {
866 ULONGEST regval;
867 regcache_cooked_read_unsigned (regcache, 8, &regval);
868 store_unsigned_integer (valbuf, 4, regval);
869 regcache_cooked_read_unsigned (regcache, 9, &regval);
870 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
871 }
872 else
873 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
874 }
875
876 static CORE_ADDR
877 frv_extract_struct_value_address (struct regcache *regcache)
878 {
879 ULONGEST addr;
880 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
881 return addr;
882 }
883
884 static void
885 frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
886 {
887 write_register (struct_return_regnum, addr);
888 }
889
890 static int
891 frv_frameless_function_invocation (struct frame_info *frame)
892 {
893 return frameless_look_for_prologue (frame);
894 }
895
896 static CORE_ADDR
897 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
898 {
899 /* Require dword alignment. */
900 return align_down (sp, 8);
901 }
902
903 static CORE_ADDR
904 frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
905 struct regcache *regcache, CORE_ADDR bp_addr,
906 int nargs, struct value **args, CORE_ADDR sp,
907 int struct_return, CORE_ADDR struct_addr)
908 {
909 int argreg;
910 int argnum;
911 char *val;
912 char valbuf[4];
913 struct value *arg;
914 struct type *arg_type;
915 int len;
916 enum type_code typecode;
917 CORE_ADDR regval;
918 int stack_space;
919 int stack_offset;
920
921 #if 0
922 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
923 nargs, (int) sp, struct_return, struct_addr);
924 #endif
925
926 stack_space = 0;
927 for (argnum = 0; argnum < nargs; ++argnum)
928 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
929
930 stack_space -= (6 * 4);
931 if (stack_space > 0)
932 sp -= stack_space;
933
934 /* Make sure stack is dword aligned. */
935 sp = align_down (sp, 8);
936
937 stack_offset = 0;
938
939 argreg = 8;
940
941 if (struct_return)
942 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
943 struct_addr);
944
945 for (argnum = 0; argnum < nargs; ++argnum)
946 {
947 arg = args[argnum];
948 arg_type = check_typedef (VALUE_TYPE (arg));
949 len = TYPE_LENGTH (arg_type);
950 typecode = TYPE_CODE (arg_type);
951
952 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
953 {
954 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
955 typecode = TYPE_CODE_PTR;
956 len = 4;
957 val = valbuf;
958 }
959 else
960 {
961 val = (char *) VALUE_CONTENTS (arg);
962 }
963
964 while (len > 0)
965 {
966 int partial_len = (len < 4 ? len : 4);
967
968 if (argreg < 14)
969 {
970 regval = extract_unsigned_integer (val, partial_len);
971 #if 0
972 printf(" Argnum %d data %x -> reg %d\n",
973 argnum, (int) regval, argreg);
974 #endif
975 regcache_cooked_write_unsigned (regcache, argreg, regval);
976 ++argreg;
977 }
978 else
979 {
980 #if 0
981 printf(" Argnum %d data %x -> offset %d (%x)\n",
982 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
983 #endif
984 write_memory (sp + stack_offset, val, partial_len);
985 stack_offset += align_up (partial_len, 4);
986 }
987 len -= partial_len;
988 val += partial_len;
989 }
990 }
991
992 /* Set the return address. For the frv, the return breakpoint is
993 always at BP_ADDR. */
994 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
995
996 /* Finally, update the SP register. */
997 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
998
999 return sp;
1000 }
1001
1002 static void
1003 frv_store_return_value (struct type *type, struct regcache *regcache,
1004 const void *valbuf)
1005 {
1006 int len = TYPE_LENGTH (type);
1007
1008 if (len <= 4)
1009 {
1010 bfd_byte val[4];
1011 memset (val, 0, sizeof (val));
1012 memcpy (val + (4 - len), valbuf, len);
1013 regcache_cooked_write (regcache, 8, val);
1014 }
1015 else if (len == 8)
1016 {
1017 regcache_cooked_write (regcache, 8, valbuf);
1018 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1019 }
1020 else
1021 internal_error (__FILE__, __LINE__,
1022 "Don't know how to return a %d-byte value.", len);
1023 }
1024
1025
1026 /* Hardware watchpoint / breakpoint support for the FR500
1027 and FR400. */
1028
1029 int
1030 frv_check_watch_resources (int type, int cnt, int ot)
1031 {
1032 struct gdbarch_tdep *var = CURRENT_VARIANT;
1033
1034 /* Watchpoints not supported on simulator. */
1035 if (strcmp (target_shortname, "sim") == 0)
1036 return 0;
1037
1038 if (type == bp_hardware_breakpoint)
1039 {
1040 if (var->num_hw_breakpoints == 0)
1041 return 0;
1042 else if (cnt <= var->num_hw_breakpoints)
1043 return 1;
1044 }
1045 else
1046 {
1047 if (var->num_hw_watchpoints == 0)
1048 return 0;
1049 else if (ot)
1050 return -1;
1051 else if (cnt <= var->num_hw_watchpoints)
1052 return 1;
1053 }
1054 return -1;
1055 }
1056
1057
1058 CORE_ADDR
1059 frv_stopped_data_address (void)
1060 {
1061 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1062
1063 brr = read_register (brr_regnum);
1064 dbar0 = read_register (dbar0_regnum);
1065 dbar1 = read_register (dbar1_regnum);
1066 dbar2 = read_register (dbar2_regnum);
1067 dbar3 = read_register (dbar3_regnum);
1068
1069 if (brr & (1<<11))
1070 return dbar0;
1071 else if (brr & (1<<10))
1072 return dbar1;
1073 else if (brr & (1<<9))
1074 return dbar2;
1075 else if (brr & (1<<8))
1076 return dbar3;
1077 else
1078 return 0;
1079 }
1080
1081 static CORE_ADDR
1082 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1083 {
1084 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1085 }
1086
1087 /* Given a GDB frame, determine the address of the calling function's
1088 frame. This will be used to create a new GDB frame struct. */
1089
1090 static void
1091 frv_frame_this_id (struct frame_info *next_frame,
1092 void **this_prologue_cache, struct frame_id *this_id)
1093 {
1094 struct frv_unwind_cache *info
1095 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1096 CORE_ADDR base;
1097 CORE_ADDR func;
1098 struct minimal_symbol *msym_stack;
1099 struct frame_id id;
1100
1101 /* The FUNC is easy. */
1102 func = frame_func_unwind (next_frame);
1103
1104 /* Check if the stack is empty. */
1105 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1106 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1107 return;
1108
1109 /* Hopefully the prologue analysis either correctly determined the
1110 frame's base (which is the SP from the previous frame), or set
1111 that base to "NULL". */
1112 base = info->prev_sp;
1113 if (base == 0)
1114 return;
1115
1116 id = frame_id_build (base, func);
1117
1118 /* Check that we're not going round in circles with the same frame
1119 ID (but avoid applying the test to sentinel frames which do go
1120 round in circles). Can't use frame_id_eq() as that doesn't yet
1121 compare the frame's PC value. */
1122 if (frame_relative_level (next_frame) >= 0
1123 && get_frame_type (next_frame) != DUMMY_FRAME
1124 && frame_id_eq (get_frame_id (next_frame), id))
1125 return;
1126
1127 (*this_id) = id;
1128 }
1129
1130 static void
1131 frv_frame_prev_register (struct frame_info *next_frame,
1132 void **this_prologue_cache,
1133 int regnum, int *optimizedp,
1134 enum lval_type *lvalp, CORE_ADDR *addrp,
1135 int *realnump, void *bufferp)
1136 {
1137 struct frv_unwind_cache *info
1138 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1139 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1140 optimizedp, lvalp, addrp, realnump, bufferp);
1141 }
1142
1143 static const struct frame_unwind frv_frame_unwind = {
1144 NORMAL_FRAME,
1145 frv_frame_this_id,
1146 frv_frame_prev_register
1147 };
1148
1149 static const struct frame_unwind *
1150 frv_frame_sniffer (struct frame_info *next_frame)
1151 {
1152 return &frv_frame_unwind;
1153 }
1154
1155 static CORE_ADDR
1156 frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1157 {
1158 struct frv_unwind_cache *info
1159 = frv_frame_unwind_cache (next_frame, this_cache);
1160 return info->base;
1161 }
1162
1163 static const struct frame_base frv_frame_base = {
1164 &frv_frame_unwind,
1165 frv_frame_base_address,
1166 frv_frame_base_address,
1167 frv_frame_base_address
1168 };
1169
1170 static CORE_ADDR
1171 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172 {
1173 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1174 }
1175
1176
1177 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1178 dummy frame. The frame ID's base needs to match the TOS value
1179 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1180 breakpoint. */
1181
1182 static struct frame_id
1183 frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1184 {
1185 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1186 frame_pc_unwind (next_frame));
1187 }
1188
1189
1190 static struct gdbarch *
1191 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1192 {
1193 struct gdbarch *gdbarch;
1194 struct gdbarch_tdep *var;
1195
1196 /* Check to see if we've already built an appropriate architecture
1197 object for this executable. */
1198 arches = gdbarch_list_lookup_by_info (arches, &info);
1199 if (arches)
1200 return arches->gdbarch;
1201
1202 /* Select the right tdep structure for this variant. */
1203 var = new_variant ();
1204 switch (info.bfd_arch_info->mach)
1205 {
1206 case bfd_mach_frv:
1207 case bfd_mach_frvsimple:
1208 case bfd_mach_fr500:
1209 case bfd_mach_frvtomcat:
1210 set_variant_num_gprs (var, 64);
1211 set_variant_num_fprs (var, 64);
1212 break;
1213
1214 case bfd_mach_fr400:
1215 set_variant_num_gprs (var, 32);
1216 set_variant_num_fprs (var, 32);
1217 break;
1218
1219 default:
1220 /* Never heard of this variant. */
1221 return 0;
1222 }
1223
1224 gdbarch = gdbarch_alloc (&info, var);
1225
1226 set_gdbarch_short_bit (gdbarch, 16);
1227 set_gdbarch_int_bit (gdbarch, 32);
1228 set_gdbarch_long_bit (gdbarch, 32);
1229 set_gdbarch_long_long_bit (gdbarch, 64);
1230 set_gdbarch_float_bit (gdbarch, 32);
1231 set_gdbarch_double_bit (gdbarch, 64);
1232 set_gdbarch_long_double_bit (gdbarch, 64);
1233 set_gdbarch_ptr_bit (gdbarch, 32);
1234
1235 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1236 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1237
1238 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1239 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1240 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1241
1242 set_gdbarch_register_name (gdbarch, frv_register_name);
1243 set_gdbarch_register_type (gdbarch, frv_register_type);
1244 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1245
1246 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1247 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1248
1249 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1250 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1251 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
1252
1253 set_gdbarch_frame_args_skip (gdbarch, 0);
1254 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1255
1256 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1257 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
1258
1259 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
1260 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
1261 set_gdbarch_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1262
1263 /* Frame stuff. */
1264 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1265 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1266 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1267 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1268 frame_base_set_default (gdbarch, &frv_frame_base);
1269
1270 /* Settings for calling functions in the inferior. */
1271 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1272 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
1273
1274 /* Settings that should be unnecessary. */
1275 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1276
1277 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1278
1279 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1280 set_gdbarch_function_start_offset (gdbarch, 0);
1281
1282 set_gdbarch_remote_translate_xfer_address
1283 (gdbarch, generic_remote_translate_xfer_address);
1284
1285 /* Hardware watchpoint / breakpoint support. */
1286 switch (info.bfd_arch_info->mach)
1287 {
1288 case bfd_mach_frv:
1289 case bfd_mach_frvsimple:
1290 case bfd_mach_fr500:
1291 case bfd_mach_frvtomcat:
1292 /* fr500-style hardware debugging support. */
1293 var->num_hw_watchpoints = 4;
1294 var->num_hw_breakpoints = 4;
1295 break;
1296
1297 case bfd_mach_fr400:
1298 /* fr400-style hardware debugging support. */
1299 var->num_hw_watchpoints = 2;
1300 var->num_hw_breakpoints = 4;
1301 break;
1302
1303 default:
1304 /* Otherwise, assume we don't have hardware debugging support. */
1305 var->num_hw_watchpoints = 0;
1306 var->num_hw_breakpoints = 0;
1307 break;
1308 }
1309
1310 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1311
1312 return gdbarch;
1313 }
1314
1315 void
1316 _initialize_frv_tdep (void)
1317 {
1318 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1319 }
This page took 0.057381 seconds and 5 git commands to generate.