*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
371 #
372 i::int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
395 # useful).
396
397 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
403
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
407 # / addr_bit will be set from it.
408 #
409 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
410 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
411 # as well.
412 #
413 # ptr_bit is the size of a pointer on the target
414 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
415 # addr_bit is the size of a target address as represented in gdb
416 v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::int:char_signed:::1:-1:1
420 #
421 F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
422 F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
423 # Function for getting target's idea of a frame pointer. FIXME: GDB's
424 # whole scheme for dealing with "frames" and "frame pointers" needs a
425 # serious shakedown.
426 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
427 #
428 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
429 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 #
431 v::int:num_regs:::0:-1
432 # This macro gives the number of pseudo-registers that live in the
433 # register namespace but do not get fetched or stored on the target.
434 # These pseudo-registers may be aliases for other registers,
435 # combinations of other registers, or they may be computed by GDB.
436 v::int:num_pseudo_regs:::0:0::0
437
438 # GDB's standard (or well known) register numbers. These can map onto
439 # a real register or a pseudo (computed) register or not be defined at
440 # all (-1).
441 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
442 v::int:sp_regnum:::-1:-1::0
443 v::int:pc_regnum:::-1:-1::0
444 v::int:ps_regnum:::-1:-1::0
445 v::int:fp0_regnum:::0:-1::0
446 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
447 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
449 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
450 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
451 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
452 # Convert from an sdb register number to an internal gdb register number.
453 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
454 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
455 f::const char *:register_name:int regnr:regnr
456
457 # Return the type of a register specified by the architecture. Only
458 # the register cache should call this function directly; others should
459 # use "register_type".
460 M::struct type *:register_type:int reg_nr:reg_nr
461
462 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
463 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
464 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
465 # deprecated_fp_regnum.
466 v::int:deprecated_fp_regnum:::-1:-1::0
467
468 # See gdbint.texinfo. See infcall.c.
469 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
470 v::int:call_dummy_location::::AT_ENTRY_POINT::0
471 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr, regcache
472
473 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
474 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
476 # MAP a GDB RAW register number onto a simulator register number. See
477 # also include/...-sim.h.
478 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
479 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
480 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
481 # setjmp/longjmp support.
482 F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
483 #
484 v::int:believe_pcc_promotion:::::::
485 #
486 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
487 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
488 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
494 #
495 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
496 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
497 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
498
499 # It has been suggested that this, well actually its predecessor,
500 # should take the type/value of the function to be called and not the
501 # return type. This is left as an exercise for the reader.
502
503 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
504 # the predicate with default hack to avoid calling store_return_value
505 # (via legacy_return_value), when a small struct is involved.
506
507 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
508
509 # The deprecated methods extract_return_value, store_return_value,
510 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
511 # deprecated_use_struct_convention have all been folded into
512 # RETURN_VALUE.
513
514 f::void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
515 f::void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
516 f::int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
517
518 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
520 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
521 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
522 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
523 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
524 v::CORE_ADDR:decr_pc_after_break:::0:::0
525
526 # A function can be addressed by either it's "pointer" (possibly a
527 # descriptor address) or "entry point" (first executable instruction).
528 # The method "convert_from_func_ptr_addr" converting the former to the
529 # latter. gdbarch_deprecated_function_start_offset is being used to implement
530 # a simplified subset of that functionality - the function's address
531 # corresponds to the "function pointer" and the function's start
532 # corresponds to the "function entry point" - and hence is redundant.
533
534 v::CORE_ADDR:deprecated_function_start_offset:::0:::0
535
536 # Return the remote protocol register number associated with this
537 # register. Normally the identity mapping.
538 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
539
540 # Fetch the target specific address used to represent a load module.
541 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
542 #
543 v::CORE_ADDR:frame_args_skip:::0:::0
544 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
545 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
546 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
547 # frame-base. Enable frame-base before frame-unwind.
548 F::int:frame_num_args:struct frame_info *frame:frame
549 #
550 M::CORE_ADDR:frame_align:CORE_ADDR address:address
551 # deprecated_reg_struct_has_addr has been replaced by
552 # stabs_argument_has_addr.
553 F::int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
554 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
555 v::int:frame_red_zone_size
556 #
557 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
558 # On some machines there are bits in addresses which are not really
559 # part of the address, but are used by the kernel, the hardware, etc.
560 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
561 # we get a "real" address such as one would find in a symbol table.
562 # This is used only for addresses of instructions, and even then I'm
563 # not sure it's used in all contexts. It exists to deal with there
564 # being a few stray bits in the PC which would mislead us, not as some
565 # sort of generic thing to handle alignment or segmentation (it's
566 # possible it should be in TARGET_READ_PC instead).
567 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
568 # It is not at all clear why gdbarch_smash_text_address is not folded into
569 # gdbarch_addr_bits_remove.
570 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
571
572 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
573 # indicates if the target needs software single step. An ISA method to
574 # implement it.
575 #
576 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
577 # breakpoints using the breakpoint system instead of blatting memory directly
578 # (as with rs6000).
579 #
580 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
581 # target can single step. If not, then implement single step using breakpoints.
582 #
583 # A return value of 1 means that the software_single_step breakpoints
584 # were inserted; 0 means they were not.
585 F::int:software_single_step:struct frame_info *frame:frame
586
587 # Return non-zero if the processor is executing a delay slot and a
588 # further single-step is needed before the instruction finishes.
589 M::int:single_step_through_delay:struct frame_info *frame:frame
590 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
591 # disassembler. Perhaps objdump can handle it?
592 f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
593 f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
594
595
596 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
597 # evaluates non-zero, this is the address where the debugger will place
598 # a step-resume breakpoint to get us past the dynamic linker.
599 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
600 # Some systems also have trampoline code for returning from shared libs.
601 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
602
603 # A target might have problems with watchpoints as soon as the stack
604 # frame of the current function has been destroyed. This mostly happens
605 # as the first action in a funtion's epilogue. in_function_epilogue_p()
606 # is defined to return a non-zero value if either the given addr is one
607 # instruction after the stack destroying instruction up to the trailing
608 # return instruction or if we can figure out that the stack frame has
609 # already been invalidated regardless of the value of addr. Targets
610 # which don't suffer from that problem could just let this functionality
611 # untouched.
612 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
613 # Given a vector of command-line arguments, return a newly allocated
614 # string which, when passed to the create_inferior function, will be
615 # parsed (on Unix systems, by the shell) to yield the same vector.
616 # This function should call error() if the argument vector is not
617 # representable for this target or if this target does not support
618 # command-line arguments.
619 # ARGC is the number of elements in the vector.
620 # ARGV is an array of strings, one per argument.
621 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
622 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
624 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
625 v::int:cannot_step_breakpoint:::0:0::0
626 v::int:have_nonsteppable_watchpoint:::0:0::0
627 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
628 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
629 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
630 # Is a register in a group
631 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
632 # Fetch the pointer to the ith function argument.
633 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
634
635 # Return the appropriate register set for a core file section with
636 # name SECT_NAME and size SECT_SIZE.
637 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
638
639 # If the elements of C++ vtables are in-place function descriptors rather
640 # than normal function pointers (which may point to code or a descriptor),
641 # set this to one.
642 v::int:vtable_function_descriptors:::0:0::0
643
644 # Set if the least significant bit of the delta is used instead of the least
645 # significant bit of the pfn for pointers to virtual member functions.
646 v::int:vbit_in_delta:::0:0::0
647
648 # Advance PC to next instruction in order to skip a permanent breakpoint.
649 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
650
651 # Refresh overlay mapped state for section OSECT.
652 F::void:overlay_update:struct obj_section *osect:osect
653 EOF
654 }
655
656 #
657 # The .log file
658 #
659 exec > new-gdbarch.log
660 function_list | while do_read
661 do
662 cat <<EOF
663 ${class} ${returntype} ${function} ($formal)
664 EOF
665 for r in ${read}
666 do
667 eval echo \"\ \ \ \ ${r}=\${${r}}\"
668 done
669 if class_is_predicate_p && fallback_default_p
670 then
671 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
672 kill $$
673 exit 1
674 fi
675 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
676 then
677 echo "Error: postdefault is useless when invalid_p=0" 1>&2
678 kill $$
679 exit 1
680 fi
681 if class_is_multiarch_p
682 then
683 if class_is_predicate_p ; then :
684 elif test "x${predefault}" = "x"
685 then
686 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
687 kill $$
688 exit 1
689 fi
690 fi
691 echo ""
692 done
693
694 exec 1>&2
695 compare_new gdbarch.log
696
697
698 copyright ()
699 {
700 cat <<EOF
701 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
702
703 /* Dynamic architecture support for GDB, the GNU debugger.
704
705 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
706 Free Software Foundation, Inc.
707
708 This file is part of GDB.
709
710 This program is free software; you can redistribute it and/or modify
711 it under the terms of the GNU General Public License as published by
712 the Free Software Foundation; either version 2 of the License, or
713 (at your option) any later version.
714
715 This program is distributed in the hope that it will be useful,
716 but WITHOUT ANY WARRANTY; without even the implied warranty of
717 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
718 GNU General Public License for more details.
719
720 You should have received a copy of the GNU General Public License
721 along with this program; if not, write to the Free Software
722 Foundation, Inc., 51 Franklin Street, Fifth Floor,
723 Boston, MA 02110-1301, USA. */
724
725 /* This file was created with the aid of \`\`gdbarch.sh''.
726
727 The Bourne shell script \`\`gdbarch.sh'' creates the files
728 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
729 against the existing \`\`gdbarch.[hc]''. Any differences found
730 being reported.
731
732 If editing this file, please also run gdbarch.sh and merge any
733 changes into that script. Conversely, when making sweeping changes
734 to this file, modifying gdbarch.sh and using its output may prove
735 easier. */
736
737 EOF
738 }
739
740 #
741 # The .h file
742 #
743
744 exec > new-gdbarch.h
745 copyright
746 cat <<EOF
747 #ifndef GDBARCH_H
748 #define GDBARCH_H
749
750 struct floatformat;
751 struct ui_file;
752 struct frame_info;
753 struct value;
754 struct objfile;
755 struct obj_section;
756 struct minimal_symbol;
757 struct regcache;
758 struct reggroup;
759 struct regset;
760 struct disassemble_info;
761 struct target_ops;
762 struct obstack;
763 struct bp_target_info;
764 struct target_desc;
765
766 extern struct gdbarch *current_gdbarch;
767 EOF
768
769 # function typedef's
770 printf "\n"
771 printf "\n"
772 printf "/* The following are pre-initialized by GDBARCH. */\n"
773 function_list | while do_read
774 do
775 if class_is_info_p
776 then
777 printf "\n"
778 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
779 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
780 if test -n "${macro}"
781 then
782 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
783 printf "#error \"Non multi-arch definition of ${macro}\"\n"
784 printf "#endif\n"
785 printf "#if !defined (${macro})\n"
786 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
787 printf "#endif\n"
788 fi
789 fi
790 done
791
792 # function typedef's
793 printf "\n"
794 printf "\n"
795 printf "/* The following are initialized by the target dependent code. */\n"
796 function_list | while do_read
797 do
798 if [ -n "${comment}" ]
799 then
800 echo "${comment}" | sed \
801 -e '2 s,#,/*,' \
802 -e '3,$ s,#, ,' \
803 -e '$ s,$, */,'
804 fi
805
806 if class_is_predicate_p
807 then
808 if test -n "${macro}"
809 then
810 printf "\n"
811 printf "#if defined (${macro})\n"
812 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
813 printf "#if !defined (${macro}_P)\n"
814 printf "#define ${macro}_P() (1)\n"
815 printf "#endif\n"
816 printf "#endif\n"
817 fi
818 printf "\n"
819 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
820 if test -n "${macro}"
821 then
822 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
823 printf "#error \"Non multi-arch definition of ${macro}\"\n"
824 printf "#endif\n"
825 printf "#if !defined (${macro}_P)\n"
826 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
827 printf "#endif\n"
828 fi
829 fi
830 if class_is_variable_p
831 then
832 printf "\n"
833 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
834 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
835 if test -n "${macro}"
836 then
837 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
838 printf "#error \"Non multi-arch definition of ${macro}\"\n"
839 printf "#endif\n"
840 printf "#if !defined (${macro})\n"
841 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
842 printf "#endif\n"
843 fi
844 fi
845 if class_is_function_p
846 then
847 printf "\n"
848 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
849 then
850 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
851 elif class_is_multiarch_p
852 then
853 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
854 else
855 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
856 fi
857 if [ "x${formal}" = "xvoid" ]
858 then
859 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
860 else
861 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
862 fi
863 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
864 if test -n "${macro}"
865 then
866 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
867 printf "#error \"Non multi-arch definition of ${macro}\"\n"
868 printf "#endif\n"
869 if [ "x${actual}" = "x" ]
870 then
871 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
872 elif [ "x${actual}" = "x-" ]
873 then
874 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
875 else
876 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
877 fi
878 printf "#if !defined (${macro})\n"
879 if [ "x${actual}" = "x" ]
880 then
881 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
882 elif [ "x${actual}" = "x-" ]
883 then
884 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
885 else
886 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
887 fi
888 printf "#endif\n"
889 fi
890 fi
891 done
892
893 # close it off
894 cat <<EOF
895
896 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
897
898
899 /* Mechanism for co-ordinating the selection of a specific
900 architecture.
901
902 GDB targets (*-tdep.c) can register an interest in a specific
903 architecture. Other GDB components can register a need to maintain
904 per-architecture data.
905
906 The mechanisms below ensures that there is only a loose connection
907 between the set-architecture command and the various GDB
908 components. Each component can independently register their need
909 to maintain architecture specific data with gdbarch.
910
911 Pragmatics:
912
913 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
914 didn't scale.
915
916 The more traditional mega-struct containing architecture specific
917 data for all the various GDB components was also considered. Since
918 GDB is built from a variable number of (fairly independent)
919 components it was determined that the global aproach was not
920 applicable. */
921
922
923 /* Register a new architectural family with GDB.
924
925 Register support for the specified ARCHITECTURE with GDB. When
926 gdbarch determines that the specified architecture has been
927 selected, the corresponding INIT function is called.
928
929 --
930
931 The INIT function takes two parameters: INFO which contains the
932 information available to gdbarch about the (possibly new)
933 architecture; ARCHES which is a list of the previously created
934 \`\`struct gdbarch'' for this architecture.
935
936 The INFO parameter is, as far as possible, be pre-initialized with
937 information obtained from INFO.ABFD or the global defaults.
938
939 The ARCHES parameter is a linked list (sorted most recently used)
940 of all the previously created architures for this architecture
941 family. The (possibly NULL) ARCHES->gdbarch can used to access
942 values from the previously selected architecture for this
943 architecture family. The global \`\`current_gdbarch'' shall not be
944 used.
945
946 The INIT function shall return any of: NULL - indicating that it
947 doesn't recognize the selected architecture; an existing \`\`struct
948 gdbarch'' from the ARCHES list - indicating that the new
949 architecture is just a synonym for an earlier architecture (see
950 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
951 - that describes the selected architecture (see gdbarch_alloc()).
952
953 The DUMP_TDEP function shall print out all target specific values.
954 Care should be taken to ensure that the function works in both the
955 multi-arch and non- multi-arch cases. */
956
957 struct gdbarch_list
958 {
959 struct gdbarch *gdbarch;
960 struct gdbarch_list *next;
961 };
962
963 struct gdbarch_info
964 {
965 /* Use default: NULL (ZERO). */
966 const struct bfd_arch_info *bfd_arch_info;
967
968 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
969 int byte_order;
970
971 /* Use default: NULL (ZERO). */
972 bfd *abfd;
973
974 /* Use default: NULL (ZERO). */
975 struct gdbarch_tdep_info *tdep_info;
976
977 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
978 enum gdb_osabi osabi;
979
980 /* Use default: NULL (ZERO). */
981 const struct target_desc *target_desc;
982 };
983
984 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
985 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
986
987 /* DEPRECATED - use gdbarch_register() */
988 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
989
990 extern void gdbarch_register (enum bfd_architecture architecture,
991 gdbarch_init_ftype *,
992 gdbarch_dump_tdep_ftype *);
993
994
995 /* Return a freshly allocated, NULL terminated, array of the valid
996 architecture names. Since architectures are registered during the
997 _initialize phase this function only returns useful information
998 once initialization has been completed. */
999
1000 extern const char **gdbarch_printable_names (void);
1001
1002
1003 /* Helper function. Search the list of ARCHES for a GDBARCH that
1004 matches the information provided by INFO. */
1005
1006 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1007
1008
1009 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1010 basic initialization using values obtained from the INFO and TDEP
1011 parameters. set_gdbarch_*() functions are called to complete the
1012 initialization of the object. */
1013
1014 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1015
1016
1017 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1018 It is assumed that the caller freeds the \`\`struct
1019 gdbarch_tdep''. */
1020
1021 extern void gdbarch_free (struct gdbarch *);
1022
1023
1024 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1025 obstack. The memory is freed when the corresponding architecture
1026 is also freed. */
1027
1028 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1029 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1030 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1031
1032
1033 /* Helper function. Force an update of the current architecture.
1034
1035 The actual architecture selected is determined by INFO, \`\`(gdb) set
1036 architecture'' et.al., the existing architecture and BFD's default
1037 architecture. INFO should be initialized to zero and then selected
1038 fields should be updated.
1039
1040 Returns non-zero if the update succeeds */
1041
1042 extern int gdbarch_update_p (struct gdbarch_info info);
1043
1044
1045 /* Helper function. Find an architecture matching info.
1046
1047 INFO should be initialized using gdbarch_info_init, relevant fields
1048 set, and then finished using gdbarch_info_fill.
1049
1050 Returns the corresponding architecture, or NULL if no matching
1051 architecture was found. "current_gdbarch" is not updated. */
1052
1053 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1054
1055
1056 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1057
1058 FIXME: kettenis/20031124: Of the functions that follow, only
1059 gdbarch_from_bfd is supposed to survive. The others will
1060 dissappear since in the future GDB will (hopefully) be truly
1061 multi-arch. However, for now we're still stuck with the concept of
1062 a single active architecture. */
1063
1064 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1065
1066
1067 /* Register per-architecture data-pointer.
1068
1069 Reserve space for a per-architecture data-pointer. An identifier
1070 for the reserved data-pointer is returned. That identifer should
1071 be saved in a local static variable.
1072
1073 Memory for the per-architecture data shall be allocated using
1074 gdbarch_obstack_zalloc. That memory will be deleted when the
1075 corresponding architecture object is deleted.
1076
1077 When a previously created architecture is re-selected, the
1078 per-architecture data-pointer for that previous architecture is
1079 restored. INIT() is not re-called.
1080
1081 Multiple registrarants for any architecture are allowed (and
1082 strongly encouraged). */
1083
1084 struct gdbarch_data;
1085
1086 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1087 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1088 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1089 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1090 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1091 struct gdbarch_data *data,
1092 void *pointer);
1093
1094 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1095
1096
1097 /* Set the dynamic target-system-dependent parameters (architecture,
1098 byte-order, ...) using information found in the BFD */
1099
1100 extern void set_gdbarch_from_file (bfd *);
1101
1102
1103 /* Initialize the current architecture to the "first" one we find on
1104 our list. */
1105
1106 extern void initialize_current_architecture (void);
1107
1108 /* gdbarch trace variable */
1109 extern int gdbarch_debug;
1110
1111 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1112
1113 #endif
1114 EOF
1115 exec 1>&2
1116 #../move-if-change new-gdbarch.h gdbarch.h
1117 compare_new gdbarch.h
1118
1119
1120 #
1121 # C file
1122 #
1123
1124 exec > new-gdbarch.c
1125 copyright
1126 cat <<EOF
1127
1128 #include "defs.h"
1129 #include "arch-utils.h"
1130
1131 #include "gdbcmd.h"
1132 #include "inferior.h"
1133 #include "symcat.h"
1134
1135 #include "floatformat.h"
1136
1137 #include "gdb_assert.h"
1138 #include "gdb_string.h"
1139 #include "gdb-events.h"
1140 #include "reggroups.h"
1141 #include "osabi.h"
1142 #include "gdb_obstack.h"
1143
1144 /* Static function declarations */
1145
1146 static void alloc_gdbarch_data (struct gdbarch *);
1147
1148 /* Non-zero if we want to trace architecture code. */
1149
1150 #ifndef GDBARCH_DEBUG
1151 #define GDBARCH_DEBUG 0
1152 #endif
1153 int gdbarch_debug = GDBARCH_DEBUG;
1154 static void
1155 show_gdbarch_debug (struct ui_file *file, int from_tty,
1156 struct cmd_list_element *c, const char *value)
1157 {
1158 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1159 }
1160
1161 static const char *
1162 pformat (const struct floatformat **format)
1163 {
1164 if (format == NULL)
1165 return "(null)";
1166 else
1167 /* Just print out one of them - this is only for diagnostics. */
1168 return format[0]->name;
1169 }
1170
1171 EOF
1172
1173 # gdbarch open the gdbarch object
1174 printf "\n"
1175 printf "/* Maintain the struct gdbarch object */\n"
1176 printf "\n"
1177 printf "struct gdbarch\n"
1178 printf "{\n"
1179 printf " /* Has this architecture been fully initialized? */\n"
1180 printf " int initialized_p;\n"
1181 printf "\n"
1182 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1183 printf " struct obstack *obstack;\n"
1184 printf "\n"
1185 printf " /* basic architectural information */\n"
1186 function_list | while do_read
1187 do
1188 if class_is_info_p
1189 then
1190 printf " ${returntype} ${function};\n"
1191 fi
1192 done
1193 printf "\n"
1194 printf " /* target specific vector. */\n"
1195 printf " struct gdbarch_tdep *tdep;\n"
1196 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1197 printf "\n"
1198 printf " /* per-architecture data-pointers */\n"
1199 printf " unsigned nr_data;\n"
1200 printf " void **data;\n"
1201 printf "\n"
1202 printf " /* per-architecture swap-regions */\n"
1203 printf " struct gdbarch_swap *swap;\n"
1204 printf "\n"
1205 cat <<EOF
1206 /* Multi-arch values.
1207
1208 When extending this structure you must:
1209
1210 Add the field below.
1211
1212 Declare set/get functions and define the corresponding
1213 macro in gdbarch.h.
1214
1215 gdbarch_alloc(): If zero/NULL is not a suitable default,
1216 initialize the new field.
1217
1218 verify_gdbarch(): Confirm that the target updated the field
1219 correctly.
1220
1221 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1222 field is dumped out
1223
1224 \`\`startup_gdbarch()'': Append an initial value to the static
1225 variable (base values on the host's c-type system).
1226
1227 get_gdbarch(): Implement the set/get functions (probably using
1228 the macro's as shortcuts).
1229
1230 */
1231
1232 EOF
1233 function_list | while do_read
1234 do
1235 if class_is_variable_p
1236 then
1237 printf " ${returntype} ${function};\n"
1238 elif class_is_function_p
1239 then
1240 printf " gdbarch_${function}_ftype *${function};\n"
1241 fi
1242 done
1243 printf "};\n"
1244
1245 # A pre-initialized vector
1246 printf "\n"
1247 printf "\n"
1248 cat <<EOF
1249 /* The default architecture uses host values (for want of a better
1250 choice). */
1251 EOF
1252 printf "\n"
1253 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1254 printf "\n"
1255 printf "struct gdbarch startup_gdbarch =\n"
1256 printf "{\n"
1257 printf " 1, /* Always initialized. */\n"
1258 printf " NULL, /* The obstack. */\n"
1259 printf " /* basic architecture information */\n"
1260 function_list | while do_read
1261 do
1262 if class_is_info_p
1263 then
1264 printf " ${staticdefault}, /* ${function} */\n"
1265 fi
1266 done
1267 cat <<EOF
1268 /* target specific vector and its dump routine */
1269 NULL, NULL,
1270 /*per-architecture data-pointers and swap regions */
1271 0, NULL, NULL,
1272 /* Multi-arch values */
1273 EOF
1274 function_list | while do_read
1275 do
1276 if class_is_function_p || class_is_variable_p
1277 then
1278 printf " ${staticdefault}, /* ${function} */\n"
1279 fi
1280 done
1281 cat <<EOF
1282 /* startup_gdbarch() */
1283 };
1284
1285 struct gdbarch *current_gdbarch = &startup_gdbarch;
1286 EOF
1287
1288 # Create a new gdbarch struct
1289 cat <<EOF
1290
1291 /* Create a new \`\`struct gdbarch'' based on information provided by
1292 \`\`struct gdbarch_info''. */
1293 EOF
1294 printf "\n"
1295 cat <<EOF
1296 struct gdbarch *
1297 gdbarch_alloc (const struct gdbarch_info *info,
1298 struct gdbarch_tdep *tdep)
1299 {
1300 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1301 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1302 the current local architecture and not the previous global
1303 architecture. This ensures that the new architectures initial
1304 values are not influenced by the previous architecture. Once
1305 everything is parameterised with gdbarch, this will go away. */
1306 struct gdbarch *current_gdbarch;
1307
1308 /* Create an obstack for allocating all the per-architecture memory,
1309 then use that to allocate the architecture vector. */
1310 struct obstack *obstack = XMALLOC (struct obstack);
1311 obstack_init (obstack);
1312 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1313 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1314 current_gdbarch->obstack = obstack;
1315
1316 alloc_gdbarch_data (current_gdbarch);
1317
1318 current_gdbarch->tdep = tdep;
1319 EOF
1320 printf "\n"
1321 function_list | while do_read
1322 do
1323 if class_is_info_p
1324 then
1325 printf " current_gdbarch->${function} = info->${function};\n"
1326 fi
1327 done
1328 printf "\n"
1329 printf " /* Force the explicit initialization of these. */\n"
1330 function_list | while do_read
1331 do
1332 if class_is_function_p || class_is_variable_p
1333 then
1334 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1335 then
1336 printf " current_gdbarch->${function} = ${predefault};\n"
1337 fi
1338 fi
1339 done
1340 cat <<EOF
1341 /* gdbarch_alloc() */
1342
1343 return current_gdbarch;
1344 }
1345 EOF
1346
1347 # Free a gdbarch struct.
1348 printf "\n"
1349 printf "\n"
1350 cat <<EOF
1351 /* Allocate extra space using the per-architecture obstack. */
1352
1353 void *
1354 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1355 {
1356 void *data = obstack_alloc (arch->obstack, size);
1357 memset (data, 0, size);
1358 return data;
1359 }
1360
1361
1362 /* Free a gdbarch struct. This should never happen in normal
1363 operation --- once you've created a gdbarch, you keep it around.
1364 However, if an architecture's init function encounters an error
1365 building the structure, it may need to clean up a partially
1366 constructed gdbarch. */
1367
1368 void
1369 gdbarch_free (struct gdbarch *arch)
1370 {
1371 struct obstack *obstack;
1372 gdb_assert (arch != NULL);
1373 gdb_assert (!arch->initialized_p);
1374 obstack = arch->obstack;
1375 obstack_free (obstack, 0); /* Includes the ARCH. */
1376 xfree (obstack);
1377 }
1378 EOF
1379
1380 # verify a new architecture
1381 cat <<EOF
1382
1383
1384 /* Ensure that all values in a GDBARCH are reasonable. */
1385
1386 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1387 just happens to match the global variable \`\`current_gdbarch''. That
1388 way macros refering to that variable get the local and not the global
1389 version - ulgh. Once everything is parameterised with gdbarch, this
1390 will go away. */
1391
1392 static void
1393 verify_gdbarch (struct gdbarch *current_gdbarch)
1394 {
1395 struct ui_file *log;
1396 struct cleanup *cleanups;
1397 long dummy;
1398 char *buf;
1399 log = mem_fileopen ();
1400 cleanups = make_cleanup_ui_file_delete (log);
1401 /* fundamental */
1402 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1403 fprintf_unfiltered (log, "\n\tbyte-order");
1404 if (current_gdbarch->bfd_arch_info == NULL)
1405 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1406 /* Check those that need to be defined for the given multi-arch level. */
1407 EOF
1408 function_list | while do_read
1409 do
1410 if class_is_function_p || class_is_variable_p
1411 then
1412 if [ "x${invalid_p}" = "x0" ]
1413 then
1414 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1415 elif class_is_predicate_p
1416 then
1417 printf " /* Skip verify of ${function}, has predicate */\n"
1418 # FIXME: See do_read for potential simplification
1419 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1420 then
1421 printf " if (${invalid_p})\n"
1422 printf " current_gdbarch->${function} = ${postdefault};\n"
1423 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1424 then
1425 printf " if (current_gdbarch->${function} == ${predefault})\n"
1426 printf " current_gdbarch->${function} = ${postdefault};\n"
1427 elif [ -n "${postdefault}" ]
1428 then
1429 printf " if (current_gdbarch->${function} == 0)\n"
1430 printf " current_gdbarch->${function} = ${postdefault};\n"
1431 elif [ -n "${invalid_p}" ]
1432 then
1433 printf " if (${invalid_p})\n"
1434 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1435 elif [ -n "${predefault}" ]
1436 then
1437 printf " if (current_gdbarch->${function} == ${predefault})\n"
1438 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1439 fi
1440 fi
1441 done
1442 cat <<EOF
1443 buf = ui_file_xstrdup (log, &dummy);
1444 make_cleanup (xfree, buf);
1445 if (strlen (buf) > 0)
1446 internal_error (__FILE__, __LINE__,
1447 _("verify_gdbarch: the following are invalid ...%s"),
1448 buf);
1449 do_cleanups (cleanups);
1450 }
1451 EOF
1452
1453 # dump the structure
1454 printf "\n"
1455 printf "\n"
1456 cat <<EOF
1457 /* Print out the details of the current architecture. */
1458
1459 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1460 just happens to match the global variable \`\`current_gdbarch''. That
1461 way macros refering to that variable get the local and not the global
1462 version - ulgh. Once everything is parameterised with gdbarch, this
1463 will go away. */
1464
1465 void
1466 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1467 {
1468 const char *gdb_xm_file = "<not-defined>";
1469 const char *gdb_nm_file = "<not-defined>";
1470 const char *gdb_tm_file = "<not-defined>";
1471 #if defined (GDB_XM_FILE)
1472 gdb_xm_file = GDB_XM_FILE;
1473 #endif
1474 fprintf_unfiltered (file,
1475 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1476 gdb_xm_file);
1477 #if defined (GDB_NM_FILE)
1478 gdb_nm_file = GDB_NM_FILE;
1479 #endif
1480 fprintf_unfiltered (file,
1481 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1482 gdb_nm_file);
1483 #if defined (GDB_TM_FILE)
1484 gdb_tm_file = GDB_TM_FILE;
1485 #endif
1486 fprintf_unfiltered (file,
1487 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1488 gdb_tm_file);
1489 EOF
1490 function_list | sort -t: -k 4 | while do_read
1491 do
1492 # First the predicate
1493 if class_is_predicate_p
1494 then
1495 if test -n "${macro}"
1496 then
1497 printf "#ifdef ${macro}_P\n"
1498 printf " fprintf_unfiltered (file,\n"
1499 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1500 printf " \"${macro}_P()\",\n"
1501 printf " XSTRING (${macro}_P ()));\n"
1502 printf "#endif\n"
1503 fi
1504 printf " fprintf_unfiltered (file,\n"
1505 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1506 printf " gdbarch_${function}_p (current_gdbarch));\n"
1507 fi
1508 # Print the macro definition.
1509 if test -n "${macro}"
1510 then
1511 printf "#ifdef ${macro}\n"
1512 if class_is_function_p
1513 then
1514 printf " fprintf_unfiltered (file,\n"
1515 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1516 printf " \"${macro}(${actual})\",\n"
1517 printf " XSTRING (${macro} (${actual})));\n"
1518 else
1519 printf " fprintf_unfiltered (file,\n"
1520 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1521 printf " XSTRING (${macro}));\n"
1522 fi
1523 printf "#endif\n"
1524 fi
1525 # Print the corresponding value.
1526 if class_is_function_p
1527 then
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1530 printf " (long) current_gdbarch->${function});\n"
1531 else
1532 # It is a variable
1533 case "${print}:${returntype}" in
1534 :CORE_ADDR )
1535 fmt="0x%s"
1536 print="paddr_nz (current_gdbarch->${function})"
1537 ;;
1538 :* )
1539 fmt="%s"
1540 print="paddr_d (current_gdbarch->${function})"
1541 ;;
1542 * )
1543 fmt="%s"
1544 ;;
1545 esac
1546 printf " fprintf_unfiltered (file,\n"
1547 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1548 printf " ${print});\n"
1549 fi
1550 done
1551 cat <<EOF
1552 if (current_gdbarch->dump_tdep != NULL)
1553 current_gdbarch->dump_tdep (current_gdbarch, file);
1554 }
1555 EOF
1556
1557
1558 # GET/SET
1559 printf "\n"
1560 cat <<EOF
1561 struct gdbarch_tdep *
1562 gdbarch_tdep (struct gdbarch *gdbarch)
1563 {
1564 if (gdbarch_debug >= 2)
1565 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1566 return gdbarch->tdep;
1567 }
1568 EOF
1569 printf "\n"
1570 function_list | while do_read
1571 do
1572 if class_is_predicate_p
1573 then
1574 printf "\n"
1575 printf "int\n"
1576 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1577 printf "{\n"
1578 printf " gdb_assert (gdbarch != NULL);\n"
1579 printf " return ${predicate};\n"
1580 printf "}\n"
1581 fi
1582 if class_is_function_p
1583 then
1584 printf "\n"
1585 printf "${returntype}\n"
1586 if [ "x${formal}" = "xvoid" ]
1587 then
1588 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1589 else
1590 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1591 fi
1592 printf "{\n"
1593 printf " gdb_assert (gdbarch != NULL);\n"
1594 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1595 if class_is_predicate_p && test -n "${predefault}"
1596 then
1597 # Allow a call to a function with a predicate.
1598 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1599 fi
1600 printf " if (gdbarch_debug >= 2)\n"
1601 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1602 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1603 then
1604 if class_is_multiarch_p
1605 then
1606 params="gdbarch"
1607 else
1608 params=""
1609 fi
1610 else
1611 if class_is_multiarch_p
1612 then
1613 params="gdbarch, ${actual}"
1614 else
1615 params="${actual}"
1616 fi
1617 fi
1618 if [ "x${returntype}" = "xvoid" ]
1619 then
1620 printf " gdbarch->${function} (${params});\n"
1621 else
1622 printf " return gdbarch->${function} (${params});\n"
1623 fi
1624 printf "}\n"
1625 printf "\n"
1626 printf "void\n"
1627 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1628 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1629 printf "{\n"
1630 printf " gdbarch->${function} = ${function};\n"
1631 printf "}\n"
1632 elif class_is_variable_p
1633 then
1634 printf "\n"
1635 printf "${returntype}\n"
1636 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1637 printf "{\n"
1638 printf " gdb_assert (gdbarch != NULL);\n"
1639 if [ "x${invalid_p}" = "x0" ]
1640 then
1641 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1642 elif [ -n "${invalid_p}" ]
1643 then
1644 printf " /* Check variable is valid. */\n"
1645 printf " gdb_assert (!(${invalid_p}));\n"
1646 elif [ -n "${predefault}" ]
1647 then
1648 printf " /* Check variable changed from pre-default. */\n"
1649 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1650 fi
1651 printf " if (gdbarch_debug >= 2)\n"
1652 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1653 printf " return gdbarch->${function};\n"
1654 printf "}\n"
1655 printf "\n"
1656 printf "void\n"
1657 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1658 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1659 printf "{\n"
1660 printf " gdbarch->${function} = ${function};\n"
1661 printf "}\n"
1662 elif class_is_info_p
1663 then
1664 printf "\n"
1665 printf "${returntype}\n"
1666 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1667 printf "{\n"
1668 printf " gdb_assert (gdbarch != NULL);\n"
1669 printf " if (gdbarch_debug >= 2)\n"
1670 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1671 printf " return gdbarch->${function};\n"
1672 printf "}\n"
1673 fi
1674 done
1675
1676 # All the trailing guff
1677 cat <<EOF
1678
1679
1680 /* Keep a registry of per-architecture data-pointers required by GDB
1681 modules. */
1682
1683 struct gdbarch_data
1684 {
1685 unsigned index;
1686 int init_p;
1687 gdbarch_data_pre_init_ftype *pre_init;
1688 gdbarch_data_post_init_ftype *post_init;
1689 };
1690
1691 struct gdbarch_data_registration
1692 {
1693 struct gdbarch_data *data;
1694 struct gdbarch_data_registration *next;
1695 };
1696
1697 struct gdbarch_data_registry
1698 {
1699 unsigned nr;
1700 struct gdbarch_data_registration *registrations;
1701 };
1702
1703 struct gdbarch_data_registry gdbarch_data_registry =
1704 {
1705 0, NULL,
1706 };
1707
1708 static struct gdbarch_data *
1709 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1710 gdbarch_data_post_init_ftype *post_init)
1711 {
1712 struct gdbarch_data_registration **curr;
1713 /* Append the new registraration. */
1714 for (curr = &gdbarch_data_registry.registrations;
1715 (*curr) != NULL;
1716 curr = &(*curr)->next);
1717 (*curr) = XMALLOC (struct gdbarch_data_registration);
1718 (*curr)->next = NULL;
1719 (*curr)->data = XMALLOC (struct gdbarch_data);
1720 (*curr)->data->index = gdbarch_data_registry.nr++;
1721 (*curr)->data->pre_init = pre_init;
1722 (*curr)->data->post_init = post_init;
1723 (*curr)->data->init_p = 1;
1724 return (*curr)->data;
1725 }
1726
1727 struct gdbarch_data *
1728 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1729 {
1730 return gdbarch_data_register (pre_init, NULL);
1731 }
1732
1733 struct gdbarch_data *
1734 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1735 {
1736 return gdbarch_data_register (NULL, post_init);
1737 }
1738
1739 /* Create/delete the gdbarch data vector. */
1740
1741 static void
1742 alloc_gdbarch_data (struct gdbarch *gdbarch)
1743 {
1744 gdb_assert (gdbarch->data == NULL);
1745 gdbarch->nr_data = gdbarch_data_registry.nr;
1746 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1747 }
1748
1749 /* Initialize the current value of the specified per-architecture
1750 data-pointer. */
1751
1752 void
1753 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1754 struct gdbarch_data *data,
1755 void *pointer)
1756 {
1757 gdb_assert (data->index < gdbarch->nr_data);
1758 gdb_assert (gdbarch->data[data->index] == NULL);
1759 gdb_assert (data->pre_init == NULL);
1760 gdbarch->data[data->index] = pointer;
1761 }
1762
1763 /* Return the current value of the specified per-architecture
1764 data-pointer. */
1765
1766 void *
1767 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1768 {
1769 gdb_assert (data->index < gdbarch->nr_data);
1770 if (gdbarch->data[data->index] == NULL)
1771 {
1772 /* The data-pointer isn't initialized, call init() to get a
1773 value. */
1774 if (data->pre_init != NULL)
1775 /* Mid architecture creation: pass just the obstack, and not
1776 the entire architecture, as that way it isn't possible for
1777 pre-init code to refer to undefined architecture
1778 fields. */
1779 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1780 else if (gdbarch->initialized_p
1781 && data->post_init != NULL)
1782 /* Post architecture creation: pass the entire architecture
1783 (as all fields are valid), but be careful to also detect
1784 recursive references. */
1785 {
1786 gdb_assert (data->init_p);
1787 data->init_p = 0;
1788 gdbarch->data[data->index] = data->post_init (gdbarch);
1789 data->init_p = 1;
1790 }
1791 else
1792 /* The architecture initialization hasn't completed - punt -
1793 hope that the caller knows what they are doing. Once
1794 deprecated_set_gdbarch_data has been initialized, this can be
1795 changed to an internal error. */
1796 return NULL;
1797 gdb_assert (gdbarch->data[data->index] != NULL);
1798 }
1799 return gdbarch->data[data->index];
1800 }
1801
1802
1803 /* Keep a registry of the architectures known by GDB. */
1804
1805 struct gdbarch_registration
1806 {
1807 enum bfd_architecture bfd_architecture;
1808 gdbarch_init_ftype *init;
1809 gdbarch_dump_tdep_ftype *dump_tdep;
1810 struct gdbarch_list *arches;
1811 struct gdbarch_registration *next;
1812 };
1813
1814 static struct gdbarch_registration *gdbarch_registry = NULL;
1815
1816 static void
1817 append_name (const char ***buf, int *nr, const char *name)
1818 {
1819 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1820 (*buf)[*nr] = name;
1821 *nr += 1;
1822 }
1823
1824 const char **
1825 gdbarch_printable_names (void)
1826 {
1827 /* Accumulate a list of names based on the registed list of
1828 architectures. */
1829 enum bfd_architecture a;
1830 int nr_arches = 0;
1831 const char **arches = NULL;
1832 struct gdbarch_registration *rego;
1833 for (rego = gdbarch_registry;
1834 rego != NULL;
1835 rego = rego->next)
1836 {
1837 const struct bfd_arch_info *ap;
1838 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1839 if (ap == NULL)
1840 internal_error (__FILE__, __LINE__,
1841 _("gdbarch_architecture_names: multi-arch unknown"));
1842 do
1843 {
1844 append_name (&arches, &nr_arches, ap->printable_name);
1845 ap = ap->next;
1846 }
1847 while (ap != NULL);
1848 }
1849 append_name (&arches, &nr_arches, NULL);
1850 return arches;
1851 }
1852
1853
1854 void
1855 gdbarch_register (enum bfd_architecture bfd_architecture,
1856 gdbarch_init_ftype *init,
1857 gdbarch_dump_tdep_ftype *dump_tdep)
1858 {
1859 struct gdbarch_registration **curr;
1860 const struct bfd_arch_info *bfd_arch_info;
1861 /* Check that BFD recognizes this architecture */
1862 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1863 if (bfd_arch_info == NULL)
1864 {
1865 internal_error (__FILE__, __LINE__,
1866 _("gdbarch: Attempt to register unknown architecture (%d)"),
1867 bfd_architecture);
1868 }
1869 /* Check that we haven't seen this architecture before */
1870 for (curr = &gdbarch_registry;
1871 (*curr) != NULL;
1872 curr = &(*curr)->next)
1873 {
1874 if (bfd_architecture == (*curr)->bfd_architecture)
1875 internal_error (__FILE__, __LINE__,
1876 _("gdbarch: Duplicate registraration of architecture (%s)"),
1877 bfd_arch_info->printable_name);
1878 }
1879 /* log it */
1880 if (gdbarch_debug)
1881 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1882 bfd_arch_info->printable_name,
1883 (long) init);
1884 /* Append it */
1885 (*curr) = XMALLOC (struct gdbarch_registration);
1886 (*curr)->bfd_architecture = bfd_architecture;
1887 (*curr)->init = init;
1888 (*curr)->dump_tdep = dump_tdep;
1889 (*curr)->arches = NULL;
1890 (*curr)->next = NULL;
1891 }
1892
1893 void
1894 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1895 gdbarch_init_ftype *init)
1896 {
1897 gdbarch_register (bfd_architecture, init, NULL);
1898 }
1899
1900
1901 /* Look for an architecture using gdbarch_info. */
1902
1903 struct gdbarch_list *
1904 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1905 const struct gdbarch_info *info)
1906 {
1907 for (; arches != NULL; arches = arches->next)
1908 {
1909 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1910 continue;
1911 if (info->byte_order != arches->gdbarch->byte_order)
1912 continue;
1913 if (info->osabi != arches->gdbarch->osabi)
1914 continue;
1915 if (info->target_desc != arches->gdbarch->target_desc)
1916 continue;
1917 return arches;
1918 }
1919 return NULL;
1920 }
1921
1922
1923 /* Find an architecture that matches the specified INFO. Create a new
1924 architecture if needed. Return that new architecture. Assumes
1925 that there is no current architecture. */
1926
1927 static struct gdbarch *
1928 find_arch_by_info (struct gdbarch_info info)
1929 {
1930 struct gdbarch *new_gdbarch;
1931 struct gdbarch_registration *rego;
1932
1933 /* The existing architecture has been swapped out - all this code
1934 works from a clean slate. */
1935 gdb_assert (current_gdbarch == NULL);
1936
1937 /* Fill in missing parts of the INFO struct using a number of
1938 sources: "set ..."; INFOabfd supplied; and the global
1939 defaults. */
1940 gdbarch_info_fill (&info);
1941
1942 /* Must have found some sort of architecture. */
1943 gdb_assert (info.bfd_arch_info != NULL);
1944
1945 if (gdbarch_debug)
1946 {
1947 fprintf_unfiltered (gdb_stdlog,
1948 "find_arch_by_info: info.bfd_arch_info %s\n",
1949 (info.bfd_arch_info != NULL
1950 ? info.bfd_arch_info->printable_name
1951 : "(null)"));
1952 fprintf_unfiltered (gdb_stdlog,
1953 "find_arch_by_info: info.byte_order %d (%s)\n",
1954 info.byte_order,
1955 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1956 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1957 : "default"));
1958 fprintf_unfiltered (gdb_stdlog,
1959 "find_arch_by_info: info.osabi %d (%s)\n",
1960 info.osabi, gdbarch_osabi_name (info.osabi));
1961 fprintf_unfiltered (gdb_stdlog,
1962 "find_arch_by_info: info.abfd 0x%lx\n",
1963 (long) info.abfd);
1964 fprintf_unfiltered (gdb_stdlog,
1965 "find_arch_by_info: info.tdep_info 0x%lx\n",
1966 (long) info.tdep_info);
1967 }
1968
1969 /* Find the tdep code that knows about this architecture. */
1970 for (rego = gdbarch_registry;
1971 rego != NULL;
1972 rego = rego->next)
1973 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1974 break;
1975 if (rego == NULL)
1976 {
1977 if (gdbarch_debug)
1978 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1979 "No matching architecture\n");
1980 return 0;
1981 }
1982
1983 /* Ask the tdep code for an architecture that matches "info". */
1984 new_gdbarch = rego->init (info, rego->arches);
1985
1986 /* Did the tdep code like it? No. Reject the change and revert to
1987 the old architecture. */
1988 if (new_gdbarch == NULL)
1989 {
1990 if (gdbarch_debug)
1991 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1992 "Target rejected architecture\n");
1993 return NULL;
1994 }
1995
1996 /* Is this a pre-existing architecture (as determined by already
1997 being initialized)? Move it to the front of the architecture
1998 list (keeping the list sorted Most Recently Used). */
1999 if (new_gdbarch->initialized_p)
2000 {
2001 struct gdbarch_list **list;
2002 struct gdbarch_list *this;
2003 if (gdbarch_debug)
2004 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2005 "Previous architecture 0x%08lx (%s) selected\n",
2006 (long) new_gdbarch,
2007 new_gdbarch->bfd_arch_info->printable_name);
2008 /* Find the existing arch in the list. */
2009 for (list = &rego->arches;
2010 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2011 list = &(*list)->next);
2012 /* It had better be in the list of architectures. */
2013 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2014 /* Unlink THIS. */
2015 this = (*list);
2016 (*list) = this->next;
2017 /* Insert THIS at the front. */
2018 this->next = rego->arches;
2019 rego->arches = this;
2020 /* Return it. */
2021 return new_gdbarch;
2022 }
2023
2024 /* It's a new architecture. */
2025 if (gdbarch_debug)
2026 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2027 "New architecture 0x%08lx (%s) selected\n",
2028 (long) new_gdbarch,
2029 new_gdbarch->bfd_arch_info->printable_name);
2030
2031 /* Insert the new architecture into the front of the architecture
2032 list (keep the list sorted Most Recently Used). */
2033 {
2034 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2035 this->next = rego->arches;
2036 this->gdbarch = new_gdbarch;
2037 rego->arches = this;
2038 }
2039
2040 /* Check that the newly installed architecture is valid. Plug in
2041 any post init values. */
2042 new_gdbarch->dump_tdep = rego->dump_tdep;
2043 verify_gdbarch (new_gdbarch);
2044 new_gdbarch->initialized_p = 1;
2045
2046 if (gdbarch_debug)
2047 gdbarch_dump (new_gdbarch, gdb_stdlog);
2048
2049 return new_gdbarch;
2050 }
2051
2052 struct gdbarch *
2053 gdbarch_find_by_info (struct gdbarch_info info)
2054 {
2055 struct gdbarch *new_gdbarch;
2056
2057 /* Save the previously selected architecture, setting the global to
2058 NULL. This stops things like gdbarch->init() trying to use the
2059 previous architecture's configuration. The previous architecture
2060 may not even be of the same architecture family. The most recent
2061 architecture of the same family is found at the head of the
2062 rego->arches list. */
2063 struct gdbarch *old_gdbarch = current_gdbarch;
2064 current_gdbarch = NULL;
2065
2066 /* Find the specified architecture. */
2067 new_gdbarch = find_arch_by_info (info);
2068
2069 /* Restore the existing architecture. */
2070 gdb_assert (current_gdbarch == NULL);
2071 current_gdbarch = old_gdbarch;
2072
2073 return new_gdbarch;
2074 }
2075
2076 /* Make the specified architecture current. */
2077
2078 void
2079 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2080 {
2081 gdb_assert (new_gdbarch != NULL);
2082 gdb_assert (current_gdbarch != NULL);
2083 gdb_assert (new_gdbarch->initialized_p);
2084 current_gdbarch = new_gdbarch;
2085 architecture_changed_event ();
2086 reinit_frame_cache ();
2087 }
2088
2089 extern void _initialize_gdbarch (void);
2090
2091 void
2092 _initialize_gdbarch (void)
2093 {
2094 struct cmd_list_element *c;
2095
2096 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2097 Set architecture debugging."), _("\\
2098 Show architecture debugging."), _("\\
2099 When non-zero, architecture debugging is enabled."),
2100 NULL,
2101 show_gdbarch_debug,
2102 &setdebuglist, &showdebuglist);
2103 }
2104 EOF
2105
2106 # close things off
2107 exec 1>&2
2108 #../move-if-change new-gdbarch.c gdbarch.c
2109 compare_new gdbarch.c
This page took 0.077287 seconds and 4 git commands to generate.