2004-02-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
531 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
532 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
533 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
534 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
535 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
536 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
537 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
538 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
539 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
540 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
541 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
542 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
543 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
544 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
545 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
546 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
547 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
548 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
549 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
550 # Implement PUSH_DUMMY_CALL, then delete
551 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
552 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
553
554 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
555 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
556 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
558 # MAP a GDB RAW register number onto a simulator register number. See
559 # also include/...-sim.h.
560 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
561 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
562 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
563 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
564 # setjmp/longjmp support.
565 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
566 # NOTE: cagney/2002-11-24: This function with predicate has a valid
567 # (callable) initial value. As a consequence, even when the predicate
568 # is false, the corresponding function works. This simplifies the
569 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
570 # doesn't need to be modified.
571 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
572 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
573 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
574 #
575 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
576 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
577 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
578 #
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
582 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
583 # For raw <-> cooked register conversions, replaced by pseudo registers.
584 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
585 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
586 # For raw <-> cooked register conversions, replaced by pseudo registers.
587 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
588 #
589 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
590 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
591 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
592 #
593 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
594 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
595 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
596 #
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600
601 # It has been suggested that this, well actually its predecessor,
602 # should take the type/value of the function to be called and not the
603 # return type. This is left as an exercise for the reader.
604
605 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
606
607 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
608 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
609 # into RETURN_VALUE.
610
611 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
612 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
613 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
614 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
615 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
616 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
617
618 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
619 # ABI suitable for the implementation of a robust extract
620 # struct-convention return-value address method (the sparc saves the
621 # address in the callers frame). All the other cases so far examined,
622 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
623 # erreneous - the code was incorrectly assuming that the return-value
624 # address, stored in a register, was preserved across the entire
625 # function call.
626
627 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
628 # the ABIs that are still to be analyzed - perhaps this should simply
629 # be deleted. The commented out extract_returned_value_address method
630 # is provided as a starting point for the 32-bit SPARC. It, or
631 # something like it, along with changes to both infcmd.c and stack.c
632 # will be needed for that case to work. NB: It is passed the callers
633 # frame since it is only after the callee has returned that this
634 # function is used.
635
636 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
637 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
638
639 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
640 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
641 #
642 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
643 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
644 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
645 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
646 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
647 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
648 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
649 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
650 #
651 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
652 #
653 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
654 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
655 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
656 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
657 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
658 # note, per UNWIND_PC's doco, that while the two have similar
659 # interfaces they have very different underlying implementations.
660 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
661 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
662 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
663 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
664 # frame-base. Enable frame-base before frame-unwind.
665 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
666 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
667 # frame-base. Enable frame-base before frame-unwind.
668 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
669 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
670 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
671 #
672 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
673 # to frame_align and the requirement that methods such as
674 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
675 # alignment.
676 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
677 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
678 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
679 # stabs_argument_has_addr.
680 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
681 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
682 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
683 v:2:PARM_BOUNDARY:int:parm_boundary
684 #
685 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
686 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
687 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
688 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
689 # On some machines there are bits in addresses which are not really
690 # part of the address, but are used by the kernel, the hardware, etc.
691 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
692 # we get a "real" address such as one would find in a symbol table.
693 # This is used only for addresses of instructions, and even then I'm
694 # not sure it's used in all contexts. It exists to deal with there
695 # being a few stray bits in the PC which would mislead us, not as some
696 # sort of generic thing to handle alignment or segmentation (it's
697 # possible it should be in TARGET_READ_PC instead).
698 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
699 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
700 # ADDR_BITS_REMOVE.
701 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
702 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
703 # the target needs software single step. An ISA method to implement it.
704 #
705 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
706 # using the breakpoint system instead of blatting memory directly (as with rs6000).
707 #
708 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
709 # single step. If not, then implement single step using breakpoints.
710 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
711 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
712 # disassembler. Perhaphs objdump can handle it?
713 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
714 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
715
716
717 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
718 # evaluates non-zero, this is the address where the debugger will place
719 # a step-resume breakpoint to get us past the dynamic linker.
720 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
721 # For SVR4 shared libraries, each call goes through a small piece of
722 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
723 # to nonzero if we are currently stopped in one of these.
724 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
725
726 # Some systems also have trampoline code for returning from shared libs.
727 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
728
729 # Sigtramp is a routine that the kernel calls (which then calls the
730 # signal handler). On most machines it is a library routine that is
731 # linked into the executable.
732 #
733 # This macro, given a program counter value and the name of the
734 # function in which that PC resides (which can be null if the name is
735 # not known), returns nonzero if the PC and name show that we are in
736 # sigtramp.
737 #
738 # On most machines just see if the name is sigtramp (and if we have
739 # no name, assume we are not in sigtramp).
740 #
741 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
742 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
743 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
744 # own local NAME lookup.
745 #
746 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
747 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
748 # does not.
749 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
750 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
751 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
752 # A target might have problems with watchpoints as soon as the stack
753 # frame of the current function has been destroyed. This mostly happens
754 # as the first action in a funtion's epilogue. in_function_epilogue_p()
755 # is defined to return a non-zero value if either the given addr is one
756 # instruction after the stack destroying instruction up to the trailing
757 # return instruction or if we can figure out that the stack frame has
758 # already been invalidated regardless of the value of addr. Targets
759 # which don't suffer from that problem could just let this functionality
760 # untouched.
761 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
762 # Given a vector of command-line arguments, return a newly allocated
763 # string which, when passed to the create_inferior function, will be
764 # parsed (on Unix systems, by the shell) to yield the same vector.
765 # This function should call error() if the argument vector is not
766 # representable for this target or if this target does not support
767 # command-line arguments.
768 # ARGC is the number of elements in the vector.
769 # ARGV is an array of strings, one per argument.
770 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
771 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
772 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
773 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
774 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
775 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
776 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
777 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
778 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
779 # Is a register in a group
780 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
781 # Fetch the pointer to the ith function argument.
782 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
783
784 # Return the appropriate register set for a core file section with
785 # name SECT_NAME and size SECT_SIZE.
786 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
787 EOF
788 }
789
790 #
791 # The .log file
792 #
793 exec > new-gdbarch.log
794 function_list | while do_read
795 do
796 cat <<EOF
797 ${class} ${macro}(${actual})
798 ${returntype} ${function} ($formal)${attrib}
799 EOF
800 for r in ${read}
801 do
802 eval echo \"\ \ \ \ ${r}=\${${r}}\"
803 done
804 if class_is_predicate_p && fallback_default_p
805 then
806 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
807 kill $$
808 exit 1
809 fi
810 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
811 then
812 echo "Error: postdefault is useless when invalid_p=0" 1>&2
813 kill $$
814 exit 1
815 fi
816 if class_is_multiarch_p
817 then
818 if class_is_predicate_p ; then :
819 elif test "x${predefault}" = "x"
820 then
821 echo "Error: pure multi-arch function must have a predefault" 1>&2
822 kill $$
823 exit 1
824 fi
825 fi
826 echo ""
827 done
828
829 exec 1>&2
830 compare_new gdbarch.log
831
832
833 copyright ()
834 {
835 cat <<EOF
836 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
837
838 /* Dynamic architecture support for GDB, the GNU debugger.
839
840 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
841 Software Foundation, Inc.
842
843 This file is part of GDB.
844
845 This program is free software; you can redistribute it and/or modify
846 it under the terms of the GNU General Public License as published by
847 the Free Software Foundation; either version 2 of the License, or
848 (at your option) any later version.
849
850 This program is distributed in the hope that it will be useful,
851 but WITHOUT ANY WARRANTY; without even the implied warranty of
852 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
853 GNU General Public License for more details.
854
855 You should have received a copy of the GNU General Public License
856 along with this program; if not, write to the Free Software
857 Foundation, Inc., 59 Temple Place - Suite 330,
858 Boston, MA 02111-1307, USA. */
859
860 /* This file was created with the aid of \`\`gdbarch.sh''.
861
862 The Bourne shell script \`\`gdbarch.sh'' creates the files
863 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
864 against the existing \`\`gdbarch.[hc]''. Any differences found
865 being reported.
866
867 If editing this file, please also run gdbarch.sh and merge any
868 changes into that script. Conversely, when making sweeping changes
869 to this file, modifying gdbarch.sh and using its output may prove
870 easier. */
871
872 EOF
873 }
874
875 #
876 # The .h file
877 #
878
879 exec > new-gdbarch.h
880 copyright
881 cat <<EOF
882 #ifndef GDBARCH_H
883 #define GDBARCH_H
884
885 struct floatformat;
886 struct ui_file;
887 struct frame_info;
888 struct value;
889 struct objfile;
890 struct minimal_symbol;
891 struct regcache;
892 struct reggroup;
893 struct regset;
894 struct disassemble_info;
895 struct target_ops;
896
897 extern struct gdbarch *current_gdbarch;
898
899
900 /* If any of the following are defined, the target wasn't correctly
901 converted. */
902
903 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
904 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
905 #endif
906 EOF
907
908 # function typedef's
909 printf "\n"
910 printf "\n"
911 printf "/* The following are pre-initialized by GDBARCH. */\n"
912 function_list | while do_read
913 do
914 if class_is_info_p
915 then
916 printf "\n"
917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
918 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
919 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
920 printf "#error \"Non multi-arch definition of ${macro}\"\n"
921 printf "#endif\n"
922 printf "#if !defined (${macro})\n"
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
924 printf "#endif\n"
925 fi
926 done
927
928 # function typedef's
929 printf "\n"
930 printf "\n"
931 printf "/* The following are initialized by the target dependent code. */\n"
932 function_list | while do_read
933 do
934 if [ -n "${comment}" ]
935 then
936 echo "${comment}" | sed \
937 -e '2 s,#,/*,' \
938 -e '3,$ s,#, ,' \
939 -e '$ s,$, */,'
940 fi
941 if class_is_multiarch_p
942 then
943 if class_is_predicate_p
944 then
945 printf "\n"
946 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
947 fi
948 else
949 if class_is_predicate_p
950 then
951 printf "\n"
952 printf "#if defined (${macro})\n"
953 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
954 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
955 printf "#if !defined (${macro}_P)\n"
956 printf "#define ${macro}_P() (1)\n"
957 printf "#endif\n"
958 printf "#endif\n"
959 printf "\n"
960 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
961 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
962 printf "#error \"Non multi-arch definition of ${macro}\"\n"
963 printf "#endif\n"
964 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
965 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
966 printf "#endif\n"
967 fi
968 fi
969 if class_is_variable_p
970 then
971 printf "\n"
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
973 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
974 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
975 printf "#error \"Non multi-arch definition of ${macro}\"\n"
976 printf "#endif\n"
977 printf "#if !defined (${macro})\n"
978 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
979 printf "#endif\n"
980 fi
981 if class_is_function_p
982 then
983 printf "\n"
984 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
985 then
986 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
987 elif class_is_multiarch_p
988 then
989 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
990 else
991 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
992 fi
993 if [ "x${formal}" = "xvoid" ]
994 then
995 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
996 else
997 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
998 fi
999 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1000 if class_is_multiarch_p ; then :
1001 else
1002 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
1003 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1004 printf "#endif\n"
1005 if [ "x${actual}" = "x" ]
1006 then
1007 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1008 elif [ "x${actual}" = "x-" ]
1009 then
1010 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1011 else
1012 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1013 fi
1014 printf "#if !defined (${macro})\n"
1015 if [ "x${actual}" = "x" ]
1016 then
1017 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1018 elif [ "x${actual}" = "x-" ]
1019 then
1020 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1021 else
1022 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1023 fi
1024 printf "#endif\n"
1025 fi
1026 fi
1027 done
1028
1029 # close it off
1030 cat <<EOF
1031
1032 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1033
1034
1035 /* Mechanism for co-ordinating the selection of a specific
1036 architecture.
1037
1038 GDB targets (*-tdep.c) can register an interest in a specific
1039 architecture. Other GDB components can register a need to maintain
1040 per-architecture data.
1041
1042 The mechanisms below ensures that there is only a loose connection
1043 between the set-architecture command and the various GDB
1044 components. Each component can independently register their need
1045 to maintain architecture specific data with gdbarch.
1046
1047 Pragmatics:
1048
1049 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1050 didn't scale.
1051
1052 The more traditional mega-struct containing architecture specific
1053 data for all the various GDB components was also considered. Since
1054 GDB is built from a variable number of (fairly independent)
1055 components it was determined that the global aproach was not
1056 applicable. */
1057
1058
1059 /* Register a new architectural family with GDB.
1060
1061 Register support for the specified ARCHITECTURE with GDB. When
1062 gdbarch determines that the specified architecture has been
1063 selected, the corresponding INIT function is called.
1064
1065 --
1066
1067 The INIT function takes two parameters: INFO which contains the
1068 information available to gdbarch about the (possibly new)
1069 architecture; ARCHES which is a list of the previously created
1070 \`\`struct gdbarch'' for this architecture.
1071
1072 The INFO parameter is, as far as possible, be pre-initialized with
1073 information obtained from INFO.ABFD or the previously selected
1074 architecture.
1075
1076 The ARCHES parameter is a linked list (sorted most recently used)
1077 of all the previously created architures for this architecture
1078 family. The (possibly NULL) ARCHES->gdbarch can used to access
1079 values from the previously selected architecture for this
1080 architecture family. The global \`\`current_gdbarch'' shall not be
1081 used.
1082
1083 The INIT function shall return any of: NULL - indicating that it
1084 doesn't recognize the selected architecture; an existing \`\`struct
1085 gdbarch'' from the ARCHES list - indicating that the new
1086 architecture is just a synonym for an earlier architecture (see
1087 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1088 - that describes the selected architecture (see gdbarch_alloc()).
1089
1090 The DUMP_TDEP function shall print out all target specific values.
1091 Care should be taken to ensure that the function works in both the
1092 multi-arch and non- multi-arch cases. */
1093
1094 struct gdbarch_list
1095 {
1096 struct gdbarch *gdbarch;
1097 struct gdbarch_list *next;
1098 };
1099
1100 struct gdbarch_info
1101 {
1102 /* Use default: NULL (ZERO). */
1103 const struct bfd_arch_info *bfd_arch_info;
1104
1105 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1106 int byte_order;
1107
1108 /* Use default: NULL (ZERO). */
1109 bfd *abfd;
1110
1111 /* Use default: NULL (ZERO). */
1112 struct gdbarch_tdep_info *tdep_info;
1113
1114 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1115 enum gdb_osabi osabi;
1116 };
1117
1118 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1119 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1120
1121 /* DEPRECATED - use gdbarch_register() */
1122 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1123
1124 extern void gdbarch_register (enum bfd_architecture architecture,
1125 gdbarch_init_ftype *,
1126 gdbarch_dump_tdep_ftype *);
1127
1128
1129 /* Return a freshly allocated, NULL terminated, array of the valid
1130 architecture names. Since architectures are registered during the
1131 _initialize phase this function only returns useful information
1132 once initialization has been completed. */
1133
1134 extern const char **gdbarch_printable_names (void);
1135
1136
1137 /* Helper function. Search the list of ARCHES for a GDBARCH that
1138 matches the information provided by INFO. */
1139
1140 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1141
1142
1143 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1144 basic initialization using values obtained from the INFO andTDEP
1145 parameters. set_gdbarch_*() functions are called to complete the
1146 initialization of the object. */
1147
1148 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1149
1150
1151 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1152 It is assumed that the caller freeds the \`\`struct
1153 gdbarch_tdep''. */
1154
1155 extern void gdbarch_free (struct gdbarch *);
1156
1157
1158 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1159 obstack. The memory is freed when the corresponding architecture
1160 is also freed. */
1161
1162 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1163 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1164 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1165
1166
1167 /* Helper function. Force an update of the current architecture.
1168
1169 The actual architecture selected is determined by INFO, \`\`(gdb) set
1170 architecture'' et.al., the existing architecture and BFD's default
1171 architecture. INFO should be initialized to zero and then selected
1172 fields should be updated.
1173
1174 Returns non-zero if the update succeeds */
1175
1176 extern int gdbarch_update_p (struct gdbarch_info info);
1177
1178
1179 /* Helper function. Find an architecture matching info.
1180
1181 INFO should be initialized using gdbarch_info_init, relevant fields
1182 set, and then finished using gdbarch_info_fill.
1183
1184 Returns the corresponding architecture, or NULL if no matching
1185 architecture was found. "current_gdbarch" is not updated. */
1186
1187 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1188
1189
1190 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1191
1192 FIXME: kettenis/20031124: Of the functions that follow, only
1193 gdbarch_from_bfd is supposed to survive. The others will
1194 dissappear since in the future GDB will (hopefully) be truly
1195 multi-arch. However, for now we're still stuck with the concept of
1196 a single active architecture. */
1197
1198 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1199
1200
1201 /* Register per-architecture data-pointer.
1202
1203 Reserve space for a per-architecture data-pointer. An identifier
1204 for the reserved data-pointer is returned. That identifer should
1205 be saved in a local static variable.
1206
1207 The per-architecture data-pointer is either initialized explicitly
1208 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1209 gdbarch_data()).
1210
1211 Memory for the per-architecture data shall be allocated using
1212 gdbarch_obstack_zalloc. That memory will be deleted when the
1213 corresponding architecture object is deleted.
1214
1215 When a previously created architecture is re-selected, the
1216 per-architecture data-pointer for that previous architecture is
1217 restored. INIT() is not re-called.
1218
1219 Multiple registrarants for any architecture are allowed (and
1220 strongly encouraged). */
1221
1222 struct gdbarch_data;
1223
1224 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1225 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1226 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1227 struct gdbarch_data *data,
1228 void *pointer);
1229
1230 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1231
1232
1233
1234 /* Register per-architecture memory region.
1235
1236 Provide a memory-region swap mechanism. Per-architecture memory
1237 region are created. These memory regions are swapped whenever the
1238 architecture is changed. For a new architecture, the memory region
1239 is initialized with zero (0) and the INIT function is called.
1240
1241 Memory regions are swapped / initialized in the order that they are
1242 registered. NULL DATA and/or INIT values can be specified.
1243
1244 New code should use register_gdbarch_data(). */
1245
1246 typedef void (gdbarch_swap_ftype) (void);
1247 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1248 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1249
1250
1251
1252 /* Set the dynamic target-system-dependent parameters (architecture,
1253 byte-order, ...) using information found in the BFD */
1254
1255 extern void set_gdbarch_from_file (bfd *);
1256
1257
1258 /* Initialize the current architecture to the "first" one we find on
1259 our list. */
1260
1261 extern void initialize_current_architecture (void);
1262
1263 /* gdbarch trace variable */
1264 extern int gdbarch_debug;
1265
1266 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1267
1268 #endif
1269 EOF
1270 exec 1>&2
1271 #../move-if-change new-gdbarch.h gdbarch.h
1272 compare_new gdbarch.h
1273
1274
1275 #
1276 # C file
1277 #
1278
1279 exec > new-gdbarch.c
1280 copyright
1281 cat <<EOF
1282
1283 #include "defs.h"
1284 #include "arch-utils.h"
1285
1286 #include "gdbcmd.h"
1287 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1288 #include "symcat.h"
1289
1290 #include "floatformat.h"
1291
1292 #include "gdb_assert.h"
1293 #include "gdb_string.h"
1294 #include "gdb-events.h"
1295 #include "reggroups.h"
1296 #include "osabi.h"
1297 #include "symfile.h" /* For entry_point_address. */
1298 #include "gdb_obstack.h"
1299
1300 /* Static function declarations */
1301
1302 static void alloc_gdbarch_data (struct gdbarch *);
1303
1304 /* Non-zero if we want to trace architecture code. */
1305
1306 #ifndef GDBARCH_DEBUG
1307 #define GDBARCH_DEBUG 0
1308 #endif
1309 int gdbarch_debug = GDBARCH_DEBUG;
1310
1311 EOF
1312
1313 # gdbarch open the gdbarch object
1314 printf "\n"
1315 printf "/* Maintain the struct gdbarch object */\n"
1316 printf "\n"
1317 printf "struct gdbarch\n"
1318 printf "{\n"
1319 printf " /* Has this architecture been fully initialized? */\n"
1320 printf " int initialized_p;\n"
1321 printf "\n"
1322 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1323 printf " struct obstack *obstack;\n"
1324 printf "\n"
1325 printf " /* basic architectural information */\n"
1326 function_list | while do_read
1327 do
1328 if class_is_info_p
1329 then
1330 printf " ${returntype} ${function};\n"
1331 fi
1332 done
1333 printf "\n"
1334 printf " /* target specific vector. */\n"
1335 printf " struct gdbarch_tdep *tdep;\n"
1336 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1337 printf "\n"
1338 printf " /* per-architecture data-pointers */\n"
1339 printf " unsigned nr_data;\n"
1340 printf " void **data;\n"
1341 printf "\n"
1342 printf " /* per-architecture swap-regions */\n"
1343 printf " struct gdbarch_swap *swap;\n"
1344 printf "\n"
1345 cat <<EOF
1346 /* Multi-arch values.
1347
1348 When extending this structure you must:
1349
1350 Add the field below.
1351
1352 Declare set/get functions and define the corresponding
1353 macro in gdbarch.h.
1354
1355 gdbarch_alloc(): If zero/NULL is not a suitable default,
1356 initialize the new field.
1357
1358 verify_gdbarch(): Confirm that the target updated the field
1359 correctly.
1360
1361 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1362 field is dumped out
1363
1364 \`\`startup_gdbarch()'': Append an initial value to the static
1365 variable (base values on the host's c-type system).
1366
1367 get_gdbarch(): Implement the set/get functions (probably using
1368 the macro's as shortcuts).
1369
1370 */
1371
1372 EOF
1373 function_list | while do_read
1374 do
1375 if class_is_variable_p
1376 then
1377 printf " ${returntype} ${function};\n"
1378 elif class_is_function_p
1379 then
1380 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1381 fi
1382 done
1383 printf "};\n"
1384
1385 # A pre-initialized vector
1386 printf "\n"
1387 printf "\n"
1388 cat <<EOF
1389 /* The default architecture uses host values (for want of a better
1390 choice). */
1391 EOF
1392 printf "\n"
1393 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1394 printf "\n"
1395 printf "struct gdbarch startup_gdbarch =\n"
1396 printf "{\n"
1397 printf " 1, /* Always initialized. */\n"
1398 printf " NULL, /* The obstack. */\n"
1399 printf " /* basic architecture information */\n"
1400 function_list | while do_read
1401 do
1402 if class_is_info_p
1403 then
1404 printf " ${staticdefault}, /* ${function} */\n"
1405 fi
1406 done
1407 cat <<EOF
1408 /* target specific vector and its dump routine */
1409 NULL, NULL,
1410 /*per-architecture data-pointers and swap regions */
1411 0, NULL, NULL,
1412 /* Multi-arch values */
1413 EOF
1414 function_list | while do_read
1415 do
1416 if class_is_function_p || class_is_variable_p
1417 then
1418 printf " ${staticdefault}, /* ${function} */\n"
1419 fi
1420 done
1421 cat <<EOF
1422 /* startup_gdbarch() */
1423 };
1424
1425 struct gdbarch *current_gdbarch = &startup_gdbarch;
1426 EOF
1427
1428 # Create a new gdbarch struct
1429 cat <<EOF
1430
1431 /* Create a new \`\`struct gdbarch'' based on information provided by
1432 \`\`struct gdbarch_info''. */
1433 EOF
1434 printf "\n"
1435 cat <<EOF
1436 struct gdbarch *
1437 gdbarch_alloc (const struct gdbarch_info *info,
1438 struct gdbarch_tdep *tdep)
1439 {
1440 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1441 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1442 the current local architecture and not the previous global
1443 architecture. This ensures that the new architectures initial
1444 values are not influenced by the previous architecture. Once
1445 everything is parameterised with gdbarch, this will go away. */
1446 struct gdbarch *current_gdbarch;
1447
1448 /* Create an obstack for allocating all the per-architecture memory,
1449 then use that to allocate the architecture vector. */
1450 struct obstack *obstack = XMALLOC (struct obstack);
1451 obstack_init (obstack);
1452 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1453 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1454 current_gdbarch->obstack = obstack;
1455
1456 alloc_gdbarch_data (current_gdbarch);
1457
1458 current_gdbarch->tdep = tdep;
1459 EOF
1460 printf "\n"
1461 function_list | while do_read
1462 do
1463 if class_is_info_p
1464 then
1465 printf " current_gdbarch->${function} = info->${function};\n"
1466 fi
1467 done
1468 printf "\n"
1469 printf " /* Force the explicit initialization of these. */\n"
1470 function_list | while do_read
1471 do
1472 if class_is_function_p || class_is_variable_p
1473 then
1474 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1475 then
1476 printf " current_gdbarch->${function} = ${predefault};\n"
1477 fi
1478 fi
1479 done
1480 cat <<EOF
1481 /* gdbarch_alloc() */
1482
1483 return current_gdbarch;
1484 }
1485 EOF
1486
1487 # Free a gdbarch struct.
1488 printf "\n"
1489 printf "\n"
1490 cat <<EOF
1491 /* Allocate extra space using the per-architecture obstack. */
1492
1493 void *
1494 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1495 {
1496 void *data = obstack_alloc (arch->obstack, size);
1497 memset (data, 0, size);
1498 return data;
1499 }
1500
1501
1502 /* Free a gdbarch struct. This should never happen in normal
1503 operation --- once you've created a gdbarch, you keep it around.
1504 However, if an architecture's init function encounters an error
1505 building the structure, it may need to clean up a partially
1506 constructed gdbarch. */
1507
1508 void
1509 gdbarch_free (struct gdbarch *arch)
1510 {
1511 struct obstack *obstack;
1512 gdb_assert (arch != NULL);
1513 gdb_assert (!arch->initialized_p);
1514 obstack = arch->obstack;
1515 obstack_free (obstack, 0); /* Includes the ARCH. */
1516 xfree (obstack);
1517 }
1518 EOF
1519
1520 # verify a new architecture
1521 cat <<EOF
1522
1523
1524 /* Ensure that all values in a GDBARCH are reasonable. */
1525
1526 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1527 just happens to match the global variable \`\`current_gdbarch''. That
1528 way macros refering to that variable get the local and not the global
1529 version - ulgh. Once everything is parameterised with gdbarch, this
1530 will go away. */
1531
1532 static void
1533 verify_gdbarch (struct gdbarch *current_gdbarch)
1534 {
1535 struct ui_file *log;
1536 struct cleanup *cleanups;
1537 long dummy;
1538 char *buf;
1539 log = mem_fileopen ();
1540 cleanups = make_cleanup_ui_file_delete (log);
1541 /* fundamental */
1542 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1543 fprintf_unfiltered (log, "\n\tbyte-order");
1544 if (current_gdbarch->bfd_arch_info == NULL)
1545 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1546 /* Check those that need to be defined for the given multi-arch level. */
1547 EOF
1548 function_list | while do_read
1549 do
1550 if class_is_function_p || class_is_variable_p
1551 then
1552 if [ "x${invalid_p}" = "x0" ]
1553 then
1554 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1555 elif class_is_predicate_p
1556 then
1557 printf " /* Skip verify of ${function}, has predicate */\n"
1558 # FIXME: See do_read for potential simplification
1559 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1560 then
1561 printf " if (${invalid_p})\n"
1562 printf " current_gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1564 then
1565 printf " if (current_gdbarch->${function} == ${predefault})\n"
1566 printf " current_gdbarch->${function} = ${postdefault};\n"
1567 elif [ -n "${postdefault}" ]
1568 then
1569 printf " if (current_gdbarch->${function} == 0)\n"
1570 printf " current_gdbarch->${function} = ${postdefault};\n"
1571 elif [ -n "${invalid_p}" ]
1572 then
1573 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1574 printf " && (${invalid_p}))\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1576 elif [ -n "${predefault}" ]
1577 then
1578 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1579 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1580 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1581 fi
1582 fi
1583 done
1584 cat <<EOF
1585 buf = ui_file_xstrdup (log, &dummy);
1586 make_cleanup (xfree, buf);
1587 if (strlen (buf) > 0)
1588 internal_error (__FILE__, __LINE__,
1589 "verify_gdbarch: the following are invalid ...%s",
1590 buf);
1591 do_cleanups (cleanups);
1592 }
1593 EOF
1594
1595 # dump the structure
1596 printf "\n"
1597 printf "\n"
1598 cat <<EOF
1599 /* Print out the details of the current architecture. */
1600
1601 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1602 just happens to match the global variable \`\`current_gdbarch''. That
1603 way macros refering to that variable get the local and not the global
1604 version - ulgh. Once everything is parameterised with gdbarch, this
1605 will go away. */
1606
1607 void
1608 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1609 {
1610 fprintf_unfiltered (file,
1611 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1612 GDB_MULTI_ARCH);
1613 EOF
1614 function_list | sort -t: -k 3 | while do_read
1615 do
1616 # First the predicate
1617 if class_is_predicate_p
1618 then
1619 if class_is_multiarch_p
1620 then
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1623 printf " gdbarch_${function}_p (current_gdbarch));\n"
1624 else
1625 printf "#ifdef ${macro}_P\n"
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1628 printf " \"${macro}_P()\",\n"
1629 printf " XSTRING (${macro}_P ()));\n"
1630 printf " fprintf_unfiltered (file,\n"
1631 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1632 printf " ${macro}_P ());\n"
1633 printf "#endif\n"
1634 fi
1635 fi
1636 # multiarch functions don't have macros.
1637 if class_is_multiarch_p
1638 then
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1641 printf " (long) current_gdbarch->${function});\n"
1642 continue
1643 fi
1644 # Print the macro definition.
1645 printf "#ifdef ${macro}\n"
1646 if class_is_function_p
1647 then
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1650 printf " \"${macro}(${actual})\",\n"
1651 printf " XSTRING (${macro} (${actual})));\n"
1652 else
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1655 printf " XSTRING (${macro}));\n"
1656 fi
1657 if [ "x${print_p}" = "x()" ]
1658 then
1659 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1660 elif [ "x${print_p}" = "x0" ]
1661 then
1662 printf " /* skip print of ${macro}, print_p == 0. */\n"
1663 elif [ -n "${print_p}" ]
1664 then
1665 printf " if (${print_p})\n"
1666 printf " fprintf_unfiltered (file,\n"
1667 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1668 printf " ${print});\n"
1669 elif class_is_function_p
1670 then
1671 printf " fprintf_unfiltered (file,\n"
1672 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1673 printf " (long) current_gdbarch->${function}\n"
1674 printf " /*${macro} ()*/);\n"
1675 else
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1678 printf " ${print});\n"
1679 fi
1680 printf "#endif\n"
1681 done
1682 cat <<EOF
1683 if (current_gdbarch->dump_tdep != NULL)
1684 current_gdbarch->dump_tdep (current_gdbarch, file);
1685 }
1686 EOF
1687
1688
1689 # GET/SET
1690 printf "\n"
1691 cat <<EOF
1692 struct gdbarch_tdep *
1693 gdbarch_tdep (struct gdbarch *gdbarch)
1694 {
1695 if (gdbarch_debug >= 2)
1696 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1697 return gdbarch->tdep;
1698 }
1699 EOF
1700 printf "\n"
1701 function_list | while do_read
1702 do
1703 if class_is_predicate_p
1704 then
1705 printf "\n"
1706 printf "int\n"
1707 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1708 printf "{\n"
1709 printf " gdb_assert (gdbarch != NULL);\n"
1710 printf " return ${predicate};\n"
1711 printf "}\n"
1712 fi
1713 if class_is_function_p
1714 then
1715 printf "\n"
1716 printf "${returntype}\n"
1717 if [ "x${formal}" = "xvoid" ]
1718 then
1719 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1720 else
1721 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1722 fi
1723 printf "{\n"
1724 printf " gdb_assert (gdbarch != NULL);\n"
1725 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1726 if class_is_predicate_p && test -n "${predefault}"
1727 then
1728 # Allow a call to a function with a predicate.
1729 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1730 fi
1731 printf " if (gdbarch_debug >= 2)\n"
1732 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1733 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1734 then
1735 if class_is_multiarch_p
1736 then
1737 params="gdbarch"
1738 else
1739 params=""
1740 fi
1741 else
1742 if class_is_multiarch_p
1743 then
1744 params="gdbarch, ${actual}"
1745 else
1746 params="${actual}"
1747 fi
1748 fi
1749 if [ "x${returntype}" = "xvoid" ]
1750 then
1751 printf " gdbarch->${function} (${params});\n"
1752 else
1753 printf " return gdbarch->${function} (${params});\n"
1754 fi
1755 printf "}\n"
1756 printf "\n"
1757 printf "void\n"
1758 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1759 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1760 printf "{\n"
1761 printf " gdbarch->${function} = ${function};\n"
1762 printf "}\n"
1763 elif class_is_variable_p
1764 then
1765 printf "\n"
1766 printf "${returntype}\n"
1767 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1768 printf "{\n"
1769 printf " gdb_assert (gdbarch != NULL);\n"
1770 if [ "x${invalid_p}" = "x0" ]
1771 then
1772 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1773 elif [ -n "${invalid_p}" ]
1774 then
1775 printf " /* Check variable is valid. */\n"
1776 printf " gdb_assert (!(${invalid_p}));\n"
1777 elif [ -n "${predefault}" ]
1778 then
1779 printf " /* Check variable changed from pre-default. */\n"
1780 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1781 fi
1782 printf " if (gdbarch_debug >= 2)\n"
1783 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1784 printf " return gdbarch->${function};\n"
1785 printf "}\n"
1786 printf "\n"
1787 printf "void\n"
1788 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1789 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1790 printf "{\n"
1791 printf " gdbarch->${function} = ${function};\n"
1792 printf "}\n"
1793 elif class_is_info_p
1794 then
1795 printf "\n"
1796 printf "${returntype}\n"
1797 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1798 printf "{\n"
1799 printf " gdb_assert (gdbarch != NULL);\n"
1800 printf " if (gdbarch_debug >= 2)\n"
1801 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1802 printf " return gdbarch->${function};\n"
1803 printf "}\n"
1804 fi
1805 done
1806
1807 # All the trailing guff
1808 cat <<EOF
1809
1810
1811 /* Keep a registry of per-architecture data-pointers required by GDB
1812 modules. */
1813
1814 struct gdbarch_data
1815 {
1816 unsigned index;
1817 int init_p;
1818 gdbarch_data_init_ftype *init;
1819 };
1820
1821 struct gdbarch_data_registration
1822 {
1823 struct gdbarch_data *data;
1824 struct gdbarch_data_registration *next;
1825 };
1826
1827 struct gdbarch_data_registry
1828 {
1829 unsigned nr;
1830 struct gdbarch_data_registration *registrations;
1831 };
1832
1833 struct gdbarch_data_registry gdbarch_data_registry =
1834 {
1835 0, NULL,
1836 };
1837
1838 struct gdbarch_data *
1839 register_gdbarch_data (gdbarch_data_init_ftype *init)
1840 {
1841 struct gdbarch_data_registration **curr;
1842 /* Append the new registraration. */
1843 for (curr = &gdbarch_data_registry.registrations;
1844 (*curr) != NULL;
1845 curr = &(*curr)->next);
1846 (*curr) = XMALLOC (struct gdbarch_data_registration);
1847 (*curr)->next = NULL;
1848 (*curr)->data = XMALLOC (struct gdbarch_data);
1849 (*curr)->data->index = gdbarch_data_registry.nr++;
1850 (*curr)->data->init = init;
1851 (*curr)->data->init_p = 1;
1852 return (*curr)->data;
1853 }
1854
1855
1856 /* Create/delete the gdbarch data vector. */
1857
1858 static void
1859 alloc_gdbarch_data (struct gdbarch *gdbarch)
1860 {
1861 gdb_assert (gdbarch->data == NULL);
1862 gdbarch->nr_data = gdbarch_data_registry.nr;
1863 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1864 }
1865
1866 /* Initialize the current value of the specified per-architecture
1867 data-pointer. */
1868
1869 void
1870 set_gdbarch_data (struct gdbarch *gdbarch,
1871 struct gdbarch_data *data,
1872 void *pointer)
1873 {
1874 gdb_assert (data->index < gdbarch->nr_data);
1875 gdb_assert (gdbarch->data[data->index] == NULL);
1876 gdbarch->data[data->index] = pointer;
1877 }
1878
1879 /* Return the current value of the specified per-architecture
1880 data-pointer. */
1881
1882 void *
1883 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1884 {
1885 gdb_assert (data->index < gdbarch->nr_data);
1886 /* The data-pointer isn't initialized, call init() to get a value but
1887 only if the architecture initializaiton has completed. Otherwise
1888 punt - hope that the caller knows what they are doing. */
1889 if (gdbarch->data[data->index] == NULL
1890 && gdbarch->initialized_p)
1891 {
1892 /* Be careful to detect an initialization cycle. */
1893 gdb_assert (data->init_p);
1894 data->init_p = 0;
1895 gdb_assert (data->init != NULL);
1896 gdbarch->data[data->index] = data->init (gdbarch);
1897 data->init_p = 1;
1898 gdb_assert (gdbarch->data[data->index] != NULL);
1899 }
1900 return gdbarch->data[data->index];
1901 }
1902
1903
1904
1905 /* Keep a registry of swapped data required by GDB modules. */
1906
1907 struct gdbarch_swap
1908 {
1909 void *swap;
1910 struct gdbarch_swap_registration *source;
1911 struct gdbarch_swap *next;
1912 };
1913
1914 struct gdbarch_swap_registration
1915 {
1916 void *data;
1917 unsigned long sizeof_data;
1918 gdbarch_swap_ftype *init;
1919 struct gdbarch_swap_registration *next;
1920 };
1921
1922 struct gdbarch_swap_registry
1923 {
1924 int nr;
1925 struct gdbarch_swap_registration *registrations;
1926 };
1927
1928 struct gdbarch_swap_registry gdbarch_swap_registry =
1929 {
1930 0, NULL,
1931 };
1932
1933 void
1934 register_gdbarch_swap (void *data,
1935 unsigned long sizeof_data,
1936 gdbarch_swap_ftype *init)
1937 {
1938 struct gdbarch_swap_registration **rego;
1939 for (rego = &gdbarch_swap_registry.registrations;
1940 (*rego) != NULL;
1941 rego = &(*rego)->next);
1942 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1943 (*rego)->next = NULL;
1944 (*rego)->init = init;
1945 (*rego)->data = data;
1946 (*rego)->sizeof_data = sizeof_data;
1947 }
1948
1949 static void
1950 current_gdbarch_swap_init_hack (void)
1951 {
1952 struct gdbarch_swap_registration *rego;
1953 struct gdbarch_swap **curr = &current_gdbarch->swap;
1954 for (rego = gdbarch_swap_registry.registrations;
1955 rego != NULL;
1956 rego = rego->next)
1957 {
1958 if (rego->data != NULL)
1959 {
1960 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1961 struct gdbarch_swap);
1962 (*curr)->source = rego;
1963 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1964 rego->sizeof_data);
1965 (*curr)->next = NULL;
1966 curr = &(*curr)->next;
1967 }
1968 if (rego->init != NULL)
1969 rego->init ();
1970 }
1971 }
1972
1973 static struct gdbarch *
1974 current_gdbarch_swap_out_hack (void)
1975 {
1976 struct gdbarch *old_gdbarch = current_gdbarch;
1977 struct gdbarch_swap *curr;
1978
1979 gdb_assert (old_gdbarch != NULL);
1980 for (curr = old_gdbarch->swap;
1981 curr != NULL;
1982 curr = curr->next)
1983 {
1984 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1985 memset (curr->source->data, 0, curr->source->sizeof_data);
1986 }
1987 current_gdbarch = NULL;
1988 return old_gdbarch;
1989 }
1990
1991 static void
1992 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1993 {
1994 struct gdbarch_swap *curr;
1995
1996 gdb_assert (current_gdbarch == NULL);
1997 for (curr = new_gdbarch->swap;
1998 curr != NULL;
1999 curr = curr->next)
2000 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2001 current_gdbarch = new_gdbarch;
2002 }
2003
2004
2005 /* Keep a registry of the architectures known by GDB. */
2006
2007 struct gdbarch_registration
2008 {
2009 enum bfd_architecture bfd_architecture;
2010 gdbarch_init_ftype *init;
2011 gdbarch_dump_tdep_ftype *dump_tdep;
2012 struct gdbarch_list *arches;
2013 struct gdbarch_registration *next;
2014 };
2015
2016 static struct gdbarch_registration *gdbarch_registry = NULL;
2017
2018 static void
2019 append_name (const char ***buf, int *nr, const char *name)
2020 {
2021 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2022 (*buf)[*nr] = name;
2023 *nr += 1;
2024 }
2025
2026 const char **
2027 gdbarch_printable_names (void)
2028 {
2029 /* Accumulate a list of names based on the registed list of
2030 architectures. */
2031 enum bfd_architecture a;
2032 int nr_arches = 0;
2033 const char **arches = NULL;
2034 struct gdbarch_registration *rego;
2035 for (rego = gdbarch_registry;
2036 rego != NULL;
2037 rego = rego->next)
2038 {
2039 const struct bfd_arch_info *ap;
2040 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2041 if (ap == NULL)
2042 internal_error (__FILE__, __LINE__,
2043 "gdbarch_architecture_names: multi-arch unknown");
2044 do
2045 {
2046 append_name (&arches, &nr_arches, ap->printable_name);
2047 ap = ap->next;
2048 }
2049 while (ap != NULL);
2050 }
2051 append_name (&arches, &nr_arches, NULL);
2052 return arches;
2053 }
2054
2055
2056 void
2057 gdbarch_register (enum bfd_architecture bfd_architecture,
2058 gdbarch_init_ftype *init,
2059 gdbarch_dump_tdep_ftype *dump_tdep)
2060 {
2061 struct gdbarch_registration **curr;
2062 const struct bfd_arch_info *bfd_arch_info;
2063 /* Check that BFD recognizes this architecture */
2064 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2065 if (bfd_arch_info == NULL)
2066 {
2067 internal_error (__FILE__, __LINE__,
2068 "gdbarch: Attempt to register unknown architecture (%d)",
2069 bfd_architecture);
2070 }
2071 /* Check that we haven't seen this architecture before */
2072 for (curr = &gdbarch_registry;
2073 (*curr) != NULL;
2074 curr = &(*curr)->next)
2075 {
2076 if (bfd_architecture == (*curr)->bfd_architecture)
2077 internal_error (__FILE__, __LINE__,
2078 "gdbarch: Duplicate registraration of architecture (%s)",
2079 bfd_arch_info->printable_name);
2080 }
2081 /* log it */
2082 if (gdbarch_debug)
2083 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2084 bfd_arch_info->printable_name,
2085 (long) init);
2086 /* Append it */
2087 (*curr) = XMALLOC (struct gdbarch_registration);
2088 (*curr)->bfd_architecture = bfd_architecture;
2089 (*curr)->init = init;
2090 (*curr)->dump_tdep = dump_tdep;
2091 (*curr)->arches = NULL;
2092 (*curr)->next = NULL;
2093 }
2094
2095 void
2096 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2097 gdbarch_init_ftype *init)
2098 {
2099 gdbarch_register (bfd_architecture, init, NULL);
2100 }
2101
2102
2103 /* Look for an architecture using gdbarch_info. Base search on only
2104 BFD_ARCH_INFO and BYTE_ORDER. */
2105
2106 struct gdbarch_list *
2107 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2108 const struct gdbarch_info *info)
2109 {
2110 for (; arches != NULL; arches = arches->next)
2111 {
2112 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2113 continue;
2114 if (info->byte_order != arches->gdbarch->byte_order)
2115 continue;
2116 if (info->osabi != arches->gdbarch->osabi)
2117 continue;
2118 return arches;
2119 }
2120 return NULL;
2121 }
2122
2123
2124 /* Find an architecture that matches the specified INFO. Create a new
2125 architecture if needed. Return that new architecture. Assumes
2126 that there is no current architecture. */
2127
2128 static struct gdbarch *
2129 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2130 {
2131 struct gdbarch *new_gdbarch;
2132 struct gdbarch_registration *rego;
2133
2134 /* The existing architecture has been swapped out - all this code
2135 works from a clean slate. */
2136 gdb_assert (current_gdbarch == NULL);
2137
2138 /* Fill in missing parts of the INFO struct using a number of
2139 sources: "set ..."; INFOabfd supplied; and the existing
2140 architecture. */
2141 gdbarch_info_fill (old_gdbarch, &info);
2142
2143 /* Must have found some sort of architecture. */
2144 gdb_assert (info.bfd_arch_info != NULL);
2145
2146 if (gdbarch_debug)
2147 {
2148 fprintf_unfiltered (gdb_stdlog,
2149 "find_arch_by_info: info.bfd_arch_info %s\n",
2150 (info.bfd_arch_info != NULL
2151 ? info.bfd_arch_info->printable_name
2152 : "(null)"));
2153 fprintf_unfiltered (gdb_stdlog,
2154 "find_arch_by_info: info.byte_order %d (%s)\n",
2155 info.byte_order,
2156 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2157 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2158 : "default"));
2159 fprintf_unfiltered (gdb_stdlog,
2160 "find_arch_by_info: info.osabi %d (%s)\n",
2161 info.osabi, gdbarch_osabi_name (info.osabi));
2162 fprintf_unfiltered (gdb_stdlog,
2163 "find_arch_by_info: info.abfd 0x%lx\n",
2164 (long) info.abfd);
2165 fprintf_unfiltered (gdb_stdlog,
2166 "find_arch_by_info: info.tdep_info 0x%lx\n",
2167 (long) info.tdep_info);
2168 }
2169
2170 /* Find the tdep code that knows about this architecture. */
2171 for (rego = gdbarch_registry;
2172 rego != NULL;
2173 rego = rego->next)
2174 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2175 break;
2176 if (rego == NULL)
2177 {
2178 if (gdbarch_debug)
2179 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2180 "No matching architecture\n");
2181 return 0;
2182 }
2183
2184 /* Ask the tdep code for an architecture that matches "info". */
2185 new_gdbarch = rego->init (info, rego->arches);
2186
2187 /* Did the tdep code like it? No. Reject the change and revert to
2188 the old architecture. */
2189 if (new_gdbarch == NULL)
2190 {
2191 if (gdbarch_debug)
2192 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2193 "Target rejected architecture\n");
2194 return NULL;
2195 }
2196
2197 /* Is this a pre-existing architecture (as determined by already
2198 being initialized)? Move it to the front of the architecture
2199 list (keeping the list sorted Most Recently Used). */
2200 if (new_gdbarch->initialized_p)
2201 {
2202 struct gdbarch_list **list;
2203 struct gdbarch_list *this;
2204 if (gdbarch_debug)
2205 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2206 "Previous architecture 0x%08lx (%s) selected\n",
2207 (long) new_gdbarch,
2208 new_gdbarch->bfd_arch_info->printable_name);
2209 /* Find the existing arch in the list. */
2210 for (list = &rego->arches;
2211 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2212 list = &(*list)->next);
2213 /* It had better be in the list of architectures. */
2214 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2215 /* Unlink THIS. */
2216 this = (*list);
2217 (*list) = this->next;
2218 /* Insert THIS at the front. */
2219 this->next = rego->arches;
2220 rego->arches = this;
2221 /* Return it. */
2222 return new_gdbarch;
2223 }
2224
2225 /* It's a new architecture. */
2226 if (gdbarch_debug)
2227 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2228 "New architecture 0x%08lx (%s) selected\n",
2229 (long) new_gdbarch,
2230 new_gdbarch->bfd_arch_info->printable_name);
2231
2232 /* Insert the new architecture into the front of the architecture
2233 list (keep the list sorted Most Recently Used). */
2234 {
2235 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2236 this->next = rego->arches;
2237 this->gdbarch = new_gdbarch;
2238 rego->arches = this;
2239 }
2240
2241 /* Check that the newly installed architecture is valid. Plug in
2242 any post init values. */
2243 new_gdbarch->dump_tdep = rego->dump_tdep;
2244 verify_gdbarch (new_gdbarch);
2245 new_gdbarch->initialized_p = 1;
2246
2247 /* Initialize any per-architecture swap areas. This phase requires
2248 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2249 swap the entire architecture out. */
2250 current_gdbarch = new_gdbarch;
2251 current_gdbarch_swap_init_hack ();
2252 current_gdbarch_swap_out_hack ();
2253
2254 if (gdbarch_debug)
2255 gdbarch_dump (new_gdbarch, gdb_stdlog);
2256
2257 return new_gdbarch;
2258 }
2259
2260 struct gdbarch *
2261 gdbarch_find_by_info (struct gdbarch_info info)
2262 {
2263 /* Save the previously selected architecture, setting the global to
2264 NULL. This stops things like gdbarch->init() trying to use the
2265 previous architecture's configuration. The previous architecture
2266 may not even be of the same architecture family. The most recent
2267 architecture of the same family is found at the head of the
2268 rego->arches list. */
2269 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2270
2271 /* Find the specified architecture. */
2272 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2273
2274 /* Restore the existing architecture. */
2275 gdb_assert (current_gdbarch == NULL);
2276 current_gdbarch_swap_in_hack (old_gdbarch);
2277
2278 return new_gdbarch;
2279 }
2280
2281 /* Make the specified architecture current, swapping the existing one
2282 out. */
2283
2284 void
2285 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2286 {
2287 gdb_assert (new_gdbarch != NULL);
2288 gdb_assert (current_gdbarch != NULL);
2289 gdb_assert (new_gdbarch->initialized_p);
2290 current_gdbarch_swap_out_hack ();
2291 current_gdbarch_swap_in_hack (new_gdbarch);
2292 architecture_changed_event ();
2293 }
2294
2295 extern void _initialize_gdbarch (void);
2296
2297 void
2298 _initialize_gdbarch (void)
2299 {
2300 struct cmd_list_element *c;
2301
2302 add_show_from_set (add_set_cmd ("arch",
2303 class_maintenance,
2304 var_zinteger,
2305 (char *)&gdbarch_debug,
2306 "Set architecture debugging.\\n\\
2307 When non-zero, architecture debugging is enabled.", &setdebuglist),
2308 &showdebuglist);
2309 c = add_set_cmd ("archdebug",
2310 class_maintenance,
2311 var_zinteger,
2312 (char *)&gdbarch_debug,
2313 "Set architecture debugging.\\n\\
2314 When non-zero, architecture debugging is enabled.", &setlist);
2315
2316 deprecate_cmd (c, "set debug arch");
2317 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2318 }
2319 EOF
2320
2321 # close things off
2322 exec 1>&2
2323 #../move-if-change new-gdbarch.c gdbarch.c
2324 compare_new gdbarch.c
This page took 0.083527 seconds and 4 git commands to generate.