Document i386 XML target features.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 # Return the adjusted address and kind to use for Z0/Z1 packets.
490 # KIND is usually the memory length of the breakpoint, but may have a
491 # different target-specific meaning.
492 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
493 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
494 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
496 v:CORE_ADDR:decr_pc_after_break:::0:::0
497
498 # A function can be addressed by either it's "pointer" (possibly a
499 # descriptor address) or "entry point" (first executable instruction).
500 # The method "convert_from_func_ptr_addr" converting the former to the
501 # latter. gdbarch_deprecated_function_start_offset is being used to implement
502 # a simplified subset of that functionality - the function's address
503 # corresponds to the "function pointer" and the function's start
504 # corresponds to the "function entry point" - and hence is redundant.
505
506 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
507
508 # Return the remote protocol register number associated with this
509 # register. Normally the identity mapping.
510 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
511
512 # Fetch the target specific address used to represent a load module.
513 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
514 #
515 v:CORE_ADDR:frame_args_skip:::0:::0
516 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
518 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519 # frame-base. Enable frame-base before frame-unwind.
520 F:int:frame_num_args:struct frame_info *frame:frame
521 #
522 M:CORE_ADDR:frame_align:CORE_ADDR address:address
523 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524 v:int:frame_red_zone_size
525 #
526 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
527 # On some machines there are bits in addresses which are not really
528 # part of the address, but are used by the kernel, the hardware, etc.
529 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
530 # we get a "real" address such as one would find in a symbol table.
531 # This is used only for addresses of instructions, and even then I'm
532 # not sure it's used in all contexts. It exists to deal with there
533 # being a few stray bits in the PC which would mislead us, not as some
534 # sort of generic thing to handle alignment or segmentation (it's
535 # possible it should be in TARGET_READ_PC instead).
536 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
537 # It is not at all clear why gdbarch_smash_text_address is not folded into
538 # gdbarch_addr_bits_remove.
539 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
540
541 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
542 # indicates if the target needs software single step. An ISA method to
543 # implement it.
544 #
545 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546 # breakpoints using the breakpoint system instead of blatting memory directly
547 # (as with rs6000).
548 #
549 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550 # target can single step. If not, then implement single step using breakpoints.
551 #
552 # A return value of 1 means that the software_single_step breakpoints
553 # were inserted; 0 means they were not.
554 F:int:software_single_step:struct frame_info *frame:frame
555
556 # Return non-zero if the processor is executing a delay slot and a
557 # further single-step is needed before the instruction finishes.
558 M:int:single_step_through_delay:struct frame_info *frame:frame
559 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
560 # disassembler. Perhaps objdump can handle it?
561 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
563
564
565 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
566 # evaluates non-zero, this is the address where the debugger will place
567 # a step-resume breakpoint to get us past the dynamic linker.
568 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
569 # Some systems also have trampoline code for returning from shared libs.
570 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
571
572 # A target might have problems with watchpoints as soon as the stack
573 # frame of the current function has been destroyed. This mostly happens
574 # as the first action in a funtion's epilogue. in_function_epilogue_p()
575 # is defined to return a non-zero value if either the given addr is one
576 # instruction after the stack destroying instruction up to the trailing
577 # return instruction or if we can figure out that the stack frame has
578 # already been invalidated regardless of the value of addr. Targets
579 # which don't suffer from that problem could just let this functionality
580 # untouched.
581 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
582 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
584 v:int:cannot_step_breakpoint:::0:0::0
585 v:int:have_nonsteppable_watchpoint:::0:0::0
586 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
589 # Is a register in a group
590 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
591 # Fetch the pointer to the ith function argument.
592 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
593
594 # Return the appropriate register set for a core file section with
595 # name SECT_NAME and size SECT_SIZE.
596 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
597
598 # When creating core dumps, some systems encode the PID in addition
599 # to the LWP id in core file register section names. In those cases, the
600 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601 # is set to true for such architectures; false if "XXX" represents an LWP
602 # or thread id with no special encoding.
603 v:int:core_reg_section_encodes_pid:::0:0::0
604
605 # Supported register notes in a core file.
606 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
608 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609 # core file into buffer READBUF with length LEN.
610 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
611
612 # How the core_stratum layer converts a PTID from a core file to a
613 # string.
614 M:char *:core_pid_to_str:ptid_t ptid:ptid
615
616 # BFD target to use when generating a core file.
617 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
619 # If the elements of C++ vtables are in-place function descriptors rather
620 # than normal function pointers (which may point to code or a descriptor),
621 # set this to one.
622 v:int:vtable_function_descriptors:::0:0::0
623
624 # Set if the least significant bit of the delta is used instead of the least
625 # significant bit of the pfn for pointers to virtual member functions.
626 v:int:vbit_in_delta:::0:0::0
627
628 # Advance PC to next instruction in order to skip a permanent breakpoint.
629 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
630
631 # The maximum length of an instruction on this architecture.
632 V:ULONGEST:max_insn_length:::0:0
633
634 # Copy the instruction at FROM to TO, and make any adjustments
635 # necessary to single-step it at that address.
636 #
637 # REGS holds the state the thread's registers will have before
638 # executing the copied instruction; the PC in REGS will refer to FROM,
639 # not the copy at TO. The caller should update it to point at TO later.
640 #
641 # Return a pointer to data of the architecture's choice to be passed
642 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643 # the instruction's effects have been completely simulated, with the
644 # resulting state written back to REGS.
645 #
646 # For a general explanation of displaced stepping and how GDB uses it,
647 # see the comments in infrun.c.
648 #
649 # The TO area is only guaranteed to have space for
650 # gdbarch_max_insn_length (arch) bytes, so this function must not
651 # write more bytes than that to that area.
652 #
653 # If you do not provide this function, GDB assumes that the
654 # architecture does not support displaced stepping.
655 #
656 # If your architecture doesn't need to adjust instructions before
657 # single-stepping them, consider using simple_displaced_step_copy_insn
658 # here.
659 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
661 # Return true if GDB should use hardware single-stepping to execute
662 # the displaced instruction identified by CLOSURE. If false,
663 # GDB will simply restart execution at the displaced instruction
664 # location, and it is up to the target to ensure GDB will receive
665 # control again (e.g. by placing a software breakpoint instruction
666 # into the displaced instruction buffer).
667 #
668 # The default implementation returns false on all targets that
669 # provide a gdbarch_software_single_step routine, and true otherwise.
670 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
672 # Fix up the state resulting from successfully single-stepping a
673 # displaced instruction, to give the result we would have gotten from
674 # stepping the instruction in its original location.
675 #
676 # REGS is the register state resulting from single-stepping the
677 # displaced instruction.
678 #
679 # CLOSURE is the result from the matching call to
680 # gdbarch_displaced_step_copy_insn.
681 #
682 # If you provide gdbarch_displaced_step_copy_insn.but not this
683 # function, then GDB assumes that no fixup is needed after
684 # single-stepping the instruction.
685 #
686 # For a general explanation of displaced stepping and how GDB uses it,
687 # see the comments in infrun.c.
688 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690 # Free a closure returned by gdbarch_displaced_step_copy_insn.
691 #
692 # If you provide gdbarch_displaced_step_copy_insn, you must provide
693 # this function as well.
694 #
695 # If your architecture uses closures that don't need to be freed, then
696 # you can use simple_displaced_step_free_closure here.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702 # Return the address of an appropriate place to put displaced
703 # instructions while we step over them. There need only be one such
704 # place, since we're only stepping one thread over a breakpoint at a
705 # time.
706 #
707 # For a general explanation of displaced stepping and how GDB uses it,
708 # see the comments in infrun.c.
709 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
711 # Refresh overlay mapped state for section OSECT.
712 F:void:overlay_update:struct obj_section *osect:osect
713
714 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
715
716 # Handle special encoding of static variables in stabs debug info.
717 F:char *:static_transform_name:char *name:name
718 # Set if the address in N_SO or N_FUN stabs may be zero.
719 v:int:sofun_address_maybe_missing:::0:0::0
720
721 # Parse the instruction at ADDR storing in the record execution log
722 # the registers REGCACHE and memory ranges that will be affected when
723 # the instruction executes, along with their current values.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
727 # Save process state after a signal.
728 # Return -1 if something goes wrong, 0 otherwise.
729 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
731 # Signal translation: translate inferior's signal (host's) number into
732 # GDB's representation.
733 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734 # Signal translation: translate GDB's signal number into inferior's host
735 # signal number.
736 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
737
738 # Extra signal info inspection.
739 #
740 # Return a type suitable to inspect extra signal information.
741 M:struct type *:get_siginfo_type:void:
742
743 # Record architecture-specific information from the symbol table.
744 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
745
746 # Function for the 'catch syscall' feature.
747
748 # Get architecture-specific system calls information from registers.
749 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
751 # True if the list of shared libraries is one and only for all
752 # processes, as opposed to a list of shared libraries per inferior.
753 # This usually means that all processes, although may or may not share
754 # an address space, will see the same set of symbols at the same
755 # addresses.
756 v:int:has_global_solist:::0:0::0
757
758 # On some targets, even though each inferior has its own private
759 # address space, the debug interface takes care of making breakpoints
760 # visible to all address spaces automatically. For such cases,
761 # this property should be set to true.
762 v:int:has_global_breakpoints:::0:0::0
763
764 # True if inferiors share an address space (e.g., uClinux).
765 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
766
767 # True if a fast tracepoint can be set at an address.
768 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
769
770 # Not NULL if a target has additonal field for qSupported.
771 v:const char *:qsupported:::0:0::0:gdbarch->qsupported
772 EOF
773 }
774
775 #
776 # The .log file
777 #
778 exec > new-gdbarch.log
779 function_list | while do_read
780 do
781 cat <<EOF
782 ${class} ${returntype} ${function} ($formal)
783 EOF
784 for r in ${read}
785 do
786 eval echo \"\ \ \ \ ${r}=\${${r}}\"
787 done
788 if class_is_predicate_p && fallback_default_p
789 then
790 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
791 kill $$
792 exit 1
793 fi
794 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
795 then
796 echo "Error: postdefault is useless when invalid_p=0" 1>&2
797 kill $$
798 exit 1
799 fi
800 if class_is_multiarch_p
801 then
802 if class_is_predicate_p ; then :
803 elif test "x${predefault}" = "x"
804 then
805 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
806 kill $$
807 exit 1
808 fi
809 fi
810 echo ""
811 done
812
813 exec 1>&2
814 compare_new gdbarch.log
815
816
817 copyright ()
818 {
819 cat <<EOF
820 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
821
822 /* Dynamic architecture support for GDB, the GNU debugger.
823
824 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
825 2007, 2008, 2009 Free Software Foundation, Inc.
826
827 This file is part of GDB.
828
829 This program is free software; you can redistribute it and/or modify
830 it under the terms of the GNU General Public License as published by
831 the Free Software Foundation; either version 3 of the License, or
832 (at your option) any later version.
833
834 This program is distributed in the hope that it will be useful,
835 but WITHOUT ANY WARRANTY; without even the implied warranty of
836 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
837 GNU General Public License for more details.
838
839 You should have received a copy of the GNU General Public License
840 along with this program. If not, see <http://www.gnu.org/licenses/>. */
841
842 /* This file was created with the aid of \`\`gdbarch.sh''.
843
844 The Bourne shell script \`\`gdbarch.sh'' creates the files
845 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
846 against the existing \`\`gdbarch.[hc]''. Any differences found
847 being reported.
848
849 If editing this file, please also run gdbarch.sh and merge any
850 changes into that script. Conversely, when making sweeping changes
851 to this file, modifying gdbarch.sh and using its output may prove
852 easier. */
853
854 EOF
855 }
856
857 #
858 # The .h file
859 #
860
861 exec > new-gdbarch.h
862 copyright
863 cat <<EOF
864 #ifndef GDBARCH_H
865 #define GDBARCH_H
866
867 struct floatformat;
868 struct ui_file;
869 struct frame_info;
870 struct value;
871 struct objfile;
872 struct obj_section;
873 struct minimal_symbol;
874 struct regcache;
875 struct reggroup;
876 struct regset;
877 struct disassemble_info;
878 struct target_ops;
879 struct obstack;
880 struct bp_target_info;
881 struct target_desc;
882 struct displaced_step_closure;
883 struct core_regset_section;
884 struct syscall;
885
886 /* The architecture associated with the connection to the target.
887
888 The architecture vector provides some information that is really
889 a property of the target: The layout of certain packets, for instance;
890 or the solib_ops vector. Etc. To differentiate architecture accesses
891 to per-target properties from per-thread/per-frame/per-objfile properties,
892 accesses to per-target properties should be made through target_gdbarch.
893
894 Eventually, when support for multiple targets is implemented in
895 GDB, this global should be made target-specific. */
896 extern struct gdbarch *target_gdbarch;
897 EOF
898
899 # function typedef's
900 printf "\n"
901 printf "\n"
902 printf "/* The following are pre-initialized by GDBARCH. */\n"
903 function_list | while do_read
904 do
905 if class_is_info_p
906 then
907 printf "\n"
908 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
909 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
910 fi
911 done
912
913 # function typedef's
914 printf "\n"
915 printf "\n"
916 printf "/* The following are initialized by the target dependent code. */\n"
917 function_list | while do_read
918 do
919 if [ -n "${comment}" ]
920 then
921 echo "${comment}" | sed \
922 -e '2 s,#,/*,' \
923 -e '3,$ s,#, ,' \
924 -e '$ s,$, */,'
925 fi
926
927 if class_is_predicate_p
928 then
929 printf "\n"
930 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
931 fi
932 if class_is_variable_p
933 then
934 printf "\n"
935 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
936 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
937 fi
938 if class_is_function_p
939 then
940 printf "\n"
941 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
942 then
943 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
944 elif class_is_multiarch_p
945 then
946 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
947 else
948 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
949 fi
950 if [ "x${formal}" = "xvoid" ]
951 then
952 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
953 else
954 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
955 fi
956 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
957 fi
958 done
959
960 # close it off
961 cat <<EOF
962
963 /* Definition for an unknown syscall, used basically in error-cases. */
964 #define UNKNOWN_SYSCALL (-1)
965
966 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
967
968
969 /* Mechanism for co-ordinating the selection of a specific
970 architecture.
971
972 GDB targets (*-tdep.c) can register an interest in a specific
973 architecture. Other GDB components can register a need to maintain
974 per-architecture data.
975
976 The mechanisms below ensures that there is only a loose connection
977 between the set-architecture command and the various GDB
978 components. Each component can independently register their need
979 to maintain architecture specific data with gdbarch.
980
981 Pragmatics:
982
983 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
984 didn't scale.
985
986 The more traditional mega-struct containing architecture specific
987 data for all the various GDB components was also considered. Since
988 GDB is built from a variable number of (fairly independent)
989 components it was determined that the global aproach was not
990 applicable. */
991
992
993 /* Register a new architectural family with GDB.
994
995 Register support for the specified ARCHITECTURE with GDB. When
996 gdbarch determines that the specified architecture has been
997 selected, the corresponding INIT function is called.
998
999 --
1000
1001 The INIT function takes two parameters: INFO which contains the
1002 information available to gdbarch about the (possibly new)
1003 architecture; ARCHES which is a list of the previously created
1004 \`\`struct gdbarch'' for this architecture.
1005
1006 The INFO parameter is, as far as possible, be pre-initialized with
1007 information obtained from INFO.ABFD or the global defaults.
1008
1009 The ARCHES parameter is a linked list (sorted most recently used)
1010 of all the previously created architures for this architecture
1011 family. The (possibly NULL) ARCHES->gdbarch can used to access
1012 values from the previously selected architecture for this
1013 architecture family.
1014
1015 The INIT function shall return any of: NULL - indicating that it
1016 doesn't recognize the selected architecture; an existing \`\`struct
1017 gdbarch'' from the ARCHES list - indicating that the new
1018 architecture is just a synonym for an earlier architecture (see
1019 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1020 - that describes the selected architecture (see gdbarch_alloc()).
1021
1022 The DUMP_TDEP function shall print out all target specific values.
1023 Care should be taken to ensure that the function works in both the
1024 multi-arch and non- multi-arch cases. */
1025
1026 struct gdbarch_list
1027 {
1028 struct gdbarch *gdbarch;
1029 struct gdbarch_list *next;
1030 };
1031
1032 struct gdbarch_info
1033 {
1034 /* Use default: NULL (ZERO). */
1035 const struct bfd_arch_info *bfd_arch_info;
1036
1037 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1038 int byte_order;
1039
1040 int byte_order_for_code;
1041
1042 /* Use default: NULL (ZERO). */
1043 bfd *abfd;
1044
1045 /* Use default: NULL (ZERO). */
1046 struct gdbarch_tdep_info *tdep_info;
1047
1048 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1049 enum gdb_osabi osabi;
1050
1051 /* Use default: NULL (ZERO). */
1052 const struct target_desc *target_desc;
1053 };
1054
1055 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1056 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1057
1058 /* DEPRECATED - use gdbarch_register() */
1059 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1060
1061 extern void gdbarch_register (enum bfd_architecture architecture,
1062 gdbarch_init_ftype *,
1063 gdbarch_dump_tdep_ftype *);
1064
1065
1066 /* Return a freshly allocated, NULL terminated, array of the valid
1067 architecture names. Since architectures are registered during the
1068 _initialize phase this function only returns useful information
1069 once initialization has been completed. */
1070
1071 extern const char **gdbarch_printable_names (void);
1072
1073
1074 /* Helper function. Search the list of ARCHES for a GDBARCH that
1075 matches the information provided by INFO. */
1076
1077 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1078
1079
1080 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1081 basic initialization using values obtained from the INFO and TDEP
1082 parameters. set_gdbarch_*() functions are called to complete the
1083 initialization of the object. */
1084
1085 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1086
1087
1088 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1089 It is assumed that the caller freeds the \`\`struct
1090 gdbarch_tdep''. */
1091
1092 extern void gdbarch_free (struct gdbarch *);
1093
1094
1095 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1096 obstack. The memory is freed when the corresponding architecture
1097 is also freed. */
1098
1099 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1100 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1101 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1102
1103
1104 /* Helper function. Force an update of the current architecture.
1105
1106 The actual architecture selected is determined by INFO, \`\`(gdb) set
1107 architecture'' et.al., the existing architecture and BFD's default
1108 architecture. INFO should be initialized to zero and then selected
1109 fields should be updated.
1110
1111 Returns non-zero if the update succeeds */
1112
1113 extern int gdbarch_update_p (struct gdbarch_info info);
1114
1115
1116 /* Helper function. Find an architecture matching info.
1117
1118 INFO should be initialized using gdbarch_info_init, relevant fields
1119 set, and then finished using gdbarch_info_fill.
1120
1121 Returns the corresponding architecture, or NULL if no matching
1122 architecture was found. */
1123
1124 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1125
1126
1127 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1128
1129 FIXME: kettenis/20031124: Of the functions that follow, only
1130 gdbarch_from_bfd is supposed to survive. The others will
1131 dissappear since in the future GDB will (hopefully) be truly
1132 multi-arch. However, for now we're still stuck with the concept of
1133 a single active architecture. */
1134
1135 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1136
1137
1138 /* Register per-architecture data-pointer.
1139
1140 Reserve space for a per-architecture data-pointer. An identifier
1141 for the reserved data-pointer is returned. That identifer should
1142 be saved in a local static variable.
1143
1144 Memory for the per-architecture data shall be allocated using
1145 gdbarch_obstack_zalloc. That memory will be deleted when the
1146 corresponding architecture object is deleted.
1147
1148 When a previously created architecture is re-selected, the
1149 per-architecture data-pointer for that previous architecture is
1150 restored. INIT() is not re-called.
1151
1152 Multiple registrarants for any architecture are allowed (and
1153 strongly encouraged). */
1154
1155 struct gdbarch_data;
1156
1157 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1158 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1159 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1160 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1161 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1162 struct gdbarch_data *data,
1163 void *pointer);
1164
1165 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1166
1167
1168 /* Set the dynamic target-system-dependent parameters (architecture,
1169 byte-order, ...) using information found in the BFD */
1170
1171 extern void set_gdbarch_from_file (bfd *);
1172
1173
1174 /* Initialize the current architecture to the "first" one we find on
1175 our list. */
1176
1177 extern void initialize_current_architecture (void);
1178
1179 /* gdbarch trace variable */
1180 extern int gdbarch_debug;
1181
1182 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1183
1184 #endif
1185 EOF
1186 exec 1>&2
1187 #../move-if-change new-gdbarch.h gdbarch.h
1188 compare_new gdbarch.h
1189
1190
1191 #
1192 # C file
1193 #
1194
1195 exec > new-gdbarch.c
1196 copyright
1197 cat <<EOF
1198
1199 #include "defs.h"
1200 #include "arch-utils.h"
1201
1202 #include "gdbcmd.h"
1203 #include "inferior.h"
1204 #include "symcat.h"
1205
1206 #include "floatformat.h"
1207
1208 #include "gdb_assert.h"
1209 #include "gdb_string.h"
1210 #include "reggroups.h"
1211 #include "osabi.h"
1212 #include "gdb_obstack.h"
1213 #include "observer.h"
1214 #include "regcache.h"
1215
1216 /* Static function declarations */
1217
1218 static void alloc_gdbarch_data (struct gdbarch *);
1219
1220 /* Non-zero if we want to trace architecture code. */
1221
1222 #ifndef GDBARCH_DEBUG
1223 #define GDBARCH_DEBUG 0
1224 #endif
1225 int gdbarch_debug = GDBARCH_DEBUG;
1226 static void
1227 show_gdbarch_debug (struct ui_file *file, int from_tty,
1228 struct cmd_list_element *c, const char *value)
1229 {
1230 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1231 }
1232
1233 static const char *
1234 pformat (const struct floatformat **format)
1235 {
1236 if (format == NULL)
1237 return "(null)";
1238 else
1239 /* Just print out one of them - this is only for diagnostics. */
1240 return format[0]->name;
1241 }
1242
1243 EOF
1244
1245 # gdbarch open the gdbarch object
1246 printf "\n"
1247 printf "/* Maintain the struct gdbarch object */\n"
1248 printf "\n"
1249 printf "struct gdbarch\n"
1250 printf "{\n"
1251 printf " /* Has this architecture been fully initialized? */\n"
1252 printf " int initialized_p;\n"
1253 printf "\n"
1254 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1255 printf " struct obstack *obstack;\n"
1256 printf "\n"
1257 printf " /* basic architectural information */\n"
1258 function_list | while do_read
1259 do
1260 if class_is_info_p
1261 then
1262 printf " ${returntype} ${function};\n"
1263 fi
1264 done
1265 printf "\n"
1266 printf " /* target specific vector. */\n"
1267 printf " struct gdbarch_tdep *tdep;\n"
1268 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1269 printf "\n"
1270 printf " /* per-architecture data-pointers */\n"
1271 printf " unsigned nr_data;\n"
1272 printf " void **data;\n"
1273 printf "\n"
1274 printf " /* per-architecture swap-regions */\n"
1275 printf " struct gdbarch_swap *swap;\n"
1276 printf "\n"
1277 cat <<EOF
1278 /* Multi-arch values.
1279
1280 When extending this structure you must:
1281
1282 Add the field below.
1283
1284 Declare set/get functions and define the corresponding
1285 macro in gdbarch.h.
1286
1287 gdbarch_alloc(): If zero/NULL is not a suitable default,
1288 initialize the new field.
1289
1290 verify_gdbarch(): Confirm that the target updated the field
1291 correctly.
1292
1293 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1294 field is dumped out
1295
1296 \`\`startup_gdbarch()'': Append an initial value to the static
1297 variable (base values on the host's c-type system).
1298
1299 get_gdbarch(): Implement the set/get functions (probably using
1300 the macro's as shortcuts).
1301
1302 */
1303
1304 EOF
1305 function_list | while do_read
1306 do
1307 if class_is_variable_p
1308 then
1309 printf " ${returntype} ${function};\n"
1310 elif class_is_function_p
1311 then
1312 printf " gdbarch_${function}_ftype *${function};\n"
1313 fi
1314 done
1315 printf "};\n"
1316
1317 # A pre-initialized vector
1318 printf "\n"
1319 printf "\n"
1320 cat <<EOF
1321 /* The default architecture uses host values (for want of a better
1322 choice). */
1323 EOF
1324 printf "\n"
1325 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1326 printf "\n"
1327 printf "struct gdbarch startup_gdbarch =\n"
1328 printf "{\n"
1329 printf " 1, /* Always initialized. */\n"
1330 printf " NULL, /* The obstack. */\n"
1331 printf " /* basic architecture information */\n"
1332 function_list | while do_read
1333 do
1334 if class_is_info_p
1335 then
1336 printf " ${staticdefault}, /* ${function} */\n"
1337 fi
1338 done
1339 cat <<EOF
1340 /* target specific vector and its dump routine */
1341 NULL, NULL,
1342 /*per-architecture data-pointers and swap regions */
1343 0, NULL, NULL,
1344 /* Multi-arch values */
1345 EOF
1346 function_list | while do_read
1347 do
1348 if class_is_function_p || class_is_variable_p
1349 then
1350 printf " ${staticdefault}, /* ${function} */\n"
1351 fi
1352 done
1353 cat <<EOF
1354 /* startup_gdbarch() */
1355 };
1356
1357 struct gdbarch *target_gdbarch = &startup_gdbarch;
1358 EOF
1359
1360 # Create a new gdbarch struct
1361 cat <<EOF
1362
1363 /* Create a new \`\`struct gdbarch'' based on information provided by
1364 \`\`struct gdbarch_info''. */
1365 EOF
1366 printf "\n"
1367 cat <<EOF
1368 struct gdbarch *
1369 gdbarch_alloc (const struct gdbarch_info *info,
1370 struct gdbarch_tdep *tdep)
1371 {
1372 struct gdbarch *gdbarch;
1373
1374 /* Create an obstack for allocating all the per-architecture memory,
1375 then use that to allocate the architecture vector. */
1376 struct obstack *obstack = XMALLOC (struct obstack);
1377 obstack_init (obstack);
1378 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1379 memset (gdbarch, 0, sizeof (*gdbarch));
1380 gdbarch->obstack = obstack;
1381
1382 alloc_gdbarch_data (gdbarch);
1383
1384 gdbarch->tdep = tdep;
1385 EOF
1386 printf "\n"
1387 function_list | while do_read
1388 do
1389 if class_is_info_p
1390 then
1391 printf " gdbarch->${function} = info->${function};\n"
1392 fi
1393 done
1394 printf "\n"
1395 printf " /* Force the explicit initialization of these. */\n"
1396 function_list | while do_read
1397 do
1398 if class_is_function_p || class_is_variable_p
1399 then
1400 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1401 then
1402 printf " gdbarch->${function} = ${predefault};\n"
1403 fi
1404 fi
1405 done
1406 cat <<EOF
1407 /* gdbarch_alloc() */
1408
1409 return gdbarch;
1410 }
1411 EOF
1412
1413 # Free a gdbarch struct.
1414 printf "\n"
1415 printf "\n"
1416 cat <<EOF
1417 /* Allocate extra space using the per-architecture obstack. */
1418
1419 void *
1420 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1421 {
1422 void *data = obstack_alloc (arch->obstack, size);
1423 memset (data, 0, size);
1424 return data;
1425 }
1426
1427
1428 /* Free a gdbarch struct. This should never happen in normal
1429 operation --- once you've created a gdbarch, you keep it around.
1430 However, if an architecture's init function encounters an error
1431 building the structure, it may need to clean up a partially
1432 constructed gdbarch. */
1433
1434 void
1435 gdbarch_free (struct gdbarch *arch)
1436 {
1437 struct obstack *obstack;
1438 gdb_assert (arch != NULL);
1439 gdb_assert (!arch->initialized_p);
1440 obstack = arch->obstack;
1441 obstack_free (obstack, 0); /* Includes the ARCH. */
1442 xfree (obstack);
1443 }
1444 EOF
1445
1446 # verify a new architecture
1447 cat <<EOF
1448
1449
1450 /* Ensure that all values in a GDBARCH are reasonable. */
1451
1452 static void
1453 verify_gdbarch (struct gdbarch *gdbarch)
1454 {
1455 struct ui_file *log;
1456 struct cleanup *cleanups;
1457 long length;
1458 char *buf;
1459 log = mem_fileopen ();
1460 cleanups = make_cleanup_ui_file_delete (log);
1461 /* fundamental */
1462 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1463 fprintf_unfiltered (log, "\n\tbyte-order");
1464 if (gdbarch->bfd_arch_info == NULL)
1465 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1466 /* Check those that need to be defined for the given multi-arch level. */
1467 EOF
1468 function_list | while do_read
1469 do
1470 if class_is_function_p || class_is_variable_p
1471 then
1472 if [ "x${invalid_p}" = "x0" ]
1473 then
1474 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1475 elif class_is_predicate_p
1476 then
1477 printf " /* Skip verify of ${function}, has predicate */\n"
1478 # FIXME: See do_read for potential simplification
1479 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1480 then
1481 printf " if (${invalid_p})\n"
1482 printf " gdbarch->${function} = ${postdefault};\n"
1483 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1484 then
1485 printf " if (gdbarch->${function} == ${predefault})\n"
1486 printf " gdbarch->${function} = ${postdefault};\n"
1487 elif [ -n "${postdefault}" ]
1488 then
1489 printf " if (gdbarch->${function} == 0)\n"
1490 printf " gdbarch->${function} = ${postdefault};\n"
1491 elif [ -n "${invalid_p}" ]
1492 then
1493 printf " if (${invalid_p})\n"
1494 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1495 elif [ -n "${predefault}" ]
1496 then
1497 printf " if (gdbarch->${function} == ${predefault})\n"
1498 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1499 fi
1500 fi
1501 done
1502 cat <<EOF
1503 buf = ui_file_xstrdup (log, &length);
1504 make_cleanup (xfree, buf);
1505 if (length > 0)
1506 internal_error (__FILE__, __LINE__,
1507 _("verify_gdbarch: the following are invalid ...%s"),
1508 buf);
1509 do_cleanups (cleanups);
1510 }
1511 EOF
1512
1513 # dump the structure
1514 printf "\n"
1515 printf "\n"
1516 cat <<EOF
1517 /* Print out the details of the current architecture. */
1518
1519 void
1520 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1521 {
1522 const char *gdb_nm_file = "<not-defined>";
1523 #if defined (GDB_NM_FILE)
1524 gdb_nm_file = GDB_NM_FILE;
1525 #endif
1526 fprintf_unfiltered (file,
1527 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1528 gdb_nm_file);
1529 EOF
1530 function_list | sort -t: -k 3 | while do_read
1531 do
1532 # First the predicate
1533 if class_is_predicate_p
1534 then
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1537 printf " gdbarch_${function}_p (gdbarch));\n"
1538 fi
1539 # Print the corresponding value.
1540 if class_is_function_p
1541 then
1542 printf " fprintf_unfiltered (file,\n"
1543 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1544 printf " host_address_to_string (gdbarch->${function}));\n"
1545 else
1546 # It is a variable
1547 case "${print}:${returntype}" in
1548 :CORE_ADDR )
1549 fmt="%s"
1550 print="core_addr_to_string_nz (gdbarch->${function})"
1551 ;;
1552 :* )
1553 fmt="%s"
1554 print="plongest (gdbarch->${function})"
1555 ;;
1556 * )
1557 fmt="%s"
1558 ;;
1559 esac
1560 printf " fprintf_unfiltered (file,\n"
1561 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1562 printf " ${print});\n"
1563 fi
1564 done
1565 cat <<EOF
1566 if (gdbarch->dump_tdep != NULL)
1567 gdbarch->dump_tdep (gdbarch, file);
1568 }
1569 EOF
1570
1571
1572 # GET/SET
1573 printf "\n"
1574 cat <<EOF
1575 struct gdbarch_tdep *
1576 gdbarch_tdep (struct gdbarch *gdbarch)
1577 {
1578 if (gdbarch_debug >= 2)
1579 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1580 return gdbarch->tdep;
1581 }
1582 EOF
1583 printf "\n"
1584 function_list | while do_read
1585 do
1586 if class_is_predicate_p
1587 then
1588 printf "\n"
1589 printf "int\n"
1590 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1591 printf "{\n"
1592 printf " gdb_assert (gdbarch != NULL);\n"
1593 printf " return ${predicate};\n"
1594 printf "}\n"
1595 fi
1596 if class_is_function_p
1597 then
1598 printf "\n"
1599 printf "${returntype}\n"
1600 if [ "x${formal}" = "xvoid" ]
1601 then
1602 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1603 else
1604 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1605 fi
1606 printf "{\n"
1607 printf " gdb_assert (gdbarch != NULL);\n"
1608 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1609 if class_is_predicate_p && test -n "${predefault}"
1610 then
1611 # Allow a call to a function with a predicate.
1612 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1613 fi
1614 printf " if (gdbarch_debug >= 2)\n"
1615 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1616 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1617 then
1618 if class_is_multiarch_p
1619 then
1620 params="gdbarch"
1621 else
1622 params=""
1623 fi
1624 else
1625 if class_is_multiarch_p
1626 then
1627 params="gdbarch, ${actual}"
1628 else
1629 params="${actual}"
1630 fi
1631 fi
1632 if [ "x${returntype}" = "xvoid" ]
1633 then
1634 printf " gdbarch->${function} (${params});\n"
1635 else
1636 printf " return gdbarch->${function} (${params});\n"
1637 fi
1638 printf "}\n"
1639 printf "\n"
1640 printf "void\n"
1641 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1642 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1643 printf "{\n"
1644 printf " gdbarch->${function} = ${function};\n"
1645 printf "}\n"
1646 elif class_is_variable_p
1647 then
1648 printf "\n"
1649 printf "${returntype}\n"
1650 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1651 printf "{\n"
1652 printf " gdb_assert (gdbarch != NULL);\n"
1653 if [ "x${invalid_p}" = "x0" ]
1654 then
1655 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1656 elif [ -n "${invalid_p}" ]
1657 then
1658 printf " /* Check variable is valid. */\n"
1659 printf " gdb_assert (!(${invalid_p}));\n"
1660 elif [ -n "${predefault}" ]
1661 then
1662 printf " /* Check variable changed from pre-default. */\n"
1663 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1664 fi
1665 printf " if (gdbarch_debug >= 2)\n"
1666 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1667 printf " return gdbarch->${function};\n"
1668 printf "}\n"
1669 printf "\n"
1670 printf "void\n"
1671 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1672 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1673 printf "{\n"
1674 printf " gdbarch->${function} = ${function};\n"
1675 printf "}\n"
1676 elif class_is_info_p
1677 then
1678 printf "\n"
1679 printf "${returntype}\n"
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1681 printf "{\n"
1682 printf " gdb_assert (gdbarch != NULL);\n"
1683 printf " if (gdbarch_debug >= 2)\n"
1684 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1685 printf " return gdbarch->${function};\n"
1686 printf "}\n"
1687 fi
1688 done
1689
1690 # All the trailing guff
1691 cat <<EOF
1692
1693
1694 /* Keep a registry of per-architecture data-pointers required by GDB
1695 modules. */
1696
1697 struct gdbarch_data
1698 {
1699 unsigned index;
1700 int init_p;
1701 gdbarch_data_pre_init_ftype *pre_init;
1702 gdbarch_data_post_init_ftype *post_init;
1703 };
1704
1705 struct gdbarch_data_registration
1706 {
1707 struct gdbarch_data *data;
1708 struct gdbarch_data_registration *next;
1709 };
1710
1711 struct gdbarch_data_registry
1712 {
1713 unsigned nr;
1714 struct gdbarch_data_registration *registrations;
1715 };
1716
1717 struct gdbarch_data_registry gdbarch_data_registry =
1718 {
1719 0, NULL,
1720 };
1721
1722 static struct gdbarch_data *
1723 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1724 gdbarch_data_post_init_ftype *post_init)
1725 {
1726 struct gdbarch_data_registration **curr;
1727 /* Append the new registraration. */
1728 for (curr = &gdbarch_data_registry.registrations;
1729 (*curr) != NULL;
1730 curr = &(*curr)->next);
1731 (*curr) = XMALLOC (struct gdbarch_data_registration);
1732 (*curr)->next = NULL;
1733 (*curr)->data = XMALLOC (struct gdbarch_data);
1734 (*curr)->data->index = gdbarch_data_registry.nr++;
1735 (*curr)->data->pre_init = pre_init;
1736 (*curr)->data->post_init = post_init;
1737 (*curr)->data->init_p = 1;
1738 return (*curr)->data;
1739 }
1740
1741 struct gdbarch_data *
1742 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1743 {
1744 return gdbarch_data_register (pre_init, NULL);
1745 }
1746
1747 struct gdbarch_data *
1748 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1749 {
1750 return gdbarch_data_register (NULL, post_init);
1751 }
1752
1753 /* Create/delete the gdbarch data vector. */
1754
1755 static void
1756 alloc_gdbarch_data (struct gdbarch *gdbarch)
1757 {
1758 gdb_assert (gdbarch->data == NULL);
1759 gdbarch->nr_data = gdbarch_data_registry.nr;
1760 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1761 }
1762
1763 /* Initialize the current value of the specified per-architecture
1764 data-pointer. */
1765
1766 void
1767 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1768 struct gdbarch_data *data,
1769 void *pointer)
1770 {
1771 gdb_assert (data->index < gdbarch->nr_data);
1772 gdb_assert (gdbarch->data[data->index] == NULL);
1773 gdb_assert (data->pre_init == NULL);
1774 gdbarch->data[data->index] = pointer;
1775 }
1776
1777 /* Return the current value of the specified per-architecture
1778 data-pointer. */
1779
1780 void *
1781 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1782 {
1783 gdb_assert (data->index < gdbarch->nr_data);
1784 if (gdbarch->data[data->index] == NULL)
1785 {
1786 /* The data-pointer isn't initialized, call init() to get a
1787 value. */
1788 if (data->pre_init != NULL)
1789 /* Mid architecture creation: pass just the obstack, and not
1790 the entire architecture, as that way it isn't possible for
1791 pre-init code to refer to undefined architecture
1792 fields. */
1793 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1794 else if (gdbarch->initialized_p
1795 && data->post_init != NULL)
1796 /* Post architecture creation: pass the entire architecture
1797 (as all fields are valid), but be careful to also detect
1798 recursive references. */
1799 {
1800 gdb_assert (data->init_p);
1801 data->init_p = 0;
1802 gdbarch->data[data->index] = data->post_init (gdbarch);
1803 data->init_p = 1;
1804 }
1805 else
1806 /* The architecture initialization hasn't completed - punt -
1807 hope that the caller knows what they are doing. Once
1808 deprecated_set_gdbarch_data has been initialized, this can be
1809 changed to an internal error. */
1810 return NULL;
1811 gdb_assert (gdbarch->data[data->index] != NULL);
1812 }
1813 return gdbarch->data[data->index];
1814 }
1815
1816
1817 /* Keep a registry of the architectures known by GDB. */
1818
1819 struct gdbarch_registration
1820 {
1821 enum bfd_architecture bfd_architecture;
1822 gdbarch_init_ftype *init;
1823 gdbarch_dump_tdep_ftype *dump_tdep;
1824 struct gdbarch_list *arches;
1825 struct gdbarch_registration *next;
1826 };
1827
1828 static struct gdbarch_registration *gdbarch_registry = NULL;
1829
1830 static void
1831 append_name (const char ***buf, int *nr, const char *name)
1832 {
1833 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1834 (*buf)[*nr] = name;
1835 *nr += 1;
1836 }
1837
1838 const char **
1839 gdbarch_printable_names (void)
1840 {
1841 /* Accumulate a list of names based on the registed list of
1842 architectures. */
1843 enum bfd_architecture a;
1844 int nr_arches = 0;
1845 const char **arches = NULL;
1846 struct gdbarch_registration *rego;
1847 for (rego = gdbarch_registry;
1848 rego != NULL;
1849 rego = rego->next)
1850 {
1851 const struct bfd_arch_info *ap;
1852 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1853 if (ap == NULL)
1854 internal_error (__FILE__, __LINE__,
1855 _("gdbarch_architecture_names: multi-arch unknown"));
1856 do
1857 {
1858 append_name (&arches, &nr_arches, ap->printable_name);
1859 ap = ap->next;
1860 }
1861 while (ap != NULL);
1862 }
1863 append_name (&arches, &nr_arches, NULL);
1864 return arches;
1865 }
1866
1867
1868 void
1869 gdbarch_register (enum bfd_architecture bfd_architecture,
1870 gdbarch_init_ftype *init,
1871 gdbarch_dump_tdep_ftype *dump_tdep)
1872 {
1873 struct gdbarch_registration **curr;
1874 const struct bfd_arch_info *bfd_arch_info;
1875 /* Check that BFD recognizes this architecture */
1876 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1877 if (bfd_arch_info == NULL)
1878 {
1879 internal_error (__FILE__, __LINE__,
1880 _("gdbarch: Attempt to register unknown architecture (%d)"),
1881 bfd_architecture);
1882 }
1883 /* Check that we haven't seen this architecture before */
1884 for (curr = &gdbarch_registry;
1885 (*curr) != NULL;
1886 curr = &(*curr)->next)
1887 {
1888 if (bfd_architecture == (*curr)->bfd_architecture)
1889 internal_error (__FILE__, __LINE__,
1890 _("gdbarch: Duplicate registraration of architecture (%s)"),
1891 bfd_arch_info->printable_name);
1892 }
1893 /* log it */
1894 if (gdbarch_debug)
1895 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1896 bfd_arch_info->printable_name,
1897 host_address_to_string (init));
1898 /* Append it */
1899 (*curr) = XMALLOC (struct gdbarch_registration);
1900 (*curr)->bfd_architecture = bfd_architecture;
1901 (*curr)->init = init;
1902 (*curr)->dump_tdep = dump_tdep;
1903 (*curr)->arches = NULL;
1904 (*curr)->next = NULL;
1905 }
1906
1907 void
1908 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1909 gdbarch_init_ftype *init)
1910 {
1911 gdbarch_register (bfd_architecture, init, NULL);
1912 }
1913
1914
1915 /* Look for an architecture using gdbarch_info. */
1916
1917 struct gdbarch_list *
1918 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1919 const struct gdbarch_info *info)
1920 {
1921 for (; arches != NULL; arches = arches->next)
1922 {
1923 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1924 continue;
1925 if (info->byte_order != arches->gdbarch->byte_order)
1926 continue;
1927 if (info->osabi != arches->gdbarch->osabi)
1928 continue;
1929 if (info->target_desc != arches->gdbarch->target_desc)
1930 continue;
1931 return arches;
1932 }
1933 return NULL;
1934 }
1935
1936
1937 /* Find an architecture that matches the specified INFO. Create a new
1938 architecture if needed. Return that new architecture. */
1939
1940 struct gdbarch *
1941 gdbarch_find_by_info (struct gdbarch_info info)
1942 {
1943 struct gdbarch *new_gdbarch;
1944 struct gdbarch_registration *rego;
1945
1946 /* Fill in missing parts of the INFO struct using a number of
1947 sources: "set ..."; INFOabfd supplied; and the global
1948 defaults. */
1949 gdbarch_info_fill (&info);
1950
1951 /* Must have found some sort of architecture. */
1952 gdb_assert (info.bfd_arch_info != NULL);
1953
1954 if (gdbarch_debug)
1955 {
1956 fprintf_unfiltered (gdb_stdlog,
1957 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1958 (info.bfd_arch_info != NULL
1959 ? info.bfd_arch_info->printable_name
1960 : "(null)"));
1961 fprintf_unfiltered (gdb_stdlog,
1962 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1963 info.byte_order,
1964 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1965 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1966 : "default"));
1967 fprintf_unfiltered (gdb_stdlog,
1968 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1969 info.osabi, gdbarch_osabi_name (info.osabi));
1970 fprintf_unfiltered (gdb_stdlog,
1971 "gdbarch_find_by_info: info.abfd %s\n",
1972 host_address_to_string (info.abfd));
1973 fprintf_unfiltered (gdb_stdlog,
1974 "gdbarch_find_by_info: info.tdep_info %s\n",
1975 host_address_to_string (info.tdep_info));
1976 }
1977
1978 /* Find the tdep code that knows about this architecture. */
1979 for (rego = gdbarch_registry;
1980 rego != NULL;
1981 rego = rego->next)
1982 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1983 break;
1984 if (rego == NULL)
1985 {
1986 if (gdbarch_debug)
1987 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1988 "No matching architecture\n");
1989 return 0;
1990 }
1991
1992 /* Ask the tdep code for an architecture that matches "info". */
1993 new_gdbarch = rego->init (info, rego->arches);
1994
1995 /* Did the tdep code like it? No. Reject the change and revert to
1996 the old architecture. */
1997 if (new_gdbarch == NULL)
1998 {
1999 if (gdbarch_debug)
2000 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2001 "Target rejected architecture\n");
2002 return NULL;
2003 }
2004
2005 /* Is this a pre-existing architecture (as determined by already
2006 being initialized)? Move it to the front of the architecture
2007 list (keeping the list sorted Most Recently Used). */
2008 if (new_gdbarch->initialized_p)
2009 {
2010 struct gdbarch_list **list;
2011 struct gdbarch_list *this;
2012 if (gdbarch_debug)
2013 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2014 "Previous architecture %s (%s) selected\n",
2015 host_address_to_string (new_gdbarch),
2016 new_gdbarch->bfd_arch_info->printable_name);
2017 /* Find the existing arch in the list. */
2018 for (list = &rego->arches;
2019 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2020 list = &(*list)->next);
2021 /* It had better be in the list of architectures. */
2022 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2023 /* Unlink THIS. */
2024 this = (*list);
2025 (*list) = this->next;
2026 /* Insert THIS at the front. */
2027 this->next = rego->arches;
2028 rego->arches = this;
2029 /* Return it. */
2030 return new_gdbarch;
2031 }
2032
2033 /* It's a new architecture. */
2034 if (gdbarch_debug)
2035 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2036 "New architecture %s (%s) selected\n",
2037 host_address_to_string (new_gdbarch),
2038 new_gdbarch->bfd_arch_info->printable_name);
2039
2040 /* Insert the new architecture into the front of the architecture
2041 list (keep the list sorted Most Recently Used). */
2042 {
2043 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2044 this->next = rego->arches;
2045 this->gdbarch = new_gdbarch;
2046 rego->arches = this;
2047 }
2048
2049 /* Check that the newly installed architecture is valid. Plug in
2050 any post init values. */
2051 new_gdbarch->dump_tdep = rego->dump_tdep;
2052 verify_gdbarch (new_gdbarch);
2053 new_gdbarch->initialized_p = 1;
2054
2055 if (gdbarch_debug)
2056 gdbarch_dump (new_gdbarch, gdb_stdlog);
2057
2058 return new_gdbarch;
2059 }
2060
2061 /* Make the specified architecture current. */
2062
2063 void
2064 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2065 {
2066 gdb_assert (new_gdbarch != NULL);
2067 gdb_assert (new_gdbarch->initialized_p);
2068 target_gdbarch = new_gdbarch;
2069 observer_notify_architecture_changed (new_gdbarch);
2070 registers_changed ();
2071 }
2072
2073 extern void _initialize_gdbarch (void);
2074
2075 void
2076 _initialize_gdbarch (void)
2077 {
2078 struct cmd_list_element *c;
2079
2080 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2081 Set architecture debugging."), _("\\
2082 Show architecture debugging."), _("\\
2083 When non-zero, architecture debugging is enabled."),
2084 NULL,
2085 show_gdbarch_debug,
2086 &setdebuglist, &showdebuglist);
2087 }
2088 EOF
2089
2090 # close things off
2091 exec 1>&2
2092 #../move-if-change new-gdbarch.c gdbarch.c
2093 compare_new gdbarch.c
This page took 0.079456 seconds and 4 git commands to generate.