* defs.h: Adjust comment.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=C ; export LANG
26 LC_ALL=C ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 # Return the adjusted address and kind to use for Z0/Z1 packets.
490 # KIND is usually the memory length of the breakpoint, but may have a
491 # different target-specific meaning.
492 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
493 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
494 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
496 v:CORE_ADDR:decr_pc_after_break:::0:::0
497
498 # A function can be addressed by either it's "pointer" (possibly a
499 # descriptor address) or "entry point" (first executable instruction).
500 # The method "convert_from_func_ptr_addr" converting the former to the
501 # latter. gdbarch_deprecated_function_start_offset is being used to implement
502 # a simplified subset of that functionality - the function's address
503 # corresponds to the "function pointer" and the function's start
504 # corresponds to the "function entry point" - and hence is redundant.
505
506 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
507
508 # Return the remote protocol register number associated with this
509 # register. Normally the identity mapping.
510 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
511
512 # Fetch the target specific address used to represent a load module.
513 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
514 #
515 v:CORE_ADDR:frame_args_skip:::0:::0
516 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
518 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519 # frame-base. Enable frame-base before frame-unwind.
520 F:int:frame_num_args:struct frame_info *frame:frame
521 #
522 M:CORE_ADDR:frame_align:CORE_ADDR address:address
523 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524 v:int:frame_red_zone_size
525 #
526 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
527 # On some machines there are bits in addresses which are not really
528 # part of the address, but are used by the kernel, the hardware, etc.
529 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
530 # we get a "real" address such as one would find in a symbol table.
531 # This is used only for addresses of instructions, and even then I'm
532 # not sure it's used in all contexts. It exists to deal with there
533 # being a few stray bits in the PC which would mislead us, not as some
534 # sort of generic thing to handle alignment or segmentation (it's
535 # possible it should be in TARGET_READ_PC instead).
536 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
537 # It is not at all clear why gdbarch_smash_text_address is not folded into
538 # gdbarch_addr_bits_remove.
539 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
540
541 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
542 # indicates if the target needs software single step. An ISA method to
543 # implement it.
544 #
545 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546 # breakpoints using the breakpoint system instead of blatting memory directly
547 # (as with rs6000).
548 #
549 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550 # target can single step. If not, then implement single step using breakpoints.
551 #
552 # A return value of 1 means that the software_single_step breakpoints
553 # were inserted; 0 means they were not.
554 F:int:software_single_step:struct frame_info *frame:frame
555
556 # Return non-zero if the processor is executing a delay slot and a
557 # further single-step is needed before the instruction finishes.
558 M:int:single_step_through_delay:struct frame_info *frame:frame
559 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
560 # disassembler. Perhaps objdump can handle it?
561 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
563
564
565 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
566 # evaluates non-zero, this is the address where the debugger will place
567 # a step-resume breakpoint to get us past the dynamic linker.
568 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
569 # Some systems also have trampoline code for returning from shared libs.
570 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
571
572 # A target might have problems with watchpoints as soon as the stack
573 # frame of the current function has been destroyed. This mostly happens
574 # as the first action in a funtion's epilogue. in_function_epilogue_p()
575 # is defined to return a non-zero value if either the given addr is one
576 # instruction after the stack destroying instruction up to the trailing
577 # return instruction or if we can figure out that the stack frame has
578 # already been invalidated regardless of the value of addr. Targets
579 # which don't suffer from that problem could just let this functionality
580 # untouched.
581 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
582 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
584 v:int:cannot_step_breakpoint:::0:0::0
585 v:int:have_nonsteppable_watchpoint:::0:0::0
586 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
589 # Is a register in a group
590 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
591 # Fetch the pointer to the ith function argument.
592 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
593
594 # Return the appropriate register set for a core file section with
595 # name SECT_NAME and size SECT_SIZE.
596 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
597
598 # When creating core dumps, some systems encode the PID in addition
599 # to the LWP id in core file register section names. In those cases, the
600 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601 # is set to true for such architectures; false if "XXX" represents an LWP
602 # or thread id with no special encoding.
603 v:int:core_reg_section_encodes_pid:::0:0::0
604
605 # Supported register notes in a core file.
606 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
608 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609 # core file into buffer READBUF with length LEN.
610 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
611
612 # How the core_stratum layer converts a PTID from a core file to a
613 # string.
614 M:char *:core_pid_to_str:ptid_t ptid:ptid
615
616 # BFD target to use when generating a core file.
617 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
619 # If the elements of C++ vtables are in-place function descriptors rather
620 # than normal function pointers (which may point to code or a descriptor),
621 # set this to one.
622 v:int:vtable_function_descriptors:::0:0::0
623
624 # Set if the least significant bit of the delta is used instead of the least
625 # significant bit of the pfn for pointers to virtual member functions.
626 v:int:vbit_in_delta:::0:0::0
627
628 # Advance PC to next instruction in order to skip a permanent breakpoint.
629 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
630
631 # The maximum length of an instruction on this architecture.
632 V:ULONGEST:max_insn_length:::0:0
633
634 # Copy the instruction at FROM to TO, and make any adjustments
635 # necessary to single-step it at that address.
636 #
637 # REGS holds the state the thread's registers will have before
638 # executing the copied instruction; the PC in REGS will refer to FROM,
639 # not the copy at TO. The caller should update it to point at TO later.
640 #
641 # Return a pointer to data of the architecture's choice to be passed
642 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643 # the instruction's effects have been completely simulated, with the
644 # resulting state written back to REGS.
645 #
646 # For a general explanation of displaced stepping and how GDB uses it,
647 # see the comments in infrun.c.
648 #
649 # The TO area is only guaranteed to have space for
650 # gdbarch_max_insn_length (arch) bytes, so this function must not
651 # write more bytes than that to that area.
652 #
653 # If you do not provide this function, GDB assumes that the
654 # architecture does not support displaced stepping.
655 #
656 # If your architecture doesn't need to adjust instructions before
657 # single-stepping them, consider using simple_displaced_step_copy_insn
658 # here.
659 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
661 # Return true if GDB should use hardware single-stepping to execute
662 # the displaced instruction identified by CLOSURE. If false,
663 # GDB will simply restart execution at the displaced instruction
664 # location, and it is up to the target to ensure GDB will receive
665 # control again (e.g. by placing a software breakpoint instruction
666 # into the displaced instruction buffer).
667 #
668 # The default implementation returns false on all targets that
669 # provide a gdbarch_software_single_step routine, and true otherwise.
670 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
672 # Fix up the state resulting from successfully single-stepping a
673 # displaced instruction, to give the result we would have gotten from
674 # stepping the instruction in its original location.
675 #
676 # REGS is the register state resulting from single-stepping the
677 # displaced instruction.
678 #
679 # CLOSURE is the result from the matching call to
680 # gdbarch_displaced_step_copy_insn.
681 #
682 # If you provide gdbarch_displaced_step_copy_insn.but not this
683 # function, then GDB assumes that no fixup is needed after
684 # single-stepping the instruction.
685 #
686 # For a general explanation of displaced stepping and how GDB uses it,
687 # see the comments in infrun.c.
688 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690 # Free a closure returned by gdbarch_displaced_step_copy_insn.
691 #
692 # If you provide gdbarch_displaced_step_copy_insn, you must provide
693 # this function as well.
694 #
695 # If your architecture uses closures that don't need to be freed, then
696 # you can use simple_displaced_step_free_closure here.
697 #
698 # For a general explanation of displaced stepping and how GDB uses it,
699 # see the comments in infrun.c.
700 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702 # Return the address of an appropriate place to put displaced
703 # instructions while we step over them. There need only be one such
704 # place, since we're only stepping one thread over a breakpoint at a
705 # time.
706 #
707 # For a general explanation of displaced stepping and how GDB uses it,
708 # see the comments in infrun.c.
709 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
711 # Refresh overlay mapped state for section OSECT.
712 F:void:overlay_update:struct obj_section *osect:osect
713
714 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
715
716 # Handle special encoding of static variables in stabs debug info.
717 F:char *:static_transform_name:char *name:name
718 # Set if the address in N_SO or N_FUN stabs may be zero.
719 v:int:sofun_address_maybe_missing:::0:0::0
720
721 # Parse the instruction at ADDR storing in the record execution log
722 # the registers REGCACHE and memory ranges that will be affected when
723 # the instruction executes, along with their current values.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
727 # Save process state after a signal.
728 # Return -1 if something goes wrong, 0 otherwise.
729 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
731 # Signal translation: translate inferior's signal (host's) number into
732 # GDB's representation.
733 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734 # Signal translation: translate GDB's signal number into inferior's host
735 # signal number.
736 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
737
738 # Extra signal info inspection.
739 #
740 # Return a type suitable to inspect extra signal information.
741 M:struct type *:get_siginfo_type:void:
742
743 # Record architecture-specific information from the symbol table.
744 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
745
746 # Function for the 'catch syscall' feature.
747
748 # Get architecture-specific system calls information from registers.
749 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
751 # True if the list of shared libraries is one and only for all
752 # processes, as opposed to a list of shared libraries per inferior.
753 # This usually means that all processes, although may or may not share
754 # an address space, will see the same set of symbols at the same
755 # addresses.
756 v:int:has_global_solist:::0:0::0
757
758 # On some targets, even though each inferior has its own private
759 # address space, the debug interface takes care of making breakpoints
760 # visible to all address spaces automatically. For such cases,
761 # this property should be set to true.
762 v:int:has_global_breakpoints:::0:0::0
763
764 # True if inferiors share an address space (e.g., uClinux).
765 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
766
767 # True if a fast tracepoint can be set at an address.
768 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
769
770 # Not NULL if a target has additonal field for qSupported.
771 v:const char *:qsupported:::0:0::0:gdbarch->qsupported
772
773 # Return the "auto" target charset.
774 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
775 # Return the "auto" target wide charset.
776 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
777
778 # If non-empty, this is a file extension that will be opened in place
779 # of the file extension reported by the shared library list.
780 #
781 # This is most useful for toolchains that use a post-linker tool,
782 # where the names of the files run on the target differ in extension
783 # compared to the names of the files GDB should load for debug info.
784 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
785
786 # If true, the target OS has DOS-based file system semantics. That
787 # is, absolute paths include a drive name, and the backslash is
788 # considered a directory separator.
789 v:int:has_dos_based_file_system:::0:0::0
790 EOF
791 }
792
793 #
794 # The .log file
795 #
796 exec > new-gdbarch.log
797 function_list | while do_read
798 do
799 cat <<EOF
800 ${class} ${returntype} ${function} ($formal)
801 EOF
802 for r in ${read}
803 do
804 eval echo \"\ \ \ \ ${r}=\${${r}}\"
805 done
806 if class_is_predicate_p && fallback_default_p
807 then
808 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
809 kill $$
810 exit 1
811 fi
812 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
813 then
814 echo "Error: postdefault is useless when invalid_p=0" 1>&2
815 kill $$
816 exit 1
817 fi
818 if class_is_multiarch_p
819 then
820 if class_is_predicate_p ; then :
821 elif test "x${predefault}" = "x"
822 then
823 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
824 kill $$
825 exit 1
826 fi
827 fi
828 echo ""
829 done
830
831 exec 1>&2
832 compare_new gdbarch.log
833
834
835 copyright ()
836 {
837 cat <<EOF
838 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
839
840 /* Dynamic architecture support for GDB, the GNU debugger.
841
842 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
843 2007, 2008, 2009 Free Software Foundation, Inc.
844
845 This file is part of GDB.
846
847 This program is free software; you can redistribute it and/or modify
848 it under the terms of the GNU General Public License as published by
849 the Free Software Foundation; either version 3 of the License, or
850 (at your option) any later version.
851
852 This program is distributed in the hope that it will be useful,
853 but WITHOUT ANY WARRANTY; without even the implied warranty of
854 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
855 GNU General Public License for more details.
856
857 You should have received a copy of the GNU General Public License
858 along with this program. If not, see <http://www.gnu.org/licenses/>. */
859
860 /* This file was created with the aid of \`\`gdbarch.sh''.
861
862 The Bourne shell script \`\`gdbarch.sh'' creates the files
863 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
864 against the existing \`\`gdbarch.[hc]''. Any differences found
865 being reported.
866
867 If editing this file, please also run gdbarch.sh and merge any
868 changes into that script. Conversely, when making sweeping changes
869 to this file, modifying gdbarch.sh and using its output may prove
870 easier. */
871
872 EOF
873 }
874
875 #
876 # The .h file
877 #
878
879 exec > new-gdbarch.h
880 copyright
881 cat <<EOF
882 #ifndef GDBARCH_H
883 #define GDBARCH_H
884
885 struct floatformat;
886 struct ui_file;
887 struct frame_info;
888 struct value;
889 struct objfile;
890 struct obj_section;
891 struct minimal_symbol;
892 struct regcache;
893 struct reggroup;
894 struct regset;
895 struct disassemble_info;
896 struct target_ops;
897 struct obstack;
898 struct bp_target_info;
899 struct target_desc;
900 struct displaced_step_closure;
901 struct core_regset_section;
902 struct syscall;
903
904 /* The architecture associated with the connection to the target.
905
906 The architecture vector provides some information that is really
907 a property of the target: The layout of certain packets, for instance;
908 or the solib_ops vector. Etc. To differentiate architecture accesses
909 to per-target properties from per-thread/per-frame/per-objfile properties,
910 accesses to per-target properties should be made through target_gdbarch.
911
912 Eventually, when support for multiple targets is implemented in
913 GDB, this global should be made target-specific. */
914 extern struct gdbarch *target_gdbarch;
915 EOF
916
917 # function typedef's
918 printf "\n"
919 printf "\n"
920 printf "/* The following are pre-initialized by GDBARCH. */\n"
921 function_list | while do_read
922 do
923 if class_is_info_p
924 then
925 printf "\n"
926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
927 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
928 fi
929 done
930
931 # function typedef's
932 printf "\n"
933 printf "\n"
934 printf "/* The following are initialized by the target dependent code. */\n"
935 function_list | while do_read
936 do
937 if [ -n "${comment}" ]
938 then
939 echo "${comment}" | sed \
940 -e '2 s,#,/*,' \
941 -e '3,$ s,#, ,' \
942 -e '$ s,$, */,'
943 fi
944
945 if class_is_predicate_p
946 then
947 printf "\n"
948 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
949 fi
950 if class_is_variable_p
951 then
952 printf "\n"
953 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
954 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
955 fi
956 if class_is_function_p
957 then
958 printf "\n"
959 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
960 then
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
962 elif class_is_multiarch_p
963 then
964 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
965 else
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
967 fi
968 if [ "x${formal}" = "xvoid" ]
969 then
970 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
971 else
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
973 fi
974 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
975 fi
976 done
977
978 # close it off
979 cat <<EOF
980
981 /* Definition for an unknown syscall, used basically in error-cases. */
982 #define UNKNOWN_SYSCALL (-1)
983
984 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
985
986
987 /* Mechanism for co-ordinating the selection of a specific
988 architecture.
989
990 GDB targets (*-tdep.c) can register an interest in a specific
991 architecture. Other GDB components can register a need to maintain
992 per-architecture data.
993
994 The mechanisms below ensures that there is only a loose connection
995 between the set-architecture command and the various GDB
996 components. Each component can independently register their need
997 to maintain architecture specific data with gdbarch.
998
999 Pragmatics:
1000
1001 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1002 didn't scale.
1003
1004 The more traditional mega-struct containing architecture specific
1005 data for all the various GDB components was also considered. Since
1006 GDB is built from a variable number of (fairly independent)
1007 components it was determined that the global aproach was not
1008 applicable. */
1009
1010
1011 /* Register a new architectural family with GDB.
1012
1013 Register support for the specified ARCHITECTURE with GDB. When
1014 gdbarch determines that the specified architecture has been
1015 selected, the corresponding INIT function is called.
1016
1017 --
1018
1019 The INIT function takes two parameters: INFO which contains the
1020 information available to gdbarch about the (possibly new)
1021 architecture; ARCHES which is a list of the previously created
1022 \`\`struct gdbarch'' for this architecture.
1023
1024 The INFO parameter is, as far as possible, be pre-initialized with
1025 information obtained from INFO.ABFD or the global defaults.
1026
1027 The ARCHES parameter is a linked list (sorted most recently used)
1028 of all the previously created architures for this architecture
1029 family. The (possibly NULL) ARCHES->gdbarch can used to access
1030 values from the previously selected architecture for this
1031 architecture family.
1032
1033 The INIT function shall return any of: NULL - indicating that it
1034 doesn't recognize the selected architecture; an existing \`\`struct
1035 gdbarch'' from the ARCHES list - indicating that the new
1036 architecture is just a synonym for an earlier architecture (see
1037 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1038 - that describes the selected architecture (see gdbarch_alloc()).
1039
1040 The DUMP_TDEP function shall print out all target specific values.
1041 Care should be taken to ensure that the function works in both the
1042 multi-arch and non- multi-arch cases. */
1043
1044 struct gdbarch_list
1045 {
1046 struct gdbarch *gdbarch;
1047 struct gdbarch_list *next;
1048 };
1049
1050 struct gdbarch_info
1051 {
1052 /* Use default: NULL (ZERO). */
1053 const struct bfd_arch_info *bfd_arch_info;
1054
1055 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1056 int byte_order;
1057
1058 int byte_order_for_code;
1059
1060 /* Use default: NULL (ZERO). */
1061 bfd *abfd;
1062
1063 /* Use default: NULL (ZERO). */
1064 struct gdbarch_tdep_info *tdep_info;
1065
1066 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1067 enum gdb_osabi osabi;
1068
1069 /* Use default: NULL (ZERO). */
1070 const struct target_desc *target_desc;
1071 };
1072
1073 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1074 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1075
1076 /* DEPRECATED - use gdbarch_register() */
1077 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1078
1079 extern void gdbarch_register (enum bfd_architecture architecture,
1080 gdbarch_init_ftype *,
1081 gdbarch_dump_tdep_ftype *);
1082
1083
1084 /* Return a freshly allocated, NULL terminated, array of the valid
1085 architecture names. Since architectures are registered during the
1086 _initialize phase this function only returns useful information
1087 once initialization has been completed. */
1088
1089 extern const char **gdbarch_printable_names (void);
1090
1091
1092 /* Helper function. Search the list of ARCHES for a GDBARCH that
1093 matches the information provided by INFO. */
1094
1095 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1096
1097
1098 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1099 basic initialization using values obtained from the INFO and TDEP
1100 parameters. set_gdbarch_*() functions are called to complete the
1101 initialization of the object. */
1102
1103 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1104
1105
1106 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1107 It is assumed that the caller freeds the \`\`struct
1108 gdbarch_tdep''. */
1109
1110 extern void gdbarch_free (struct gdbarch *);
1111
1112
1113 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1114 obstack. The memory is freed when the corresponding architecture
1115 is also freed. */
1116
1117 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1118 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1119 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1120
1121
1122 /* Helper function. Force an update of the current architecture.
1123
1124 The actual architecture selected is determined by INFO, \`\`(gdb) set
1125 architecture'' et.al., the existing architecture and BFD's default
1126 architecture. INFO should be initialized to zero and then selected
1127 fields should be updated.
1128
1129 Returns non-zero if the update succeeds */
1130
1131 extern int gdbarch_update_p (struct gdbarch_info info);
1132
1133
1134 /* Helper function. Find an architecture matching info.
1135
1136 INFO should be initialized using gdbarch_info_init, relevant fields
1137 set, and then finished using gdbarch_info_fill.
1138
1139 Returns the corresponding architecture, or NULL if no matching
1140 architecture was found. */
1141
1142 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1143
1144
1145 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1146
1147 FIXME: kettenis/20031124: Of the functions that follow, only
1148 gdbarch_from_bfd is supposed to survive. The others will
1149 dissappear since in the future GDB will (hopefully) be truly
1150 multi-arch. However, for now we're still stuck with the concept of
1151 a single active architecture. */
1152
1153 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1154
1155
1156 /* Register per-architecture data-pointer.
1157
1158 Reserve space for a per-architecture data-pointer. An identifier
1159 for the reserved data-pointer is returned. That identifer should
1160 be saved in a local static variable.
1161
1162 Memory for the per-architecture data shall be allocated using
1163 gdbarch_obstack_zalloc. That memory will be deleted when the
1164 corresponding architecture object is deleted.
1165
1166 When a previously created architecture is re-selected, the
1167 per-architecture data-pointer for that previous architecture is
1168 restored. INIT() is not re-called.
1169
1170 Multiple registrarants for any architecture are allowed (and
1171 strongly encouraged). */
1172
1173 struct gdbarch_data;
1174
1175 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1176 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1177 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1178 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1179 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1180 struct gdbarch_data *data,
1181 void *pointer);
1182
1183 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1184
1185
1186 /* Set the dynamic target-system-dependent parameters (architecture,
1187 byte-order, ...) using information found in the BFD */
1188
1189 extern void set_gdbarch_from_file (bfd *);
1190
1191
1192 /* Initialize the current architecture to the "first" one we find on
1193 our list. */
1194
1195 extern void initialize_current_architecture (void);
1196
1197 /* gdbarch trace variable */
1198 extern int gdbarch_debug;
1199
1200 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1201
1202 #endif
1203 EOF
1204 exec 1>&2
1205 #../move-if-change new-gdbarch.h gdbarch.h
1206 compare_new gdbarch.h
1207
1208
1209 #
1210 # C file
1211 #
1212
1213 exec > new-gdbarch.c
1214 copyright
1215 cat <<EOF
1216
1217 #include "defs.h"
1218 #include "arch-utils.h"
1219
1220 #include "gdbcmd.h"
1221 #include "inferior.h"
1222 #include "symcat.h"
1223
1224 #include "floatformat.h"
1225
1226 #include "gdb_assert.h"
1227 #include "gdb_string.h"
1228 #include "reggroups.h"
1229 #include "osabi.h"
1230 #include "gdb_obstack.h"
1231 #include "observer.h"
1232 #include "regcache.h"
1233
1234 /* Static function declarations */
1235
1236 static void alloc_gdbarch_data (struct gdbarch *);
1237
1238 /* Non-zero if we want to trace architecture code. */
1239
1240 #ifndef GDBARCH_DEBUG
1241 #define GDBARCH_DEBUG 0
1242 #endif
1243 int gdbarch_debug = GDBARCH_DEBUG;
1244 static void
1245 show_gdbarch_debug (struct ui_file *file, int from_tty,
1246 struct cmd_list_element *c, const char *value)
1247 {
1248 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1249 }
1250
1251 static const char *
1252 pformat (const struct floatformat **format)
1253 {
1254 if (format == NULL)
1255 return "(null)";
1256 else
1257 /* Just print out one of them - this is only for diagnostics. */
1258 return format[0]->name;
1259 }
1260
1261 static const char *
1262 pstring (const char *string)
1263 {
1264 if (string == NULL)
1265 return "(null)";
1266 return string;
1267 }
1268
1269 EOF
1270
1271 # gdbarch open the gdbarch object
1272 printf "\n"
1273 printf "/* Maintain the struct gdbarch object */\n"
1274 printf "\n"
1275 printf "struct gdbarch\n"
1276 printf "{\n"
1277 printf " /* Has this architecture been fully initialized? */\n"
1278 printf " int initialized_p;\n"
1279 printf "\n"
1280 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1281 printf " struct obstack *obstack;\n"
1282 printf "\n"
1283 printf " /* basic architectural information */\n"
1284 function_list | while do_read
1285 do
1286 if class_is_info_p
1287 then
1288 printf " ${returntype} ${function};\n"
1289 fi
1290 done
1291 printf "\n"
1292 printf " /* target specific vector. */\n"
1293 printf " struct gdbarch_tdep *tdep;\n"
1294 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1295 printf "\n"
1296 printf " /* per-architecture data-pointers */\n"
1297 printf " unsigned nr_data;\n"
1298 printf " void **data;\n"
1299 printf "\n"
1300 printf " /* per-architecture swap-regions */\n"
1301 printf " struct gdbarch_swap *swap;\n"
1302 printf "\n"
1303 cat <<EOF
1304 /* Multi-arch values.
1305
1306 When extending this structure you must:
1307
1308 Add the field below.
1309
1310 Declare set/get functions and define the corresponding
1311 macro in gdbarch.h.
1312
1313 gdbarch_alloc(): If zero/NULL is not a suitable default,
1314 initialize the new field.
1315
1316 verify_gdbarch(): Confirm that the target updated the field
1317 correctly.
1318
1319 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1320 field is dumped out
1321
1322 \`\`startup_gdbarch()'': Append an initial value to the static
1323 variable (base values on the host's c-type system).
1324
1325 get_gdbarch(): Implement the set/get functions (probably using
1326 the macro's as shortcuts).
1327
1328 */
1329
1330 EOF
1331 function_list | while do_read
1332 do
1333 if class_is_variable_p
1334 then
1335 printf " ${returntype} ${function};\n"
1336 elif class_is_function_p
1337 then
1338 printf " gdbarch_${function}_ftype *${function};\n"
1339 fi
1340 done
1341 printf "};\n"
1342
1343 # A pre-initialized vector
1344 printf "\n"
1345 printf "\n"
1346 cat <<EOF
1347 /* The default architecture uses host values (for want of a better
1348 choice). */
1349 EOF
1350 printf "\n"
1351 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1352 printf "\n"
1353 printf "struct gdbarch startup_gdbarch =\n"
1354 printf "{\n"
1355 printf " 1, /* Always initialized. */\n"
1356 printf " NULL, /* The obstack. */\n"
1357 printf " /* basic architecture information */\n"
1358 function_list | while do_read
1359 do
1360 if class_is_info_p
1361 then
1362 printf " ${staticdefault}, /* ${function} */\n"
1363 fi
1364 done
1365 cat <<EOF
1366 /* target specific vector and its dump routine */
1367 NULL, NULL,
1368 /*per-architecture data-pointers and swap regions */
1369 0, NULL, NULL,
1370 /* Multi-arch values */
1371 EOF
1372 function_list | while do_read
1373 do
1374 if class_is_function_p || class_is_variable_p
1375 then
1376 printf " ${staticdefault}, /* ${function} */\n"
1377 fi
1378 done
1379 cat <<EOF
1380 /* startup_gdbarch() */
1381 };
1382
1383 struct gdbarch *target_gdbarch = &startup_gdbarch;
1384 EOF
1385
1386 # Create a new gdbarch struct
1387 cat <<EOF
1388
1389 /* Create a new \`\`struct gdbarch'' based on information provided by
1390 \`\`struct gdbarch_info''. */
1391 EOF
1392 printf "\n"
1393 cat <<EOF
1394 struct gdbarch *
1395 gdbarch_alloc (const struct gdbarch_info *info,
1396 struct gdbarch_tdep *tdep)
1397 {
1398 struct gdbarch *gdbarch;
1399
1400 /* Create an obstack for allocating all the per-architecture memory,
1401 then use that to allocate the architecture vector. */
1402 struct obstack *obstack = XMALLOC (struct obstack);
1403 obstack_init (obstack);
1404 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1405 memset (gdbarch, 0, sizeof (*gdbarch));
1406 gdbarch->obstack = obstack;
1407
1408 alloc_gdbarch_data (gdbarch);
1409
1410 gdbarch->tdep = tdep;
1411 EOF
1412 printf "\n"
1413 function_list | while do_read
1414 do
1415 if class_is_info_p
1416 then
1417 printf " gdbarch->${function} = info->${function};\n"
1418 fi
1419 done
1420 printf "\n"
1421 printf " /* Force the explicit initialization of these. */\n"
1422 function_list | while do_read
1423 do
1424 if class_is_function_p || class_is_variable_p
1425 then
1426 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1427 then
1428 printf " gdbarch->${function} = ${predefault};\n"
1429 fi
1430 fi
1431 done
1432 cat <<EOF
1433 /* gdbarch_alloc() */
1434
1435 return gdbarch;
1436 }
1437 EOF
1438
1439 # Free a gdbarch struct.
1440 printf "\n"
1441 printf "\n"
1442 cat <<EOF
1443 /* Allocate extra space using the per-architecture obstack. */
1444
1445 void *
1446 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1447 {
1448 void *data = obstack_alloc (arch->obstack, size);
1449 memset (data, 0, size);
1450 return data;
1451 }
1452
1453
1454 /* Free a gdbarch struct. This should never happen in normal
1455 operation --- once you've created a gdbarch, you keep it around.
1456 However, if an architecture's init function encounters an error
1457 building the structure, it may need to clean up a partially
1458 constructed gdbarch. */
1459
1460 void
1461 gdbarch_free (struct gdbarch *arch)
1462 {
1463 struct obstack *obstack;
1464 gdb_assert (arch != NULL);
1465 gdb_assert (!arch->initialized_p);
1466 obstack = arch->obstack;
1467 obstack_free (obstack, 0); /* Includes the ARCH. */
1468 xfree (obstack);
1469 }
1470 EOF
1471
1472 # verify a new architecture
1473 cat <<EOF
1474
1475
1476 /* Ensure that all values in a GDBARCH are reasonable. */
1477
1478 static void
1479 verify_gdbarch (struct gdbarch *gdbarch)
1480 {
1481 struct ui_file *log;
1482 struct cleanup *cleanups;
1483 long length;
1484 char *buf;
1485 log = mem_fileopen ();
1486 cleanups = make_cleanup_ui_file_delete (log);
1487 /* fundamental */
1488 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1489 fprintf_unfiltered (log, "\n\tbyte-order");
1490 if (gdbarch->bfd_arch_info == NULL)
1491 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1492 /* Check those that need to be defined for the given multi-arch level. */
1493 EOF
1494 function_list | while do_read
1495 do
1496 if class_is_function_p || class_is_variable_p
1497 then
1498 if [ "x${invalid_p}" = "x0" ]
1499 then
1500 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1501 elif class_is_predicate_p
1502 then
1503 printf " /* Skip verify of ${function}, has predicate */\n"
1504 # FIXME: See do_read for potential simplification
1505 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1506 then
1507 printf " if (${invalid_p})\n"
1508 printf " gdbarch->${function} = ${postdefault};\n"
1509 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1510 then
1511 printf " if (gdbarch->${function} == ${predefault})\n"
1512 printf " gdbarch->${function} = ${postdefault};\n"
1513 elif [ -n "${postdefault}" ]
1514 then
1515 printf " if (gdbarch->${function} == 0)\n"
1516 printf " gdbarch->${function} = ${postdefault};\n"
1517 elif [ -n "${invalid_p}" ]
1518 then
1519 printf " if (${invalid_p})\n"
1520 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1521 elif [ -n "${predefault}" ]
1522 then
1523 printf " if (gdbarch->${function} == ${predefault})\n"
1524 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1525 fi
1526 fi
1527 done
1528 cat <<EOF
1529 buf = ui_file_xstrdup (log, &length);
1530 make_cleanup (xfree, buf);
1531 if (length > 0)
1532 internal_error (__FILE__, __LINE__,
1533 _("verify_gdbarch: the following are invalid ...%s"),
1534 buf);
1535 do_cleanups (cleanups);
1536 }
1537 EOF
1538
1539 # dump the structure
1540 printf "\n"
1541 printf "\n"
1542 cat <<EOF
1543 /* Print out the details of the current architecture. */
1544
1545 void
1546 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1547 {
1548 const char *gdb_nm_file = "<not-defined>";
1549 #if defined (GDB_NM_FILE)
1550 gdb_nm_file = GDB_NM_FILE;
1551 #endif
1552 fprintf_unfiltered (file,
1553 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1554 gdb_nm_file);
1555 EOF
1556 function_list | sort -t: -k 3 | while do_read
1557 do
1558 # First the predicate
1559 if class_is_predicate_p
1560 then
1561 printf " fprintf_unfiltered (file,\n"
1562 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1563 printf " gdbarch_${function}_p (gdbarch));\n"
1564 fi
1565 # Print the corresponding value.
1566 if class_is_function_p
1567 then
1568 printf " fprintf_unfiltered (file,\n"
1569 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1570 printf " host_address_to_string (gdbarch->${function}));\n"
1571 else
1572 # It is a variable
1573 case "${print}:${returntype}" in
1574 :CORE_ADDR )
1575 fmt="%s"
1576 print="core_addr_to_string_nz (gdbarch->${function})"
1577 ;;
1578 :* )
1579 fmt="%s"
1580 print="plongest (gdbarch->${function})"
1581 ;;
1582 * )
1583 fmt="%s"
1584 ;;
1585 esac
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1588 printf " ${print});\n"
1589 fi
1590 done
1591 cat <<EOF
1592 if (gdbarch->dump_tdep != NULL)
1593 gdbarch->dump_tdep (gdbarch, file);
1594 }
1595 EOF
1596
1597
1598 # GET/SET
1599 printf "\n"
1600 cat <<EOF
1601 struct gdbarch_tdep *
1602 gdbarch_tdep (struct gdbarch *gdbarch)
1603 {
1604 if (gdbarch_debug >= 2)
1605 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1606 return gdbarch->tdep;
1607 }
1608 EOF
1609 printf "\n"
1610 function_list | while do_read
1611 do
1612 if class_is_predicate_p
1613 then
1614 printf "\n"
1615 printf "int\n"
1616 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1617 printf "{\n"
1618 printf " gdb_assert (gdbarch != NULL);\n"
1619 printf " return ${predicate};\n"
1620 printf "}\n"
1621 fi
1622 if class_is_function_p
1623 then
1624 printf "\n"
1625 printf "${returntype}\n"
1626 if [ "x${formal}" = "xvoid" ]
1627 then
1628 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1629 else
1630 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1631 fi
1632 printf "{\n"
1633 printf " gdb_assert (gdbarch != NULL);\n"
1634 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1635 if class_is_predicate_p && test -n "${predefault}"
1636 then
1637 # Allow a call to a function with a predicate.
1638 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1639 fi
1640 printf " if (gdbarch_debug >= 2)\n"
1641 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1642 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1643 then
1644 if class_is_multiarch_p
1645 then
1646 params="gdbarch"
1647 else
1648 params=""
1649 fi
1650 else
1651 if class_is_multiarch_p
1652 then
1653 params="gdbarch, ${actual}"
1654 else
1655 params="${actual}"
1656 fi
1657 fi
1658 if [ "x${returntype}" = "xvoid" ]
1659 then
1660 printf " gdbarch->${function} (${params});\n"
1661 else
1662 printf " return gdbarch->${function} (${params});\n"
1663 fi
1664 printf "}\n"
1665 printf "\n"
1666 printf "void\n"
1667 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1668 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1669 printf "{\n"
1670 printf " gdbarch->${function} = ${function};\n"
1671 printf "}\n"
1672 elif class_is_variable_p
1673 then
1674 printf "\n"
1675 printf "${returntype}\n"
1676 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1677 printf "{\n"
1678 printf " gdb_assert (gdbarch != NULL);\n"
1679 if [ "x${invalid_p}" = "x0" ]
1680 then
1681 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1682 elif [ -n "${invalid_p}" ]
1683 then
1684 printf " /* Check variable is valid. */\n"
1685 printf " gdb_assert (!(${invalid_p}));\n"
1686 elif [ -n "${predefault}" ]
1687 then
1688 printf " /* Check variable changed from pre-default. */\n"
1689 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1690 fi
1691 printf " if (gdbarch_debug >= 2)\n"
1692 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1693 printf " return gdbarch->${function};\n"
1694 printf "}\n"
1695 printf "\n"
1696 printf "void\n"
1697 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1698 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1699 printf "{\n"
1700 printf " gdbarch->${function} = ${function};\n"
1701 printf "}\n"
1702 elif class_is_info_p
1703 then
1704 printf "\n"
1705 printf "${returntype}\n"
1706 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1707 printf "{\n"
1708 printf " gdb_assert (gdbarch != NULL);\n"
1709 printf " if (gdbarch_debug >= 2)\n"
1710 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1711 printf " return gdbarch->${function};\n"
1712 printf "}\n"
1713 fi
1714 done
1715
1716 # All the trailing guff
1717 cat <<EOF
1718
1719
1720 /* Keep a registry of per-architecture data-pointers required by GDB
1721 modules. */
1722
1723 struct gdbarch_data
1724 {
1725 unsigned index;
1726 int init_p;
1727 gdbarch_data_pre_init_ftype *pre_init;
1728 gdbarch_data_post_init_ftype *post_init;
1729 };
1730
1731 struct gdbarch_data_registration
1732 {
1733 struct gdbarch_data *data;
1734 struct gdbarch_data_registration *next;
1735 };
1736
1737 struct gdbarch_data_registry
1738 {
1739 unsigned nr;
1740 struct gdbarch_data_registration *registrations;
1741 };
1742
1743 struct gdbarch_data_registry gdbarch_data_registry =
1744 {
1745 0, NULL,
1746 };
1747
1748 static struct gdbarch_data *
1749 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1750 gdbarch_data_post_init_ftype *post_init)
1751 {
1752 struct gdbarch_data_registration **curr;
1753 /* Append the new registraration. */
1754 for (curr = &gdbarch_data_registry.registrations;
1755 (*curr) != NULL;
1756 curr = &(*curr)->next);
1757 (*curr) = XMALLOC (struct gdbarch_data_registration);
1758 (*curr)->next = NULL;
1759 (*curr)->data = XMALLOC (struct gdbarch_data);
1760 (*curr)->data->index = gdbarch_data_registry.nr++;
1761 (*curr)->data->pre_init = pre_init;
1762 (*curr)->data->post_init = post_init;
1763 (*curr)->data->init_p = 1;
1764 return (*curr)->data;
1765 }
1766
1767 struct gdbarch_data *
1768 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1769 {
1770 return gdbarch_data_register (pre_init, NULL);
1771 }
1772
1773 struct gdbarch_data *
1774 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1775 {
1776 return gdbarch_data_register (NULL, post_init);
1777 }
1778
1779 /* Create/delete the gdbarch data vector. */
1780
1781 static void
1782 alloc_gdbarch_data (struct gdbarch *gdbarch)
1783 {
1784 gdb_assert (gdbarch->data == NULL);
1785 gdbarch->nr_data = gdbarch_data_registry.nr;
1786 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1787 }
1788
1789 /* Initialize the current value of the specified per-architecture
1790 data-pointer. */
1791
1792 void
1793 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1794 struct gdbarch_data *data,
1795 void *pointer)
1796 {
1797 gdb_assert (data->index < gdbarch->nr_data);
1798 gdb_assert (gdbarch->data[data->index] == NULL);
1799 gdb_assert (data->pre_init == NULL);
1800 gdbarch->data[data->index] = pointer;
1801 }
1802
1803 /* Return the current value of the specified per-architecture
1804 data-pointer. */
1805
1806 void *
1807 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1808 {
1809 gdb_assert (data->index < gdbarch->nr_data);
1810 if (gdbarch->data[data->index] == NULL)
1811 {
1812 /* The data-pointer isn't initialized, call init() to get a
1813 value. */
1814 if (data->pre_init != NULL)
1815 /* Mid architecture creation: pass just the obstack, and not
1816 the entire architecture, as that way it isn't possible for
1817 pre-init code to refer to undefined architecture
1818 fields. */
1819 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1820 else if (gdbarch->initialized_p
1821 && data->post_init != NULL)
1822 /* Post architecture creation: pass the entire architecture
1823 (as all fields are valid), but be careful to also detect
1824 recursive references. */
1825 {
1826 gdb_assert (data->init_p);
1827 data->init_p = 0;
1828 gdbarch->data[data->index] = data->post_init (gdbarch);
1829 data->init_p = 1;
1830 }
1831 else
1832 /* The architecture initialization hasn't completed - punt -
1833 hope that the caller knows what they are doing. Once
1834 deprecated_set_gdbarch_data has been initialized, this can be
1835 changed to an internal error. */
1836 return NULL;
1837 gdb_assert (gdbarch->data[data->index] != NULL);
1838 }
1839 return gdbarch->data[data->index];
1840 }
1841
1842
1843 /* Keep a registry of the architectures known by GDB. */
1844
1845 struct gdbarch_registration
1846 {
1847 enum bfd_architecture bfd_architecture;
1848 gdbarch_init_ftype *init;
1849 gdbarch_dump_tdep_ftype *dump_tdep;
1850 struct gdbarch_list *arches;
1851 struct gdbarch_registration *next;
1852 };
1853
1854 static struct gdbarch_registration *gdbarch_registry = NULL;
1855
1856 static void
1857 append_name (const char ***buf, int *nr, const char *name)
1858 {
1859 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1860 (*buf)[*nr] = name;
1861 *nr += 1;
1862 }
1863
1864 const char **
1865 gdbarch_printable_names (void)
1866 {
1867 /* Accumulate a list of names based on the registed list of
1868 architectures. */
1869 enum bfd_architecture a;
1870 int nr_arches = 0;
1871 const char **arches = NULL;
1872 struct gdbarch_registration *rego;
1873 for (rego = gdbarch_registry;
1874 rego != NULL;
1875 rego = rego->next)
1876 {
1877 const struct bfd_arch_info *ap;
1878 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1879 if (ap == NULL)
1880 internal_error (__FILE__, __LINE__,
1881 _("gdbarch_architecture_names: multi-arch unknown"));
1882 do
1883 {
1884 append_name (&arches, &nr_arches, ap->printable_name);
1885 ap = ap->next;
1886 }
1887 while (ap != NULL);
1888 }
1889 append_name (&arches, &nr_arches, NULL);
1890 return arches;
1891 }
1892
1893
1894 void
1895 gdbarch_register (enum bfd_architecture bfd_architecture,
1896 gdbarch_init_ftype *init,
1897 gdbarch_dump_tdep_ftype *dump_tdep)
1898 {
1899 struct gdbarch_registration **curr;
1900 const struct bfd_arch_info *bfd_arch_info;
1901 /* Check that BFD recognizes this architecture */
1902 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1903 if (bfd_arch_info == NULL)
1904 {
1905 internal_error (__FILE__, __LINE__,
1906 _("gdbarch: Attempt to register unknown architecture (%d)"),
1907 bfd_architecture);
1908 }
1909 /* Check that we haven't seen this architecture before */
1910 for (curr = &gdbarch_registry;
1911 (*curr) != NULL;
1912 curr = &(*curr)->next)
1913 {
1914 if (bfd_architecture == (*curr)->bfd_architecture)
1915 internal_error (__FILE__, __LINE__,
1916 _("gdbarch: Duplicate registraration of architecture (%s)"),
1917 bfd_arch_info->printable_name);
1918 }
1919 /* log it */
1920 if (gdbarch_debug)
1921 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1922 bfd_arch_info->printable_name,
1923 host_address_to_string (init));
1924 /* Append it */
1925 (*curr) = XMALLOC (struct gdbarch_registration);
1926 (*curr)->bfd_architecture = bfd_architecture;
1927 (*curr)->init = init;
1928 (*curr)->dump_tdep = dump_tdep;
1929 (*curr)->arches = NULL;
1930 (*curr)->next = NULL;
1931 }
1932
1933 void
1934 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1935 gdbarch_init_ftype *init)
1936 {
1937 gdbarch_register (bfd_architecture, init, NULL);
1938 }
1939
1940
1941 /* Look for an architecture using gdbarch_info. */
1942
1943 struct gdbarch_list *
1944 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1945 const struct gdbarch_info *info)
1946 {
1947 for (; arches != NULL; arches = arches->next)
1948 {
1949 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1950 continue;
1951 if (info->byte_order != arches->gdbarch->byte_order)
1952 continue;
1953 if (info->osabi != arches->gdbarch->osabi)
1954 continue;
1955 if (info->target_desc != arches->gdbarch->target_desc)
1956 continue;
1957 return arches;
1958 }
1959 return NULL;
1960 }
1961
1962
1963 /* Find an architecture that matches the specified INFO. Create a new
1964 architecture if needed. Return that new architecture. */
1965
1966 struct gdbarch *
1967 gdbarch_find_by_info (struct gdbarch_info info)
1968 {
1969 struct gdbarch *new_gdbarch;
1970 struct gdbarch_registration *rego;
1971
1972 /* Fill in missing parts of the INFO struct using a number of
1973 sources: "set ..."; INFOabfd supplied; and the global
1974 defaults. */
1975 gdbarch_info_fill (&info);
1976
1977 /* Must have found some sort of architecture. */
1978 gdb_assert (info.bfd_arch_info != NULL);
1979
1980 if (gdbarch_debug)
1981 {
1982 fprintf_unfiltered (gdb_stdlog,
1983 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1984 (info.bfd_arch_info != NULL
1985 ? info.bfd_arch_info->printable_name
1986 : "(null)"));
1987 fprintf_unfiltered (gdb_stdlog,
1988 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1989 info.byte_order,
1990 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1991 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1992 : "default"));
1993 fprintf_unfiltered (gdb_stdlog,
1994 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1995 info.osabi, gdbarch_osabi_name (info.osabi));
1996 fprintf_unfiltered (gdb_stdlog,
1997 "gdbarch_find_by_info: info.abfd %s\n",
1998 host_address_to_string (info.abfd));
1999 fprintf_unfiltered (gdb_stdlog,
2000 "gdbarch_find_by_info: info.tdep_info %s\n",
2001 host_address_to_string (info.tdep_info));
2002 }
2003
2004 /* Find the tdep code that knows about this architecture. */
2005 for (rego = gdbarch_registry;
2006 rego != NULL;
2007 rego = rego->next)
2008 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2009 break;
2010 if (rego == NULL)
2011 {
2012 if (gdbarch_debug)
2013 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2014 "No matching architecture\n");
2015 return 0;
2016 }
2017
2018 /* Ask the tdep code for an architecture that matches "info". */
2019 new_gdbarch = rego->init (info, rego->arches);
2020
2021 /* Did the tdep code like it? No. Reject the change and revert to
2022 the old architecture. */
2023 if (new_gdbarch == NULL)
2024 {
2025 if (gdbarch_debug)
2026 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2027 "Target rejected architecture\n");
2028 return NULL;
2029 }
2030
2031 /* Is this a pre-existing architecture (as determined by already
2032 being initialized)? Move it to the front of the architecture
2033 list (keeping the list sorted Most Recently Used). */
2034 if (new_gdbarch->initialized_p)
2035 {
2036 struct gdbarch_list **list;
2037 struct gdbarch_list *this;
2038 if (gdbarch_debug)
2039 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2040 "Previous architecture %s (%s) selected\n",
2041 host_address_to_string (new_gdbarch),
2042 new_gdbarch->bfd_arch_info->printable_name);
2043 /* Find the existing arch in the list. */
2044 for (list = &rego->arches;
2045 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2046 list = &(*list)->next);
2047 /* It had better be in the list of architectures. */
2048 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2049 /* Unlink THIS. */
2050 this = (*list);
2051 (*list) = this->next;
2052 /* Insert THIS at the front. */
2053 this->next = rego->arches;
2054 rego->arches = this;
2055 /* Return it. */
2056 return new_gdbarch;
2057 }
2058
2059 /* It's a new architecture. */
2060 if (gdbarch_debug)
2061 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2062 "New architecture %s (%s) selected\n",
2063 host_address_to_string (new_gdbarch),
2064 new_gdbarch->bfd_arch_info->printable_name);
2065
2066 /* Insert the new architecture into the front of the architecture
2067 list (keep the list sorted Most Recently Used). */
2068 {
2069 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2070 this->next = rego->arches;
2071 this->gdbarch = new_gdbarch;
2072 rego->arches = this;
2073 }
2074
2075 /* Check that the newly installed architecture is valid. Plug in
2076 any post init values. */
2077 new_gdbarch->dump_tdep = rego->dump_tdep;
2078 verify_gdbarch (new_gdbarch);
2079 new_gdbarch->initialized_p = 1;
2080
2081 if (gdbarch_debug)
2082 gdbarch_dump (new_gdbarch, gdb_stdlog);
2083
2084 return new_gdbarch;
2085 }
2086
2087 /* Make the specified architecture current. */
2088
2089 void
2090 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2091 {
2092 gdb_assert (new_gdbarch != NULL);
2093 gdb_assert (new_gdbarch->initialized_p);
2094 target_gdbarch = new_gdbarch;
2095 observer_notify_architecture_changed (new_gdbarch);
2096 registers_changed ();
2097 }
2098
2099 extern void _initialize_gdbarch (void);
2100
2101 void
2102 _initialize_gdbarch (void)
2103 {
2104 struct cmd_list_element *c;
2105
2106 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2107 Set architecture debugging."), _("\\
2108 Show architecture debugging."), _("\\
2109 When non-zero, architecture debugging is enabled."),
2110 NULL,
2111 show_gdbarch_debug,
2112 &setdebuglist, &showdebuglist);
2113 }
2114 EOF
2115
2116 # close things off
2117 exec 1>&2
2118 #../move-if-change new-gdbarch.c gdbarch.c
2119 compare_new gdbarch.c
This page took 0.080905 seconds and 4 git commands to generate.