14abd74f8a65788cbb7583bb0d492023a7b28413
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
404 #
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 #
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 #
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 # serious shakedown.
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 #
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
429 #
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
436
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
439 # all (-1).
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
455
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
474 # replacement for DEPRECATED_PUSH_ARGUMENTS.
475 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
476 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
477 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
478 # DEPRECATED_REGISTER_SIZE can be deleted.
479 v:=:int:deprecated_register_size
480 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
482
483 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
490 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
491 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
492 # setjmp/longjmp support.
493 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
494 #
495 v:=:int:believe_pcc_promotion:::::::
496 #
497 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
498 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
499 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
500 #
501 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
502 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
503 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
504 #
505 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
506 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
507
508 # It has been suggested that this, well actually its predecessor,
509 # should take the type/value of the function to be called and not the
510 # return type. This is left as an exercise for the reader.
511
512 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
513 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
514 # (via legacy_return_value), when a small struct is involved.
515
516 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
517
518 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
519 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
520 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
521 # RETURN_VALUE.
522
523 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
524 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
525 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
526 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
527 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
528
529 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
530 # ABI suitable for the implementation of a robust extract
531 # struct-convention return-value address method (the sparc saves the
532 # address in the callers frame). All the other cases so far examined,
533 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
534 # erreneous - the code was incorrectly assuming that the return-value
535 # address, stored in a register, was preserved across the entire
536 # function call.
537
538 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
539 # the ABIs that are still to be analyzed - perhaps this should simply
540 # be deleted. The commented out extract_returned_value_address method
541 # is provided as a starting point for the 32-bit SPARC. It, or
542 # something like it, along with changes to both infcmd.c and stack.c
543 # will be needed for that case to work. NB: It is passed the callers
544 # frame since it is only after the callee has returned that this
545 # function is used.
546
547 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
548 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
549
550 #
551 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
552 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
553 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
554 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
555 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
556 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
557 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
558
559 # A function can be addressed by either it's "pointer" (possibly a
560 # descriptor address) or "entry point" (first executable instruction).
561 # The method "convert_from_func_ptr_addr" converting the former to the
562 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
563 # a simplified subset of that functionality - the function's address
564 # corresponds to the "function pointer" and the function's start
565 # corresponds to the "function entry point" - and hence is redundant.
566
567 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
568
569 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
570 #
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
578 #
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 # alignment.
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
590 #
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 # ADDR_BITS_REMOVE.
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # Return non-zero if the processor is executing a delay slot and a
615 # further single-step is needed before the instruction finishes.
616 M::int:single_step_through_delay:struct frame_info *frame:frame
617 # On some systems, the PC may be left pointing at an instruction that won't
618 # actually be executed. This is usually indicated by a bit in the PSW. If
619 # we find ourselves in such a state, then we step the target beyond the
620 # nullified instruction before returning control to gdb.
621 # Return non-zero if the processor is about to execute a nullified instruction.
622 m::int:instruction_nullified:struct regcache *regcache:regcache::generic_instruction_nullified::0
623 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
624 # disassembler. Perhaps objdump can handle it?
625 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
626 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
627
628
629 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
630 # evaluates non-zero, this is the address where the debugger will place
631 # a step-resume breakpoint to get us past the dynamic linker.
632 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
633 # Some systems also have trampoline code for returning from shared libs.
634 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
635
636 # A target might have problems with watchpoints as soon as the stack
637 # frame of the current function has been destroyed. This mostly happens
638 # as the first action in a funtion's epilogue. in_function_epilogue_p()
639 # is defined to return a non-zero value if either the given addr is one
640 # instruction after the stack destroying instruction up to the trailing
641 # return instruction or if we can figure out that the stack frame has
642 # already been invalidated regardless of the value of addr. Targets
643 # which don't suffer from that problem could just let this functionality
644 # untouched.
645 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
646 # Given a vector of command-line arguments, return a newly allocated
647 # string which, when passed to the create_inferior function, will be
648 # parsed (on Unix systems, by the shell) to yield the same vector.
649 # This function should call error() if the argument vector is not
650 # representable for this target or if this target does not support
651 # command-line arguments.
652 # ARGC is the number of elements in the vector.
653 # ARGV is an array of strings, one per argument.
654 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
655 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
656 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
657 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
658 v:=:int:cannot_step_breakpoint:::0:0::0
659 v:=:int:have_nonsteppable_watchpoint:::0:0::0
660 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
661 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
662 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
663 # Is a register in a group
664 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
665 # Fetch the pointer to the ith function argument.
666 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
667
668 # Return the appropriate register set for a core file section with
669 # name SECT_NAME and size SECT_SIZE.
670 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
671 EOF
672 }
673
674 #
675 # The .log file
676 #
677 exec > new-gdbarch.log
678 function_list | while do_read
679 do
680 cat <<EOF
681 ${class} ${returntype} ${function} ($formal)
682 EOF
683 for r in ${read}
684 do
685 eval echo \"\ \ \ \ ${r}=\${${r}}\"
686 done
687 if class_is_predicate_p && fallback_default_p
688 then
689 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
690 kill $$
691 exit 1
692 fi
693 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
694 then
695 echo "Error: postdefault is useless when invalid_p=0" 1>&2
696 kill $$
697 exit 1
698 fi
699 if class_is_multiarch_p
700 then
701 if class_is_predicate_p ; then :
702 elif test "x${predefault}" = "x"
703 then
704 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
705 kill $$
706 exit 1
707 fi
708 fi
709 echo ""
710 done
711
712 exec 1>&2
713 compare_new gdbarch.log
714
715
716 copyright ()
717 {
718 cat <<EOF
719 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
720
721 /* Dynamic architecture support for GDB, the GNU debugger.
722
723 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
724 Software Foundation, Inc.
725
726 This file is part of GDB.
727
728 This program is free software; you can redistribute it and/or modify
729 it under the terms of the GNU General Public License as published by
730 the Free Software Foundation; either version 2 of the License, or
731 (at your option) any later version.
732
733 This program is distributed in the hope that it will be useful,
734 but WITHOUT ANY WARRANTY; without even the implied warranty of
735 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
736 GNU General Public License for more details.
737
738 You should have received a copy of the GNU General Public License
739 along with this program; if not, write to the Free Software
740 Foundation, Inc., 59 Temple Place - Suite 330,
741 Boston, MA 02111-1307, USA. */
742
743 /* This file was created with the aid of \`\`gdbarch.sh''.
744
745 The Bourne shell script \`\`gdbarch.sh'' creates the files
746 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
747 against the existing \`\`gdbarch.[hc]''. Any differences found
748 being reported.
749
750 If editing this file, please also run gdbarch.sh and merge any
751 changes into that script. Conversely, when making sweeping changes
752 to this file, modifying gdbarch.sh and using its output may prove
753 easier. */
754
755 EOF
756 }
757
758 #
759 # The .h file
760 #
761
762 exec > new-gdbarch.h
763 copyright
764 cat <<EOF
765 #ifndef GDBARCH_H
766 #define GDBARCH_H
767
768 struct floatformat;
769 struct ui_file;
770 struct frame_info;
771 struct value;
772 struct objfile;
773 struct minimal_symbol;
774 struct regcache;
775 struct reggroup;
776 struct regset;
777 struct disassemble_info;
778 struct target_ops;
779 struct obstack;
780
781 extern struct gdbarch *current_gdbarch;
782 EOF
783
784 # function typedef's
785 printf "\n"
786 printf "\n"
787 printf "/* The following are pre-initialized by GDBARCH. */\n"
788 function_list | while do_read
789 do
790 if class_is_info_p
791 then
792 printf "\n"
793 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
794 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
795 if test -n "${macro}"
796 then
797 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
798 printf "#error \"Non multi-arch definition of ${macro}\"\n"
799 printf "#endif\n"
800 printf "#if !defined (${macro})\n"
801 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
802 printf "#endif\n"
803 fi
804 fi
805 done
806
807 # function typedef's
808 printf "\n"
809 printf "\n"
810 printf "/* The following are initialized by the target dependent code. */\n"
811 function_list | while do_read
812 do
813 if [ -n "${comment}" ]
814 then
815 echo "${comment}" | sed \
816 -e '2 s,#,/*,' \
817 -e '3,$ s,#, ,' \
818 -e '$ s,$, */,'
819 fi
820
821 if class_is_predicate_p
822 then
823 if test -n "${macro}"
824 then
825 printf "\n"
826 printf "#if defined (${macro})\n"
827 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
828 printf "#if !defined (${macro}_P)\n"
829 printf "#define ${macro}_P() (1)\n"
830 printf "#endif\n"
831 printf "#endif\n"
832 fi
833 printf "\n"
834 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
835 if test -n "${macro}"
836 then
837 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
838 printf "#error \"Non multi-arch definition of ${macro}\"\n"
839 printf "#endif\n"
840 printf "#if !defined (${macro}_P)\n"
841 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
842 printf "#endif\n"
843 fi
844 fi
845 if class_is_variable_p
846 then
847 printf "\n"
848 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
849 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
850 if test -n "${macro}"
851 then
852 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
853 printf "#error \"Non multi-arch definition of ${macro}\"\n"
854 printf "#endif\n"
855 printf "#if !defined (${macro})\n"
856 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
857 printf "#endif\n"
858 fi
859 fi
860 if class_is_function_p
861 then
862 printf "\n"
863 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
864 then
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
866 elif class_is_multiarch_p
867 then
868 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
869 else
870 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
871 fi
872 if [ "x${formal}" = "xvoid" ]
873 then
874 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
875 else
876 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
877 fi
878 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
879 if test -n "${macro}"
880 then
881 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
882 printf "#error \"Non multi-arch definition of ${macro}\"\n"
883 printf "#endif\n"
884 if [ "x${actual}" = "x" ]
885 then
886 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
887 elif [ "x${actual}" = "x-" ]
888 then
889 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
890 else
891 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
892 fi
893 printf "#if !defined (${macro})\n"
894 if [ "x${actual}" = "x" ]
895 then
896 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
897 elif [ "x${actual}" = "x-" ]
898 then
899 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
900 else
901 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
902 fi
903 printf "#endif\n"
904 fi
905 fi
906 done
907
908 # close it off
909 cat <<EOF
910
911 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
912
913
914 /* Mechanism for co-ordinating the selection of a specific
915 architecture.
916
917 GDB targets (*-tdep.c) can register an interest in a specific
918 architecture. Other GDB components can register a need to maintain
919 per-architecture data.
920
921 The mechanisms below ensures that there is only a loose connection
922 between the set-architecture command and the various GDB
923 components. Each component can independently register their need
924 to maintain architecture specific data with gdbarch.
925
926 Pragmatics:
927
928 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
929 didn't scale.
930
931 The more traditional mega-struct containing architecture specific
932 data for all the various GDB components was also considered. Since
933 GDB is built from a variable number of (fairly independent)
934 components it was determined that the global aproach was not
935 applicable. */
936
937
938 /* Register a new architectural family with GDB.
939
940 Register support for the specified ARCHITECTURE with GDB. When
941 gdbarch determines that the specified architecture has been
942 selected, the corresponding INIT function is called.
943
944 --
945
946 The INIT function takes two parameters: INFO which contains the
947 information available to gdbarch about the (possibly new)
948 architecture; ARCHES which is a list of the previously created
949 \`\`struct gdbarch'' for this architecture.
950
951 The INFO parameter is, as far as possible, be pre-initialized with
952 information obtained from INFO.ABFD or the previously selected
953 architecture.
954
955 The ARCHES parameter is a linked list (sorted most recently used)
956 of all the previously created architures for this architecture
957 family. The (possibly NULL) ARCHES->gdbarch can used to access
958 values from the previously selected architecture for this
959 architecture family. The global \`\`current_gdbarch'' shall not be
960 used.
961
962 The INIT function shall return any of: NULL - indicating that it
963 doesn't recognize the selected architecture; an existing \`\`struct
964 gdbarch'' from the ARCHES list - indicating that the new
965 architecture is just a synonym for an earlier architecture (see
966 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
967 - that describes the selected architecture (see gdbarch_alloc()).
968
969 The DUMP_TDEP function shall print out all target specific values.
970 Care should be taken to ensure that the function works in both the
971 multi-arch and non- multi-arch cases. */
972
973 struct gdbarch_list
974 {
975 struct gdbarch *gdbarch;
976 struct gdbarch_list *next;
977 };
978
979 struct gdbarch_info
980 {
981 /* Use default: NULL (ZERO). */
982 const struct bfd_arch_info *bfd_arch_info;
983
984 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
985 int byte_order;
986
987 /* Use default: NULL (ZERO). */
988 bfd *abfd;
989
990 /* Use default: NULL (ZERO). */
991 struct gdbarch_tdep_info *tdep_info;
992
993 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
994 enum gdb_osabi osabi;
995 };
996
997 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
998 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
999
1000 /* DEPRECATED - use gdbarch_register() */
1001 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1002
1003 extern void gdbarch_register (enum bfd_architecture architecture,
1004 gdbarch_init_ftype *,
1005 gdbarch_dump_tdep_ftype *);
1006
1007
1008 /* Return a freshly allocated, NULL terminated, array of the valid
1009 architecture names. Since architectures are registered during the
1010 _initialize phase this function only returns useful information
1011 once initialization has been completed. */
1012
1013 extern const char **gdbarch_printable_names (void);
1014
1015
1016 /* Helper function. Search the list of ARCHES for a GDBARCH that
1017 matches the information provided by INFO. */
1018
1019 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1020
1021
1022 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1023 basic initialization using values obtained from the INFO andTDEP
1024 parameters. set_gdbarch_*() functions are called to complete the
1025 initialization of the object. */
1026
1027 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1028
1029
1030 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1031 It is assumed that the caller freeds the \`\`struct
1032 gdbarch_tdep''. */
1033
1034 extern void gdbarch_free (struct gdbarch *);
1035
1036
1037 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1038 obstack. The memory is freed when the corresponding architecture
1039 is also freed. */
1040
1041 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1042 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1043 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1044
1045
1046 /* Helper function. Force an update of the current architecture.
1047
1048 The actual architecture selected is determined by INFO, \`\`(gdb) set
1049 architecture'' et.al., the existing architecture and BFD's default
1050 architecture. INFO should be initialized to zero and then selected
1051 fields should be updated.
1052
1053 Returns non-zero if the update succeeds */
1054
1055 extern int gdbarch_update_p (struct gdbarch_info info);
1056
1057
1058 /* Helper function. Find an architecture matching info.
1059
1060 INFO should be initialized using gdbarch_info_init, relevant fields
1061 set, and then finished using gdbarch_info_fill.
1062
1063 Returns the corresponding architecture, or NULL if no matching
1064 architecture was found. "current_gdbarch" is not updated. */
1065
1066 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1067
1068
1069 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1070
1071 FIXME: kettenis/20031124: Of the functions that follow, only
1072 gdbarch_from_bfd is supposed to survive. The others will
1073 dissappear since in the future GDB will (hopefully) be truly
1074 multi-arch. However, for now we're still stuck with the concept of
1075 a single active architecture. */
1076
1077 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1078
1079
1080 /* Register per-architecture data-pointer.
1081
1082 Reserve space for a per-architecture data-pointer. An identifier
1083 for the reserved data-pointer is returned. That identifer should
1084 be saved in a local static variable.
1085
1086 Memory for the per-architecture data shall be allocated using
1087 gdbarch_obstack_zalloc. That memory will be deleted when the
1088 corresponding architecture object is deleted.
1089
1090 When a previously created architecture is re-selected, the
1091 per-architecture data-pointer for that previous architecture is
1092 restored. INIT() is not re-called.
1093
1094 Multiple registrarants for any architecture are allowed (and
1095 strongly encouraged). */
1096
1097 struct gdbarch_data;
1098
1099 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1100 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1101 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1102 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1103 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1104 struct gdbarch_data *data,
1105 void *pointer);
1106
1107 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1108
1109
1110
1111 /* Register per-architecture memory region.
1112
1113 Provide a memory-region swap mechanism. Per-architecture memory
1114 region are created. These memory regions are swapped whenever the
1115 architecture is changed. For a new architecture, the memory region
1116 is initialized with zero (0) and the INIT function is called.
1117
1118 Memory regions are swapped / initialized in the order that they are
1119 registered. NULL DATA and/or INIT values can be specified.
1120
1121 New code should use gdbarch_data_register_*(). */
1122
1123 typedef void (gdbarch_swap_ftype) (void);
1124 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1125 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1126
1127
1128
1129 /* Set the dynamic target-system-dependent parameters (architecture,
1130 byte-order, ...) using information found in the BFD */
1131
1132 extern void set_gdbarch_from_file (bfd *);
1133
1134
1135 /* Initialize the current architecture to the "first" one we find on
1136 our list. */
1137
1138 extern void initialize_current_architecture (void);
1139
1140 /* gdbarch trace variable */
1141 extern int gdbarch_debug;
1142
1143 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1144
1145 #endif
1146 EOF
1147 exec 1>&2
1148 #../move-if-change new-gdbarch.h gdbarch.h
1149 compare_new gdbarch.h
1150
1151
1152 #
1153 # C file
1154 #
1155
1156 exec > new-gdbarch.c
1157 copyright
1158 cat <<EOF
1159
1160 #include "defs.h"
1161 #include "arch-utils.h"
1162
1163 #include "gdbcmd.h"
1164 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1165 #include "symcat.h"
1166
1167 #include "floatformat.h"
1168
1169 #include "gdb_assert.h"
1170 #include "gdb_string.h"
1171 #include "gdb-events.h"
1172 #include "reggroups.h"
1173 #include "osabi.h"
1174 #include "gdb_obstack.h"
1175
1176 /* Static function declarations */
1177
1178 static void alloc_gdbarch_data (struct gdbarch *);
1179
1180 /* Non-zero if we want to trace architecture code. */
1181
1182 #ifndef GDBARCH_DEBUG
1183 #define GDBARCH_DEBUG 0
1184 #endif
1185 int gdbarch_debug = GDBARCH_DEBUG;
1186
1187 static const char *
1188 pformat (const struct floatformat *format)
1189 {
1190 if (format == NULL)
1191 return "(null)";
1192 else
1193 return format->name;
1194 }
1195
1196 EOF
1197
1198 # gdbarch open the gdbarch object
1199 printf "\n"
1200 printf "/* Maintain the struct gdbarch object */\n"
1201 printf "\n"
1202 printf "struct gdbarch\n"
1203 printf "{\n"
1204 printf " /* Has this architecture been fully initialized? */\n"
1205 printf " int initialized_p;\n"
1206 printf "\n"
1207 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1208 printf " struct obstack *obstack;\n"
1209 printf "\n"
1210 printf " /* basic architectural information */\n"
1211 function_list | while do_read
1212 do
1213 if class_is_info_p
1214 then
1215 printf " ${returntype} ${function};\n"
1216 fi
1217 done
1218 printf "\n"
1219 printf " /* target specific vector. */\n"
1220 printf " struct gdbarch_tdep *tdep;\n"
1221 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1222 printf "\n"
1223 printf " /* per-architecture data-pointers */\n"
1224 printf " unsigned nr_data;\n"
1225 printf " void **data;\n"
1226 printf "\n"
1227 printf " /* per-architecture swap-regions */\n"
1228 printf " struct gdbarch_swap *swap;\n"
1229 printf "\n"
1230 cat <<EOF
1231 /* Multi-arch values.
1232
1233 When extending this structure you must:
1234
1235 Add the field below.
1236
1237 Declare set/get functions and define the corresponding
1238 macro in gdbarch.h.
1239
1240 gdbarch_alloc(): If zero/NULL is not a suitable default,
1241 initialize the new field.
1242
1243 verify_gdbarch(): Confirm that the target updated the field
1244 correctly.
1245
1246 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1247 field is dumped out
1248
1249 \`\`startup_gdbarch()'': Append an initial value to the static
1250 variable (base values on the host's c-type system).
1251
1252 get_gdbarch(): Implement the set/get functions (probably using
1253 the macro's as shortcuts).
1254
1255 */
1256
1257 EOF
1258 function_list | while do_read
1259 do
1260 if class_is_variable_p
1261 then
1262 printf " ${returntype} ${function};\n"
1263 elif class_is_function_p
1264 then
1265 printf " gdbarch_${function}_ftype *${function};\n"
1266 fi
1267 done
1268 printf "};\n"
1269
1270 # A pre-initialized vector
1271 printf "\n"
1272 printf "\n"
1273 cat <<EOF
1274 /* The default architecture uses host values (for want of a better
1275 choice). */
1276 EOF
1277 printf "\n"
1278 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1279 printf "\n"
1280 printf "struct gdbarch startup_gdbarch =\n"
1281 printf "{\n"
1282 printf " 1, /* Always initialized. */\n"
1283 printf " NULL, /* The obstack. */\n"
1284 printf " /* basic architecture information */\n"
1285 function_list | while do_read
1286 do
1287 if class_is_info_p
1288 then
1289 printf " ${staticdefault}, /* ${function} */\n"
1290 fi
1291 done
1292 cat <<EOF
1293 /* target specific vector and its dump routine */
1294 NULL, NULL,
1295 /*per-architecture data-pointers and swap regions */
1296 0, NULL, NULL,
1297 /* Multi-arch values */
1298 EOF
1299 function_list | while do_read
1300 do
1301 if class_is_function_p || class_is_variable_p
1302 then
1303 printf " ${staticdefault}, /* ${function} */\n"
1304 fi
1305 done
1306 cat <<EOF
1307 /* startup_gdbarch() */
1308 };
1309
1310 struct gdbarch *current_gdbarch = &startup_gdbarch;
1311 EOF
1312
1313 # Create a new gdbarch struct
1314 cat <<EOF
1315
1316 /* Create a new \`\`struct gdbarch'' based on information provided by
1317 \`\`struct gdbarch_info''. */
1318 EOF
1319 printf "\n"
1320 cat <<EOF
1321 struct gdbarch *
1322 gdbarch_alloc (const struct gdbarch_info *info,
1323 struct gdbarch_tdep *tdep)
1324 {
1325 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1326 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1327 the current local architecture and not the previous global
1328 architecture. This ensures that the new architectures initial
1329 values are not influenced by the previous architecture. Once
1330 everything is parameterised with gdbarch, this will go away. */
1331 struct gdbarch *current_gdbarch;
1332
1333 /* Create an obstack for allocating all the per-architecture memory,
1334 then use that to allocate the architecture vector. */
1335 struct obstack *obstack = XMALLOC (struct obstack);
1336 obstack_init (obstack);
1337 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1338 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1339 current_gdbarch->obstack = obstack;
1340
1341 alloc_gdbarch_data (current_gdbarch);
1342
1343 current_gdbarch->tdep = tdep;
1344 EOF
1345 printf "\n"
1346 function_list | while do_read
1347 do
1348 if class_is_info_p
1349 then
1350 printf " current_gdbarch->${function} = info->${function};\n"
1351 fi
1352 done
1353 printf "\n"
1354 printf " /* Force the explicit initialization of these. */\n"
1355 function_list | while do_read
1356 do
1357 if class_is_function_p || class_is_variable_p
1358 then
1359 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1360 then
1361 printf " current_gdbarch->${function} = ${predefault};\n"
1362 fi
1363 fi
1364 done
1365 cat <<EOF
1366 /* gdbarch_alloc() */
1367
1368 return current_gdbarch;
1369 }
1370 EOF
1371
1372 # Free a gdbarch struct.
1373 printf "\n"
1374 printf "\n"
1375 cat <<EOF
1376 /* Allocate extra space using the per-architecture obstack. */
1377
1378 void *
1379 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1380 {
1381 void *data = obstack_alloc (arch->obstack, size);
1382 memset (data, 0, size);
1383 return data;
1384 }
1385
1386
1387 /* Free a gdbarch struct. This should never happen in normal
1388 operation --- once you've created a gdbarch, you keep it around.
1389 However, if an architecture's init function encounters an error
1390 building the structure, it may need to clean up a partially
1391 constructed gdbarch. */
1392
1393 void
1394 gdbarch_free (struct gdbarch *arch)
1395 {
1396 struct obstack *obstack;
1397 gdb_assert (arch != NULL);
1398 gdb_assert (!arch->initialized_p);
1399 obstack = arch->obstack;
1400 obstack_free (obstack, 0); /* Includes the ARCH. */
1401 xfree (obstack);
1402 }
1403 EOF
1404
1405 # verify a new architecture
1406 cat <<EOF
1407
1408
1409 /* Ensure that all values in a GDBARCH are reasonable. */
1410
1411 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1412 just happens to match the global variable \`\`current_gdbarch''. That
1413 way macros refering to that variable get the local and not the global
1414 version - ulgh. Once everything is parameterised with gdbarch, this
1415 will go away. */
1416
1417 static void
1418 verify_gdbarch (struct gdbarch *current_gdbarch)
1419 {
1420 struct ui_file *log;
1421 struct cleanup *cleanups;
1422 long dummy;
1423 char *buf;
1424 log = mem_fileopen ();
1425 cleanups = make_cleanup_ui_file_delete (log);
1426 /* fundamental */
1427 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1428 fprintf_unfiltered (log, "\n\tbyte-order");
1429 if (current_gdbarch->bfd_arch_info == NULL)
1430 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1431 /* Check those that need to be defined for the given multi-arch level. */
1432 EOF
1433 function_list | while do_read
1434 do
1435 if class_is_function_p || class_is_variable_p
1436 then
1437 if [ "x${invalid_p}" = "x0" ]
1438 then
1439 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1440 elif class_is_predicate_p
1441 then
1442 printf " /* Skip verify of ${function}, has predicate */\n"
1443 # FIXME: See do_read for potential simplification
1444 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1445 then
1446 printf " if (${invalid_p})\n"
1447 printf " current_gdbarch->${function} = ${postdefault};\n"
1448 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1449 then
1450 printf " if (current_gdbarch->${function} == ${predefault})\n"
1451 printf " current_gdbarch->${function} = ${postdefault};\n"
1452 elif [ -n "${postdefault}" ]
1453 then
1454 printf " if (current_gdbarch->${function} == 0)\n"
1455 printf " current_gdbarch->${function} = ${postdefault};\n"
1456 elif [ -n "${invalid_p}" ]
1457 then
1458 printf " if (${invalid_p})\n"
1459 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1460 elif [ -n "${predefault}" ]
1461 then
1462 printf " if (current_gdbarch->${function} == ${predefault})\n"
1463 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1464 fi
1465 fi
1466 done
1467 cat <<EOF
1468 buf = ui_file_xstrdup (log, &dummy);
1469 make_cleanup (xfree, buf);
1470 if (strlen (buf) > 0)
1471 internal_error (__FILE__, __LINE__,
1472 "verify_gdbarch: the following are invalid ...%s",
1473 buf);
1474 do_cleanups (cleanups);
1475 }
1476 EOF
1477
1478 # dump the structure
1479 printf "\n"
1480 printf "\n"
1481 cat <<EOF
1482 /* Print out the details of the current architecture. */
1483
1484 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1485 just happens to match the global variable \`\`current_gdbarch''. That
1486 way macros refering to that variable get the local and not the global
1487 version - ulgh. Once everything is parameterised with gdbarch, this
1488 will go away. */
1489
1490 void
1491 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1492 {
1493 const char *gdb_xm_file = "<not-defined>";
1494 const char *gdb_nm_file = "<not-defined>";
1495 const char *gdb_tm_file = "<not-defined>";
1496 #if defined (GDB_XM_FILE)
1497 gdb_xm_file = GDB_XM_FILE;
1498 #endif
1499 fprintf_unfiltered (file,
1500 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1501 gdb_xm_file);
1502 #if defined (GDB_NM_FILE)
1503 gdb_nm_file = GDB_NM_FILE;
1504 #endif
1505 fprintf_unfiltered (file,
1506 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1507 gdb_nm_file);
1508 #if defined (GDB_TM_FILE)
1509 gdb_tm_file = GDB_TM_FILE;
1510 #endif
1511 fprintf_unfiltered (file,
1512 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1513 gdb_tm_file);
1514 EOF
1515 function_list | sort -t: -k 4 | while do_read
1516 do
1517 # First the predicate
1518 if class_is_predicate_p
1519 then
1520 if test -n "${macro}"
1521 then
1522 printf "#ifdef ${macro}_P\n"
1523 printf " fprintf_unfiltered (file,\n"
1524 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1525 printf " \"${macro}_P()\",\n"
1526 printf " XSTRING (${macro}_P ()));\n"
1527 printf "#endif\n"
1528 fi
1529 printf " fprintf_unfiltered (file,\n"
1530 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1531 printf " gdbarch_${function}_p (current_gdbarch));\n"
1532 fi
1533 # Print the macro definition.
1534 if test -n "${macro}"
1535 then
1536 printf "#ifdef ${macro}\n"
1537 if class_is_function_p
1538 then
1539 printf " fprintf_unfiltered (file,\n"
1540 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1541 printf " \"${macro}(${actual})\",\n"
1542 printf " XSTRING (${macro} (${actual})));\n"
1543 else
1544 printf " fprintf_unfiltered (file,\n"
1545 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1546 printf " XSTRING (${macro}));\n"
1547 fi
1548 printf "#endif\n"
1549 fi
1550 # Print the corresponding value.
1551 if class_is_function_p
1552 then
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1555 printf " (long) current_gdbarch->${function});\n"
1556 else
1557 # It is a variable
1558 case "${print}:${returntype}" in
1559 :CORE_ADDR )
1560 fmt="0x%s"
1561 print="paddr_nz (current_gdbarch->${function})"
1562 ;;
1563 :* )
1564 fmt="%s"
1565 print="paddr_d (current_gdbarch->${function})"
1566 ;;
1567 * )
1568 fmt="%s"
1569 ;;
1570 esac
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1573 printf " ${print});\n"
1574 fi
1575 done
1576 cat <<EOF
1577 if (current_gdbarch->dump_tdep != NULL)
1578 current_gdbarch->dump_tdep (current_gdbarch, file);
1579 }
1580 EOF
1581
1582
1583 # GET/SET
1584 printf "\n"
1585 cat <<EOF
1586 struct gdbarch_tdep *
1587 gdbarch_tdep (struct gdbarch *gdbarch)
1588 {
1589 if (gdbarch_debug >= 2)
1590 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1591 return gdbarch->tdep;
1592 }
1593 EOF
1594 printf "\n"
1595 function_list | while do_read
1596 do
1597 if class_is_predicate_p
1598 then
1599 printf "\n"
1600 printf "int\n"
1601 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1602 printf "{\n"
1603 printf " gdb_assert (gdbarch != NULL);\n"
1604 printf " return ${predicate};\n"
1605 printf "}\n"
1606 fi
1607 if class_is_function_p
1608 then
1609 printf "\n"
1610 printf "${returntype}\n"
1611 if [ "x${formal}" = "xvoid" ]
1612 then
1613 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1614 else
1615 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1616 fi
1617 printf "{\n"
1618 printf " gdb_assert (gdbarch != NULL);\n"
1619 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1620 if class_is_predicate_p && test -n "${predefault}"
1621 then
1622 # Allow a call to a function with a predicate.
1623 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1624 fi
1625 printf " if (gdbarch_debug >= 2)\n"
1626 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1627 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1628 then
1629 if class_is_multiarch_p
1630 then
1631 params="gdbarch"
1632 else
1633 params=""
1634 fi
1635 else
1636 if class_is_multiarch_p
1637 then
1638 params="gdbarch, ${actual}"
1639 else
1640 params="${actual}"
1641 fi
1642 fi
1643 if [ "x${returntype}" = "xvoid" ]
1644 then
1645 printf " gdbarch->${function} (${params});\n"
1646 else
1647 printf " return gdbarch->${function} (${params});\n"
1648 fi
1649 printf "}\n"
1650 printf "\n"
1651 printf "void\n"
1652 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1653 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1654 printf "{\n"
1655 printf " gdbarch->${function} = ${function};\n"
1656 printf "}\n"
1657 elif class_is_variable_p
1658 then
1659 printf "\n"
1660 printf "${returntype}\n"
1661 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1662 printf "{\n"
1663 printf " gdb_assert (gdbarch != NULL);\n"
1664 if [ "x${invalid_p}" = "x0" ]
1665 then
1666 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1667 elif [ -n "${invalid_p}" ]
1668 then
1669 printf " /* Check variable is valid. */\n"
1670 printf " gdb_assert (!(${invalid_p}));\n"
1671 elif [ -n "${predefault}" ]
1672 then
1673 printf " /* Check variable changed from pre-default. */\n"
1674 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1675 fi
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 printf " return gdbarch->${function};\n"
1679 printf "}\n"
1680 printf "\n"
1681 printf "void\n"
1682 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1683 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1684 printf "{\n"
1685 printf " gdbarch->${function} = ${function};\n"
1686 printf "}\n"
1687 elif class_is_info_p
1688 then
1689 printf "\n"
1690 printf "${returntype}\n"
1691 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1692 printf "{\n"
1693 printf " gdb_assert (gdbarch != NULL);\n"
1694 printf " if (gdbarch_debug >= 2)\n"
1695 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1696 printf " return gdbarch->${function};\n"
1697 printf "}\n"
1698 fi
1699 done
1700
1701 # All the trailing guff
1702 cat <<EOF
1703
1704
1705 /* Keep a registry of per-architecture data-pointers required by GDB
1706 modules. */
1707
1708 struct gdbarch_data
1709 {
1710 unsigned index;
1711 int init_p;
1712 gdbarch_data_pre_init_ftype *pre_init;
1713 gdbarch_data_post_init_ftype *post_init;
1714 };
1715
1716 struct gdbarch_data_registration
1717 {
1718 struct gdbarch_data *data;
1719 struct gdbarch_data_registration *next;
1720 };
1721
1722 struct gdbarch_data_registry
1723 {
1724 unsigned nr;
1725 struct gdbarch_data_registration *registrations;
1726 };
1727
1728 struct gdbarch_data_registry gdbarch_data_registry =
1729 {
1730 0, NULL,
1731 };
1732
1733 static struct gdbarch_data *
1734 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1735 gdbarch_data_post_init_ftype *post_init)
1736 {
1737 struct gdbarch_data_registration **curr;
1738 /* Append the new registraration. */
1739 for (curr = &gdbarch_data_registry.registrations;
1740 (*curr) != NULL;
1741 curr = &(*curr)->next);
1742 (*curr) = XMALLOC (struct gdbarch_data_registration);
1743 (*curr)->next = NULL;
1744 (*curr)->data = XMALLOC (struct gdbarch_data);
1745 (*curr)->data->index = gdbarch_data_registry.nr++;
1746 (*curr)->data->pre_init = pre_init;
1747 (*curr)->data->post_init = post_init;
1748 (*curr)->data->init_p = 1;
1749 return (*curr)->data;
1750 }
1751
1752 struct gdbarch_data *
1753 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1754 {
1755 return gdbarch_data_register (pre_init, NULL);
1756 }
1757
1758 struct gdbarch_data *
1759 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1760 {
1761 return gdbarch_data_register (NULL, post_init);
1762 }
1763
1764 /* Create/delete the gdbarch data vector. */
1765
1766 static void
1767 alloc_gdbarch_data (struct gdbarch *gdbarch)
1768 {
1769 gdb_assert (gdbarch->data == NULL);
1770 gdbarch->nr_data = gdbarch_data_registry.nr;
1771 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1772 }
1773
1774 /* Initialize the current value of the specified per-architecture
1775 data-pointer. */
1776
1777 void
1778 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1779 struct gdbarch_data *data,
1780 void *pointer)
1781 {
1782 gdb_assert (data->index < gdbarch->nr_data);
1783 gdb_assert (gdbarch->data[data->index] == NULL);
1784 gdb_assert (data->pre_init == NULL);
1785 gdbarch->data[data->index] = pointer;
1786 }
1787
1788 /* Return the current value of the specified per-architecture
1789 data-pointer. */
1790
1791 void *
1792 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1793 {
1794 gdb_assert (data->index < gdbarch->nr_data);
1795 if (gdbarch->data[data->index] == NULL)
1796 {
1797 /* The data-pointer isn't initialized, call init() to get a
1798 value. */
1799 if (data->pre_init != NULL)
1800 /* Mid architecture creation: pass just the obstack, and not
1801 the entire architecture, as that way it isn't possible for
1802 pre-init code to refer to undefined architecture
1803 fields. */
1804 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1805 else if (gdbarch->initialized_p
1806 && data->post_init != NULL)
1807 /* Post architecture creation: pass the entire architecture
1808 (as all fields are valid), but be careful to also detect
1809 recursive references. */
1810 {
1811 gdb_assert (data->init_p);
1812 data->init_p = 0;
1813 gdbarch->data[data->index] = data->post_init (gdbarch);
1814 data->init_p = 1;
1815 }
1816 else
1817 /* The architecture initialization hasn't completed - punt -
1818 hope that the caller knows what they are doing. Once
1819 deprecated_set_gdbarch_data has been initialized, this can be
1820 changed to an internal error. */
1821 return NULL;
1822 gdb_assert (gdbarch->data[data->index] != NULL);
1823 }
1824 return gdbarch->data[data->index];
1825 }
1826
1827
1828
1829 /* Keep a registry of swapped data required by GDB modules. */
1830
1831 struct gdbarch_swap
1832 {
1833 void *swap;
1834 struct gdbarch_swap_registration *source;
1835 struct gdbarch_swap *next;
1836 };
1837
1838 struct gdbarch_swap_registration
1839 {
1840 void *data;
1841 unsigned long sizeof_data;
1842 gdbarch_swap_ftype *init;
1843 struct gdbarch_swap_registration *next;
1844 };
1845
1846 struct gdbarch_swap_registry
1847 {
1848 int nr;
1849 struct gdbarch_swap_registration *registrations;
1850 };
1851
1852 struct gdbarch_swap_registry gdbarch_swap_registry =
1853 {
1854 0, NULL,
1855 };
1856
1857 void
1858 deprecated_register_gdbarch_swap (void *data,
1859 unsigned long sizeof_data,
1860 gdbarch_swap_ftype *init)
1861 {
1862 struct gdbarch_swap_registration **rego;
1863 for (rego = &gdbarch_swap_registry.registrations;
1864 (*rego) != NULL;
1865 rego = &(*rego)->next);
1866 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1867 (*rego)->next = NULL;
1868 (*rego)->init = init;
1869 (*rego)->data = data;
1870 (*rego)->sizeof_data = sizeof_data;
1871 }
1872
1873 static void
1874 current_gdbarch_swap_init_hack (void)
1875 {
1876 struct gdbarch_swap_registration *rego;
1877 struct gdbarch_swap **curr = &current_gdbarch->swap;
1878 for (rego = gdbarch_swap_registry.registrations;
1879 rego != NULL;
1880 rego = rego->next)
1881 {
1882 if (rego->data != NULL)
1883 {
1884 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1885 struct gdbarch_swap);
1886 (*curr)->source = rego;
1887 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1888 rego->sizeof_data);
1889 (*curr)->next = NULL;
1890 curr = &(*curr)->next;
1891 }
1892 if (rego->init != NULL)
1893 rego->init ();
1894 }
1895 }
1896
1897 static struct gdbarch *
1898 current_gdbarch_swap_out_hack (void)
1899 {
1900 struct gdbarch *old_gdbarch = current_gdbarch;
1901 struct gdbarch_swap *curr;
1902
1903 gdb_assert (old_gdbarch != NULL);
1904 for (curr = old_gdbarch->swap;
1905 curr != NULL;
1906 curr = curr->next)
1907 {
1908 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1909 memset (curr->source->data, 0, curr->source->sizeof_data);
1910 }
1911 current_gdbarch = NULL;
1912 return old_gdbarch;
1913 }
1914
1915 static void
1916 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1917 {
1918 struct gdbarch_swap *curr;
1919
1920 gdb_assert (current_gdbarch == NULL);
1921 for (curr = new_gdbarch->swap;
1922 curr != NULL;
1923 curr = curr->next)
1924 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1925 current_gdbarch = new_gdbarch;
1926 }
1927
1928
1929 /* Keep a registry of the architectures known by GDB. */
1930
1931 struct gdbarch_registration
1932 {
1933 enum bfd_architecture bfd_architecture;
1934 gdbarch_init_ftype *init;
1935 gdbarch_dump_tdep_ftype *dump_tdep;
1936 struct gdbarch_list *arches;
1937 struct gdbarch_registration *next;
1938 };
1939
1940 static struct gdbarch_registration *gdbarch_registry = NULL;
1941
1942 static void
1943 append_name (const char ***buf, int *nr, const char *name)
1944 {
1945 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1946 (*buf)[*nr] = name;
1947 *nr += 1;
1948 }
1949
1950 const char **
1951 gdbarch_printable_names (void)
1952 {
1953 /* Accumulate a list of names based on the registed list of
1954 architectures. */
1955 enum bfd_architecture a;
1956 int nr_arches = 0;
1957 const char **arches = NULL;
1958 struct gdbarch_registration *rego;
1959 for (rego = gdbarch_registry;
1960 rego != NULL;
1961 rego = rego->next)
1962 {
1963 const struct bfd_arch_info *ap;
1964 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1965 if (ap == NULL)
1966 internal_error (__FILE__, __LINE__,
1967 "gdbarch_architecture_names: multi-arch unknown");
1968 do
1969 {
1970 append_name (&arches, &nr_arches, ap->printable_name);
1971 ap = ap->next;
1972 }
1973 while (ap != NULL);
1974 }
1975 append_name (&arches, &nr_arches, NULL);
1976 return arches;
1977 }
1978
1979
1980 void
1981 gdbarch_register (enum bfd_architecture bfd_architecture,
1982 gdbarch_init_ftype *init,
1983 gdbarch_dump_tdep_ftype *dump_tdep)
1984 {
1985 struct gdbarch_registration **curr;
1986 const struct bfd_arch_info *bfd_arch_info;
1987 /* Check that BFD recognizes this architecture */
1988 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1989 if (bfd_arch_info == NULL)
1990 {
1991 internal_error (__FILE__, __LINE__,
1992 "gdbarch: Attempt to register unknown architecture (%d)",
1993 bfd_architecture);
1994 }
1995 /* Check that we haven't seen this architecture before */
1996 for (curr = &gdbarch_registry;
1997 (*curr) != NULL;
1998 curr = &(*curr)->next)
1999 {
2000 if (bfd_architecture == (*curr)->bfd_architecture)
2001 internal_error (__FILE__, __LINE__,
2002 "gdbarch: Duplicate registraration of architecture (%s)",
2003 bfd_arch_info->printable_name);
2004 }
2005 /* log it */
2006 if (gdbarch_debug)
2007 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2008 bfd_arch_info->printable_name,
2009 (long) init);
2010 /* Append it */
2011 (*curr) = XMALLOC (struct gdbarch_registration);
2012 (*curr)->bfd_architecture = bfd_architecture;
2013 (*curr)->init = init;
2014 (*curr)->dump_tdep = dump_tdep;
2015 (*curr)->arches = NULL;
2016 (*curr)->next = NULL;
2017 }
2018
2019 void
2020 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2021 gdbarch_init_ftype *init)
2022 {
2023 gdbarch_register (bfd_architecture, init, NULL);
2024 }
2025
2026
2027 /* Look for an architecture using gdbarch_info. Base search on only
2028 BFD_ARCH_INFO and BYTE_ORDER. */
2029
2030 struct gdbarch_list *
2031 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2032 const struct gdbarch_info *info)
2033 {
2034 for (; arches != NULL; arches = arches->next)
2035 {
2036 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2037 continue;
2038 if (info->byte_order != arches->gdbarch->byte_order)
2039 continue;
2040 if (info->osabi != arches->gdbarch->osabi)
2041 continue;
2042 return arches;
2043 }
2044 return NULL;
2045 }
2046
2047
2048 /* Find an architecture that matches the specified INFO. Create a new
2049 architecture if needed. Return that new architecture. Assumes
2050 that there is no current architecture. */
2051
2052 static struct gdbarch *
2053 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2054 {
2055 struct gdbarch *new_gdbarch;
2056 struct gdbarch_registration *rego;
2057
2058 /* The existing architecture has been swapped out - all this code
2059 works from a clean slate. */
2060 gdb_assert (current_gdbarch == NULL);
2061
2062 /* Fill in missing parts of the INFO struct using a number of
2063 sources: "set ..."; INFOabfd supplied; and the existing
2064 architecture. */
2065 gdbarch_info_fill (old_gdbarch, &info);
2066
2067 /* Must have found some sort of architecture. */
2068 gdb_assert (info.bfd_arch_info != NULL);
2069
2070 if (gdbarch_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog,
2073 "find_arch_by_info: info.bfd_arch_info %s\n",
2074 (info.bfd_arch_info != NULL
2075 ? info.bfd_arch_info->printable_name
2076 : "(null)"));
2077 fprintf_unfiltered (gdb_stdlog,
2078 "find_arch_by_info: info.byte_order %d (%s)\n",
2079 info.byte_order,
2080 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2081 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2082 : "default"));
2083 fprintf_unfiltered (gdb_stdlog,
2084 "find_arch_by_info: info.osabi %d (%s)\n",
2085 info.osabi, gdbarch_osabi_name (info.osabi));
2086 fprintf_unfiltered (gdb_stdlog,
2087 "find_arch_by_info: info.abfd 0x%lx\n",
2088 (long) info.abfd);
2089 fprintf_unfiltered (gdb_stdlog,
2090 "find_arch_by_info: info.tdep_info 0x%lx\n",
2091 (long) info.tdep_info);
2092 }
2093
2094 /* Find the tdep code that knows about this architecture. */
2095 for (rego = gdbarch_registry;
2096 rego != NULL;
2097 rego = rego->next)
2098 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2099 break;
2100 if (rego == NULL)
2101 {
2102 if (gdbarch_debug)
2103 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2104 "No matching architecture\n");
2105 return 0;
2106 }
2107
2108 /* Ask the tdep code for an architecture that matches "info". */
2109 new_gdbarch = rego->init (info, rego->arches);
2110
2111 /* Did the tdep code like it? No. Reject the change and revert to
2112 the old architecture. */
2113 if (new_gdbarch == NULL)
2114 {
2115 if (gdbarch_debug)
2116 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2117 "Target rejected architecture\n");
2118 return NULL;
2119 }
2120
2121 /* Is this a pre-existing architecture (as determined by already
2122 being initialized)? Move it to the front of the architecture
2123 list (keeping the list sorted Most Recently Used). */
2124 if (new_gdbarch->initialized_p)
2125 {
2126 struct gdbarch_list **list;
2127 struct gdbarch_list *this;
2128 if (gdbarch_debug)
2129 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2130 "Previous architecture 0x%08lx (%s) selected\n",
2131 (long) new_gdbarch,
2132 new_gdbarch->bfd_arch_info->printable_name);
2133 /* Find the existing arch in the list. */
2134 for (list = &rego->arches;
2135 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2136 list = &(*list)->next);
2137 /* It had better be in the list of architectures. */
2138 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2139 /* Unlink THIS. */
2140 this = (*list);
2141 (*list) = this->next;
2142 /* Insert THIS at the front. */
2143 this->next = rego->arches;
2144 rego->arches = this;
2145 /* Return it. */
2146 return new_gdbarch;
2147 }
2148
2149 /* It's a new architecture. */
2150 if (gdbarch_debug)
2151 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2152 "New architecture 0x%08lx (%s) selected\n",
2153 (long) new_gdbarch,
2154 new_gdbarch->bfd_arch_info->printable_name);
2155
2156 /* Insert the new architecture into the front of the architecture
2157 list (keep the list sorted Most Recently Used). */
2158 {
2159 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2160 this->next = rego->arches;
2161 this->gdbarch = new_gdbarch;
2162 rego->arches = this;
2163 }
2164
2165 /* Check that the newly installed architecture is valid. Plug in
2166 any post init values. */
2167 new_gdbarch->dump_tdep = rego->dump_tdep;
2168 verify_gdbarch (new_gdbarch);
2169 new_gdbarch->initialized_p = 1;
2170
2171 /* Initialize any per-architecture swap areas. This phase requires
2172 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2173 swap the entire architecture out. */
2174 current_gdbarch = new_gdbarch;
2175 current_gdbarch_swap_init_hack ();
2176 current_gdbarch_swap_out_hack ();
2177
2178 if (gdbarch_debug)
2179 gdbarch_dump (new_gdbarch, gdb_stdlog);
2180
2181 return new_gdbarch;
2182 }
2183
2184 struct gdbarch *
2185 gdbarch_find_by_info (struct gdbarch_info info)
2186 {
2187 /* Save the previously selected architecture, setting the global to
2188 NULL. This stops things like gdbarch->init() trying to use the
2189 previous architecture's configuration. The previous architecture
2190 may not even be of the same architecture family. The most recent
2191 architecture of the same family is found at the head of the
2192 rego->arches list. */
2193 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2194
2195 /* Find the specified architecture. */
2196 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2197
2198 /* Restore the existing architecture. */
2199 gdb_assert (current_gdbarch == NULL);
2200 current_gdbarch_swap_in_hack (old_gdbarch);
2201
2202 return new_gdbarch;
2203 }
2204
2205 /* Make the specified architecture current, swapping the existing one
2206 out. */
2207
2208 void
2209 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2210 {
2211 gdb_assert (new_gdbarch != NULL);
2212 gdb_assert (current_gdbarch != NULL);
2213 gdb_assert (new_gdbarch->initialized_p);
2214 current_gdbarch_swap_out_hack ();
2215 current_gdbarch_swap_in_hack (new_gdbarch);
2216 architecture_changed_event ();
2217 }
2218
2219 extern void _initialize_gdbarch (void);
2220
2221 void
2222 _initialize_gdbarch (void)
2223 {
2224 struct cmd_list_element *c;
2225
2226 deprecated_add_show_from_set
2227 (add_set_cmd ("arch",
2228 class_maintenance,
2229 var_zinteger,
2230 (char *)&gdbarch_debug,
2231 "Set architecture debugging.\\n\\
2232 When non-zero, architecture debugging is enabled.", &setdebuglist),
2233 &showdebuglist);
2234 c = add_set_cmd ("archdebug",
2235 class_maintenance,
2236 var_zinteger,
2237 (char *)&gdbarch_debug,
2238 "Set architecture debugging.\\n\\
2239 When non-zero, architecture debugging is enabled.", &setlist);
2240
2241 deprecate_cmd (c, "set debug arch");
2242 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2243 }
2244 EOF
2245
2246 # close things off
2247 exec 1>&2
2248 #../move-if-change new-gdbarch.c gdbarch.c
2249 compare_new gdbarch.c
This page took 0.077641 seconds and 3 git commands to generate.