* gdb.cp/cplusfuncs.exp (do_tests): Add check for proper error message
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
600
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608 # How the core_stratum layer converts a PTID from a core file to a
609 # string.
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
617 # set this to one.
618 v:int:vtable_function_descriptors:::0:0::0
619
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
623
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
626
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
629
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
632 #
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
636 #
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
641 #
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
644 #
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
648 #
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
651 #
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
654 # here.
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657 # Fix up the state resulting from successfully single-stepping a
658 # displaced instruction, to give the result we would have gotten from
659 # stepping the instruction in its original location.
660 #
661 # REGS is the register state resulting from single-stepping the
662 # displaced instruction.
663 #
664 # CLOSURE is the result from the matching call to
665 # gdbarch_displaced_step_copy_insn.
666 #
667 # If you provide gdbarch_displaced_step_copy_insn.but not this
668 # function, then GDB assumes that no fixup is needed after
669 # single-stepping the instruction.
670 #
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
673 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
674
675 # Free a closure returned by gdbarch_displaced_step_copy_insn.
676 #
677 # If you provide gdbarch_displaced_step_copy_insn, you must provide
678 # this function as well.
679 #
680 # If your architecture uses closures that don't need to be freed, then
681 # you can use simple_displaced_step_free_closure here.
682 #
683 # For a general explanation of displaced stepping and how GDB uses it,
684 # see the comments in infrun.c.
685 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
686
687 # Return the address of an appropriate place to put displaced
688 # instructions while we step over them. There need only be one such
689 # place, since we're only stepping one thread over a breakpoint at a
690 # time.
691 #
692 # For a general explanation of displaced stepping and how GDB uses it,
693 # see the comments in infrun.c.
694 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
695
696 # Refresh overlay mapped state for section OSECT.
697 F:void:overlay_update:struct obj_section *osect:osect
698
699 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
700
701 # Handle special encoding of static variables in stabs debug info.
702 F:char *:static_transform_name:char *name:name
703 # Set if the address in N_SO or N_FUN stabs may be zero.
704 v:int:sofun_address_maybe_missing:::0:0::0
705
706 # Parse the instruction at ADDR storing in the record execution log
707 # the registers REGCACHE and memory ranges that will be affected when
708 # the instruction executes, along with their current values.
709 # Return -1 if something goes wrong, 0 otherwise.
710 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
711
712 # Save process state after a signal.
713 # Return -1 if something goes wrong, 0 otherwise.
714 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
715
716 # Signal translation: translate inferior's signal (host's) number into
717 # GDB's representation.
718 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
719 # Signal translation: translate GDB's signal number into inferior's host
720 # signal number.
721 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
722
723 # Extra signal info inspection.
724 #
725 # Return a type suitable to inspect extra signal information.
726 M:struct type *:get_siginfo_type:void:
727
728 # Record architecture-specific information from the symbol table.
729 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
730
731 # Function for the 'catch syscall' feature.
732
733 # Get architecture-specific system calls information from registers.
734 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
735
736 # True if the list of shared libraries is one and only for all
737 # processes, as opposed to a list of shared libraries per inferior.
738 # This usually means that all processes, although may or may not share
739 # an address space, will see the same set of symbols at the same
740 # addresses.
741 v:int:has_global_solist:::0:0::0
742
743 # On some targets, even though each inferior has its own private
744 # address space, the debug interface takes care of making breakpoints
745 # visible to all address spaces automatically. For such cases,
746 # this property should be set to true.
747 v:int:has_global_breakpoints:::0:0::0
748 EOF
749 }
750
751 #
752 # The .log file
753 #
754 exec > new-gdbarch.log
755 function_list | while do_read
756 do
757 cat <<EOF
758 ${class} ${returntype} ${function} ($formal)
759 EOF
760 for r in ${read}
761 do
762 eval echo \"\ \ \ \ ${r}=\${${r}}\"
763 done
764 if class_is_predicate_p && fallback_default_p
765 then
766 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
767 kill $$
768 exit 1
769 fi
770 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
771 then
772 echo "Error: postdefault is useless when invalid_p=0" 1>&2
773 kill $$
774 exit 1
775 fi
776 if class_is_multiarch_p
777 then
778 if class_is_predicate_p ; then :
779 elif test "x${predefault}" = "x"
780 then
781 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
782 kill $$
783 exit 1
784 fi
785 fi
786 echo ""
787 done
788
789 exec 1>&2
790 compare_new gdbarch.log
791
792
793 copyright ()
794 {
795 cat <<EOF
796 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
797
798 /* Dynamic architecture support for GDB, the GNU debugger.
799
800 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
801 Free Software Foundation, Inc.
802
803 This file is part of GDB.
804
805 This program is free software; you can redistribute it and/or modify
806 it under the terms of the GNU General Public License as published by
807 the Free Software Foundation; either version 3 of the License, or
808 (at your option) any later version.
809
810 This program is distributed in the hope that it will be useful,
811 but WITHOUT ANY WARRANTY; without even the implied warranty of
812 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
813 GNU General Public License for more details.
814
815 You should have received a copy of the GNU General Public License
816 along with this program. If not, see <http://www.gnu.org/licenses/>. */
817
818 /* This file was created with the aid of \`\`gdbarch.sh''.
819
820 The Bourne shell script \`\`gdbarch.sh'' creates the files
821 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
822 against the existing \`\`gdbarch.[hc]''. Any differences found
823 being reported.
824
825 If editing this file, please also run gdbarch.sh and merge any
826 changes into that script. Conversely, when making sweeping changes
827 to this file, modifying gdbarch.sh and using its output may prove
828 easier. */
829
830 EOF
831 }
832
833 #
834 # The .h file
835 #
836
837 exec > new-gdbarch.h
838 copyright
839 cat <<EOF
840 #ifndef GDBARCH_H
841 #define GDBARCH_H
842
843 struct floatformat;
844 struct ui_file;
845 struct frame_info;
846 struct value;
847 struct objfile;
848 struct obj_section;
849 struct minimal_symbol;
850 struct regcache;
851 struct reggroup;
852 struct regset;
853 struct disassemble_info;
854 struct target_ops;
855 struct obstack;
856 struct bp_target_info;
857 struct target_desc;
858 struct displaced_step_closure;
859 struct core_regset_section;
860 struct syscall;
861
862 /* The architecture associated with the connection to the target.
863
864 The architecture vector provides some information that is really
865 a property of the target: The layout of certain packets, for instance;
866 or the solib_ops vector. Etc. To differentiate architecture accesses
867 to per-target properties from per-thread/per-frame/per-objfile properties,
868 accesses to per-target properties should be made through target_gdbarch.
869
870 Eventually, when support for multiple targets is implemented in
871 GDB, this global should be made target-specific. */
872 extern struct gdbarch *target_gdbarch;
873 EOF
874
875 # function typedef's
876 printf "\n"
877 printf "\n"
878 printf "/* The following are pre-initialized by GDBARCH. */\n"
879 function_list | while do_read
880 do
881 if class_is_info_p
882 then
883 printf "\n"
884 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
885 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
886 fi
887 done
888
889 # function typedef's
890 printf "\n"
891 printf "\n"
892 printf "/* The following are initialized by the target dependent code. */\n"
893 function_list | while do_read
894 do
895 if [ -n "${comment}" ]
896 then
897 echo "${comment}" | sed \
898 -e '2 s,#,/*,' \
899 -e '3,$ s,#, ,' \
900 -e '$ s,$, */,'
901 fi
902
903 if class_is_predicate_p
904 then
905 printf "\n"
906 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
907 fi
908 if class_is_variable_p
909 then
910 printf "\n"
911 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
912 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
913 fi
914 if class_is_function_p
915 then
916 printf "\n"
917 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
918 then
919 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
920 elif class_is_multiarch_p
921 then
922 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
923 else
924 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
925 fi
926 if [ "x${formal}" = "xvoid" ]
927 then
928 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
929 else
930 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
931 fi
932 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
933 fi
934 done
935
936 # close it off
937 cat <<EOF
938
939 /* Definition for an unknown syscall, used basically in error-cases. */
940 #define UNKNOWN_SYSCALL (-1)
941
942 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
943
944
945 /* Mechanism for co-ordinating the selection of a specific
946 architecture.
947
948 GDB targets (*-tdep.c) can register an interest in a specific
949 architecture. Other GDB components can register a need to maintain
950 per-architecture data.
951
952 The mechanisms below ensures that there is only a loose connection
953 between the set-architecture command and the various GDB
954 components. Each component can independently register their need
955 to maintain architecture specific data with gdbarch.
956
957 Pragmatics:
958
959 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
960 didn't scale.
961
962 The more traditional mega-struct containing architecture specific
963 data for all the various GDB components was also considered. Since
964 GDB is built from a variable number of (fairly independent)
965 components it was determined that the global aproach was not
966 applicable. */
967
968
969 /* Register a new architectural family with GDB.
970
971 Register support for the specified ARCHITECTURE with GDB. When
972 gdbarch determines that the specified architecture has been
973 selected, the corresponding INIT function is called.
974
975 --
976
977 The INIT function takes two parameters: INFO which contains the
978 information available to gdbarch about the (possibly new)
979 architecture; ARCHES which is a list of the previously created
980 \`\`struct gdbarch'' for this architecture.
981
982 The INFO parameter is, as far as possible, be pre-initialized with
983 information obtained from INFO.ABFD or the global defaults.
984
985 The ARCHES parameter is a linked list (sorted most recently used)
986 of all the previously created architures for this architecture
987 family. The (possibly NULL) ARCHES->gdbarch can used to access
988 values from the previously selected architecture for this
989 architecture family.
990
991 The INIT function shall return any of: NULL - indicating that it
992 doesn't recognize the selected architecture; an existing \`\`struct
993 gdbarch'' from the ARCHES list - indicating that the new
994 architecture is just a synonym for an earlier architecture (see
995 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
996 - that describes the selected architecture (see gdbarch_alloc()).
997
998 The DUMP_TDEP function shall print out all target specific values.
999 Care should be taken to ensure that the function works in both the
1000 multi-arch and non- multi-arch cases. */
1001
1002 struct gdbarch_list
1003 {
1004 struct gdbarch *gdbarch;
1005 struct gdbarch_list *next;
1006 };
1007
1008 struct gdbarch_info
1009 {
1010 /* Use default: NULL (ZERO). */
1011 const struct bfd_arch_info *bfd_arch_info;
1012
1013 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1014 int byte_order;
1015
1016 int byte_order_for_code;
1017
1018 /* Use default: NULL (ZERO). */
1019 bfd *abfd;
1020
1021 /* Use default: NULL (ZERO). */
1022 struct gdbarch_tdep_info *tdep_info;
1023
1024 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1025 enum gdb_osabi osabi;
1026
1027 /* Use default: NULL (ZERO). */
1028 const struct target_desc *target_desc;
1029 };
1030
1031 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1032 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1033
1034 /* DEPRECATED - use gdbarch_register() */
1035 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1036
1037 extern void gdbarch_register (enum bfd_architecture architecture,
1038 gdbarch_init_ftype *,
1039 gdbarch_dump_tdep_ftype *);
1040
1041
1042 /* Return a freshly allocated, NULL terminated, array of the valid
1043 architecture names. Since architectures are registered during the
1044 _initialize phase this function only returns useful information
1045 once initialization has been completed. */
1046
1047 extern const char **gdbarch_printable_names (void);
1048
1049
1050 /* Helper function. Search the list of ARCHES for a GDBARCH that
1051 matches the information provided by INFO. */
1052
1053 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1054
1055
1056 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1057 basic initialization using values obtained from the INFO and TDEP
1058 parameters. set_gdbarch_*() functions are called to complete the
1059 initialization of the object. */
1060
1061 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1062
1063
1064 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1065 It is assumed that the caller freeds the \`\`struct
1066 gdbarch_tdep''. */
1067
1068 extern void gdbarch_free (struct gdbarch *);
1069
1070
1071 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1072 obstack. The memory is freed when the corresponding architecture
1073 is also freed. */
1074
1075 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1076 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1077 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1078
1079
1080 /* Helper function. Force an update of the current architecture.
1081
1082 The actual architecture selected is determined by INFO, \`\`(gdb) set
1083 architecture'' et.al., the existing architecture and BFD's default
1084 architecture. INFO should be initialized to zero and then selected
1085 fields should be updated.
1086
1087 Returns non-zero if the update succeeds */
1088
1089 extern int gdbarch_update_p (struct gdbarch_info info);
1090
1091
1092 /* Helper function. Find an architecture matching info.
1093
1094 INFO should be initialized using gdbarch_info_init, relevant fields
1095 set, and then finished using gdbarch_info_fill.
1096
1097 Returns the corresponding architecture, or NULL if no matching
1098 architecture was found. */
1099
1100 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1101
1102
1103 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1104
1105 FIXME: kettenis/20031124: Of the functions that follow, only
1106 gdbarch_from_bfd is supposed to survive. The others will
1107 dissappear since in the future GDB will (hopefully) be truly
1108 multi-arch. However, for now we're still stuck with the concept of
1109 a single active architecture. */
1110
1111 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1112
1113
1114 /* Register per-architecture data-pointer.
1115
1116 Reserve space for a per-architecture data-pointer. An identifier
1117 for the reserved data-pointer is returned. That identifer should
1118 be saved in a local static variable.
1119
1120 Memory for the per-architecture data shall be allocated using
1121 gdbarch_obstack_zalloc. That memory will be deleted when the
1122 corresponding architecture object is deleted.
1123
1124 When a previously created architecture is re-selected, the
1125 per-architecture data-pointer for that previous architecture is
1126 restored. INIT() is not re-called.
1127
1128 Multiple registrarants for any architecture are allowed (and
1129 strongly encouraged). */
1130
1131 struct gdbarch_data;
1132
1133 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1134 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1135 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1136 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1137 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1138 struct gdbarch_data *data,
1139 void *pointer);
1140
1141 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1142
1143
1144 /* Set the dynamic target-system-dependent parameters (architecture,
1145 byte-order, ...) using information found in the BFD */
1146
1147 extern void set_gdbarch_from_file (bfd *);
1148
1149
1150 /* Initialize the current architecture to the "first" one we find on
1151 our list. */
1152
1153 extern void initialize_current_architecture (void);
1154
1155 /* gdbarch trace variable */
1156 extern int gdbarch_debug;
1157
1158 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1159
1160 #endif
1161 EOF
1162 exec 1>&2
1163 #../move-if-change new-gdbarch.h gdbarch.h
1164 compare_new gdbarch.h
1165
1166
1167 #
1168 # C file
1169 #
1170
1171 exec > new-gdbarch.c
1172 copyright
1173 cat <<EOF
1174
1175 #include "defs.h"
1176 #include "arch-utils.h"
1177
1178 #include "gdbcmd.h"
1179 #include "inferior.h"
1180 #include "symcat.h"
1181
1182 #include "floatformat.h"
1183
1184 #include "gdb_assert.h"
1185 #include "gdb_string.h"
1186 #include "reggroups.h"
1187 #include "osabi.h"
1188 #include "gdb_obstack.h"
1189 #include "observer.h"
1190 #include "regcache.h"
1191
1192 /* Static function declarations */
1193
1194 static void alloc_gdbarch_data (struct gdbarch *);
1195
1196 /* Non-zero if we want to trace architecture code. */
1197
1198 #ifndef GDBARCH_DEBUG
1199 #define GDBARCH_DEBUG 0
1200 #endif
1201 int gdbarch_debug = GDBARCH_DEBUG;
1202 static void
1203 show_gdbarch_debug (struct ui_file *file, int from_tty,
1204 struct cmd_list_element *c, const char *value)
1205 {
1206 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1207 }
1208
1209 static const char *
1210 pformat (const struct floatformat **format)
1211 {
1212 if (format == NULL)
1213 return "(null)";
1214 else
1215 /* Just print out one of them - this is only for diagnostics. */
1216 return format[0]->name;
1217 }
1218
1219 EOF
1220
1221 # gdbarch open the gdbarch object
1222 printf "\n"
1223 printf "/* Maintain the struct gdbarch object */\n"
1224 printf "\n"
1225 printf "struct gdbarch\n"
1226 printf "{\n"
1227 printf " /* Has this architecture been fully initialized? */\n"
1228 printf " int initialized_p;\n"
1229 printf "\n"
1230 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1231 printf " struct obstack *obstack;\n"
1232 printf "\n"
1233 printf " /* basic architectural information */\n"
1234 function_list | while do_read
1235 do
1236 if class_is_info_p
1237 then
1238 printf " ${returntype} ${function};\n"
1239 fi
1240 done
1241 printf "\n"
1242 printf " /* target specific vector. */\n"
1243 printf " struct gdbarch_tdep *tdep;\n"
1244 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1245 printf "\n"
1246 printf " /* per-architecture data-pointers */\n"
1247 printf " unsigned nr_data;\n"
1248 printf " void **data;\n"
1249 printf "\n"
1250 printf " /* per-architecture swap-regions */\n"
1251 printf " struct gdbarch_swap *swap;\n"
1252 printf "\n"
1253 cat <<EOF
1254 /* Multi-arch values.
1255
1256 When extending this structure you must:
1257
1258 Add the field below.
1259
1260 Declare set/get functions and define the corresponding
1261 macro in gdbarch.h.
1262
1263 gdbarch_alloc(): If zero/NULL is not a suitable default,
1264 initialize the new field.
1265
1266 verify_gdbarch(): Confirm that the target updated the field
1267 correctly.
1268
1269 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1270 field is dumped out
1271
1272 \`\`startup_gdbarch()'': Append an initial value to the static
1273 variable (base values on the host's c-type system).
1274
1275 get_gdbarch(): Implement the set/get functions (probably using
1276 the macro's as shortcuts).
1277
1278 */
1279
1280 EOF
1281 function_list | while do_read
1282 do
1283 if class_is_variable_p
1284 then
1285 printf " ${returntype} ${function};\n"
1286 elif class_is_function_p
1287 then
1288 printf " gdbarch_${function}_ftype *${function};\n"
1289 fi
1290 done
1291 printf "};\n"
1292
1293 # A pre-initialized vector
1294 printf "\n"
1295 printf "\n"
1296 cat <<EOF
1297 /* The default architecture uses host values (for want of a better
1298 choice). */
1299 EOF
1300 printf "\n"
1301 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1302 printf "\n"
1303 printf "struct gdbarch startup_gdbarch =\n"
1304 printf "{\n"
1305 printf " 1, /* Always initialized. */\n"
1306 printf " NULL, /* The obstack. */\n"
1307 printf " /* basic architecture information */\n"
1308 function_list | while do_read
1309 do
1310 if class_is_info_p
1311 then
1312 printf " ${staticdefault}, /* ${function} */\n"
1313 fi
1314 done
1315 cat <<EOF
1316 /* target specific vector and its dump routine */
1317 NULL, NULL,
1318 /*per-architecture data-pointers and swap regions */
1319 0, NULL, NULL,
1320 /* Multi-arch values */
1321 EOF
1322 function_list | while do_read
1323 do
1324 if class_is_function_p || class_is_variable_p
1325 then
1326 printf " ${staticdefault}, /* ${function} */\n"
1327 fi
1328 done
1329 cat <<EOF
1330 /* startup_gdbarch() */
1331 };
1332
1333 struct gdbarch *target_gdbarch = &startup_gdbarch;
1334 EOF
1335
1336 # Create a new gdbarch struct
1337 cat <<EOF
1338
1339 /* Create a new \`\`struct gdbarch'' based on information provided by
1340 \`\`struct gdbarch_info''. */
1341 EOF
1342 printf "\n"
1343 cat <<EOF
1344 struct gdbarch *
1345 gdbarch_alloc (const struct gdbarch_info *info,
1346 struct gdbarch_tdep *tdep)
1347 {
1348 struct gdbarch *gdbarch;
1349
1350 /* Create an obstack for allocating all the per-architecture memory,
1351 then use that to allocate the architecture vector. */
1352 struct obstack *obstack = XMALLOC (struct obstack);
1353 obstack_init (obstack);
1354 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1355 memset (gdbarch, 0, sizeof (*gdbarch));
1356 gdbarch->obstack = obstack;
1357
1358 alloc_gdbarch_data (gdbarch);
1359
1360 gdbarch->tdep = tdep;
1361 EOF
1362 printf "\n"
1363 function_list | while do_read
1364 do
1365 if class_is_info_p
1366 then
1367 printf " gdbarch->${function} = info->${function};\n"
1368 fi
1369 done
1370 printf "\n"
1371 printf " /* Force the explicit initialization of these. */\n"
1372 function_list | while do_read
1373 do
1374 if class_is_function_p || class_is_variable_p
1375 then
1376 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1377 then
1378 printf " gdbarch->${function} = ${predefault};\n"
1379 fi
1380 fi
1381 done
1382 cat <<EOF
1383 /* gdbarch_alloc() */
1384
1385 return gdbarch;
1386 }
1387 EOF
1388
1389 # Free a gdbarch struct.
1390 printf "\n"
1391 printf "\n"
1392 cat <<EOF
1393 /* Allocate extra space using the per-architecture obstack. */
1394
1395 void *
1396 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1397 {
1398 void *data = obstack_alloc (arch->obstack, size);
1399 memset (data, 0, size);
1400 return data;
1401 }
1402
1403
1404 /* Free a gdbarch struct. This should never happen in normal
1405 operation --- once you've created a gdbarch, you keep it around.
1406 However, if an architecture's init function encounters an error
1407 building the structure, it may need to clean up a partially
1408 constructed gdbarch. */
1409
1410 void
1411 gdbarch_free (struct gdbarch *arch)
1412 {
1413 struct obstack *obstack;
1414 gdb_assert (arch != NULL);
1415 gdb_assert (!arch->initialized_p);
1416 obstack = arch->obstack;
1417 obstack_free (obstack, 0); /* Includes the ARCH. */
1418 xfree (obstack);
1419 }
1420 EOF
1421
1422 # verify a new architecture
1423 cat <<EOF
1424
1425
1426 /* Ensure that all values in a GDBARCH are reasonable. */
1427
1428 static void
1429 verify_gdbarch (struct gdbarch *gdbarch)
1430 {
1431 struct ui_file *log;
1432 struct cleanup *cleanups;
1433 long length;
1434 char *buf;
1435 log = mem_fileopen ();
1436 cleanups = make_cleanup_ui_file_delete (log);
1437 /* fundamental */
1438 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1439 fprintf_unfiltered (log, "\n\tbyte-order");
1440 if (gdbarch->bfd_arch_info == NULL)
1441 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1442 /* Check those that need to be defined for the given multi-arch level. */
1443 EOF
1444 function_list | while do_read
1445 do
1446 if class_is_function_p || class_is_variable_p
1447 then
1448 if [ "x${invalid_p}" = "x0" ]
1449 then
1450 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1451 elif class_is_predicate_p
1452 then
1453 printf " /* Skip verify of ${function}, has predicate */\n"
1454 # FIXME: See do_read for potential simplification
1455 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1456 then
1457 printf " if (${invalid_p})\n"
1458 printf " gdbarch->${function} = ${postdefault};\n"
1459 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1460 then
1461 printf " if (gdbarch->${function} == ${predefault})\n"
1462 printf " gdbarch->${function} = ${postdefault};\n"
1463 elif [ -n "${postdefault}" ]
1464 then
1465 printf " if (gdbarch->${function} == 0)\n"
1466 printf " gdbarch->${function} = ${postdefault};\n"
1467 elif [ -n "${invalid_p}" ]
1468 then
1469 printf " if (${invalid_p})\n"
1470 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1471 elif [ -n "${predefault}" ]
1472 then
1473 printf " if (gdbarch->${function} == ${predefault})\n"
1474 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1475 fi
1476 fi
1477 done
1478 cat <<EOF
1479 buf = ui_file_xstrdup (log, &length);
1480 make_cleanup (xfree, buf);
1481 if (length > 0)
1482 internal_error (__FILE__, __LINE__,
1483 _("verify_gdbarch: the following are invalid ...%s"),
1484 buf);
1485 do_cleanups (cleanups);
1486 }
1487 EOF
1488
1489 # dump the structure
1490 printf "\n"
1491 printf "\n"
1492 cat <<EOF
1493 /* Print out the details of the current architecture. */
1494
1495 void
1496 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1497 {
1498 const char *gdb_nm_file = "<not-defined>";
1499 #if defined (GDB_NM_FILE)
1500 gdb_nm_file = GDB_NM_FILE;
1501 #endif
1502 fprintf_unfiltered (file,
1503 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1504 gdb_nm_file);
1505 EOF
1506 function_list | sort -t: -k 3 | while do_read
1507 do
1508 # First the predicate
1509 if class_is_predicate_p
1510 then
1511 printf " fprintf_unfiltered (file,\n"
1512 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1513 printf " gdbarch_${function}_p (gdbarch));\n"
1514 fi
1515 # Print the corresponding value.
1516 if class_is_function_p
1517 then
1518 printf " fprintf_unfiltered (file,\n"
1519 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1520 printf " host_address_to_string (gdbarch->${function}));\n"
1521 else
1522 # It is a variable
1523 case "${print}:${returntype}" in
1524 :CORE_ADDR )
1525 fmt="%s"
1526 print="core_addr_to_string_nz (gdbarch->${function})"
1527 ;;
1528 :* )
1529 fmt="%s"
1530 print="plongest (gdbarch->${function})"
1531 ;;
1532 * )
1533 fmt="%s"
1534 ;;
1535 esac
1536 printf " fprintf_unfiltered (file,\n"
1537 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1538 printf " ${print});\n"
1539 fi
1540 done
1541 cat <<EOF
1542 if (gdbarch->dump_tdep != NULL)
1543 gdbarch->dump_tdep (gdbarch, file);
1544 }
1545 EOF
1546
1547
1548 # GET/SET
1549 printf "\n"
1550 cat <<EOF
1551 struct gdbarch_tdep *
1552 gdbarch_tdep (struct gdbarch *gdbarch)
1553 {
1554 if (gdbarch_debug >= 2)
1555 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1556 return gdbarch->tdep;
1557 }
1558 EOF
1559 printf "\n"
1560 function_list | while do_read
1561 do
1562 if class_is_predicate_p
1563 then
1564 printf "\n"
1565 printf "int\n"
1566 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1567 printf "{\n"
1568 printf " gdb_assert (gdbarch != NULL);\n"
1569 printf " return ${predicate};\n"
1570 printf "}\n"
1571 fi
1572 if class_is_function_p
1573 then
1574 printf "\n"
1575 printf "${returntype}\n"
1576 if [ "x${formal}" = "xvoid" ]
1577 then
1578 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1579 else
1580 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1581 fi
1582 printf "{\n"
1583 printf " gdb_assert (gdbarch != NULL);\n"
1584 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1585 if class_is_predicate_p && test -n "${predefault}"
1586 then
1587 # Allow a call to a function with a predicate.
1588 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1589 fi
1590 printf " if (gdbarch_debug >= 2)\n"
1591 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1592 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1593 then
1594 if class_is_multiarch_p
1595 then
1596 params="gdbarch"
1597 else
1598 params=""
1599 fi
1600 else
1601 if class_is_multiarch_p
1602 then
1603 params="gdbarch, ${actual}"
1604 else
1605 params="${actual}"
1606 fi
1607 fi
1608 if [ "x${returntype}" = "xvoid" ]
1609 then
1610 printf " gdbarch->${function} (${params});\n"
1611 else
1612 printf " return gdbarch->${function} (${params});\n"
1613 fi
1614 printf "}\n"
1615 printf "\n"
1616 printf "void\n"
1617 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1618 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1619 printf "{\n"
1620 printf " gdbarch->${function} = ${function};\n"
1621 printf "}\n"
1622 elif class_is_variable_p
1623 then
1624 printf "\n"
1625 printf "${returntype}\n"
1626 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1627 printf "{\n"
1628 printf " gdb_assert (gdbarch != NULL);\n"
1629 if [ "x${invalid_p}" = "x0" ]
1630 then
1631 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1632 elif [ -n "${invalid_p}" ]
1633 then
1634 printf " /* Check variable is valid. */\n"
1635 printf " gdb_assert (!(${invalid_p}));\n"
1636 elif [ -n "${predefault}" ]
1637 then
1638 printf " /* Check variable changed from pre-default. */\n"
1639 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1640 fi
1641 printf " if (gdbarch_debug >= 2)\n"
1642 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1643 printf " return gdbarch->${function};\n"
1644 printf "}\n"
1645 printf "\n"
1646 printf "void\n"
1647 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1648 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1649 printf "{\n"
1650 printf " gdbarch->${function} = ${function};\n"
1651 printf "}\n"
1652 elif class_is_info_p
1653 then
1654 printf "\n"
1655 printf "${returntype}\n"
1656 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1657 printf "{\n"
1658 printf " gdb_assert (gdbarch != NULL);\n"
1659 printf " if (gdbarch_debug >= 2)\n"
1660 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1661 printf " return gdbarch->${function};\n"
1662 printf "}\n"
1663 fi
1664 done
1665
1666 # All the trailing guff
1667 cat <<EOF
1668
1669
1670 /* Keep a registry of per-architecture data-pointers required by GDB
1671 modules. */
1672
1673 struct gdbarch_data
1674 {
1675 unsigned index;
1676 int init_p;
1677 gdbarch_data_pre_init_ftype *pre_init;
1678 gdbarch_data_post_init_ftype *post_init;
1679 };
1680
1681 struct gdbarch_data_registration
1682 {
1683 struct gdbarch_data *data;
1684 struct gdbarch_data_registration *next;
1685 };
1686
1687 struct gdbarch_data_registry
1688 {
1689 unsigned nr;
1690 struct gdbarch_data_registration *registrations;
1691 };
1692
1693 struct gdbarch_data_registry gdbarch_data_registry =
1694 {
1695 0, NULL,
1696 };
1697
1698 static struct gdbarch_data *
1699 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1700 gdbarch_data_post_init_ftype *post_init)
1701 {
1702 struct gdbarch_data_registration **curr;
1703 /* Append the new registraration. */
1704 for (curr = &gdbarch_data_registry.registrations;
1705 (*curr) != NULL;
1706 curr = &(*curr)->next);
1707 (*curr) = XMALLOC (struct gdbarch_data_registration);
1708 (*curr)->next = NULL;
1709 (*curr)->data = XMALLOC (struct gdbarch_data);
1710 (*curr)->data->index = gdbarch_data_registry.nr++;
1711 (*curr)->data->pre_init = pre_init;
1712 (*curr)->data->post_init = post_init;
1713 (*curr)->data->init_p = 1;
1714 return (*curr)->data;
1715 }
1716
1717 struct gdbarch_data *
1718 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1719 {
1720 return gdbarch_data_register (pre_init, NULL);
1721 }
1722
1723 struct gdbarch_data *
1724 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1725 {
1726 return gdbarch_data_register (NULL, post_init);
1727 }
1728
1729 /* Create/delete the gdbarch data vector. */
1730
1731 static void
1732 alloc_gdbarch_data (struct gdbarch *gdbarch)
1733 {
1734 gdb_assert (gdbarch->data == NULL);
1735 gdbarch->nr_data = gdbarch_data_registry.nr;
1736 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1737 }
1738
1739 /* Initialize the current value of the specified per-architecture
1740 data-pointer. */
1741
1742 void
1743 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1744 struct gdbarch_data *data,
1745 void *pointer)
1746 {
1747 gdb_assert (data->index < gdbarch->nr_data);
1748 gdb_assert (gdbarch->data[data->index] == NULL);
1749 gdb_assert (data->pre_init == NULL);
1750 gdbarch->data[data->index] = pointer;
1751 }
1752
1753 /* Return the current value of the specified per-architecture
1754 data-pointer. */
1755
1756 void *
1757 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1758 {
1759 gdb_assert (data->index < gdbarch->nr_data);
1760 if (gdbarch->data[data->index] == NULL)
1761 {
1762 /* The data-pointer isn't initialized, call init() to get a
1763 value. */
1764 if (data->pre_init != NULL)
1765 /* Mid architecture creation: pass just the obstack, and not
1766 the entire architecture, as that way it isn't possible for
1767 pre-init code to refer to undefined architecture
1768 fields. */
1769 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1770 else if (gdbarch->initialized_p
1771 && data->post_init != NULL)
1772 /* Post architecture creation: pass the entire architecture
1773 (as all fields are valid), but be careful to also detect
1774 recursive references. */
1775 {
1776 gdb_assert (data->init_p);
1777 data->init_p = 0;
1778 gdbarch->data[data->index] = data->post_init (gdbarch);
1779 data->init_p = 1;
1780 }
1781 else
1782 /* The architecture initialization hasn't completed - punt -
1783 hope that the caller knows what they are doing. Once
1784 deprecated_set_gdbarch_data has been initialized, this can be
1785 changed to an internal error. */
1786 return NULL;
1787 gdb_assert (gdbarch->data[data->index] != NULL);
1788 }
1789 return gdbarch->data[data->index];
1790 }
1791
1792
1793 /* Keep a registry of the architectures known by GDB. */
1794
1795 struct gdbarch_registration
1796 {
1797 enum bfd_architecture bfd_architecture;
1798 gdbarch_init_ftype *init;
1799 gdbarch_dump_tdep_ftype *dump_tdep;
1800 struct gdbarch_list *arches;
1801 struct gdbarch_registration *next;
1802 };
1803
1804 static struct gdbarch_registration *gdbarch_registry = NULL;
1805
1806 static void
1807 append_name (const char ***buf, int *nr, const char *name)
1808 {
1809 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1810 (*buf)[*nr] = name;
1811 *nr += 1;
1812 }
1813
1814 const char **
1815 gdbarch_printable_names (void)
1816 {
1817 /* Accumulate a list of names based on the registed list of
1818 architectures. */
1819 enum bfd_architecture a;
1820 int nr_arches = 0;
1821 const char **arches = NULL;
1822 struct gdbarch_registration *rego;
1823 for (rego = gdbarch_registry;
1824 rego != NULL;
1825 rego = rego->next)
1826 {
1827 const struct bfd_arch_info *ap;
1828 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1829 if (ap == NULL)
1830 internal_error (__FILE__, __LINE__,
1831 _("gdbarch_architecture_names: multi-arch unknown"));
1832 do
1833 {
1834 append_name (&arches, &nr_arches, ap->printable_name);
1835 ap = ap->next;
1836 }
1837 while (ap != NULL);
1838 }
1839 append_name (&arches, &nr_arches, NULL);
1840 return arches;
1841 }
1842
1843
1844 void
1845 gdbarch_register (enum bfd_architecture bfd_architecture,
1846 gdbarch_init_ftype *init,
1847 gdbarch_dump_tdep_ftype *dump_tdep)
1848 {
1849 struct gdbarch_registration **curr;
1850 const struct bfd_arch_info *bfd_arch_info;
1851 /* Check that BFD recognizes this architecture */
1852 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1853 if (bfd_arch_info == NULL)
1854 {
1855 internal_error (__FILE__, __LINE__,
1856 _("gdbarch: Attempt to register unknown architecture (%d)"),
1857 bfd_architecture);
1858 }
1859 /* Check that we haven't seen this architecture before */
1860 for (curr = &gdbarch_registry;
1861 (*curr) != NULL;
1862 curr = &(*curr)->next)
1863 {
1864 if (bfd_architecture == (*curr)->bfd_architecture)
1865 internal_error (__FILE__, __LINE__,
1866 _("gdbarch: Duplicate registraration of architecture (%s)"),
1867 bfd_arch_info->printable_name);
1868 }
1869 /* log it */
1870 if (gdbarch_debug)
1871 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1872 bfd_arch_info->printable_name,
1873 host_address_to_string (init));
1874 /* Append it */
1875 (*curr) = XMALLOC (struct gdbarch_registration);
1876 (*curr)->bfd_architecture = bfd_architecture;
1877 (*curr)->init = init;
1878 (*curr)->dump_tdep = dump_tdep;
1879 (*curr)->arches = NULL;
1880 (*curr)->next = NULL;
1881 }
1882
1883 void
1884 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1885 gdbarch_init_ftype *init)
1886 {
1887 gdbarch_register (bfd_architecture, init, NULL);
1888 }
1889
1890
1891 /* Look for an architecture using gdbarch_info. */
1892
1893 struct gdbarch_list *
1894 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1895 const struct gdbarch_info *info)
1896 {
1897 for (; arches != NULL; arches = arches->next)
1898 {
1899 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1900 continue;
1901 if (info->byte_order != arches->gdbarch->byte_order)
1902 continue;
1903 if (info->osabi != arches->gdbarch->osabi)
1904 continue;
1905 if (info->target_desc != arches->gdbarch->target_desc)
1906 continue;
1907 return arches;
1908 }
1909 return NULL;
1910 }
1911
1912
1913 /* Find an architecture that matches the specified INFO. Create a new
1914 architecture if needed. Return that new architecture. */
1915
1916 struct gdbarch *
1917 gdbarch_find_by_info (struct gdbarch_info info)
1918 {
1919 struct gdbarch *new_gdbarch;
1920 struct gdbarch_registration *rego;
1921
1922 /* Fill in missing parts of the INFO struct using a number of
1923 sources: "set ..."; INFOabfd supplied; and the global
1924 defaults. */
1925 gdbarch_info_fill (&info);
1926
1927 /* Must have found some sort of architecture. */
1928 gdb_assert (info.bfd_arch_info != NULL);
1929
1930 if (gdbarch_debug)
1931 {
1932 fprintf_unfiltered (gdb_stdlog,
1933 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1934 (info.bfd_arch_info != NULL
1935 ? info.bfd_arch_info->printable_name
1936 : "(null)"));
1937 fprintf_unfiltered (gdb_stdlog,
1938 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1939 info.byte_order,
1940 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1941 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1942 : "default"));
1943 fprintf_unfiltered (gdb_stdlog,
1944 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1945 info.osabi, gdbarch_osabi_name (info.osabi));
1946 fprintf_unfiltered (gdb_stdlog,
1947 "gdbarch_find_by_info: info.abfd %s\n",
1948 host_address_to_string (info.abfd));
1949 fprintf_unfiltered (gdb_stdlog,
1950 "gdbarch_find_by_info: info.tdep_info %s\n",
1951 host_address_to_string (info.tdep_info));
1952 }
1953
1954 /* Find the tdep code that knows about this architecture. */
1955 for (rego = gdbarch_registry;
1956 rego != NULL;
1957 rego = rego->next)
1958 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1959 break;
1960 if (rego == NULL)
1961 {
1962 if (gdbarch_debug)
1963 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1964 "No matching architecture\n");
1965 return 0;
1966 }
1967
1968 /* Ask the tdep code for an architecture that matches "info". */
1969 new_gdbarch = rego->init (info, rego->arches);
1970
1971 /* Did the tdep code like it? No. Reject the change and revert to
1972 the old architecture. */
1973 if (new_gdbarch == NULL)
1974 {
1975 if (gdbarch_debug)
1976 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1977 "Target rejected architecture\n");
1978 return NULL;
1979 }
1980
1981 /* Is this a pre-existing architecture (as determined by already
1982 being initialized)? Move it to the front of the architecture
1983 list (keeping the list sorted Most Recently Used). */
1984 if (new_gdbarch->initialized_p)
1985 {
1986 struct gdbarch_list **list;
1987 struct gdbarch_list *this;
1988 if (gdbarch_debug)
1989 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1990 "Previous architecture %s (%s) selected\n",
1991 host_address_to_string (new_gdbarch),
1992 new_gdbarch->bfd_arch_info->printable_name);
1993 /* Find the existing arch in the list. */
1994 for (list = &rego->arches;
1995 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1996 list = &(*list)->next);
1997 /* It had better be in the list of architectures. */
1998 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1999 /* Unlink THIS. */
2000 this = (*list);
2001 (*list) = this->next;
2002 /* Insert THIS at the front. */
2003 this->next = rego->arches;
2004 rego->arches = this;
2005 /* Return it. */
2006 return new_gdbarch;
2007 }
2008
2009 /* It's a new architecture. */
2010 if (gdbarch_debug)
2011 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2012 "New architecture %s (%s) selected\n",
2013 host_address_to_string (new_gdbarch),
2014 new_gdbarch->bfd_arch_info->printable_name);
2015
2016 /* Insert the new architecture into the front of the architecture
2017 list (keep the list sorted Most Recently Used). */
2018 {
2019 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2020 this->next = rego->arches;
2021 this->gdbarch = new_gdbarch;
2022 rego->arches = this;
2023 }
2024
2025 /* Check that the newly installed architecture is valid. Plug in
2026 any post init values. */
2027 new_gdbarch->dump_tdep = rego->dump_tdep;
2028 verify_gdbarch (new_gdbarch);
2029 new_gdbarch->initialized_p = 1;
2030
2031 if (gdbarch_debug)
2032 gdbarch_dump (new_gdbarch, gdb_stdlog);
2033
2034 return new_gdbarch;
2035 }
2036
2037 /* Make the specified architecture current. */
2038
2039 void
2040 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2041 {
2042 gdb_assert (new_gdbarch != NULL);
2043 gdb_assert (new_gdbarch->initialized_p);
2044 target_gdbarch = new_gdbarch;
2045 observer_notify_architecture_changed (new_gdbarch);
2046 registers_changed ();
2047 }
2048
2049 extern void _initialize_gdbarch (void);
2050
2051 void
2052 _initialize_gdbarch (void)
2053 {
2054 struct cmd_list_element *c;
2055
2056 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2057 Set architecture debugging."), _("\\
2058 Show architecture debugging."), _("\\
2059 When non-zero, architecture debugging is enabled."),
2060 NULL,
2061 show_gdbarch_debug,
2062 &setdebuglist, &showdebuglist);
2063 }
2064 EOF
2065
2066 # close things off
2067 exec 1>&2
2068 #../move-if-change new-gdbarch.c gdbarch.c
2069 compare_new gdbarch.c
This page took 0.073223 seconds and 4 git commands to generate.