New "iterate_over_objfiles_in_search_order" gdbarch method.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTION
507 # to return a value of type VALTYPE. FUNCTION may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Create core file notes
635 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
637 # Find core file memory regions
638 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
640 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641 # core file into buffer READBUF with length LEN.
642 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
643
644 # How the core target converts a PTID from a core file to a string.
645 M:char *:core_pid_to_str:ptid_t ptid:ptid
646
647 # BFD target to use when generating a core file.
648 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
649
650 # If the elements of C++ vtables are in-place function descriptors rather
651 # than normal function pointers (which may point to code or a descriptor),
652 # set this to one.
653 v:int:vtable_function_descriptors:::0:0::0
654
655 # Set if the least significant bit of the delta is used instead of the least
656 # significant bit of the pfn for pointers to virtual member functions.
657 v:int:vbit_in_delta:::0:0::0
658
659 # Advance PC to next instruction in order to skip a permanent breakpoint.
660 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
661
662 # The maximum length of an instruction on this architecture in bytes.
663 V:ULONGEST:max_insn_length:::0:0
664
665 # Copy the instruction at FROM to TO, and make any adjustments
666 # necessary to single-step it at that address.
667 #
668 # REGS holds the state the thread's registers will have before
669 # executing the copied instruction; the PC in REGS will refer to FROM,
670 # not the copy at TO. The caller should update it to point at TO later.
671 #
672 # Return a pointer to data of the architecture's choice to be passed
673 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674 # the instruction's effects have been completely simulated, with the
675 # resulting state written back to REGS.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 #
680 # The TO area is only guaranteed to have space for
681 # gdbarch_max_insn_length (arch) bytes, so this function must not
682 # write more bytes than that to that area.
683 #
684 # If you do not provide this function, GDB assumes that the
685 # architecture does not support displaced stepping.
686 #
687 # If your architecture doesn't need to adjust instructions before
688 # single-stepping them, consider using simple_displaced_step_copy_insn
689 # here.
690 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
692 # Return true if GDB should use hardware single-stepping to execute
693 # the displaced instruction identified by CLOSURE. If false,
694 # GDB will simply restart execution at the displaced instruction
695 # location, and it is up to the target to ensure GDB will receive
696 # control again (e.g. by placing a software breakpoint instruction
697 # into the displaced instruction buffer).
698 #
699 # The default implementation returns false on all targets that
700 # provide a gdbarch_software_single_step routine, and true otherwise.
701 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
703 # Fix up the state resulting from successfully single-stepping a
704 # displaced instruction, to give the result we would have gotten from
705 # stepping the instruction in its original location.
706 #
707 # REGS is the register state resulting from single-stepping the
708 # displaced instruction.
709 #
710 # CLOSURE is the result from the matching call to
711 # gdbarch_displaced_step_copy_insn.
712 #
713 # If you provide gdbarch_displaced_step_copy_insn.but not this
714 # function, then GDB assumes that no fixup is needed after
715 # single-stepping the instruction.
716 #
717 # For a general explanation of displaced stepping and how GDB uses it,
718 # see the comments in infrun.c.
719 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721 # Free a closure returned by gdbarch_displaced_step_copy_insn.
722 #
723 # If you provide gdbarch_displaced_step_copy_insn, you must provide
724 # this function as well.
725 #
726 # If your architecture uses closures that don't need to be freed, then
727 # you can use simple_displaced_step_free_closure here.
728 #
729 # For a general explanation of displaced stepping and how GDB uses it,
730 # see the comments in infrun.c.
731 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733 # Return the address of an appropriate place to put displaced
734 # instructions while we step over them. There need only be one such
735 # place, since we're only stepping one thread over a breakpoint at a
736 # time.
737 #
738 # For a general explanation of displaced stepping and how GDB uses it,
739 # see the comments in infrun.c.
740 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
742 # Relocate an instruction to execute at a different address. OLDLOC
743 # is the address in the inferior memory where the instruction to
744 # relocate is currently at. On input, TO points to the destination
745 # where we want the instruction to be copied (and possibly adjusted)
746 # to. On output, it points to one past the end of the resulting
747 # instruction(s). The effect of executing the instruction at TO shall
748 # be the same as if executing it at FROM. For example, call
749 # instructions that implicitly push the return address on the stack
750 # should be adjusted to return to the instruction after OLDLOC;
751 # relative branches, and other PC-relative instructions need the
752 # offset adjusted; etc.
753 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
755 # Refresh overlay mapped state for section OSECT.
756 F:void:overlay_update:struct obj_section *osect:osect
757
758 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
759
760 # Handle special encoding of static variables in stabs debug info.
761 F:const char *:static_transform_name:const char *name:name
762 # Set if the address in N_SO or N_FUN stabs may be zero.
763 v:int:sofun_address_maybe_missing:::0:0::0
764
765 # Parse the instruction at ADDR storing in the record execution log
766 # the registers REGCACHE and memory ranges that will be affected when
767 # the instruction executes, along with their current values.
768 # Return -1 if something goes wrong, 0 otherwise.
769 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
771 # Save process state after a signal.
772 # Return -1 if something goes wrong, 0 otherwise.
773 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
774
775 # Signal translation: translate inferior's signal (target's) number
776 # into GDB's representation. The implementation of this method must
777 # be host independent. IOW, don't rely on symbols of the NAT_FILE
778 # header (the nm-*.h files), the host <signal.h> header, or similar
779 # headers. This is mainly used when cross-debugging core files ---
780 # "Live" targets hide the translation behind the target interface
781 # (target_wait, target_resume, etc.).
782 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
783
784 # Extra signal info inspection.
785 #
786 # Return a type suitable to inspect extra signal information.
787 M:struct type *:get_siginfo_type:void:
788
789 # Record architecture-specific information from the symbol table.
790 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
791
792 # Function for the 'catch syscall' feature.
793
794 # Get architecture-specific system calls information from registers.
795 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
796
797 # SystemTap related fields and functions.
798
799 # Prefix used to mark an integer constant on the architecture's assembly
800 # For example, on x86 integer constants are written as:
801 #
802 # \$10 ;; integer constant 10
803 #
804 # in this case, this prefix would be the character \`\$\'.
805 v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
806
807 # Suffix used to mark an integer constant on the architecture's assembly.
808 v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
809
810 # Prefix used to mark a register name on the architecture's assembly.
811 # For example, on x86 the register name is written as:
812 #
813 # \%eax ;; register eax
814 #
815 # in this case, this prefix would be the character \`\%\'.
816 v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
817
818 # Suffix used to mark a register name on the architecture's assembly
819 v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
820
821 # Prefix used to mark a register indirection on the architecture's assembly.
822 # For example, on x86 the register indirection is written as:
823 #
824 # \(\%eax\) ;; indirecting eax
825 #
826 # in this case, this prefix would be the charater \`\(\'.
827 #
828 # Please note that we use the indirection prefix also for register
829 # displacement, e.g., \`4\(\%eax\)\' on x86.
830 v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
831
832 # Suffix used to mark a register indirection on the architecture's assembly.
833 # For example, on x86 the register indirection is written as:
834 #
835 # \(\%eax\) ;; indirecting eax
836 #
837 # in this case, this prefix would be the charater \`\)\'.
838 #
839 # Please note that we use the indirection suffix also for register
840 # displacement, e.g., \`4\(\%eax\)\' on x86.
841 v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
842
843 # Prefix used to name a register using GDB's nomenclature.
844 #
845 # For example, on PPC a register is represented by a number in the assembly
846 # language (e.g., \`10\' is the 10th general-purpose register). However,
847 # inside GDB this same register has an \`r\' appended to its name, so the 10th
848 # register would be represented as \`r10\' internally.
849 v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
850
851 # Suffix used to name a register using GDB's nomenclature.
852 v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
853
854 # Check if S is a single operand.
855 #
856 # Single operands can be:
857 # \- Literal integers, e.g. \`\$10\' on x86
858 # \- Register access, e.g. \`\%eax\' on x86
859 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
860 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
861 #
862 # This function should check for these patterns on the string
863 # and return 1 if some were found, or zero otherwise. Please try to match
864 # as much info as you can from the string, i.e., if you have to match
865 # something like \`\(\%\', do not match just the \`\(\'.
866 M:int:stap_is_single_operand:const char *s:s
867
868 # Function used to handle a "special case" in the parser.
869 #
870 # A "special case" is considered to be an unknown token, i.e., a token
871 # that the parser does not know how to parse. A good example of special
872 # case would be ARM's register displacement syntax:
873 #
874 # [R0, #4] ;; displacing R0 by 4
875 #
876 # Since the parser assumes that a register displacement is of the form:
877 #
878 # <number> <indirection_prefix> <register_name> <indirection_suffix>
879 #
880 # it means that it will not be able to recognize and parse this odd syntax.
881 # Therefore, we should add a special case function that will handle this token.
882 #
883 # This function should generate the proper expression form of the expression
884 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
885 # and so on). It should also return 1 if the parsing was successful, or zero
886 # if the token was not recognized as a special token (in this case, returning
887 # zero means that the special parser is deferring the parsing to the generic
888 # parser), and should advance the buffer pointer (p->arg).
889 M:int:stap_parse_special_token:struct stap_parse_info *p:p
890
891
892 # True if the list of shared libraries is one and only for all
893 # processes, as opposed to a list of shared libraries per inferior.
894 # This usually means that all processes, although may or may not share
895 # an address space, will see the same set of symbols at the same
896 # addresses.
897 v:int:has_global_solist:::0:0::0
898
899 # On some targets, even though each inferior has its own private
900 # address space, the debug interface takes care of making breakpoints
901 # visible to all address spaces automatically. For such cases,
902 # this property should be set to true.
903 v:int:has_global_breakpoints:::0:0::0
904
905 # True if inferiors share an address space (e.g., uClinux).
906 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
907
908 # True if a fast tracepoint can be set at an address.
909 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
910
911 # Return the "auto" target charset.
912 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
913 # Return the "auto" target wide charset.
914 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
915
916 # If non-empty, this is a file extension that will be opened in place
917 # of the file extension reported by the shared library list.
918 #
919 # This is most useful for toolchains that use a post-linker tool,
920 # where the names of the files run on the target differ in extension
921 # compared to the names of the files GDB should load for debug info.
922 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
923
924 # If true, the target OS has DOS-based file system semantics. That
925 # is, absolute paths include a drive name, and the backslash is
926 # considered a directory separator.
927 v:int:has_dos_based_file_system:::0:0::0
928
929 # Generate bytecodes to collect the return address in a frame.
930 # Since the bytecodes run on the target, possibly with GDB not even
931 # connected, the full unwinding machinery is not available, and
932 # typically this function will issue bytecodes for one or more likely
933 # places that the return address may be found.
934 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
935
936 # Implement the "info proc" command.
937 M:void:info_proc:char *args, enum info_proc_what what:args, what
938
939 # Iterate over all objfiles in the order that makes the most sense
940 # for the architecture to make global symbol searches.
941 #
942 # CB is a callback function where OBJFILE is the objfile to be searched,
943 # and CB_DATA a pointer to user-defined data (the same data that is passed
944 # when calling this gdbarch method). The iteration stops if this function
945 # returns nonzero.
946 #
947 # CB_DATA is a pointer to some user-defined data to be passed to
948 # the callback.
949 #
950 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
951 # inspected when the symbol search was requested.
952 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
953
954 EOF
955 }
956
957 #
958 # The .log file
959 #
960 exec > new-gdbarch.log
961 function_list | while do_read
962 do
963 cat <<EOF
964 ${class} ${returntype} ${function} ($formal)
965 EOF
966 for r in ${read}
967 do
968 eval echo \"\ \ \ \ ${r}=\${${r}}\"
969 done
970 if class_is_predicate_p && fallback_default_p
971 then
972 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
973 kill $$
974 exit 1
975 fi
976 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
977 then
978 echo "Error: postdefault is useless when invalid_p=0" 1>&2
979 kill $$
980 exit 1
981 fi
982 if class_is_multiarch_p
983 then
984 if class_is_predicate_p ; then :
985 elif test "x${predefault}" = "x"
986 then
987 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
988 kill $$
989 exit 1
990 fi
991 fi
992 echo ""
993 done
994
995 exec 1>&2
996 compare_new gdbarch.log
997
998
999 copyright ()
1000 {
1001 cat <<EOF
1002 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
1003
1004 /* Dynamic architecture support for GDB, the GNU debugger.
1005
1006 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
1007 2007, 2008, 2009 Free Software Foundation, Inc.
1008
1009 This file is part of GDB.
1010
1011 This program is free software; you can redistribute it and/or modify
1012 it under the terms of the GNU General Public License as published by
1013 the Free Software Foundation; either version 3 of the License, or
1014 (at your option) any later version.
1015
1016 This program is distributed in the hope that it will be useful,
1017 but WITHOUT ANY WARRANTY; without even the implied warranty of
1018 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1019 GNU General Public License for more details.
1020
1021 You should have received a copy of the GNU General Public License
1022 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1023
1024 /* This file was created with the aid of \`\`gdbarch.sh''.
1025
1026 The Bourne shell script \`\`gdbarch.sh'' creates the files
1027 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1028 against the existing \`\`gdbarch.[hc]''. Any differences found
1029 being reported.
1030
1031 If editing this file, please also run gdbarch.sh and merge any
1032 changes into that script. Conversely, when making sweeping changes
1033 to this file, modifying gdbarch.sh and using its output may prove
1034 easier. */
1035
1036 EOF
1037 }
1038
1039 #
1040 # The .h file
1041 #
1042
1043 exec > new-gdbarch.h
1044 copyright
1045 cat <<EOF
1046 #ifndef GDBARCH_H
1047 #define GDBARCH_H
1048
1049 struct floatformat;
1050 struct ui_file;
1051 struct frame_info;
1052 struct value;
1053 struct objfile;
1054 struct obj_section;
1055 struct minimal_symbol;
1056 struct regcache;
1057 struct reggroup;
1058 struct regset;
1059 struct disassemble_info;
1060 struct target_ops;
1061 struct obstack;
1062 struct bp_target_info;
1063 struct target_desc;
1064 struct displaced_step_closure;
1065 struct core_regset_section;
1066 struct syscall;
1067 struct agent_expr;
1068 struct axs_value;
1069 struct stap_parse_info;
1070
1071 /* The architecture associated with the connection to the target.
1072
1073 The architecture vector provides some information that is really
1074 a property of the target: The layout of certain packets, for instance;
1075 or the solib_ops vector. Etc. To differentiate architecture accesses
1076 to per-target properties from per-thread/per-frame/per-objfile properties,
1077 accesses to per-target properties should be made through target_gdbarch.
1078
1079 Eventually, when support for multiple targets is implemented in
1080 GDB, this global should be made target-specific. */
1081 extern struct gdbarch *target_gdbarch;
1082
1083 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1084 gdbarch method. */
1085
1086 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1087 (struct objfile *objfile, void *cb_data);
1088 EOF
1089
1090 # function typedef's
1091 printf "\n"
1092 printf "\n"
1093 printf "/* The following are pre-initialized by GDBARCH. */\n"
1094 function_list | while do_read
1095 do
1096 if class_is_info_p
1097 then
1098 printf "\n"
1099 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1100 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1101 fi
1102 done
1103
1104 # function typedef's
1105 printf "\n"
1106 printf "\n"
1107 printf "/* The following are initialized by the target dependent code. */\n"
1108 function_list | while do_read
1109 do
1110 if [ -n "${comment}" ]
1111 then
1112 echo "${comment}" | sed \
1113 -e '2 s,#,/*,' \
1114 -e '3,$ s,#, ,' \
1115 -e '$ s,$, */,'
1116 fi
1117
1118 if class_is_predicate_p
1119 then
1120 printf "\n"
1121 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1122 fi
1123 if class_is_variable_p
1124 then
1125 printf "\n"
1126 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1127 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1128 fi
1129 if class_is_function_p
1130 then
1131 printf "\n"
1132 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1133 then
1134 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1135 elif class_is_multiarch_p
1136 then
1137 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1138 else
1139 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1140 fi
1141 if [ "x${formal}" = "xvoid" ]
1142 then
1143 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1144 else
1145 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1146 fi
1147 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1148 fi
1149 done
1150
1151 # close it off
1152 cat <<EOF
1153
1154 /* Definition for an unknown syscall, used basically in error-cases. */
1155 #define UNKNOWN_SYSCALL (-1)
1156
1157 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1158
1159
1160 /* Mechanism for co-ordinating the selection of a specific
1161 architecture.
1162
1163 GDB targets (*-tdep.c) can register an interest in a specific
1164 architecture. Other GDB components can register a need to maintain
1165 per-architecture data.
1166
1167 The mechanisms below ensures that there is only a loose connection
1168 between the set-architecture command and the various GDB
1169 components. Each component can independently register their need
1170 to maintain architecture specific data with gdbarch.
1171
1172 Pragmatics:
1173
1174 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1175 didn't scale.
1176
1177 The more traditional mega-struct containing architecture specific
1178 data for all the various GDB components was also considered. Since
1179 GDB is built from a variable number of (fairly independent)
1180 components it was determined that the global aproach was not
1181 applicable. */
1182
1183
1184 /* Register a new architectural family with GDB.
1185
1186 Register support for the specified ARCHITECTURE with GDB. When
1187 gdbarch determines that the specified architecture has been
1188 selected, the corresponding INIT function is called.
1189
1190 --
1191
1192 The INIT function takes two parameters: INFO which contains the
1193 information available to gdbarch about the (possibly new)
1194 architecture; ARCHES which is a list of the previously created
1195 \`\`struct gdbarch'' for this architecture.
1196
1197 The INFO parameter is, as far as possible, be pre-initialized with
1198 information obtained from INFO.ABFD or the global defaults.
1199
1200 The ARCHES parameter is a linked list (sorted most recently used)
1201 of all the previously created architures for this architecture
1202 family. The (possibly NULL) ARCHES->gdbarch can used to access
1203 values from the previously selected architecture for this
1204 architecture family.
1205
1206 The INIT function shall return any of: NULL - indicating that it
1207 doesn't recognize the selected architecture; an existing \`\`struct
1208 gdbarch'' from the ARCHES list - indicating that the new
1209 architecture is just a synonym for an earlier architecture (see
1210 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1211 - that describes the selected architecture (see gdbarch_alloc()).
1212
1213 The DUMP_TDEP function shall print out all target specific values.
1214 Care should be taken to ensure that the function works in both the
1215 multi-arch and non- multi-arch cases. */
1216
1217 struct gdbarch_list
1218 {
1219 struct gdbarch *gdbarch;
1220 struct gdbarch_list *next;
1221 };
1222
1223 struct gdbarch_info
1224 {
1225 /* Use default: NULL (ZERO). */
1226 const struct bfd_arch_info *bfd_arch_info;
1227
1228 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1229 int byte_order;
1230
1231 int byte_order_for_code;
1232
1233 /* Use default: NULL (ZERO). */
1234 bfd *abfd;
1235
1236 /* Use default: NULL (ZERO). */
1237 struct gdbarch_tdep_info *tdep_info;
1238
1239 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1240 enum gdb_osabi osabi;
1241
1242 /* Use default: NULL (ZERO). */
1243 const struct target_desc *target_desc;
1244 };
1245
1246 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1247 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1248
1249 /* DEPRECATED - use gdbarch_register() */
1250 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1251
1252 extern void gdbarch_register (enum bfd_architecture architecture,
1253 gdbarch_init_ftype *,
1254 gdbarch_dump_tdep_ftype *);
1255
1256
1257 /* Return a freshly allocated, NULL terminated, array of the valid
1258 architecture names. Since architectures are registered during the
1259 _initialize phase this function only returns useful information
1260 once initialization has been completed. */
1261
1262 extern const char **gdbarch_printable_names (void);
1263
1264
1265 /* Helper function. Search the list of ARCHES for a GDBARCH that
1266 matches the information provided by INFO. */
1267
1268 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1269
1270
1271 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1272 basic initialization using values obtained from the INFO and TDEP
1273 parameters. set_gdbarch_*() functions are called to complete the
1274 initialization of the object. */
1275
1276 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1277
1278
1279 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1280 It is assumed that the caller freeds the \`\`struct
1281 gdbarch_tdep''. */
1282
1283 extern void gdbarch_free (struct gdbarch *);
1284
1285
1286 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1287 obstack. The memory is freed when the corresponding architecture
1288 is also freed. */
1289
1290 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1291 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1292 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1293
1294
1295 /* Helper function. Force an update of the current architecture.
1296
1297 The actual architecture selected is determined by INFO, \`\`(gdb) set
1298 architecture'' et.al., the existing architecture and BFD's default
1299 architecture. INFO should be initialized to zero and then selected
1300 fields should be updated.
1301
1302 Returns non-zero if the update succeeds. */
1303
1304 extern int gdbarch_update_p (struct gdbarch_info info);
1305
1306
1307 /* Helper function. Find an architecture matching info.
1308
1309 INFO should be initialized using gdbarch_info_init, relevant fields
1310 set, and then finished using gdbarch_info_fill.
1311
1312 Returns the corresponding architecture, or NULL if no matching
1313 architecture was found. */
1314
1315 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1316
1317
1318 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1319
1320 FIXME: kettenis/20031124: Of the functions that follow, only
1321 gdbarch_from_bfd is supposed to survive. The others will
1322 dissappear since in the future GDB will (hopefully) be truly
1323 multi-arch. However, for now we're still stuck with the concept of
1324 a single active architecture. */
1325
1326 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1327
1328
1329 /* Register per-architecture data-pointer.
1330
1331 Reserve space for a per-architecture data-pointer. An identifier
1332 for the reserved data-pointer is returned. That identifer should
1333 be saved in a local static variable.
1334
1335 Memory for the per-architecture data shall be allocated using
1336 gdbarch_obstack_zalloc. That memory will be deleted when the
1337 corresponding architecture object is deleted.
1338
1339 When a previously created architecture is re-selected, the
1340 per-architecture data-pointer for that previous architecture is
1341 restored. INIT() is not re-called.
1342
1343 Multiple registrarants for any architecture are allowed (and
1344 strongly encouraged). */
1345
1346 struct gdbarch_data;
1347
1348 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1349 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1350 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1351 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1352 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1353 struct gdbarch_data *data,
1354 void *pointer);
1355
1356 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1357
1358
1359 /* Set the dynamic target-system-dependent parameters (architecture,
1360 byte-order, ...) using information found in the BFD. */
1361
1362 extern void set_gdbarch_from_file (bfd *);
1363
1364
1365 /* Initialize the current architecture to the "first" one we find on
1366 our list. */
1367
1368 extern void initialize_current_architecture (void);
1369
1370 /* gdbarch trace variable */
1371 extern int gdbarch_debug;
1372
1373 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1374
1375 #endif
1376 EOF
1377 exec 1>&2
1378 #../move-if-change new-gdbarch.h gdbarch.h
1379 compare_new gdbarch.h
1380
1381
1382 #
1383 # C file
1384 #
1385
1386 exec > new-gdbarch.c
1387 copyright
1388 cat <<EOF
1389
1390 #include "defs.h"
1391 #include "arch-utils.h"
1392
1393 #include "gdbcmd.h"
1394 #include "inferior.h"
1395 #include "symcat.h"
1396
1397 #include "floatformat.h"
1398
1399 #include "gdb_assert.h"
1400 #include "gdb_string.h"
1401 #include "reggroups.h"
1402 #include "osabi.h"
1403 #include "gdb_obstack.h"
1404 #include "observer.h"
1405 #include "regcache.h"
1406 #include "objfiles.h"
1407
1408 /* Static function declarations */
1409
1410 static void alloc_gdbarch_data (struct gdbarch *);
1411
1412 /* Non-zero if we want to trace architecture code. */
1413
1414 #ifndef GDBARCH_DEBUG
1415 #define GDBARCH_DEBUG 0
1416 #endif
1417 int gdbarch_debug = GDBARCH_DEBUG;
1418 static void
1419 show_gdbarch_debug (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1423 }
1424
1425 static const char *
1426 pformat (const struct floatformat **format)
1427 {
1428 if (format == NULL)
1429 return "(null)";
1430 else
1431 /* Just print out one of them - this is only for diagnostics. */
1432 return format[0]->name;
1433 }
1434
1435 static const char *
1436 pstring (const char *string)
1437 {
1438 if (string == NULL)
1439 return "(null)";
1440 return string;
1441 }
1442
1443 EOF
1444
1445 # gdbarch open the gdbarch object
1446 printf "\n"
1447 printf "/* Maintain the struct gdbarch object. */\n"
1448 printf "\n"
1449 printf "struct gdbarch\n"
1450 printf "{\n"
1451 printf " /* Has this architecture been fully initialized? */\n"
1452 printf " int initialized_p;\n"
1453 printf "\n"
1454 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1455 printf " struct obstack *obstack;\n"
1456 printf "\n"
1457 printf " /* basic architectural information. */\n"
1458 function_list | while do_read
1459 do
1460 if class_is_info_p
1461 then
1462 printf " ${returntype} ${function};\n"
1463 fi
1464 done
1465 printf "\n"
1466 printf " /* target specific vector. */\n"
1467 printf " struct gdbarch_tdep *tdep;\n"
1468 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1469 printf "\n"
1470 printf " /* per-architecture data-pointers. */\n"
1471 printf " unsigned nr_data;\n"
1472 printf " void **data;\n"
1473 printf "\n"
1474 printf " /* per-architecture swap-regions. */\n"
1475 printf " struct gdbarch_swap *swap;\n"
1476 printf "\n"
1477 cat <<EOF
1478 /* Multi-arch values.
1479
1480 When extending this structure you must:
1481
1482 Add the field below.
1483
1484 Declare set/get functions and define the corresponding
1485 macro in gdbarch.h.
1486
1487 gdbarch_alloc(): If zero/NULL is not a suitable default,
1488 initialize the new field.
1489
1490 verify_gdbarch(): Confirm that the target updated the field
1491 correctly.
1492
1493 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1494 field is dumped out
1495
1496 \`\`startup_gdbarch()'': Append an initial value to the static
1497 variable (base values on the host's c-type system).
1498
1499 get_gdbarch(): Implement the set/get functions (probably using
1500 the macro's as shortcuts).
1501
1502 */
1503
1504 EOF
1505 function_list | while do_read
1506 do
1507 if class_is_variable_p
1508 then
1509 printf " ${returntype} ${function};\n"
1510 elif class_is_function_p
1511 then
1512 printf " gdbarch_${function}_ftype *${function};\n"
1513 fi
1514 done
1515 printf "};\n"
1516
1517 # A pre-initialized vector
1518 printf "\n"
1519 printf "\n"
1520 cat <<EOF
1521 /* The default architecture uses host values (for want of a better
1522 choice). */
1523 EOF
1524 printf "\n"
1525 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1526 printf "\n"
1527 printf "struct gdbarch startup_gdbarch =\n"
1528 printf "{\n"
1529 printf " 1, /* Always initialized. */\n"
1530 printf " NULL, /* The obstack. */\n"
1531 printf " /* basic architecture information. */\n"
1532 function_list | while do_read
1533 do
1534 if class_is_info_p
1535 then
1536 printf " ${staticdefault}, /* ${function} */\n"
1537 fi
1538 done
1539 cat <<EOF
1540 /* target specific vector and its dump routine. */
1541 NULL, NULL,
1542 /*per-architecture data-pointers and swap regions. */
1543 0, NULL, NULL,
1544 /* Multi-arch values */
1545 EOF
1546 function_list | while do_read
1547 do
1548 if class_is_function_p || class_is_variable_p
1549 then
1550 printf " ${staticdefault}, /* ${function} */\n"
1551 fi
1552 done
1553 cat <<EOF
1554 /* startup_gdbarch() */
1555 };
1556
1557 struct gdbarch *target_gdbarch = &startup_gdbarch;
1558 EOF
1559
1560 # Create a new gdbarch struct
1561 cat <<EOF
1562
1563 /* Create a new \`\`struct gdbarch'' based on information provided by
1564 \`\`struct gdbarch_info''. */
1565 EOF
1566 printf "\n"
1567 cat <<EOF
1568 struct gdbarch *
1569 gdbarch_alloc (const struct gdbarch_info *info,
1570 struct gdbarch_tdep *tdep)
1571 {
1572 struct gdbarch *gdbarch;
1573
1574 /* Create an obstack for allocating all the per-architecture memory,
1575 then use that to allocate the architecture vector. */
1576 struct obstack *obstack = XMALLOC (struct obstack);
1577 obstack_init (obstack);
1578 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1579 memset (gdbarch, 0, sizeof (*gdbarch));
1580 gdbarch->obstack = obstack;
1581
1582 alloc_gdbarch_data (gdbarch);
1583
1584 gdbarch->tdep = tdep;
1585 EOF
1586 printf "\n"
1587 function_list | while do_read
1588 do
1589 if class_is_info_p
1590 then
1591 printf " gdbarch->${function} = info->${function};\n"
1592 fi
1593 done
1594 printf "\n"
1595 printf " /* Force the explicit initialization of these. */\n"
1596 function_list | while do_read
1597 do
1598 if class_is_function_p || class_is_variable_p
1599 then
1600 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1601 then
1602 printf " gdbarch->${function} = ${predefault};\n"
1603 fi
1604 fi
1605 done
1606 cat <<EOF
1607 /* gdbarch_alloc() */
1608
1609 return gdbarch;
1610 }
1611 EOF
1612
1613 # Free a gdbarch struct.
1614 printf "\n"
1615 printf "\n"
1616 cat <<EOF
1617 /* Allocate extra space using the per-architecture obstack. */
1618
1619 void *
1620 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1621 {
1622 void *data = obstack_alloc (arch->obstack, size);
1623
1624 memset (data, 0, size);
1625 return data;
1626 }
1627
1628
1629 /* Free a gdbarch struct. This should never happen in normal
1630 operation --- once you've created a gdbarch, you keep it around.
1631 However, if an architecture's init function encounters an error
1632 building the structure, it may need to clean up a partially
1633 constructed gdbarch. */
1634
1635 void
1636 gdbarch_free (struct gdbarch *arch)
1637 {
1638 struct obstack *obstack;
1639
1640 gdb_assert (arch != NULL);
1641 gdb_assert (!arch->initialized_p);
1642 obstack = arch->obstack;
1643 obstack_free (obstack, 0); /* Includes the ARCH. */
1644 xfree (obstack);
1645 }
1646 EOF
1647
1648 # verify a new architecture
1649 cat <<EOF
1650
1651
1652 /* Ensure that all values in a GDBARCH are reasonable. */
1653
1654 static void
1655 verify_gdbarch (struct gdbarch *gdbarch)
1656 {
1657 struct ui_file *log;
1658 struct cleanup *cleanups;
1659 long length;
1660 char *buf;
1661
1662 log = mem_fileopen ();
1663 cleanups = make_cleanup_ui_file_delete (log);
1664 /* fundamental */
1665 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1666 fprintf_unfiltered (log, "\n\tbyte-order");
1667 if (gdbarch->bfd_arch_info == NULL)
1668 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1669 /* Check those that need to be defined for the given multi-arch level. */
1670 EOF
1671 function_list | while do_read
1672 do
1673 if class_is_function_p || class_is_variable_p
1674 then
1675 if [ "x${invalid_p}" = "x0" ]
1676 then
1677 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1678 elif class_is_predicate_p
1679 then
1680 printf " /* Skip verify of ${function}, has predicate. */\n"
1681 # FIXME: See do_read for potential simplification
1682 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1683 then
1684 printf " if (${invalid_p})\n"
1685 printf " gdbarch->${function} = ${postdefault};\n"
1686 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1687 then
1688 printf " if (gdbarch->${function} == ${predefault})\n"
1689 printf " gdbarch->${function} = ${postdefault};\n"
1690 elif [ -n "${postdefault}" ]
1691 then
1692 printf " if (gdbarch->${function} == 0)\n"
1693 printf " gdbarch->${function} = ${postdefault};\n"
1694 elif [ -n "${invalid_p}" ]
1695 then
1696 printf " if (${invalid_p})\n"
1697 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1698 elif [ -n "${predefault}" ]
1699 then
1700 printf " if (gdbarch->${function} == ${predefault})\n"
1701 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1702 fi
1703 fi
1704 done
1705 cat <<EOF
1706 buf = ui_file_xstrdup (log, &length);
1707 make_cleanup (xfree, buf);
1708 if (length > 0)
1709 internal_error (__FILE__, __LINE__,
1710 _("verify_gdbarch: the following are invalid ...%s"),
1711 buf);
1712 do_cleanups (cleanups);
1713 }
1714 EOF
1715
1716 # dump the structure
1717 printf "\n"
1718 printf "\n"
1719 cat <<EOF
1720 /* Print out the details of the current architecture. */
1721
1722 void
1723 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1724 {
1725 const char *gdb_nm_file = "<not-defined>";
1726
1727 #if defined (GDB_NM_FILE)
1728 gdb_nm_file = GDB_NM_FILE;
1729 #endif
1730 fprintf_unfiltered (file,
1731 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1732 gdb_nm_file);
1733 EOF
1734 function_list | sort -t: -k 3 | while do_read
1735 do
1736 # First the predicate
1737 if class_is_predicate_p
1738 then
1739 printf " fprintf_unfiltered (file,\n"
1740 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1741 printf " gdbarch_${function}_p (gdbarch));\n"
1742 fi
1743 # Print the corresponding value.
1744 if class_is_function_p
1745 then
1746 printf " fprintf_unfiltered (file,\n"
1747 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1748 printf " host_address_to_string (gdbarch->${function}));\n"
1749 else
1750 # It is a variable
1751 case "${print}:${returntype}" in
1752 :CORE_ADDR )
1753 fmt="%s"
1754 print="core_addr_to_string_nz (gdbarch->${function})"
1755 ;;
1756 :* )
1757 fmt="%s"
1758 print="plongest (gdbarch->${function})"
1759 ;;
1760 * )
1761 fmt="%s"
1762 ;;
1763 esac
1764 printf " fprintf_unfiltered (file,\n"
1765 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1766 printf " ${print});\n"
1767 fi
1768 done
1769 cat <<EOF
1770 if (gdbarch->dump_tdep != NULL)
1771 gdbarch->dump_tdep (gdbarch, file);
1772 }
1773 EOF
1774
1775
1776 # GET/SET
1777 printf "\n"
1778 cat <<EOF
1779 struct gdbarch_tdep *
1780 gdbarch_tdep (struct gdbarch *gdbarch)
1781 {
1782 if (gdbarch_debug >= 2)
1783 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1784 return gdbarch->tdep;
1785 }
1786 EOF
1787 printf "\n"
1788 function_list | while do_read
1789 do
1790 if class_is_predicate_p
1791 then
1792 printf "\n"
1793 printf "int\n"
1794 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1795 printf "{\n"
1796 printf " gdb_assert (gdbarch != NULL);\n"
1797 printf " return ${predicate};\n"
1798 printf "}\n"
1799 fi
1800 if class_is_function_p
1801 then
1802 printf "\n"
1803 printf "${returntype}\n"
1804 if [ "x${formal}" = "xvoid" ]
1805 then
1806 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1807 else
1808 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1809 fi
1810 printf "{\n"
1811 printf " gdb_assert (gdbarch != NULL);\n"
1812 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1813 if class_is_predicate_p && test -n "${predefault}"
1814 then
1815 # Allow a call to a function with a predicate.
1816 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1817 fi
1818 printf " if (gdbarch_debug >= 2)\n"
1819 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1820 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1821 then
1822 if class_is_multiarch_p
1823 then
1824 params="gdbarch"
1825 else
1826 params=""
1827 fi
1828 else
1829 if class_is_multiarch_p
1830 then
1831 params="gdbarch, ${actual}"
1832 else
1833 params="${actual}"
1834 fi
1835 fi
1836 if [ "x${returntype}" = "xvoid" ]
1837 then
1838 printf " gdbarch->${function} (${params});\n"
1839 else
1840 printf " return gdbarch->${function} (${params});\n"
1841 fi
1842 printf "}\n"
1843 printf "\n"
1844 printf "void\n"
1845 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1846 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1847 printf "{\n"
1848 printf " gdbarch->${function} = ${function};\n"
1849 printf "}\n"
1850 elif class_is_variable_p
1851 then
1852 printf "\n"
1853 printf "${returntype}\n"
1854 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1855 printf "{\n"
1856 printf " gdb_assert (gdbarch != NULL);\n"
1857 if [ "x${invalid_p}" = "x0" ]
1858 then
1859 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1860 elif [ -n "${invalid_p}" ]
1861 then
1862 printf " /* Check variable is valid. */\n"
1863 printf " gdb_assert (!(${invalid_p}));\n"
1864 elif [ -n "${predefault}" ]
1865 then
1866 printf " /* Check variable changed from pre-default. */\n"
1867 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1868 fi
1869 printf " if (gdbarch_debug >= 2)\n"
1870 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1871 printf " return gdbarch->${function};\n"
1872 printf "}\n"
1873 printf "\n"
1874 printf "void\n"
1875 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1876 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1877 printf "{\n"
1878 printf " gdbarch->${function} = ${function};\n"
1879 printf "}\n"
1880 elif class_is_info_p
1881 then
1882 printf "\n"
1883 printf "${returntype}\n"
1884 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1885 printf "{\n"
1886 printf " gdb_assert (gdbarch != NULL);\n"
1887 printf " if (gdbarch_debug >= 2)\n"
1888 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1889 printf " return gdbarch->${function};\n"
1890 printf "}\n"
1891 fi
1892 done
1893
1894 # All the trailing guff
1895 cat <<EOF
1896
1897
1898 /* Keep a registry of per-architecture data-pointers required by GDB
1899 modules. */
1900
1901 struct gdbarch_data
1902 {
1903 unsigned index;
1904 int init_p;
1905 gdbarch_data_pre_init_ftype *pre_init;
1906 gdbarch_data_post_init_ftype *post_init;
1907 };
1908
1909 struct gdbarch_data_registration
1910 {
1911 struct gdbarch_data *data;
1912 struct gdbarch_data_registration *next;
1913 };
1914
1915 struct gdbarch_data_registry
1916 {
1917 unsigned nr;
1918 struct gdbarch_data_registration *registrations;
1919 };
1920
1921 struct gdbarch_data_registry gdbarch_data_registry =
1922 {
1923 0, NULL,
1924 };
1925
1926 static struct gdbarch_data *
1927 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1928 gdbarch_data_post_init_ftype *post_init)
1929 {
1930 struct gdbarch_data_registration **curr;
1931
1932 /* Append the new registration. */
1933 for (curr = &gdbarch_data_registry.registrations;
1934 (*curr) != NULL;
1935 curr = &(*curr)->next);
1936 (*curr) = XMALLOC (struct gdbarch_data_registration);
1937 (*curr)->next = NULL;
1938 (*curr)->data = XMALLOC (struct gdbarch_data);
1939 (*curr)->data->index = gdbarch_data_registry.nr++;
1940 (*curr)->data->pre_init = pre_init;
1941 (*curr)->data->post_init = post_init;
1942 (*curr)->data->init_p = 1;
1943 return (*curr)->data;
1944 }
1945
1946 struct gdbarch_data *
1947 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1948 {
1949 return gdbarch_data_register (pre_init, NULL);
1950 }
1951
1952 struct gdbarch_data *
1953 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1954 {
1955 return gdbarch_data_register (NULL, post_init);
1956 }
1957
1958 /* Create/delete the gdbarch data vector. */
1959
1960 static void
1961 alloc_gdbarch_data (struct gdbarch *gdbarch)
1962 {
1963 gdb_assert (gdbarch->data == NULL);
1964 gdbarch->nr_data = gdbarch_data_registry.nr;
1965 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1966 }
1967
1968 /* Initialize the current value of the specified per-architecture
1969 data-pointer. */
1970
1971 void
1972 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1973 struct gdbarch_data *data,
1974 void *pointer)
1975 {
1976 gdb_assert (data->index < gdbarch->nr_data);
1977 gdb_assert (gdbarch->data[data->index] == NULL);
1978 gdb_assert (data->pre_init == NULL);
1979 gdbarch->data[data->index] = pointer;
1980 }
1981
1982 /* Return the current value of the specified per-architecture
1983 data-pointer. */
1984
1985 void *
1986 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1987 {
1988 gdb_assert (data->index < gdbarch->nr_data);
1989 if (gdbarch->data[data->index] == NULL)
1990 {
1991 /* The data-pointer isn't initialized, call init() to get a
1992 value. */
1993 if (data->pre_init != NULL)
1994 /* Mid architecture creation: pass just the obstack, and not
1995 the entire architecture, as that way it isn't possible for
1996 pre-init code to refer to undefined architecture
1997 fields. */
1998 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1999 else if (gdbarch->initialized_p
2000 && data->post_init != NULL)
2001 /* Post architecture creation: pass the entire architecture
2002 (as all fields are valid), but be careful to also detect
2003 recursive references. */
2004 {
2005 gdb_assert (data->init_p);
2006 data->init_p = 0;
2007 gdbarch->data[data->index] = data->post_init (gdbarch);
2008 data->init_p = 1;
2009 }
2010 else
2011 /* The architecture initialization hasn't completed - punt -
2012 hope that the caller knows what they are doing. Once
2013 deprecated_set_gdbarch_data has been initialized, this can be
2014 changed to an internal error. */
2015 return NULL;
2016 gdb_assert (gdbarch->data[data->index] != NULL);
2017 }
2018 return gdbarch->data[data->index];
2019 }
2020
2021
2022 /* Keep a registry of the architectures known by GDB. */
2023
2024 struct gdbarch_registration
2025 {
2026 enum bfd_architecture bfd_architecture;
2027 gdbarch_init_ftype *init;
2028 gdbarch_dump_tdep_ftype *dump_tdep;
2029 struct gdbarch_list *arches;
2030 struct gdbarch_registration *next;
2031 };
2032
2033 static struct gdbarch_registration *gdbarch_registry = NULL;
2034
2035 static void
2036 append_name (const char ***buf, int *nr, const char *name)
2037 {
2038 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2039 (*buf)[*nr] = name;
2040 *nr += 1;
2041 }
2042
2043 const char **
2044 gdbarch_printable_names (void)
2045 {
2046 /* Accumulate a list of names based on the registed list of
2047 architectures. */
2048 int nr_arches = 0;
2049 const char **arches = NULL;
2050 struct gdbarch_registration *rego;
2051
2052 for (rego = gdbarch_registry;
2053 rego != NULL;
2054 rego = rego->next)
2055 {
2056 const struct bfd_arch_info *ap;
2057 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2058 if (ap == NULL)
2059 internal_error (__FILE__, __LINE__,
2060 _("gdbarch_architecture_names: multi-arch unknown"));
2061 do
2062 {
2063 append_name (&arches, &nr_arches, ap->printable_name);
2064 ap = ap->next;
2065 }
2066 while (ap != NULL);
2067 }
2068 append_name (&arches, &nr_arches, NULL);
2069 return arches;
2070 }
2071
2072
2073 void
2074 gdbarch_register (enum bfd_architecture bfd_architecture,
2075 gdbarch_init_ftype *init,
2076 gdbarch_dump_tdep_ftype *dump_tdep)
2077 {
2078 struct gdbarch_registration **curr;
2079 const struct bfd_arch_info *bfd_arch_info;
2080
2081 /* Check that BFD recognizes this architecture */
2082 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2083 if (bfd_arch_info == NULL)
2084 {
2085 internal_error (__FILE__, __LINE__,
2086 _("gdbarch: Attempt to register "
2087 "unknown architecture (%d)"),
2088 bfd_architecture);
2089 }
2090 /* Check that we haven't seen this architecture before. */
2091 for (curr = &gdbarch_registry;
2092 (*curr) != NULL;
2093 curr = &(*curr)->next)
2094 {
2095 if (bfd_architecture == (*curr)->bfd_architecture)
2096 internal_error (__FILE__, __LINE__,
2097 _("gdbarch: Duplicate registration "
2098 "of architecture (%s)"),
2099 bfd_arch_info->printable_name);
2100 }
2101 /* log it */
2102 if (gdbarch_debug)
2103 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2104 bfd_arch_info->printable_name,
2105 host_address_to_string (init));
2106 /* Append it */
2107 (*curr) = XMALLOC (struct gdbarch_registration);
2108 (*curr)->bfd_architecture = bfd_architecture;
2109 (*curr)->init = init;
2110 (*curr)->dump_tdep = dump_tdep;
2111 (*curr)->arches = NULL;
2112 (*curr)->next = NULL;
2113 }
2114
2115 void
2116 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2117 gdbarch_init_ftype *init)
2118 {
2119 gdbarch_register (bfd_architecture, init, NULL);
2120 }
2121
2122
2123 /* Look for an architecture using gdbarch_info. */
2124
2125 struct gdbarch_list *
2126 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2127 const struct gdbarch_info *info)
2128 {
2129 for (; arches != NULL; arches = arches->next)
2130 {
2131 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2132 continue;
2133 if (info->byte_order != arches->gdbarch->byte_order)
2134 continue;
2135 if (info->osabi != arches->gdbarch->osabi)
2136 continue;
2137 if (info->target_desc != arches->gdbarch->target_desc)
2138 continue;
2139 return arches;
2140 }
2141 return NULL;
2142 }
2143
2144
2145 /* Find an architecture that matches the specified INFO. Create a new
2146 architecture if needed. Return that new architecture. */
2147
2148 struct gdbarch *
2149 gdbarch_find_by_info (struct gdbarch_info info)
2150 {
2151 struct gdbarch *new_gdbarch;
2152 struct gdbarch_registration *rego;
2153
2154 /* Fill in missing parts of the INFO struct using a number of
2155 sources: "set ..."; INFOabfd supplied; and the global
2156 defaults. */
2157 gdbarch_info_fill (&info);
2158
2159 /* Must have found some sort of architecture. */
2160 gdb_assert (info.bfd_arch_info != NULL);
2161
2162 if (gdbarch_debug)
2163 {
2164 fprintf_unfiltered (gdb_stdlog,
2165 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2166 (info.bfd_arch_info != NULL
2167 ? info.bfd_arch_info->printable_name
2168 : "(null)"));
2169 fprintf_unfiltered (gdb_stdlog,
2170 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2171 info.byte_order,
2172 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2173 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2174 : "default"));
2175 fprintf_unfiltered (gdb_stdlog,
2176 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2177 info.osabi, gdbarch_osabi_name (info.osabi));
2178 fprintf_unfiltered (gdb_stdlog,
2179 "gdbarch_find_by_info: info.abfd %s\n",
2180 host_address_to_string (info.abfd));
2181 fprintf_unfiltered (gdb_stdlog,
2182 "gdbarch_find_by_info: info.tdep_info %s\n",
2183 host_address_to_string (info.tdep_info));
2184 }
2185
2186 /* Find the tdep code that knows about this architecture. */
2187 for (rego = gdbarch_registry;
2188 rego != NULL;
2189 rego = rego->next)
2190 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2191 break;
2192 if (rego == NULL)
2193 {
2194 if (gdbarch_debug)
2195 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2196 "No matching architecture\n");
2197 return 0;
2198 }
2199
2200 /* Ask the tdep code for an architecture that matches "info". */
2201 new_gdbarch = rego->init (info, rego->arches);
2202
2203 /* Did the tdep code like it? No. Reject the change and revert to
2204 the old architecture. */
2205 if (new_gdbarch == NULL)
2206 {
2207 if (gdbarch_debug)
2208 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2209 "Target rejected architecture\n");
2210 return NULL;
2211 }
2212
2213 /* Is this a pre-existing architecture (as determined by already
2214 being initialized)? Move it to the front of the architecture
2215 list (keeping the list sorted Most Recently Used). */
2216 if (new_gdbarch->initialized_p)
2217 {
2218 struct gdbarch_list **list;
2219 struct gdbarch_list *this;
2220 if (gdbarch_debug)
2221 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2222 "Previous architecture %s (%s) selected\n",
2223 host_address_to_string (new_gdbarch),
2224 new_gdbarch->bfd_arch_info->printable_name);
2225 /* Find the existing arch in the list. */
2226 for (list = &rego->arches;
2227 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2228 list = &(*list)->next);
2229 /* It had better be in the list of architectures. */
2230 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2231 /* Unlink THIS. */
2232 this = (*list);
2233 (*list) = this->next;
2234 /* Insert THIS at the front. */
2235 this->next = rego->arches;
2236 rego->arches = this;
2237 /* Return it. */
2238 return new_gdbarch;
2239 }
2240
2241 /* It's a new architecture. */
2242 if (gdbarch_debug)
2243 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2244 "New architecture %s (%s) selected\n",
2245 host_address_to_string (new_gdbarch),
2246 new_gdbarch->bfd_arch_info->printable_name);
2247
2248 /* Insert the new architecture into the front of the architecture
2249 list (keep the list sorted Most Recently Used). */
2250 {
2251 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2252 this->next = rego->arches;
2253 this->gdbarch = new_gdbarch;
2254 rego->arches = this;
2255 }
2256
2257 /* Check that the newly installed architecture is valid. Plug in
2258 any post init values. */
2259 new_gdbarch->dump_tdep = rego->dump_tdep;
2260 verify_gdbarch (new_gdbarch);
2261 new_gdbarch->initialized_p = 1;
2262
2263 if (gdbarch_debug)
2264 gdbarch_dump (new_gdbarch, gdb_stdlog);
2265
2266 return new_gdbarch;
2267 }
2268
2269 /* Make the specified architecture current. */
2270
2271 void
2272 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2273 {
2274 gdb_assert (new_gdbarch != NULL);
2275 gdb_assert (new_gdbarch->initialized_p);
2276 target_gdbarch = new_gdbarch;
2277 observer_notify_architecture_changed (new_gdbarch);
2278 registers_changed ();
2279 }
2280
2281 extern void _initialize_gdbarch (void);
2282
2283 void
2284 _initialize_gdbarch (void)
2285 {
2286 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2287 Set architecture debugging."), _("\\
2288 Show architecture debugging."), _("\\
2289 When non-zero, architecture debugging is enabled."),
2290 NULL,
2291 show_gdbarch_debug,
2292 &setdebuglist, &showdebuglist);
2293 }
2294 EOF
2295
2296 # close things off
2297 exec 1>&2
2298 #../move-if-change new-gdbarch.c gdbarch.c
2299 compare_new gdbarch.c
This page took 0.083912 seconds and 4 git commands to generate.