2004-08-20 Michael Chastain <mec.gnu@mindspring.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
404 #
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 #
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 #
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 # serious shakedown.
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 #
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
429 #
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
436
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
439 # all (-1).
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
455
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
474 # replacement for DEPRECATED_PUSH_ARGUMENTS.
475 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
476 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
477 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
478 # DEPRECATED_REGISTER_SIZE can be deleted.
479 v:=:int:deprecated_register_size
480 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
482
483 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
490 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
491 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
492 # setjmp/longjmp support.
493 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
494 #
495 v:=:int:believe_pcc_promotion:::::::
496 #
497 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
498 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
499 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
500 #
501 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
502 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
503 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
504 #
505 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
506 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
507
508 # It has been suggested that this, well actually its predecessor,
509 # should take the type/value of the function to be called and not the
510 # return type. This is left as an exercise for the reader.
511
512 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
513 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
514 # (via legacy_return_value), when a small struct is involved.
515
516 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
517
518 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
519 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
520 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
521 # RETURN_VALUE.
522
523 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
524 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
525 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
526 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
527 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
528
529 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
530 # ABI suitable for the implementation of a robust extract
531 # struct-convention return-value address method (the sparc saves the
532 # address in the callers frame). All the other cases so far examined,
533 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
534 # erreneous - the code was incorrectly assuming that the return-value
535 # address, stored in a register, was preserved across the entire
536 # function call.
537
538 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
539 # the ABIs that are still to be analyzed - perhaps this should simply
540 # be deleted. The commented out extract_returned_value_address method
541 # is provided as a starting point for the 32-bit SPARC. It, or
542 # something like it, along with changes to both infcmd.c and stack.c
543 # will be needed for that case to work. NB: It is passed the callers
544 # frame since it is only after the callee has returned that this
545 # function is used.
546
547 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
548 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
549
550 #
551 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
552 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
553 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
554 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
555 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
556 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
557 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
558
559 # A function can be addressed by either it's "pointer" (possibly a
560 # descriptor address) or "entry point" (first executable instruction).
561 # The method "convert_from_func_ptr_addr" converting the former to the
562 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
563 # a simplified subset of that functionality - the function's address
564 # corresponds to the "function pointer" and the function's start
565 # corresponds to the "function entry point" - and hence is redundant.
566
567 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
568
569 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
570 #
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
578 #
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 # alignment.
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
590 #
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 # ADDR_BITS_REMOVE.
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
615 # disassembler. Perhaps objdump can handle it?
616 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
617 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
618
619
620 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
621 # evaluates non-zero, this is the address where the debugger will place
622 # a step-resume breakpoint to get us past the dynamic linker.
623 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
624 # For SVR4 shared libraries, each call goes through a small piece of
625 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
626 # to nonzero if we are currently stopped in one of these.
627 f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_call_trampoline::0
628
629 # Some systems also have trampoline code for returning from shared libs.
630 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
631
632 # A target might have problems with watchpoints as soon as the stack
633 # frame of the current function has been destroyed. This mostly happens
634 # as the first action in a funtion's epilogue. in_function_epilogue_p()
635 # is defined to return a non-zero value if either the given addr is one
636 # instruction after the stack destroying instruction up to the trailing
637 # return instruction or if we can figure out that the stack frame has
638 # already been invalidated regardless of the value of addr. Targets
639 # which don't suffer from that problem could just let this functionality
640 # untouched.
641 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
642 # Given a vector of command-line arguments, return a newly allocated
643 # string which, when passed to the create_inferior function, will be
644 # parsed (on Unix systems, by the shell) to yield the same vector.
645 # This function should call error() if the argument vector is not
646 # representable for this target or if this target does not support
647 # command-line arguments.
648 # ARGC is the number of elements in the vector.
649 # ARGV is an array of strings, one per argument.
650 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
651 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
652 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
653 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
654 v:=:int:cannot_step_breakpoint:::0:0::0
655 v:=:int:have_nonsteppable_watchpoint:::0:0::0
656 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
657 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
658 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
659 # Is a register in a group
660 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
661 # Fetch the pointer to the ith function argument.
662 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
663
664 # Return the appropriate register set for a core file section with
665 # name SECT_NAME and size SECT_SIZE.
666 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
667 EOF
668 }
669
670 #
671 # The .log file
672 #
673 exec > new-gdbarch.log
674 function_list | while do_read
675 do
676 cat <<EOF
677 ${class} ${returntype} ${function} ($formal)
678 EOF
679 for r in ${read}
680 do
681 eval echo \"\ \ \ \ ${r}=\${${r}}\"
682 done
683 if class_is_predicate_p && fallback_default_p
684 then
685 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
686 kill $$
687 exit 1
688 fi
689 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
690 then
691 echo "Error: postdefault is useless when invalid_p=0" 1>&2
692 kill $$
693 exit 1
694 fi
695 if class_is_multiarch_p
696 then
697 if class_is_predicate_p ; then :
698 elif test "x${predefault}" = "x"
699 then
700 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
701 kill $$
702 exit 1
703 fi
704 fi
705 echo ""
706 done
707
708 exec 1>&2
709 compare_new gdbarch.log
710
711
712 copyright ()
713 {
714 cat <<EOF
715 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
716
717 /* Dynamic architecture support for GDB, the GNU debugger.
718
719 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
720 Software Foundation, Inc.
721
722 This file is part of GDB.
723
724 This program is free software; you can redistribute it and/or modify
725 it under the terms of the GNU General Public License as published by
726 the Free Software Foundation; either version 2 of the License, or
727 (at your option) any later version.
728
729 This program is distributed in the hope that it will be useful,
730 but WITHOUT ANY WARRANTY; without even the implied warranty of
731 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
732 GNU General Public License for more details.
733
734 You should have received a copy of the GNU General Public License
735 along with this program; if not, write to the Free Software
736 Foundation, Inc., 59 Temple Place - Suite 330,
737 Boston, MA 02111-1307, USA. */
738
739 /* This file was created with the aid of \`\`gdbarch.sh''.
740
741 The Bourne shell script \`\`gdbarch.sh'' creates the files
742 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
743 against the existing \`\`gdbarch.[hc]''. Any differences found
744 being reported.
745
746 If editing this file, please also run gdbarch.sh and merge any
747 changes into that script. Conversely, when making sweeping changes
748 to this file, modifying gdbarch.sh and using its output may prove
749 easier. */
750
751 EOF
752 }
753
754 #
755 # The .h file
756 #
757
758 exec > new-gdbarch.h
759 copyright
760 cat <<EOF
761 #ifndef GDBARCH_H
762 #define GDBARCH_H
763
764 struct floatformat;
765 struct ui_file;
766 struct frame_info;
767 struct value;
768 struct objfile;
769 struct minimal_symbol;
770 struct regcache;
771 struct reggroup;
772 struct regset;
773 struct disassemble_info;
774 struct target_ops;
775 struct obstack;
776
777 extern struct gdbarch *current_gdbarch;
778
779 /* If any of the following are defined, the target wasn't correctly
780 converted. */
781
782 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
783 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
784 #endif
785 EOF
786
787 # function typedef's
788 printf "\n"
789 printf "\n"
790 printf "/* The following are pre-initialized by GDBARCH. */\n"
791 function_list | while do_read
792 do
793 if class_is_info_p
794 then
795 printf "\n"
796 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
797 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
798 if test -n "${macro}"
799 then
800 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
801 printf "#error \"Non multi-arch definition of ${macro}\"\n"
802 printf "#endif\n"
803 printf "#if !defined (${macro})\n"
804 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
805 printf "#endif\n"
806 fi
807 fi
808 done
809
810 # function typedef's
811 printf "\n"
812 printf "\n"
813 printf "/* The following are initialized by the target dependent code. */\n"
814 function_list | while do_read
815 do
816 if [ -n "${comment}" ]
817 then
818 echo "${comment}" | sed \
819 -e '2 s,#,/*,' \
820 -e '3,$ s,#, ,' \
821 -e '$ s,$, */,'
822 fi
823
824 if class_is_predicate_p
825 then
826 if test -n "${macro}"
827 then
828 printf "\n"
829 printf "#if defined (${macro})\n"
830 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
831 printf "#if !defined (${macro}_P)\n"
832 printf "#define ${macro}_P() (1)\n"
833 printf "#endif\n"
834 printf "#endif\n"
835 fi
836 printf "\n"
837 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
838 if test -n "${macro}"
839 then
840 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
841 printf "#error \"Non multi-arch definition of ${macro}\"\n"
842 printf "#endif\n"
843 printf "#if !defined (${macro}_P)\n"
844 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
845 printf "#endif\n"
846 fi
847 fi
848 if class_is_variable_p
849 then
850 printf "\n"
851 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
852 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
853 if test -n "${macro}"
854 then
855 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
856 printf "#error \"Non multi-arch definition of ${macro}\"\n"
857 printf "#endif\n"
858 printf "#if !defined (${macro})\n"
859 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
860 printf "#endif\n"
861 fi
862 fi
863 if class_is_function_p
864 then
865 printf "\n"
866 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
867 then
868 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
869 elif class_is_multiarch_p
870 then
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
872 else
873 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
874 fi
875 if [ "x${formal}" = "xvoid" ]
876 then
877 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
878 else
879 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
880 fi
881 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
882 if test -n "${macro}"
883 then
884 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
885 printf "#error \"Non multi-arch definition of ${macro}\"\n"
886 printf "#endif\n"
887 if [ "x${actual}" = "x" ]
888 then
889 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
890 elif [ "x${actual}" = "x-" ]
891 then
892 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
893 else
894 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
895 fi
896 printf "#if !defined (${macro})\n"
897 if [ "x${actual}" = "x" ]
898 then
899 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
900 elif [ "x${actual}" = "x-" ]
901 then
902 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
903 else
904 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
905 fi
906 printf "#endif\n"
907 fi
908 fi
909 done
910
911 # close it off
912 cat <<EOF
913
914 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
915
916
917 /* Mechanism for co-ordinating the selection of a specific
918 architecture.
919
920 GDB targets (*-tdep.c) can register an interest in a specific
921 architecture. Other GDB components can register a need to maintain
922 per-architecture data.
923
924 The mechanisms below ensures that there is only a loose connection
925 between the set-architecture command and the various GDB
926 components. Each component can independently register their need
927 to maintain architecture specific data with gdbarch.
928
929 Pragmatics:
930
931 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
932 didn't scale.
933
934 The more traditional mega-struct containing architecture specific
935 data for all the various GDB components was also considered. Since
936 GDB is built from a variable number of (fairly independent)
937 components it was determined that the global aproach was not
938 applicable. */
939
940
941 /* Register a new architectural family with GDB.
942
943 Register support for the specified ARCHITECTURE with GDB. When
944 gdbarch determines that the specified architecture has been
945 selected, the corresponding INIT function is called.
946
947 --
948
949 The INIT function takes two parameters: INFO which contains the
950 information available to gdbarch about the (possibly new)
951 architecture; ARCHES which is a list of the previously created
952 \`\`struct gdbarch'' for this architecture.
953
954 The INFO parameter is, as far as possible, be pre-initialized with
955 information obtained from INFO.ABFD or the previously selected
956 architecture.
957
958 The ARCHES parameter is a linked list (sorted most recently used)
959 of all the previously created architures for this architecture
960 family. The (possibly NULL) ARCHES->gdbarch can used to access
961 values from the previously selected architecture for this
962 architecture family. The global \`\`current_gdbarch'' shall not be
963 used.
964
965 The INIT function shall return any of: NULL - indicating that it
966 doesn't recognize the selected architecture; an existing \`\`struct
967 gdbarch'' from the ARCHES list - indicating that the new
968 architecture is just a synonym for an earlier architecture (see
969 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
970 - that describes the selected architecture (see gdbarch_alloc()).
971
972 The DUMP_TDEP function shall print out all target specific values.
973 Care should be taken to ensure that the function works in both the
974 multi-arch and non- multi-arch cases. */
975
976 struct gdbarch_list
977 {
978 struct gdbarch *gdbarch;
979 struct gdbarch_list *next;
980 };
981
982 struct gdbarch_info
983 {
984 /* Use default: NULL (ZERO). */
985 const struct bfd_arch_info *bfd_arch_info;
986
987 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
988 int byte_order;
989
990 /* Use default: NULL (ZERO). */
991 bfd *abfd;
992
993 /* Use default: NULL (ZERO). */
994 struct gdbarch_tdep_info *tdep_info;
995
996 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
997 enum gdb_osabi osabi;
998 };
999
1000 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1001 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1002
1003 /* DEPRECATED - use gdbarch_register() */
1004 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1005
1006 extern void gdbarch_register (enum bfd_architecture architecture,
1007 gdbarch_init_ftype *,
1008 gdbarch_dump_tdep_ftype *);
1009
1010
1011 /* Return a freshly allocated, NULL terminated, array of the valid
1012 architecture names. Since architectures are registered during the
1013 _initialize phase this function only returns useful information
1014 once initialization has been completed. */
1015
1016 extern const char **gdbarch_printable_names (void);
1017
1018
1019 /* Helper function. Search the list of ARCHES for a GDBARCH that
1020 matches the information provided by INFO. */
1021
1022 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1023
1024
1025 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1026 basic initialization using values obtained from the INFO andTDEP
1027 parameters. set_gdbarch_*() functions are called to complete the
1028 initialization of the object. */
1029
1030 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1031
1032
1033 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1034 It is assumed that the caller freeds the \`\`struct
1035 gdbarch_tdep''. */
1036
1037 extern void gdbarch_free (struct gdbarch *);
1038
1039
1040 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1041 obstack. The memory is freed when the corresponding architecture
1042 is also freed. */
1043
1044 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1045 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1046 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1047
1048
1049 /* Helper function. Force an update of the current architecture.
1050
1051 The actual architecture selected is determined by INFO, \`\`(gdb) set
1052 architecture'' et.al., the existing architecture and BFD's default
1053 architecture. INFO should be initialized to zero and then selected
1054 fields should be updated.
1055
1056 Returns non-zero if the update succeeds */
1057
1058 extern int gdbarch_update_p (struct gdbarch_info info);
1059
1060
1061 /* Helper function. Find an architecture matching info.
1062
1063 INFO should be initialized using gdbarch_info_init, relevant fields
1064 set, and then finished using gdbarch_info_fill.
1065
1066 Returns the corresponding architecture, or NULL if no matching
1067 architecture was found. "current_gdbarch" is not updated. */
1068
1069 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1070
1071
1072 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1073
1074 FIXME: kettenis/20031124: Of the functions that follow, only
1075 gdbarch_from_bfd is supposed to survive. The others will
1076 dissappear since in the future GDB will (hopefully) be truly
1077 multi-arch. However, for now we're still stuck with the concept of
1078 a single active architecture. */
1079
1080 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1081
1082
1083 /* Register per-architecture data-pointer.
1084
1085 Reserve space for a per-architecture data-pointer. An identifier
1086 for the reserved data-pointer is returned. That identifer should
1087 be saved in a local static variable.
1088
1089 Memory for the per-architecture data shall be allocated using
1090 gdbarch_obstack_zalloc. That memory will be deleted when the
1091 corresponding architecture object is deleted.
1092
1093 When a previously created architecture is re-selected, the
1094 per-architecture data-pointer for that previous architecture is
1095 restored. INIT() is not re-called.
1096
1097 Multiple registrarants for any architecture are allowed (and
1098 strongly encouraged). */
1099
1100 struct gdbarch_data;
1101
1102 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1103 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1104 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1105 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1106 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1107 struct gdbarch_data *data,
1108 void *pointer);
1109
1110 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1111
1112
1113
1114 /* Register per-architecture memory region.
1115
1116 Provide a memory-region swap mechanism. Per-architecture memory
1117 region are created. These memory regions are swapped whenever the
1118 architecture is changed. For a new architecture, the memory region
1119 is initialized with zero (0) and the INIT function is called.
1120
1121 Memory regions are swapped / initialized in the order that they are
1122 registered. NULL DATA and/or INIT values can be specified.
1123
1124 New code should use gdbarch_data_register_*(). */
1125
1126 typedef void (gdbarch_swap_ftype) (void);
1127 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1128 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1129
1130
1131
1132 /* Set the dynamic target-system-dependent parameters (architecture,
1133 byte-order, ...) using information found in the BFD */
1134
1135 extern void set_gdbarch_from_file (bfd *);
1136
1137
1138 /* Initialize the current architecture to the "first" one we find on
1139 our list. */
1140
1141 extern void initialize_current_architecture (void);
1142
1143 /* gdbarch trace variable */
1144 extern int gdbarch_debug;
1145
1146 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1147
1148 #endif
1149 EOF
1150 exec 1>&2
1151 #../move-if-change new-gdbarch.h gdbarch.h
1152 compare_new gdbarch.h
1153
1154
1155 #
1156 # C file
1157 #
1158
1159 exec > new-gdbarch.c
1160 copyright
1161 cat <<EOF
1162
1163 #include "defs.h"
1164 #include "arch-utils.h"
1165
1166 #include "gdbcmd.h"
1167 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1168 #include "symcat.h"
1169
1170 #include "floatformat.h"
1171
1172 #include "gdb_assert.h"
1173 #include "gdb_string.h"
1174 #include "gdb-events.h"
1175 #include "reggroups.h"
1176 #include "osabi.h"
1177 #include "gdb_obstack.h"
1178
1179 /* Static function declarations */
1180
1181 static void alloc_gdbarch_data (struct gdbarch *);
1182
1183 /* Non-zero if we want to trace architecture code. */
1184
1185 #ifndef GDBARCH_DEBUG
1186 #define GDBARCH_DEBUG 0
1187 #endif
1188 int gdbarch_debug = GDBARCH_DEBUG;
1189
1190 static const char *
1191 pformat (const struct floatformat *format)
1192 {
1193 if (format == NULL)
1194 return "(null)";
1195 else
1196 return format->name;
1197 }
1198
1199 EOF
1200
1201 # gdbarch open the gdbarch object
1202 printf "\n"
1203 printf "/* Maintain the struct gdbarch object */\n"
1204 printf "\n"
1205 printf "struct gdbarch\n"
1206 printf "{\n"
1207 printf " /* Has this architecture been fully initialized? */\n"
1208 printf " int initialized_p;\n"
1209 printf "\n"
1210 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1211 printf " struct obstack *obstack;\n"
1212 printf "\n"
1213 printf " /* basic architectural information */\n"
1214 function_list | while do_read
1215 do
1216 if class_is_info_p
1217 then
1218 printf " ${returntype} ${function};\n"
1219 fi
1220 done
1221 printf "\n"
1222 printf " /* target specific vector. */\n"
1223 printf " struct gdbarch_tdep *tdep;\n"
1224 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1225 printf "\n"
1226 printf " /* per-architecture data-pointers */\n"
1227 printf " unsigned nr_data;\n"
1228 printf " void **data;\n"
1229 printf "\n"
1230 printf " /* per-architecture swap-regions */\n"
1231 printf " struct gdbarch_swap *swap;\n"
1232 printf "\n"
1233 cat <<EOF
1234 /* Multi-arch values.
1235
1236 When extending this structure you must:
1237
1238 Add the field below.
1239
1240 Declare set/get functions and define the corresponding
1241 macro in gdbarch.h.
1242
1243 gdbarch_alloc(): If zero/NULL is not a suitable default,
1244 initialize the new field.
1245
1246 verify_gdbarch(): Confirm that the target updated the field
1247 correctly.
1248
1249 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1250 field is dumped out
1251
1252 \`\`startup_gdbarch()'': Append an initial value to the static
1253 variable (base values on the host's c-type system).
1254
1255 get_gdbarch(): Implement the set/get functions (probably using
1256 the macro's as shortcuts).
1257
1258 */
1259
1260 EOF
1261 function_list | while do_read
1262 do
1263 if class_is_variable_p
1264 then
1265 printf " ${returntype} ${function};\n"
1266 elif class_is_function_p
1267 then
1268 printf " gdbarch_${function}_ftype *${function};\n"
1269 fi
1270 done
1271 printf "};\n"
1272
1273 # A pre-initialized vector
1274 printf "\n"
1275 printf "\n"
1276 cat <<EOF
1277 /* The default architecture uses host values (for want of a better
1278 choice). */
1279 EOF
1280 printf "\n"
1281 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1282 printf "\n"
1283 printf "struct gdbarch startup_gdbarch =\n"
1284 printf "{\n"
1285 printf " 1, /* Always initialized. */\n"
1286 printf " NULL, /* The obstack. */\n"
1287 printf " /* basic architecture information */\n"
1288 function_list | while do_read
1289 do
1290 if class_is_info_p
1291 then
1292 printf " ${staticdefault}, /* ${function} */\n"
1293 fi
1294 done
1295 cat <<EOF
1296 /* target specific vector and its dump routine */
1297 NULL, NULL,
1298 /*per-architecture data-pointers and swap regions */
1299 0, NULL, NULL,
1300 /* Multi-arch values */
1301 EOF
1302 function_list | while do_read
1303 do
1304 if class_is_function_p || class_is_variable_p
1305 then
1306 printf " ${staticdefault}, /* ${function} */\n"
1307 fi
1308 done
1309 cat <<EOF
1310 /* startup_gdbarch() */
1311 };
1312
1313 struct gdbarch *current_gdbarch = &startup_gdbarch;
1314 EOF
1315
1316 # Create a new gdbarch struct
1317 cat <<EOF
1318
1319 /* Create a new \`\`struct gdbarch'' based on information provided by
1320 \`\`struct gdbarch_info''. */
1321 EOF
1322 printf "\n"
1323 cat <<EOF
1324 struct gdbarch *
1325 gdbarch_alloc (const struct gdbarch_info *info,
1326 struct gdbarch_tdep *tdep)
1327 {
1328 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1329 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1330 the current local architecture and not the previous global
1331 architecture. This ensures that the new architectures initial
1332 values are not influenced by the previous architecture. Once
1333 everything is parameterised with gdbarch, this will go away. */
1334 struct gdbarch *current_gdbarch;
1335
1336 /* Create an obstack for allocating all the per-architecture memory,
1337 then use that to allocate the architecture vector. */
1338 struct obstack *obstack = XMALLOC (struct obstack);
1339 obstack_init (obstack);
1340 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1341 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1342 current_gdbarch->obstack = obstack;
1343
1344 alloc_gdbarch_data (current_gdbarch);
1345
1346 current_gdbarch->tdep = tdep;
1347 EOF
1348 printf "\n"
1349 function_list | while do_read
1350 do
1351 if class_is_info_p
1352 then
1353 printf " current_gdbarch->${function} = info->${function};\n"
1354 fi
1355 done
1356 printf "\n"
1357 printf " /* Force the explicit initialization of these. */\n"
1358 function_list | while do_read
1359 do
1360 if class_is_function_p || class_is_variable_p
1361 then
1362 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1363 then
1364 printf " current_gdbarch->${function} = ${predefault};\n"
1365 fi
1366 fi
1367 done
1368 cat <<EOF
1369 /* gdbarch_alloc() */
1370
1371 return current_gdbarch;
1372 }
1373 EOF
1374
1375 # Free a gdbarch struct.
1376 printf "\n"
1377 printf "\n"
1378 cat <<EOF
1379 /* Allocate extra space using the per-architecture obstack. */
1380
1381 void *
1382 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1383 {
1384 void *data = obstack_alloc (arch->obstack, size);
1385 memset (data, 0, size);
1386 return data;
1387 }
1388
1389
1390 /* Free a gdbarch struct. This should never happen in normal
1391 operation --- once you've created a gdbarch, you keep it around.
1392 However, if an architecture's init function encounters an error
1393 building the structure, it may need to clean up a partially
1394 constructed gdbarch. */
1395
1396 void
1397 gdbarch_free (struct gdbarch *arch)
1398 {
1399 struct obstack *obstack;
1400 gdb_assert (arch != NULL);
1401 gdb_assert (!arch->initialized_p);
1402 obstack = arch->obstack;
1403 obstack_free (obstack, 0); /* Includes the ARCH. */
1404 xfree (obstack);
1405 }
1406 EOF
1407
1408 # verify a new architecture
1409 cat <<EOF
1410
1411
1412 /* Ensure that all values in a GDBARCH are reasonable. */
1413
1414 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1415 just happens to match the global variable \`\`current_gdbarch''. That
1416 way macros refering to that variable get the local and not the global
1417 version - ulgh. Once everything is parameterised with gdbarch, this
1418 will go away. */
1419
1420 static void
1421 verify_gdbarch (struct gdbarch *current_gdbarch)
1422 {
1423 struct ui_file *log;
1424 struct cleanup *cleanups;
1425 long dummy;
1426 char *buf;
1427 log = mem_fileopen ();
1428 cleanups = make_cleanup_ui_file_delete (log);
1429 /* fundamental */
1430 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1431 fprintf_unfiltered (log, "\n\tbyte-order");
1432 if (current_gdbarch->bfd_arch_info == NULL)
1433 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1434 /* Check those that need to be defined for the given multi-arch level. */
1435 EOF
1436 function_list | while do_read
1437 do
1438 if class_is_function_p || class_is_variable_p
1439 then
1440 if [ "x${invalid_p}" = "x0" ]
1441 then
1442 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1443 elif class_is_predicate_p
1444 then
1445 printf " /* Skip verify of ${function}, has predicate */\n"
1446 # FIXME: See do_read for potential simplification
1447 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1448 then
1449 printf " if (${invalid_p})\n"
1450 printf " current_gdbarch->${function} = ${postdefault};\n"
1451 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1452 then
1453 printf " if (current_gdbarch->${function} == ${predefault})\n"
1454 printf " current_gdbarch->${function} = ${postdefault};\n"
1455 elif [ -n "${postdefault}" ]
1456 then
1457 printf " if (current_gdbarch->${function} == 0)\n"
1458 printf " current_gdbarch->${function} = ${postdefault};\n"
1459 elif [ -n "${invalid_p}" ]
1460 then
1461 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1462 printf " && (${invalid_p}))\n"
1463 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1464 elif [ -n "${predefault}" ]
1465 then
1466 printf " if ((GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)\n"
1467 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1468 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1469 fi
1470 fi
1471 done
1472 cat <<EOF
1473 buf = ui_file_xstrdup (log, &dummy);
1474 make_cleanup (xfree, buf);
1475 if (strlen (buf) > 0)
1476 internal_error (__FILE__, __LINE__,
1477 "verify_gdbarch: the following are invalid ...%s",
1478 buf);
1479 do_cleanups (cleanups);
1480 }
1481 EOF
1482
1483 # dump the structure
1484 printf "\n"
1485 printf "\n"
1486 cat <<EOF
1487 /* Print out the details of the current architecture. */
1488
1489 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1490 just happens to match the global variable \`\`current_gdbarch''. That
1491 way macros refering to that variable get the local and not the global
1492 version - ulgh. Once everything is parameterised with gdbarch, this
1493 will go away. */
1494
1495 void
1496 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1497 {
1498 fprintf_unfiltered (file,
1499 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1500 GDB_MULTI_ARCH);
1501 EOF
1502 function_list | sort -t: -k 4 | while do_read
1503 do
1504 # First the predicate
1505 if class_is_predicate_p
1506 then
1507 if test -n "${macro}"
1508 then
1509 printf "#ifdef ${macro}_P\n"
1510 printf " fprintf_unfiltered (file,\n"
1511 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1512 printf " \"${macro}_P()\",\n"
1513 printf " XSTRING (${macro}_P ()));\n"
1514 printf "#endif\n"
1515 fi
1516 printf " fprintf_unfiltered (file,\n"
1517 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1518 printf " gdbarch_${function}_p (current_gdbarch));\n"
1519 fi
1520 # Print the macro definition.
1521 if test -n "${macro}"
1522 then
1523 printf "#ifdef ${macro}\n"
1524 if class_is_function_p
1525 then
1526 printf " fprintf_unfiltered (file,\n"
1527 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1528 printf " \"${macro}(${actual})\",\n"
1529 printf " XSTRING (${macro} (${actual})));\n"
1530 else
1531 printf " fprintf_unfiltered (file,\n"
1532 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1533 printf " XSTRING (${macro}));\n"
1534 fi
1535 printf "#endif\n"
1536 fi
1537 # Print the corresponding value.
1538 if class_is_function_p
1539 then
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1542 printf " (long) current_gdbarch->${function});\n"
1543 else
1544 # It is a variable
1545 case "${print}:${returntype}" in
1546 :CORE_ADDR )
1547 fmt="0x%s"
1548 print="paddr_nz (current_gdbarch->${function})"
1549 ;;
1550 :* )
1551 fmt="%s"
1552 print="paddr_d (current_gdbarch->${function})"
1553 ;;
1554 * )
1555 fmt="%s"
1556 ;;
1557 esac
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1560 printf " ${print});\n"
1561 fi
1562 done
1563 cat <<EOF
1564 if (current_gdbarch->dump_tdep != NULL)
1565 current_gdbarch->dump_tdep (current_gdbarch, file);
1566 }
1567 EOF
1568
1569
1570 # GET/SET
1571 printf "\n"
1572 cat <<EOF
1573 struct gdbarch_tdep *
1574 gdbarch_tdep (struct gdbarch *gdbarch)
1575 {
1576 if (gdbarch_debug >= 2)
1577 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1578 return gdbarch->tdep;
1579 }
1580 EOF
1581 printf "\n"
1582 function_list | while do_read
1583 do
1584 if class_is_predicate_p
1585 then
1586 printf "\n"
1587 printf "int\n"
1588 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1589 printf "{\n"
1590 printf " gdb_assert (gdbarch != NULL);\n"
1591 printf " return ${predicate};\n"
1592 printf "}\n"
1593 fi
1594 if class_is_function_p
1595 then
1596 printf "\n"
1597 printf "${returntype}\n"
1598 if [ "x${formal}" = "xvoid" ]
1599 then
1600 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1601 else
1602 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1603 fi
1604 printf "{\n"
1605 printf " gdb_assert (gdbarch != NULL);\n"
1606 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1607 if class_is_predicate_p && test -n "${predefault}"
1608 then
1609 # Allow a call to a function with a predicate.
1610 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1611 fi
1612 printf " if (gdbarch_debug >= 2)\n"
1613 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1614 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1615 then
1616 if class_is_multiarch_p
1617 then
1618 params="gdbarch"
1619 else
1620 params=""
1621 fi
1622 else
1623 if class_is_multiarch_p
1624 then
1625 params="gdbarch, ${actual}"
1626 else
1627 params="${actual}"
1628 fi
1629 fi
1630 if [ "x${returntype}" = "xvoid" ]
1631 then
1632 printf " gdbarch->${function} (${params});\n"
1633 else
1634 printf " return gdbarch->${function} (${params});\n"
1635 fi
1636 printf "}\n"
1637 printf "\n"
1638 printf "void\n"
1639 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1640 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1641 printf "{\n"
1642 printf " gdbarch->${function} = ${function};\n"
1643 printf "}\n"
1644 elif class_is_variable_p
1645 then
1646 printf "\n"
1647 printf "${returntype}\n"
1648 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1649 printf "{\n"
1650 printf " gdb_assert (gdbarch != NULL);\n"
1651 if [ "x${invalid_p}" = "x0" ]
1652 then
1653 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1654 elif [ -n "${invalid_p}" ]
1655 then
1656 printf " /* Check variable is valid. */\n"
1657 printf " gdb_assert (!(${invalid_p}));\n"
1658 elif [ -n "${predefault}" ]
1659 then
1660 printf " /* Check variable changed from pre-default. */\n"
1661 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1662 fi
1663 printf " if (gdbarch_debug >= 2)\n"
1664 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1665 printf " return gdbarch->${function};\n"
1666 printf "}\n"
1667 printf "\n"
1668 printf "void\n"
1669 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1670 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1671 printf "{\n"
1672 printf " gdbarch->${function} = ${function};\n"
1673 printf "}\n"
1674 elif class_is_info_p
1675 then
1676 printf "\n"
1677 printf "${returntype}\n"
1678 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1679 printf "{\n"
1680 printf " gdb_assert (gdbarch != NULL);\n"
1681 printf " if (gdbarch_debug >= 2)\n"
1682 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1683 printf " return gdbarch->${function};\n"
1684 printf "}\n"
1685 fi
1686 done
1687
1688 # All the trailing guff
1689 cat <<EOF
1690
1691
1692 /* Keep a registry of per-architecture data-pointers required by GDB
1693 modules. */
1694
1695 struct gdbarch_data
1696 {
1697 unsigned index;
1698 int init_p;
1699 gdbarch_data_pre_init_ftype *pre_init;
1700 gdbarch_data_post_init_ftype *post_init;
1701 };
1702
1703 struct gdbarch_data_registration
1704 {
1705 struct gdbarch_data *data;
1706 struct gdbarch_data_registration *next;
1707 };
1708
1709 struct gdbarch_data_registry
1710 {
1711 unsigned nr;
1712 struct gdbarch_data_registration *registrations;
1713 };
1714
1715 struct gdbarch_data_registry gdbarch_data_registry =
1716 {
1717 0, NULL,
1718 };
1719
1720 static struct gdbarch_data *
1721 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1722 gdbarch_data_post_init_ftype *post_init)
1723 {
1724 struct gdbarch_data_registration **curr;
1725 /* Append the new registraration. */
1726 for (curr = &gdbarch_data_registry.registrations;
1727 (*curr) != NULL;
1728 curr = &(*curr)->next);
1729 (*curr) = XMALLOC (struct gdbarch_data_registration);
1730 (*curr)->next = NULL;
1731 (*curr)->data = XMALLOC (struct gdbarch_data);
1732 (*curr)->data->index = gdbarch_data_registry.nr++;
1733 (*curr)->data->pre_init = pre_init;
1734 (*curr)->data->post_init = post_init;
1735 (*curr)->data->init_p = 1;
1736 return (*curr)->data;
1737 }
1738
1739 struct gdbarch_data *
1740 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1741 {
1742 return gdbarch_data_register (pre_init, NULL);
1743 }
1744
1745 struct gdbarch_data *
1746 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1747 {
1748 return gdbarch_data_register (NULL, post_init);
1749 }
1750
1751 /* Create/delete the gdbarch data vector. */
1752
1753 static void
1754 alloc_gdbarch_data (struct gdbarch *gdbarch)
1755 {
1756 gdb_assert (gdbarch->data == NULL);
1757 gdbarch->nr_data = gdbarch_data_registry.nr;
1758 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1759 }
1760
1761 /* Initialize the current value of the specified per-architecture
1762 data-pointer. */
1763
1764 void
1765 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1766 struct gdbarch_data *data,
1767 void *pointer)
1768 {
1769 gdb_assert (data->index < gdbarch->nr_data);
1770 gdb_assert (gdbarch->data[data->index] == NULL);
1771 gdb_assert (data->pre_init == NULL);
1772 gdbarch->data[data->index] = pointer;
1773 }
1774
1775 /* Return the current value of the specified per-architecture
1776 data-pointer. */
1777
1778 void *
1779 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1780 {
1781 gdb_assert (data->index < gdbarch->nr_data);
1782 if (gdbarch->data[data->index] == NULL)
1783 {
1784 /* The data-pointer isn't initialized, call init() to get a
1785 value. */
1786 if (data->pre_init != NULL)
1787 /* Mid architecture creation: pass just the obstack, and not
1788 the entire architecture, as that way it isn't possible for
1789 pre-init code to refer to undefined architecture
1790 fields. */
1791 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1792 else if (gdbarch->initialized_p
1793 && data->post_init != NULL)
1794 /* Post architecture creation: pass the entire architecture
1795 (as all fields are valid), but be careful to also detect
1796 recursive references. */
1797 {
1798 gdb_assert (data->init_p);
1799 data->init_p = 0;
1800 gdbarch->data[data->index] = data->post_init (gdbarch);
1801 data->init_p = 1;
1802 }
1803 else
1804 /* The architecture initialization hasn't completed - punt -
1805 hope that the caller knows what they are doing. Once
1806 deprecated_set_gdbarch_data has been initialized, this can be
1807 changed to an internal error. */
1808 return NULL;
1809 gdb_assert (gdbarch->data[data->index] != NULL);
1810 }
1811 return gdbarch->data[data->index];
1812 }
1813
1814
1815
1816 /* Keep a registry of swapped data required by GDB modules. */
1817
1818 struct gdbarch_swap
1819 {
1820 void *swap;
1821 struct gdbarch_swap_registration *source;
1822 struct gdbarch_swap *next;
1823 };
1824
1825 struct gdbarch_swap_registration
1826 {
1827 void *data;
1828 unsigned long sizeof_data;
1829 gdbarch_swap_ftype *init;
1830 struct gdbarch_swap_registration *next;
1831 };
1832
1833 struct gdbarch_swap_registry
1834 {
1835 int nr;
1836 struct gdbarch_swap_registration *registrations;
1837 };
1838
1839 struct gdbarch_swap_registry gdbarch_swap_registry =
1840 {
1841 0, NULL,
1842 };
1843
1844 void
1845 deprecated_register_gdbarch_swap (void *data,
1846 unsigned long sizeof_data,
1847 gdbarch_swap_ftype *init)
1848 {
1849 struct gdbarch_swap_registration **rego;
1850 for (rego = &gdbarch_swap_registry.registrations;
1851 (*rego) != NULL;
1852 rego = &(*rego)->next);
1853 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1854 (*rego)->next = NULL;
1855 (*rego)->init = init;
1856 (*rego)->data = data;
1857 (*rego)->sizeof_data = sizeof_data;
1858 }
1859
1860 static void
1861 current_gdbarch_swap_init_hack (void)
1862 {
1863 struct gdbarch_swap_registration *rego;
1864 struct gdbarch_swap **curr = &current_gdbarch->swap;
1865 for (rego = gdbarch_swap_registry.registrations;
1866 rego != NULL;
1867 rego = rego->next)
1868 {
1869 if (rego->data != NULL)
1870 {
1871 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1872 struct gdbarch_swap);
1873 (*curr)->source = rego;
1874 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1875 rego->sizeof_data);
1876 (*curr)->next = NULL;
1877 curr = &(*curr)->next;
1878 }
1879 if (rego->init != NULL)
1880 rego->init ();
1881 }
1882 }
1883
1884 static struct gdbarch *
1885 current_gdbarch_swap_out_hack (void)
1886 {
1887 struct gdbarch *old_gdbarch = current_gdbarch;
1888 struct gdbarch_swap *curr;
1889
1890 gdb_assert (old_gdbarch != NULL);
1891 for (curr = old_gdbarch->swap;
1892 curr != NULL;
1893 curr = curr->next)
1894 {
1895 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1896 memset (curr->source->data, 0, curr->source->sizeof_data);
1897 }
1898 current_gdbarch = NULL;
1899 return old_gdbarch;
1900 }
1901
1902 static void
1903 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1904 {
1905 struct gdbarch_swap *curr;
1906
1907 gdb_assert (current_gdbarch == NULL);
1908 for (curr = new_gdbarch->swap;
1909 curr != NULL;
1910 curr = curr->next)
1911 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1912 current_gdbarch = new_gdbarch;
1913 }
1914
1915
1916 /* Keep a registry of the architectures known by GDB. */
1917
1918 struct gdbarch_registration
1919 {
1920 enum bfd_architecture bfd_architecture;
1921 gdbarch_init_ftype *init;
1922 gdbarch_dump_tdep_ftype *dump_tdep;
1923 struct gdbarch_list *arches;
1924 struct gdbarch_registration *next;
1925 };
1926
1927 static struct gdbarch_registration *gdbarch_registry = NULL;
1928
1929 static void
1930 append_name (const char ***buf, int *nr, const char *name)
1931 {
1932 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1933 (*buf)[*nr] = name;
1934 *nr += 1;
1935 }
1936
1937 const char **
1938 gdbarch_printable_names (void)
1939 {
1940 /* Accumulate a list of names based on the registed list of
1941 architectures. */
1942 enum bfd_architecture a;
1943 int nr_arches = 0;
1944 const char **arches = NULL;
1945 struct gdbarch_registration *rego;
1946 for (rego = gdbarch_registry;
1947 rego != NULL;
1948 rego = rego->next)
1949 {
1950 const struct bfd_arch_info *ap;
1951 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1952 if (ap == NULL)
1953 internal_error (__FILE__, __LINE__,
1954 "gdbarch_architecture_names: multi-arch unknown");
1955 do
1956 {
1957 append_name (&arches, &nr_arches, ap->printable_name);
1958 ap = ap->next;
1959 }
1960 while (ap != NULL);
1961 }
1962 append_name (&arches, &nr_arches, NULL);
1963 return arches;
1964 }
1965
1966
1967 void
1968 gdbarch_register (enum bfd_architecture bfd_architecture,
1969 gdbarch_init_ftype *init,
1970 gdbarch_dump_tdep_ftype *dump_tdep)
1971 {
1972 struct gdbarch_registration **curr;
1973 const struct bfd_arch_info *bfd_arch_info;
1974 /* Check that BFD recognizes this architecture */
1975 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1976 if (bfd_arch_info == NULL)
1977 {
1978 internal_error (__FILE__, __LINE__,
1979 "gdbarch: Attempt to register unknown architecture (%d)",
1980 bfd_architecture);
1981 }
1982 /* Check that we haven't seen this architecture before */
1983 for (curr = &gdbarch_registry;
1984 (*curr) != NULL;
1985 curr = &(*curr)->next)
1986 {
1987 if (bfd_architecture == (*curr)->bfd_architecture)
1988 internal_error (__FILE__, __LINE__,
1989 "gdbarch: Duplicate registraration of architecture (%s)",
1990 bfd_arch_info->printable_name);
1991 }
1992 /* log it */
1993 if (gdbarch_debug)
1994 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1995 bfd_arch_info->printable_name,
1996 (long) init);
1997 /* Append it */
1998 (*curr) = XMALLOC (struct gdbarch_registration);
1999 (*curr)->bfd_architecture = bfd_architecture;
2000 (*curr)->init = init;
2001 (*curr)->dump_tdep = dump_tdep;
2002 (*curr)->arches = NULL;
2003 (*curr)->next = NULL;
2004 }
2005
2006 void
2007 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2008 gdbarch_init_ftype *init)
2009 {
2010 gdbarch_register (bfd_architecture, init, NULL);
2011 }
2012
2013
2014 /* Look for an architecture using gdbarch_info. Base search on only
2015 BFD_ARCH_INFO and BYTE_ORDER. */
2016
2017 struct gdbarch_list *
2018 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2019 const struct gdbarch_info *info)
2020 {
2021 for (; arches != NULL; arches = arches->next)
2022 {
2023 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2024 continue;
2025 if (info->byte_order != arches->gdbarch->byte_order)
2026 continue;
2027 if (info->osabi != arches->gdbarch->osabi)
2028 continue;
2029 return arches;
2030 }
2031 return NULL;
2032 }
2033
2034
2035 /* Find an architecture that matches the specified INFO. Create a new
2036 architecture if needed. Return that new architecture. Assumes
2037 that there is no current architecture. */
2038
2039 static struct gdbarch *
2040 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2041 {
2042 struct gdbarch *new_gdbarch;
2043 struct gdbarch_registration *rego;
2044
2045 /* The existing architecture has been swapped out - all this code
2046 works from a clean slate. */
2047 gdb_assert (current_gdbarch == NULL);
2048
2049 /* Fill in missing parts of the INFO struct using a number of
2050 sources: "set ..."; INFOabfd supplied; and the existing
2051 architecture. */
2052 gdbarch_info_fill (old_gdbarch, &info);
2053
2054 /* Must have found some sort of architecture. */
2055 gdb_assert (info.bfd_arch_info != NULL);
2056
2057 if (gdbarch_debug)
2058 {
2059 fprintf_unfiltered (gdb_stdlog,
2060 "find_arch_by_info: info.bfd_arch_info %s\n",
2061 (info.bfd_arch_info != NULL
2062 ? info.bfd_arch_info->printable_name
2063 : "(null)"));
2064 fprintf_unfiltered (gdb_stdlog,
2065 "find_arch_by_info: info.byte_order %d (%s)\n",
2066 info.byte_order,
2067 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2068 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2069 : "default"));
2070 fprintf_unfiltered (gdb_stdlog,
2071 "find_arch_by_info: info.osabi %d (%s)\n",
2072 info.osabi, gdbarch_osabi_name (info.osabi));
2073 fprintf_unfiltered (gdb_stdlog,
2074 "find_arch_by_info: info.abfd 0x%lx\n",
2075 (long) info.abfd);
2076 fprintf_unfiltered (gdb_stdlog,
2077 "find_arch_by_info: info.tdep_info 0x%lx\n",
2078 (long) info.tdep_info);
2079 }
2080
2081 /* Find the tdep code that knows about this architecture. */
2082 for (rego = gdbarch_registry;
2083 rego != NULL;
2084 rego = rego->next)
2085 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2086 break;
2087 if (rego == NULL)
2088 {
2089 if (gdbarch_debug)
2090 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2091 "No matching architecture\n");
2092 return 0;
2093 }
2094
2095 /* Ask the tdep code for an architecture that matches "info". */
2096 new_gdbarch = rego->init (info, rego->arches);
2097
2098 /* Did the tdep code like it? No. Reject the change and revert to
2099 the old architecture. */
2100 if (new_gdbarch == NULL)
2101 {
2102 if (gdbarch_debug)
2103 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2104 "Target rejected architecture\n");
2105 return NULL;
2106 }
2107
2108 /* Is this a pre-existing architecture (as determined by already
2109 being initialized)? Move it to the front of the architecture
2110 list (keeping the list sorted Most Recently Used). */
2111 if (new_gdbarch->initialized_p)
2112 {
2113 struct gdbarch_list **list;
2114 struct gdbarch_list *this;
2115 if (gdbarch_debug)
2116 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2117 "Previous architecture 0x%08lx (%s) selected\n",
2118 (long) new_gdbarch,
2119 new_gdbarch->bfd_arch_info->printable_name);
2120 /* Find the existing arch in the list. */
2121 for (list = &rego->arches;
2122 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2123 list = &(*list)->next);
2124 /* It had better be in the list of architectures. */
2125 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2126 /* Unlink THIS. */
2127 this = (*list);
2128 (*list) = this->next;
2129 /* Insert THIS at the front. */
2130 this->next = rego->arches;
2131 rego->arches = this;
2132 /* Return it. */
2133 return new_gdbarch;
2134 }
2135
2136 /* It's a new architecture. */
2137 if (gdbarch_debug)
2138 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2139 "New architecture 0x%08lx (%s) selected\n",
2140 (long) new_gdbarch,
2141 new_gdbarch->bfd_arch_info->printable_name);
2142
2143 /* Insert the new architecture into the front of the architecture
2144 list (keep the list sorted Most Recently Used). */
2145 {
2146 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2147 this->next = rego->arches;
2148 this->gdbarch = new_gdbarch;
2149 rego->arches = this;
2150 }
2151
2152 /* Check that the newly installed architecture is valid. Plug in
2153 any post init values. */
2154 new_gdbarch->dump_tdep = rego->dump_tdep;
2155 verify_gdbarch (new_gdbarch);
2156 new_gdbarch->initialized_p = 1;
2157
2158 /* Initialize any per-architecture swap areas. This phase requires
2159 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2160 swap the entire architecture out. */
2161 current_gdbarch = new_gdbarch;
2162 current_gdbarch_swap_init_hack ();
2163 current_gdbarch_swap_out_hack ();
2164
2165 if (gdbarch_debug)
2166 gdbarch_dump (new_gdbarch, gdb_stdlog);
2167
2168 return new_gdbarch;
2169 }
2170
2171 struct gdbarch *
2172 gdbarch_find_by_info (struct gdbarch_info info)
2173 {
2174 /* Save the previously selected architecture, setting the global to
2175 NULL. This stops things like gdbarch->init() trying to use the
2176 previous architecture's configuration. The previous architecture
2177 may not even be of the same architecture family. The most recent
2178 architecture of the same family is found at the head of the
2179 rego->arches list. */
2180 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2181
2182 /* Find the specified architecture. */
2183 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2184
2185 /* Restore the existing architecture. */
2186 gdb_assert (current_gdbarch == NULL);
2187 current_gdbarch_swap_in_hack (old_gdbarch);
2188
2189 return new_gdbarch;
2190 }
2191
2192 /* Make the specified architecture current, swapping the existing one
2193 out. */
2194
2195 void
2196 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2197 {
2198 gdb_assert (new_gdbarch != NULL);
2199 gdb_assert (current_gdbarch != NULL);
2200 gdb_assert (new_gdbarch->initialized_p);
2201 current_gdbarch_swap_out_hack ();
2202 current_gdbarch_swap_in_hack (new_gdbarch);
2203 architecture_changed_event ();
2204 }
2205
2206 extern void _initialize_gdbarch (void);
2207
2208 void
2209 _initialize_gdbarch (void)
2210 {
2211 struct cmd_list_element *c;
2212
2213 deprecated_add_show_from_set
2214 (add_set_cmd ("arch",
2215 class_maintenance,
2216 var_zinteger,
2217 (char *)&gdbarch_debug,
2218 "Set architecture debugging.\\n\\
2219 When non-zero, architecture debugging is enabled.", &setdebuglist),
2220 &showdebuglist);
2221 c = add_set_cmd ("archdebug",
2222 class_maintenance,
2223 var_zinteger,
2224 (char *)&gdbarch_debug,
2225 "Set architecture debugging.\\n\\
2226 When non-zero, architecture debugging is enabled.", &setlist);
2227
2228 deprecate_cmd (c, "set debug arch");
2229 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2230 }
2231 EOF
2232
2233 # close things off
2234 exec 1>&2
2235 #../move-if-change new-gdbarch.c gdbarch.c
2236 compare_new gdbarch.c
This page took 0.084688 seconds and 4 git commands to generate.