* doc/invoke.texi (TC_LARGEST_EXPONENT_IS_NORMAL): Document.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -u ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${level}" in
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
82 "" ) ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
84 esac
85
86 case "${class}" in
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
90 esac
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
94
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
97 :[vV]::: )
98 if [ "${returntype}" = int ]
99 then
100 fmt="%d"
101 print="${macro}"
102 elif [ "${returntype}" = long ]
103 then
104 fmt="%ld"
105 print="${macro}"
106 fi
107 ;;
108 esac
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
111
112 case "${invalid_p}" in
113 0 ) valid_p=1 ;;
114 "" )
115 if [ -n "${predefault}" ]
116 then
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
119 else
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
122 fi
123 ;;
124 * ) valid_p="!(${invalid_p})"
125 esac
126
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
133
134 if [ -n "${postdefault}" ]
135 then
136 fallbackdefault="${postdefault}"
137 elif [ -n "${predefault}" ]
138 then
139 fallbackdefault="${predefault}"
140 else
141 fallbackdefault="0"
142 fi
143
144 #NOT YET: See gdbarch.log for basic verification of
145 # database
146
147 break
148 fi
149 done
150 if [ -n "${class}" ]
151 then
152 true
153 else
154 false
155 fi
156 }
157
158
159 fallback_default_p ()
160 {
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 }
164
165 class_is_variable_p ()
166 {
167 case "${class}" in
168 *v* | *V* ) true ;;
169 * ) false ;;
170 esac
171 }
172
173 class_is_function_p ()
174 {
175 case "${class}" in
176 *f* | *F* | *m* | *M* ) true ;;
177 * ) false ;;
178 esac
179 }
180
181 class_is_multiarch_p ()
182 {
183 case "${class}" in
184 *m* | *M* ) true ;;
185 * ) false ;;
186 esac
187 }
188
189 class_is_predicate_p ()
190 {
191 case "${class}" in
192 *F* | *V* | *M* ) true ;;
193 * ) false ;;
194 esac
195 }
196
197 class_is_info_p ()
198 {
199 case "${class}" in
200 *i* ) true ;;
201 * ) false ;;
202 esac
203 }
204
205
206 # dump out/verify the doco
207 for field in ${read}
208 do
209 case ${field} in
210
211 class ) : ;;
212
213 # # -> line disable
214 # f -> function
215 # hiding a function
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
218 # v -> variable
219 # hiding a variable
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
222 # i -> set from info
223 # hiding something from the ``struct info'' object
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
228
229 level ) : ;;
230
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
234
235 macro ) : ;;
236
237 # The name of the MACRO that this method is to be accessed by.
238
239 returntype ) : ;;
240
241 # For functions, the return type; for variables, the data type
242
243 function ) : ;;
244
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
248
249 formal ) : ;;
250
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
255
256 actual ) : ;;
257
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
261
262 attrib ) : ;;
263
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
266
267 staticdefault ) : ;;
268
269 # To help with the GDB startup a static gdbarch object is
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
273
274 # If STATICDEFAULT is empty, zero is used.
275
276 predefault ) : ;;
277
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
282
283 # If PREDEFAULT is empty, zero is used.
284
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
288
289 # A zero PREDEFAULT function will force the fallback to call
290 # internal_error().
291
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
294
295 postdefault ) : ;;
296
297 # A value to assign to MEMBER of the new gdbarch object should
298 # the target architecture code fail to change the PREDEFAULT
299 # value.
300
301 # If POSTDEFAULT is empty, no post update is performed.
302
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
306
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
310 # PREDEFAULT).
311
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
313
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
316
317 invalid_p ) : ;;
318
319 # A predicate equation that validates MEMBER. Non-zero is
320 # returned if the code creating the new architecture failed to
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
324 # is called.
325
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
328
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
331
332 # See also PREDEFAULT and POSTDEFAULT.
333
334 fmt ) : ;;
335
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
339
340 # If FMT is empty, ``%ld'' is used.
341
342 print ) : ;;
343
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
346
347 # If PRINT is empty, ``(long)'' is used.
348
349 print_p ) : ;;
350
351 # An optional indicator for any predicte to wrap around the
352 # print member code.
353
354 # () -> Call a custom function to do the dump.
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
357
358 # If PRINT_P is empty, ``1'' is always used.
359
360 description ) : ;;
361
362 # Currently unused.
363
364 *)
365 echo "Bad field ${field}"
366 exit 1;;
367 esac
368 done
369
370
371 function_list ()
372 {
373 # See below (DOCO) for description of each field
374 cat <<EOF
375 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
376 #
377 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
378 # Number of bits in a char or unsigned char for the target machine.
379 # Just like CHAR_BIT in <limits.h> but describes the target machine.
380 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 #
382 # Number of bits in a short or unsigned short for the target machine.
383 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384 # Number of bits in an int or unsigned int for the target machine.
385 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386 # Number of bits in a long or unsigned long for the target machine.
387 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388 # Number of bits in a long long or unsigned long long for the target
389 # machine.
390 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # Number of bits in a float for the target machine.
392 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 # Number of bits in a double for the target machine.
394 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 # Number of bits in a long double for the target machine.
396 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400 # / addr_bit will be set from it.
401 #
402 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
404 #
405 # ptr_bit is the size of a pointer on the target
406 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
407 # addr_bit is the size of a target address as represented in gdb
408 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
409 # Number of bits in a BFD_VMA for the target object file format.
410 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
414 #
415 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
417 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
419 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
424 #
425 M:::void:register_read:int regnum, char *buf:regnum, buf:
426 M:::void:register_write:int regnum, char *buf:regnum, buf:
427 #
428 v:2:NUM_REGS:int:num_regs::::0:-1
429 # This macro gives the number of pseudo-registers that live in the
430 # register namespace but do not get fetched or stored on the target.
431 # These pseudo-registers may be aliases for other registers,
432 # combinations of other registers, or they may be computed by GDB.
433 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
434
435 # GDB's standard (or well known) register numbers. These can map onto
436 # a real register or a pseudo (computed) register or not be defined at
437 # all (-1).
438 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
439 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
440 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
441 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
442 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
443 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
444 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 # This should be defined in tm.h, if REGISTER_NAMES is not set up
453 # to map one to one onto the sdb register numbers.
454 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
455 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
456 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
457 v:2:REGISTER_SIZE:int:register_size::::0:-1
458 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
459 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
460 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
461 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
462 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
463 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
464 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
465 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
466 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
467 # MAP a GDB RAW register number onto a simulator register number. See
468 # also include/...-sim.h.
469 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
470 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
471 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
472 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
473 # setjmp/longjmp support.
474 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
475 #
476 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
477 # much better but at least they are vaguely consistent). The headers
478 # and body contain convoluted #if/#else sequences for determine how
479 # things should be compiled. Instead of trying to mimic that
480 # behaviour here (and hence entrench it further) gdbarch simply
481 # reqires that these methods be set up from the word go. This also
482 # avoids any potential problems with moving beyond multi-arch partial.
483 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
484 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
485 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
486 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
487 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
488 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
489 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
490 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
491 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
492 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
493 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
494 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
496 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
497 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
498 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
499 #
500 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
501 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
502 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
503 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
504 # old code has strange #ifdef interaction. So far no one has found
505 # that default_get_saved_register() is the default they are after.
506 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
507 #
508 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
509 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
510 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
511 # This function is called when the value of a pseudo-register needs to
512 # be updated. Typically it will be defined on a per-architecture
513 # basis.
514 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
515 # This function is called when the value of a pseudo-register needs to
516 # be set or stored. Typically it will be defined on a
517 # per-architecture basis.
518 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
519 #
520 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
521 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
522 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
523 #
524 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
525 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
533 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
534 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
535 #
536 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
537 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
538 #
539 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
540 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
541 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
542 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
543 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
544 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
545 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
546 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
547 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
548 #
549 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
550 #
551 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
552 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
553 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
554 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
555 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
556 # given frame is the outermost one and has no caller.
557 #
558 # XXXX - both default and alternate frame_chain_valid functions are
559 # deprecated. New code should use dummy frames and one of the generic
560 # functions.
561 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
562 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
563 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
564 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
565 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
566 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
567 #
568 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
569 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
570 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
571 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
572 v:2:PARM_BOUNDARY:int:parm_boundary
573 #
574 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
575 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
576 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
577 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
578 # On some machines there are bits in addresses which are not really
579 # part of the address, but are used by the kernel, the hardware, etc.
580 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
581 # we get a "real" address such as one would find in a symbol table.
582 # This is used only for addresses of instructions, and even then I'm
583 # not sure it's used in all contexts. It exists to deal with there
584 # being a few stray bits in the PC which would mislead us, not as some
585 # sort of generic thing to handle alignment or segmentation (it's
586 # possible it should be in TARGET_READ_PC instead).
587 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
588 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
589 # ADDR_BITS_REMOVE.
590 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
591 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
592 # the target needs software single step. An ISA method to implement it.
593 #
594 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
595 # using the breakpoint system instead of blatting memory directly (as with rs6000).
596 #
597 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
598 # single step. If not, then implement single step using breakpoints.
599 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
600 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
601 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
602 # For SVR4 shared libraries, each call goes through a small piece of
603 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
604 # to nonzero if we are current stopped in one of these.
605 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
606 # A target might have problems with watchpoints as soon as the stack
607 # frame of the current function has been destroyed. This mostly happens
608 # as the first action in a funtion's epilogue. in_function_epilogue_p()
609 # is defined to return a non-zero value if either the given addr is one
610 # instruction after the stack destroying instruction up to the trailing
611 # return instruction or if we can figure out that the stack frame has
612 # already been invalidated regardless of the value of addr. Targets
613 # which don't suffer from that problem could just let this functionality
614 # untouched.
615 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
616 # Given a vector of command-line arguments, return a newly allocated
617 # string which, when passed to the create_inferior function, will be
618 # parsed (on Unix systems, by the shell) to yield the same vector.
619 # This function should call error() if the argument vector is not
620 # representable for this target or if this target does not support
621 # command-line arguments.
622 # ARGC is the number of elements in the vector.
623 # ARGV is an array of strings, one per argument.
624 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
625 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
626 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
627 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
628 EOF
629 }
630
631 #
632 # The .log file
633 #
634 exec > new-gdbarch.log
635 function_list | while do_read
636 do
637 cat <<EOF
638 ${class} ${macro}(${actual})
639 ${returntype} ${function} ($formal)${attrib}
640 EOF
641 for r in ${read}
642 do
643 eval echo \"\ \ \ \ ${r}=\${${r}}\"
644 done
645 # #fallbackdefault=${fallbackdefault}
646 # #valid_p=${valid_p}
647 #EOF
648 if class_is_predicate_p && fallback_default_p
649 then
650 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
651 kill $$
652 exit 1
653 fi
654 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
655 then
656 echo "Error: postdefault is useless when invalid_p=0" 1>&2
657 kill $$
658 exit 1
659 fi
660 if class_is_multiarch_p
661 then
662 if class_is_predicate_p ; then :
663 elif test "x${predefault}" = "x"
664 then
665 echo "Error: pure multi-arch function must have a predefault" 1>&2
666 kill $$
667 exit 1
668 fi
669 fi
670 echo ""
671 done
672
673 exec 1>&2
674 compare_new gdbarch.log
675
676
677 copyright ()
678 {
679 cat <<EOF
680 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
681
682 /* Dynamic architecture support for GDB, the GNU debugger.
683 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
684
685 This file is part of GDB.
686
687 This program is free software; you can redistribute it and/or modify
688 it under the terms of the GNU General Public License as published by
689 the Free Software Foundation; either version 2 of the License, or
690 (at your option) any later version.
691
692 This program is distributed in the hope that it will be useful,
693 but WITHOUT ANY WARRANTY; without even the implied warranty of
694 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
695 GNU General Public License for more details.
696
697 You should have received a copy of the GNU General Public License
698 along with this program; if not, write to the Free Software
699 Foundation, Inc., 59 Temple Place - Suite 330,
700 Boston, MA 02111-1307, USA. */
701
702 /* This file was created with the aid of \`\`gdbarch.sh''.
703
704 The Bourne shell script \`\`gdbarch.sh'' creates the files
705 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
706 against the existing \`\`gdbarch.[hc]''. Any differences found
707 being reported.
708
709 If editing this file, please also run gdbarch.sh and merge any
710 changes into that script. Conversely, when making sweeping changes
711 to this file, modifying gdbarch.sh and using its output may prove
712 easier. */
713
714 EOF
715 }
716
717 #
718 # The .h file
719 #
720
721 exec > new-gdbarch.h
722 copyright
723 cat <<EOF
724 #ifndef GDBARCH_H
725 #define GDBARCH_H
726
727 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
728 #if !GDB_MULTI_ARCH
729 /* Pull in function declarations refered to, indirectly, via macros. */
730 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
731 #include "inferior.h" /* For unsigned_address_to_pointer(). */
732 #endif
733
734 struct frame_info;
735 struct value;
736 struct objfile;
737 struct minimal_symbol;
738
739 extern struct gdbarch *current_gdbarch;
740
741
742 /* If any of the following are defined, the target wasn't correctly
743 converted. */
744
745 #if GDB_MULTI_ARCH
746 #if defined (EXTRA_FRAME_INFO)
747 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
748 #endif
749 #endif
750
751 #if GDB_MULTI_ARCH
752 #if defined (FRAME_FIND_SAVED_REGS)
753 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
754 #endif
755 #endif
756
757 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
758 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
759 #endif
760 EOF
761
762 # function typedef's
763 printf "\n"
764 printf "\n"
765 printf "/* The following are pre-initialized by GDBARCH. */\n"
766 function_list | while do_read
767 do
768 if class_is_info_p
769 then
770 printf "\n"
771 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
772 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
773 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
774 printf "#error \"Non multi-arch definition of ${macro}\"\n"
775 printf "#endif\n"
776 printf "#if GDB_MULTI_ARCH\n"
777 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
778 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
779 printf "#endif\n"
780 printf "#endif\n"
781 fi
782 done
783
784 # function typedef's
785 printf "\n"
786 printf "\n"
787 printf "/* The following are initialized by the target dependent code. */\n"
788 function_list | while do_read
789 do
790 if [ -n "${comment}" ]
791 then
792 echo "${comment}" | sed \
793 -e '2 s,#,/*,' \
794 -e '3,$ s,#, ,' \
795 -e '$ s,$, */,'
796 fi
797 if class_is_multiarch_p
798 then
799 if class_is_predicate_p
800 then
801 printf "\n"
802 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
803 fi
804 else
805 if class_is_predicate_p
806 then
807 printf "\n"
808 printf "#if defined (${macro})\n"
809 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
810 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
811 printf "#if !defined (${macro}_P)\n"
812 printf "#define ${macro}_P() (1)\n"
813 printf "#endif\n"
814 printf "#endif\n"
815 printf "\n"
816 printf "/* Default predicate for non- multi-arch targets. */\n"
817 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
818 printf "#define ${macro}_P() (0)\n"
819 printf "#endif\n"
820 printf "\n"
821 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
822 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
823 printf "#error \"Non multi-arch definition of ${macro}\"\n"
824 printf "#endif\n"
825 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
826 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
827 printf "#endif\n"
828 fi
829 fi
830 if class_is_variable_p
831 then
832 if fallback_default_p || class_is_predicate_p
833 then
834 printf "\n"
835 printf "/* Default (value) for non- multi-arch platforms. */\n"
836 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
837 echo "#define ${macro} (${fallbackdefault})" \
838 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
839 printf "#endif\n"
840 fi
841 printf "\n"
842 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
843 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
844 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
845 printf "#error \"Non multi-arch definition of ${macro}\"\n"
846 printf "#endif\n"
847 printf "#if GDB_MULTI_ARCH\n"
848 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
849 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
850 printf "#endif\n"
851 printf "#endif\n"
852 fi
853 if class_is_function_p
854 then
855 if class_is_multiarch_p ; then :
856 elif fallback_default_p || class_is_predicate_p
857 then
858 printf "\n"
859 printf "/* Default (function) for non- multi-arch platforms. */\n"
860 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
861 if [ "x${fallbackdefault}" = "x0" ]
862 then
863 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
864 else
865 # FIXME: Should be passing current_gdbarch through!
866 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
867 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
868 fi
869 printf "#endif\n"
870 fi
871 printf "\n"
872 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
875 elif class_is_multiarch_p
876 then
877 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
878 else
879 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
880 fi
881 if [ "x${formal}" = "xvoid" ]
882 then
883 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
884 else
885 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
886 fi
887 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
888 if class_is_multiarch_p ; then :
889 else
890 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
892 printf "#endif\n"
893 printf "#if GDB_MULTI_ARCH\n"
894 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
895 if [ "x${actual}" = "x" ]
896 then
897 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
898 elif [ "x${actual}" = "x-" ]
899 then
900 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
901 else
902 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
903 fi
904 printf "#endif\n"
905 printf "#endif\n"
906 fi
907 fi
908 done
909
910 # close it off
911 cat <<EOF
912
913 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
914
915
916 /* Mechanism for co-ordinating the selection of a specific
917 architecture.
918
919 GDB targets (*-tdep.c) can register an interest in a specific
920 architecture. Other GDB components can register a need to maintain
921 per-architecture data.
922
923 The mechanisms below ensures that there is only a loose connection
924 between the set-architecture command and the various GDB
925 components. Each component can independently register their need
926 to maintain architecture specific data with gdbarch.
927
928 Pragmatics:
929
930 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
931 didn't scale.
932
933 The more traditional mega-struct containing architecture specific
934 data for all the various GDB components was also considered. Since
935 GDB is built from a variable number of (fairly independent)
936 components it was determined that the global aproach was not
937 applicable. */
938
939
940 /* Register a new architectural family with GDB.
941
942 Register support for the specified ARCHITECTURE with GDB. When
943 gdbarch determines that the specified architecture has been
944 selected, the corresponding INIT function is called.
945
946 --
947
948 The INIT function takes two parameters: INFO which contains the
949 information available to gdbarch about the (possibly new)
950 architecture; ARCHES which is a list of the previously created
951 \`\`struct gdbarch'' for this architecture.
952
953 The INIT function parameter INFO shall, as far as possible, be
954 pre-initialized with information obtained from INFO.ABFD or
955 previously selected architecture (if similar).
956
957 The INIT function shall return any of: NULL - indicating that it
958 doesn't recognize the selected architecture; an existing \`\`struct
959 gdbarch'' from the ARCHES list - indicating that the new
960 architecture is just a synonym for an earlier architecture (see
961 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
962 - that describes the selected architecture (see gdbarch_alloc()).
963
964 The DUMP_TDEP function shall print out all target specific values.
965 Care should be taken to ensure that the function works in both the
966 multi-arch and non- multi-arch cases. */
967
968 struct gdbarch_list
969 {
970 struct gdbarch *gdbarch;
971 struct gdbarch_list *next;
972 };
973
974 struct gdbarch_info
975 {
976 /* Use default: NULL (ZERO). */
977 const struct bfd_arch_info *bfd_arch_info;
978
979 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
980 int byte_order;
981
982 /* Use default: NULL (ZERO). */
983 bfd *abfd;
984
985 /* Use default: NULL (ZERO). */
986 struct gdbarch_tdep_info *tdep_info;
987 };
988
989 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
990 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
991
992 /* DEPRECATED - use gdbarch_register() */
993 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
994
995 extern void gdbarch_register (enum bfd_architecture architecture,
996 gdbarch_init_ftype *,
997 gdbarch_dump_tdep_ftype *);
998
999
1000 /* Return a freshly allocated, NULL terminated, array of the valid
1001 architecture names. Since architectures are registered during the
1002 _initialize phase this function only returns useful information
1003 once initialization has been completed. */
1004
1005 extern const char **gdbarch_printable_names (void);
1006
1007
1008 /* Helper function. Search the list of ARCHES for a GDBARCH that
1009 matches the information provided by INFO. */
1010
1011 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1012
1013
1014 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1015 basic initialization using values obtained from the INFO andTDEP
1016 parameters. set_gdbarch_*() functions are called to complete the
1017 initialization of the object. */
1018
1019 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1020
1021
1022 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1023 It is assumed that the caller freeds the \`\`struct
1024 gdbarch_tdep''. */
1025
1026 extern void gdbarch_free (struct gdbarch *);
1027
1028
1029 /* Helper function. Force an update of the current architecture.
1030
1031 The actual architecture selected is determined by INFO, \`\`(gdb) set
1032 architecture'' et.al., the existing architecture and BFD's default
1033 architecture. INFO should be initialized to zero and then selected
1034 fields should be updated.
1035
1036 Returns non-zero if the update succeeds */
1037
1038 extern int gdbarch_update_p (struct gdbarch_info info);
1039
1040
1041
1042 /* Register per-architecture data-pointer.
1043
1044 Reserve space for a per-architecture data-pointer. An identifier
1045 for the reserved data-pointer is returned. That identifer should
1046 be saved in a local static variable.
1047
1048 The per-architecture data-pointer can be initialized in one of two
1049 ways: The value can be set explicitly using a call to
1050 set_gdbarch_data(); the value can be set implicitly using the value
1051 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1052 called after the basic architecture vector has been created.
1053
1054 When a previously created architecture is re-selected, the
1055 per-architecture data-pointer for that previous architecture is
1056 restored. INIT() is not called.
1057
1058 During initialization, multiple assignments of the data-pointer are
1059 allowed, non-NULL values are deleted by calling FREE(). If the
1060 architecture is deleted using gdbarch_free() all non-NULL data
1061 pointers are also deleted using FREE().
1062
1063 Multiple registrarants for any architecture are allowed (and
1064 strongly encouraged). */
1065
1066 struct gdbarch_data;
1067
1068 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1069 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1070 void *pointer);
1071 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1072 gdbarch_data_free_ftype *free);
1073 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1074 struct gdbarch_data *data,
1075 void *pointer);
1076
1077 extern void *gdbarch_data (struct gdbarch_data*);
1078
1079
1080 /* Register per-architecture memory region.
1081
1082 Provide a memory-region swap mechanism. Per-architecture memory
1083 region are created. These memory regions are swapped whenever the
1084 architecture is changed. For a new architecture, the memory region
1085 is initialized with zero (0) and the INIT function is called.
1086
1087 Memory regions are swapped / initialized in the order that they are
1088 registered. NULL DATA and/or INIT values can be specified.
1089
1090 New code should use register_gdbarch_data(). */
1091
1092 typedef void (gdbarch_swap_ftype) (void);
1093 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1094 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1095
1096
1097
1098 /* The target-system-dependent byte order is dynamic */
1099
1100 extern int target_byte_order;
1101 #ifndef TARGET_BYTE_ORDER
1102 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1103 #endif
1104
1105 extern int target_byte_order_auto;
1106 #ifndef TARGET_BYTE_ORDER_AUTO
1107 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1108 #endif
1109
1110
1111
1112 /* The target-system-dependent BFD architecture is dynamic */
1113
1114 extern int target_architecture_auto;
1115 #ifndef TARGET_ARCHITECTURE_AUTO
1116 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1117 #endif
1118
1119 extern const struct bfd_arch_info *target_architecture;
1120 #ifndef TARGET_ARCHITECTURE
1121 #define TARGET_ARCHITECTURE (target_architecture + 0)
1122 #endif
1123
1124
1125 /* The target-system-dependent disassembler is semi-dynamic */
1126
1127 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1128 unsigned int len, disassemble_info *info);
1129
1130 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1131 disassemble_info *info);
1132
1133 extern void dis_asm_print_address (bfd_vma addr,
1134 disassemble_info *info);
1135
1136 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1137 extern disassemble_info tm_print_insn_info;
1138 #ifndef TARGET_PRINT_INSN_INFO
1139 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1140 #endif
1141
1142
1143
1144 /* Set the dynamic target-system-dependent parameters (architecture,
1145 byte-order, ...) using information found in the BFD */
1146
1147 extern void set_gdbarch_from_file (bfd *);
1148
1149
1150 /* Initialize the current architecture to the "first" one we find on
1151 our list. */
1152
1153 extern void initialize_current_architecture (void);
1154
1155 /* For non-multiarched targets, do any initialization of the default
1156 gdbarch object necessary after the _initialize_MODULE functions
1157 have run. */
1158 extern void initialize_non_multiarch ();
1159
1160 /* gdbarch trace variable */
1161 extern int gdbarch_debug;
1162
1163 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1164
1165 #endif
1166 EOF
1167 exec 1>&2
1168 #../move-if-change new-gdbarch.h gdbarch.h
1169 compare_new gdbarch.h
1170
1171
1172 #
1173 # C file
1174 #
1175
1176 exec > new-gdbarch.c
1177 copyright
1178 cat <<EOF
1179
1180 #include "defs.h"
1181 #include "arch-utils.h"
1182
1183 #if GDB_MULTI_ARCH
1184 #include "gdbcmd.h"
1185 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1186 #else
1187 /* Just include everything in sight so that the every old definition
1188 of macro is visible. */
1189 #include "gdb_string.h"
1190 #include <ctype.h>
1191 #include "symtab.h"
1192 #include "frame.h"
1193 #include "inferior.h"
1194 #include "breakpoint.h"
1195 #include "gdb_wait.h"
1196 #include "gdbcore.h"
1197 #include "gdbcmd.h"
1198 #include "target.h"
1199 #include "gdbthread.h"
1200 #include "annotate.h"
1201 #include "symfile.h" /* for overlay functions */
1202 #include "value.h" /* For old tm.h/nm.h macros. */
1203 #endif
1204 #include "symcat.h"
1205
1206 #include "floatformat.h"
1207
1208 #include "gdb_assert.h"
1209 #include "gdb-events.h"
1210
1211 /* Static function declarations */
1212
1213 static void verify_gdbarch (struct gdbarch *gdbarch);
1214 static void alloc_gdbarch_data (struct gdbarch *);
1215 static void init_gdbarch_data (struct gdbarch *);
1216 static void free_gdbarch_data (struct gdbarch *);
1217 static void init_gdbarch_swap (struct gdbarch *);
1218 static void swapout_gdbarch_swap (struct gdbarch *);
1219 static void swapin_gdbarch_swap (struct gdbarch *);
1220
1221 /* Non-zero if we want to trace architecture code. */
1222
1223 #ifndef GDBARCH_DEBUG
1224 #define GDBARCH_DEBUG 0
1225 #endif
1226 int gdbarch_debug = GDBARCH_DEBUG;
1227
1228 EOF
1229
1230 # gdbarch open the gdbarch object
1231 printf "\n"
1232 printf "/* Maintain the struct gdbarch object */\n"
1233 printf "\n"
1234 printf "struct gdbarch\n"
1235 printf "{\n"
1236 printf " /* basic architectural information */\n"
1237 function_list | while do_read
1238 do
1239 if class_is_info_p
1240 then
1241 printf " ${returntype} ${function};\n"
1242 fi
1243 done
1244 printf "\n"
1245 printf " /* target specific vector. */\n"
1246 printf " struct gdbarch_tdep *tdep;\n"
1247 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1248 printf "\n"
1249 printf " /* per-architecture data-pointers */\n"
1250 printf " unsigned nr_data;\n"
1251 printf " void **data;\n"
1252 printf "\n"
1253 printf " /* per-architecture swap-regions */\n"
1254 printf " struct gdbarch_swap *swap;\n"
1255 printf "\n"
1256 cat <<EOF
1257 /* Multi-arch values.
1258
1259 When extending this structure you must:
1260
1261 Add the field below.
1262
1263 Declare set/get functions and define the corresponding
1264 macro in gdbarch.h.
1265
1266 gdbarch_alloc(): If zero/NULL is not a suitable default,
1267 initialize the new field.
1268
1269 verify_gdbarch(): Confirm that the target updated the field
1270 correctly.
1271
1272 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1273 field is dumped out
1274
1275 \`\`startup_gdbarch()'': Append an initial value to the static
1276 variable (base values on the host's c-type system).
1277
1278 get_gdbarch(): Implement the set/get functions (probably using
1279 the macro's as shortcuts).
1280
1281 */
1282
1283 EOF
1284 function_list | while do_read
1285 do
1286 if class_is_variable_p
1287 then
1288 printf " ${returntype} ${function};\n"
1289 elif class_is_function_p
1290 then
1291 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1292 fi
1293 done
1294 printf "};\n"
1295
1296 # A pre-initialized vector
1297 printf "\n"
1298 printf "\n"
1299 cat <<EOF
1300 /* The default architecture uses host values (for want of a better
1301 choice). */
1302 EOF
1303 printf "\n"
1304 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1305 printf "\n"
1306 printf "struct gdbarch startup_gdbarch =\n"
1307 printf "{\n"
1308 printf " /* basic architecture information */\n"
1309 function_list | while do_read
1310 do
1311 if class_is_info_p
1312 then
1313 printf " ${staticdefault},\n"
1314 fi
1315 done
1316 cat <<EOF
1317 /* target specific vector and its dump routine */
1318 NULL, NULL,
1319 /*per-architecture data-pointers and swap regions */
1320 0, NULL, NULL,
1321 /* Multi-arch values */
1322 EOF
1323 function_list | while do_read
1324 do
1325 if class_is_function_p || class_is_variable_p
1326 then
1327 printf " ${staticdefault},\n"
1328 fi
1329 done
1330 cat <<EOF
1331 /* startup_gdbarch() */
1332 };
1333
1334 struct gdbarch *current_gdbarch = &startup_gdbarch;
1335
1336 /* Do any initialization needed for a non-multiarch configuration
1337 after the _initialize_MODULE functions have been run. */
1338 void
1339 initialize_non_multiarch ()
1340 {
1341 alloc_gdbarch_data (&startup_gdbarch);
1342 init_gdbarch_swap (&startup_gdbarch);
1343 init_gdbarch_data (&startup_gdbarch);
1344 }
1345 EOF
1346
1347 # Create a new gdbarch struct
1348 printf "\n"
1349 printf "\n"
1350 cat <<EOF
1351 /* Create a new \`\`struct gdbarch'' based on information provided by
1352 \`\`struct gdbarch_info''. */
1353 EOF
1354 printf "\n"
1355 cat <<EOF
1356 struct gdbarch *
1357 gdbarch_alloc (const struct gdbarch_info *info,
1358 struct gdbarch_tdep *tdep)
1359 {
1360 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1361 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1362 the current local architecture and not the previous global
1363 architecture. This ensures that the new architectures initial
1364 values are not influenced by the previous architecture. Once
1365 everything is parameterised with gdbarch, this will go away. */
1366 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1367 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1368
1369 alloc_gdbarch_data (current_gdbarch);
1370
1371 current_gdbarch->tdep = tdep;
1372 EOF
1373 printf "\n"
1374 function_list | while do_read
1375 do
1376 if class_is_info_p
1377 then
1378 printf " current_gdbarch->${function} = info->${function};\n"
1379 fi
1380 done
1381 printf "\n"
1382 printf " /* Force the explicit initialization of these. */\n"
1383 function_list | while do_read
1384 do
1385 if class_is_function_p || class_is_variable_p
1386 then
1387 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1388 then
1389 printf " current_gdbarch->${function} = ${predefault};\n"
1390 fi
1391 fi
1392 done
1393 cat <<EOF
1394 /* gdbarch_alloc() */
1395
1396 return current_gdbarch;
1397 }
1398 EOF
1399
1400 # Free a gdbarch struct.
1401 printf "\n"
1402 printf "\n"
1403 cat <<EOF
1404 /* Free a gdbarch struct. This should never happen in normal
1405 operation --- once you've created a gdbarch, you keep it around.
1406 However, if an architecture's init function encounters an error
1407 building the structure, it may need to clean up a partially
1408 constructed gdbarch. */
1409
1410 void
1411 gdbarch_free (struct gdbarch *arch)
1412 {
1413 gdb_assert (arch != NULL);
1414 free_gdbarch_data (arch);
1415 xfree (arch);
1416 }
1417 EOF
1418
1419 # verify a new architecture
1420 printf "\n"
1421 printf "\n"
1422 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1423 printf "\n"
1424 cat <<EOF
1425 static void
1426 verify_gdbarch (struct gdbarch *gdbarch)
1427 {
1428 struct ui_file *log;
1429 struct cleanup *cleanups;
1430 long dummy;
1431 char *buf;
1432 /* Only perform sanity checks on a multi-arch target. */
1433 if (!GDB_MULTI_ARCH)
1434 return;
1435 log = mem_fileopen ();
1436 cleanups = make_cleanup_ui_file_delete (log);
1437 /* fundamental */
1438 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1439 fprintf_unfiltered (log, "\n\tbyte-order");
1440 if (gdbarch->bfd_arch_info == NULL)
1441 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1442 /* Check those that need to be defined for the given multi-arch level. */
1443 EOF
1444 function_list | while do_read
1445 do
1446 if class_is_function_p || class_is_variable_p
1447 then
1448 if [ "x${invalid_p}" = "x0" ]
1449 then
1450 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1451 elif class_is_predicate_p
1452 then
1453 printf " /* Skip verify of ${function}, has predicate */\n"
1454 # FIXME: See do_read for potential simplification
1455 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1456 then
1457 printf " if (${invalid_p})\n"
1458 printf " gdbarch->${function} = ${postdefault};\n"
1459 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1460 then
1461 printf " if (gdbarch->${function} == ${predefault})\n"
1462 printf " gdbarch->${function} = ${postdefault};\n"
1463 elif [ -n "${postdefault}" ]
1464 then
1465 printf " if (gdbarch->${function} == 0)\n"
1466 printf " gdbarch->${function} = ${postdefault};\n"
1467 elif [ -n "${invalid_p}" ]
1468 then
1469 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1470 printf " && (${invalid_p}))\n"
1471 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1472 elif [ -n "${predefault}" ]
1473 then
1474 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1475 printf " && (gdbarch->${function} == ${predefault}))\n"
1476 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1477 fi
1478 fi
1479 done
1480 cat <<EOF
1481 buf = ui_file_xstrdup (log, &dummy);
1482 make_cleanup (xfree, buf);
1483 if (strlen (buf) > 0)
1484 internal_error (__FILE__, __LINE__,
1485 "verify_gdbarch: the following are invalid ...%s",
1486 buf);
1487 do_cleanups (cleanups);
1488 }
1489 EOF
1490
1491 # dump the structure
1492 printf "\n"
1493 printf "\n"
1494 cat <<EOF
1495 /* Print out the details of the current architecture. */
1496
1497 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1498 just happens to match the global variable \`\`current_gdbarch''. That
1499 way macros refering to that variable get the local and not the global
1500 version - ulgh. Once everything is parameterised with gdbarch, this
1501 will go away. */
1502
1503 void
1504 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1505 {
1506 fprintf_unfiltered (file,
1507 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1508 GDB_MULTI_ARCH);
1509 EOF
1510 function_list | sort -t: +2 | while do_read
1511 do
1512 # multiarch functions don't have macros.
1513 if class_is_multiarch_p
1514 then
1515 printf " if (GDB_MULTI_ARCH)\n"
1516 printf " fprintf_unfiltered (file,\n"
1517 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1518 printf " (long) current_gdbarch->${function});\n"
1519 continue
1520 fi
1521 # Print the macro definition.
1522 printf "#ifdef ${macro}\n"
1523 if [ "x${returntype}" = "xvoid" ]
1524 then
1525 printf "#if GDB_MULTI_ARCH\n"
1526 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1527 fi
1528 if class_is_function_p
1529 then
1530 printf " fprintf_unfiltered (file,\n"
1531 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1532 printf " \"${macro}(${actual})\",\n"
1533 printf " XSTRING (${macro} (${actual})));\n"
1534 else
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1537 printf " XSTRING (${macro}));\n"
1538 fi
1539 # Print the architecture vector value
1540 if [ "x${returntype}" = "xvoid" ]
1541 then
1542 printf "#endif\n"
1543 fi
1544 if [ "x${print_p}" = "x()" ]
1545 then
1546 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1547 elif [ "x${print_p}" = "x0" ]
1548 then
1549 printf " /* skip print of ${macro}, print_p == 0. */\n"
1550 elif [ -n "${print_p}" ]
1551 then
1552 printf " if (${print_p})\n"
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1555 printf " ${print});\n"
1556 elif class_is_function_p
1557 then
1558 printf " if (GDB_MULTI_ARCH)\n"
1559 printf " fprintf_unfiltered (file,\n"
1560 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1561 printf " (long) current_gdbarch->${function}\n"
1562 printf " /*${macro} ()*/);\n"
1563 else
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1566 printf " ${print});\n"
1567 fi
1568 printf "#endif\n"
1569 done
1570 cat <<EOF
1571 if (current_gdbarch->dump_tdep != NULL)
1572 current_gdbarch->dump_tdep (current_gdbarch, file);
1573 }
1574 EOF
1575
1576
1577 # GET/SET
1578 printf "\n"
1579 cat <<EOF
1580 struct gdbarch_tdep *
1581 gdbarch_tdep (struct gdbarch *gdbarch)
1582 {
1583 if (gdbarch_debug >= 2)
1584 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1585 return gdbarch->tdep;
1586 }
1587 EOF
1588 printf "\n"
1589 function_list | while do_read
1590 do
1591 if class_is_predicate_p
1592 then
1593 printf "\n"
1594 printf "int\n"
1595 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1596 printf "{\n"
1597 if [ -n "${valid_p}" ]
1598 then
1599 printf " return ${valid_p};\n"
1600 else
1601 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1602 fi
1603 printf "}\n"
1604 fi
1605 if class_is_function_p
1606 then
1607 printf "\n"
1608 printf "${returntype}\n"
1609 if [ "x${formal}" = "xvoid" ]
1610 then
1611 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1612 else
1613 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1614 fi
1615 printf "{\n"
1616 printf " if (gdbarch->${function} == 0)\n"
1617 printf " internal_error (__FILE__, __LINE__,\n"
1618 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1619 printf " if (gdbarch_debug >= 2)\n"
1620 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1621 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1622 then
1623 if class_is_multiarch_p
1624 then
1625 params="gdbarch"
1626 else
1627 params=""
1628 fi
1629 else
1630 if class_is_multiarch_p
1631 then
1632 params="gdbarch, ${actual}"
1633 else
1634 params="${actual}"
1635 fi
1636 fi
1637 if [ "x${returntype}" = "xvoid" ]
1638 then
1639 printf " gdbarch->${function} (${params});\n"
1640 else
1641 printf " return gdbarch->${function} (${params});\n"
1642 fi
1643 printf "}\n"
1644 printf "\n"
1645 printf "void\n"
1646 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1647 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1648 printf "{\n"
1649 printf " gdbarch->${function} = ${function};\n"
1650 printf "}\n"
1651 elif class_is_variable_p
1652 then
1653 printf "\n"
1654 printf "${returntype}\n"
1655 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1656 printf "{\n"
1657 if [ "x${invalid_p}" = "x0" ]
1658 then
1659 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1660 elif [ -n "${invalid_p}" ]
1661 then
1662 printf " if (${invalid_p})\n"
1663 printf " internal_error (__FILE__, __LINE__,\n"
1664 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1665 elif [ -n "${predefault}" ]
1666 then
1667 printf " if (gdbarch->${function} == ${predefault})\n"
1668 printf " internal_error (__FILE__, __LINE__,\n"
1669 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1670 fi
1671 printf " if (gdbarch_debug >= 2)\n"
1672 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1673 printf " return gdbarch->${function};\n"
1674 printf "}\n"
1675 printf "\n"
1676 printf "void\n"
1677 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1678 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1679 printf "{\n"
1680 printf " gdbarch->${function} = ${function};\n"
1681 printf "}\n"
1682 elif class_is_info_p
1683 then
1684 printf "\n"
1685 printf "${returntype}\n"
1686 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1687 printf "{\n"
1688 printf " if (gdbarch_debug >= 2)\n"
1689 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1690 printf " return gdbarch->${function};\n"
1691 printf "}\n"
1692 fi
1693 done
1694
1695 # All the trailing guff
1696 cat <<EOF
1697
1698
1699 /* Keep a registry of per-architecture data-pointers required by GDB
1700 modules. */
1701
1702 struct gdbarch_data
1703 {
1704 unsigned index;
1705 gdbarch_data_init_ftype *init;
1706 gdbarch_data_free_ftype *free;
1707 };
1708
1709 struct gdbarch_data_registration
1710 {
1711 struct gdbarch_data *data;
1712 struct gdbarch_data_registration *next;
1713 };
1714
1715 struct gdbarch_data_registry
1716 {
1717 unsigned nr;
1718 struct gdbarch_data_registration *registrations;
1719 };
1720
1721 struct gdbarch_data_registry gdbarch_data_registry =
1722 {
1723 0, NULL,
1724 };
1725
1726 struct gdbarch_data *
1727 register_gdbarch_data (gdbarch_data_init_ftype *init,
1728 gdbarch_data_free_ftype *free)
1729 {
1730 struct gdbarch_data_registration **curr;
1731 for (curr = &gdbarch_data_registry.registrations;
1732 (*curr) != NULL;
1733 curr = &(*curr)->next);
1734 (*curr) = XMALLOC (struct gdbarch_data_registration);
1735 (*curr)->next = NULL;
1736 (*curr)->data = XMALLOC (struct gdbarch_data);
1737 (*curr)->data->index = gdbarch_data_registry.nr++;
1738 (*curr)->data->init = init;
1739 (*curr)->data->free = free;
1740 return (*curr)->data;
1741 }
1742
1743
1744 /* Walk through all the registered users initializing each in turn. */
1745
1746 static void
1747 init_gdbarch_data (struct gdbarch *gdbarch)
1748 {
1749 struct gdbarch_data_registration *rego;
1750 for (rego = gdbarch_data_registry.registrations;
1751 rego != NULL;
1752 rego = rego->next)
1753 {
1754 struct gdbarch_data *data = rego->data;
1755 gdb_assert (data->index < gdbarch->nr_data);
1756 if (data->init != NULL)
1757 {
1758 void *pointer = data->init (gdbarch);
1759 set_gdbarch_data (gdbarch, data, pointer);
1760 }
1761 }
1762 }
1763
1764 /* Create/delete the gdbarch data vector. */
1765
1766 static void
1767 alloc_gdbarch_data (struct gdbarch *gdbarch)
1768 {
1769 gdb_assert (gdbarch->data == NULL);
1770 gdbarch->nr_data = gdbarch_data_registry.nr;
1771 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1772 }
1773
1774 static void
1775 free_gdbarch_data (struct gdbarch *gdbarch)
1776 {
1777 struct gdbarch_data_registration *rego;
1778 gdb_assert (gdbarch->data != NULL);
1779 for (rego = gdbarch_data_registry.registrations;
1780 rego != NULL;
1781 rego = rego->next)
1782 {
1783 struct gdbarch_data *data = rego->data;
1784 gdb_assert (data->index < gdbarch->nr_data);
1785 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1786 {
1787 data->free (gdbarch, gdbarch->data[data->index]);
1788 gdbarch->data[data->index] = NULL;
1789 }
1790 }
1791 xfree (gdbarch->data);
1792 gdbarch->data = NULL;
1793 }
1794
1795
1796 /* Initialize the current value of thee specified per-architecture
1797 data-pointer. */
1798
1799 void
1800 set_gdbarch_data (struct gdbarch *gdbarch,
1801 struct gdbarch_data *data,
1802 void *pointer)
1803 {
1804 gdb_assert (data->index < gdbarch->nr_data);
1805 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1806 data->free (gdbarch, gdbarch->data[data->index]);
1807 gdbarch->data[data->index] = pointer;
1808 }
1809
1810 /* Return the current value of the specified per-architecture
1811 data-pointer. */
1812
1813 void *
1814 gdbarch_data (struct gdbarch_data *data)
1815 {
1816 gdb_assert (data->index < current_gdbarch->nr_data);
1817 return current_gdbarch->data[data->index];
1818 }
1819
1820
1821
1822 /* Keep a registry of swapped data required by GDB modules. */
1823
1824 struct gdbarch_swap
1825 {
1826 void *swap;
1827 struct gdbarch_swap_registration *source;
1828 struct gdbarch_swap *next;
1829 };
1830
1831 struct gdbarch_swap_registration
1832 {
1833 void *data;
1834 unsigned long sizeof_data;
1835 gdbarch_swap_ftype *init;
1836 struct gdbarch_swap_registration *next;
1837 };
1838
1839 struct gdbarch_swap_registry
1840 {
1841 int nr;
1842 struct gdbarch_swap_registration *registrations;
1843 };
1844
1845 struct gdbarch_swap_registry gdbarch_swap_registry =
1846 {
1847 0, NULL,
1848 };
1849
1850 void
1851 register_gdbarch_swap (void *data,
1852 unsigned long sizeof_data,
1853 gdbarch_swap_ftype *init)
1854 {
1855 struct gdbarch_swap_registration **rego;
1856 for (rego = &gdbarch_swap_registry.registrations;
1857 (*rego) != NULL;
1858 rego = &(*rego)->next);
1859 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1860 (*rego)->next = NULL;
1861 (*rego)->init = init;
1862 (*rego)->data = data;
1863 (*rego)->sizeof_data = sizeof_data;
1864 }
1865
1866
1867 static void
1868 init_gdbarch_swap (struct gdbarch *gdbarch)
1869 {
1870 struct gdbarch_swap_registration *rego;
1871 struct gdbarch_swap **curr = &gdbarch->swap;
1872 for (rego = gdbarch_swap_registry.registrations;
1873 rego != NULL;
1874 rego = rego->next)
1875 {
1876 if (rego->data != NULL)
1877 {
1878 (*curr) = XMALLOC (struct gdbarch_swap);
1879 (*curr)->source = rego;
1880 (*curr)->swap = xmalloc (rego->sizeof_data);
1881 (*curr)->next = NULL;
1882 memset (rego->data, 0, rego->sizeof_data);
1883 curr = &(*curr)->next;
1884 }
1885 if (rego->init != NULL)
1886 rego->init ();
1887 }
1888 }
1889
1890 static void
1891 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1892 {
1893 struct gdbarch_swap *curr;
1894 for (curr = gdbarch->swap;
1895 curr != NULL;
1896 curr = curr->next)
1897 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1898 }
1899
1900 static void
1901 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1902 {
1903 struct gdbarch_swap *curr;
1904 for (curr = gdbarch->swap;
1905 curr != NULL;
1906 curr = curr->next)
1907 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1908 }
1909
1910
1911 /* Keep a registry of the architectures known by GDB. */
1912
1913 struct gdbarch_registration
1914 {
1915 enum bfd_architecture bfd_architecture;
1916 gdbarch_init_ftype *init;
1917 gdbarch_dump_tdep_ftype *dump_tdep;
1918 struct gdbarch_list *arches;
1919 struct gdbarch_registration *next;
1920 };
1921
1922 static struct gdbarch_registration *gdbarch_registry = NULL;
1923
1924 static void
1925 append_name (const char ***buf, int *nr, const char *name)
1926 {
1927 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1928 (*buf)[*nr] = name;
1929 *nr += 1;
1930 }
1931
1932 const char **
1933 gdbarch_printable_names (void)
1934 {
1935 if (GDB_MULTI_ARCH)
1936 {
1937 /* Accumulate a list of names based on the registed list of
1938 architectures. */
1939 enum bfd_architecture a;
1940 int nr_arches = 0;
1941 const char **arches = NULL;
1942 struct gdbarch_registration *rego;
1943 for (rego = gdbarch_registry;
1944 rego != NULL;
1945 rego = rego->next)
1946 {
1947 const struct bfd_arch_info *ap;
1948 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1949 if (ap == NULL)
1950 internal_error (__FILE__, __LINE__,
1951 "gdbarch_architecture_names: multi-arch unknown");
1952 do
1953 {
1954 append_name (&arches, &nr_arches, ap->printable_name);
1955 ap = ap->next;
1956 }
1957 while (ap != NULL);
1958 }
1959 append_name (&arches, &nr_arches, NULL);
1960 return arches;
1961 }
1962 else
1963 /* Just return all the architectures that BFD knows. Assume that
1964 the legacy architecture framework supports them. */
1965 return bfd_arch_list ();
1966 }
1967
1968
1969 void
1970 gdbarch_register (enum bfd_architecture bfd_architecture,
1971 gdbarch_init_ftype *init,
1972 gdbarch_dump_tdep_ftype *dump_tdep)
1973 {
1974 struct gdbarch_registration **curr;
1975 const struct bfd_arch_info *bfd_arch_info;
1976 /* Check that BFD recognizes this architecture */
1977 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1978 if (bfd_arch_info == NULL)
1979 {
1980 internal_error (__FILE__, __LINE__,
1981 "gdbarch: Attempt to register unknown architecture (%d)",
1982 bfd_architecture);
1983 }
1984 /* Check that we haven't seen this architecture before */
1985 for (curr = &gdbarch_registry;
1986 (*curr) != NULL;
1987 curr = &(*curr)->next)
1988 {
1989 if (bfd_architecture == (*curr)->bfd_architecture)
1990 internal_error (__FILE__, __LINE__,
1991 "gdbarch: Duplicate registraration of architecture (%s)",
1992 bfd_arch_info->printable_name);
1993 }
1994 /* log it */
1995 if (gdbarch_debug)
1996 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1997 bfd_arch_info->printable_name,
1998 (long) init);
1999 /* Append it */
2000 (*curr) = XMALLOC (struct gdbarch_registration);
2001 (*curr)->bfd_architecture = bfd_architecture;
2002 (*curr)->init = init;
2003 (*curr)->dump_tdep = dump_tdep;
2004 (*curr)->arches = NULL;
2005 (*curr)->next = NULL;
2006 /* When non- multi-arch, install whatever target dump routine we've
2007 been provided - hopefully that routine has been written correctly
2008 and works regardless of multi-arch. */
2009 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2010 && startup_gdbarch.dump_tdep == NULL)
2011 startup_gdbarch.dump_tdep = dump_tdep;
2012 }
2013
2014 void
2015 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2016 gdbarch_init_ftype *init)
2017 {
2018 gdbarch_register (bfd_architecture, init, NULL);
2019 }
2020
2021
2022 /* Look for an architecture using gdbarch_info. Base search on only
2023 BFD_ARCH_INFO and BYTE_ORDER. */
2024
2025 struct gdbarch_list *
2026 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2027 const struct gdbarch_info *info)
2028 {
2029 for (; arches != NULL; arches = arches->next)
2030 {
2031 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2032 continue;
2033 if (info->byte_order != arches->gdbarch->byte_order)
2034 continue;
2035 return arches;
2036 }
2037 return NULL;
2038 }
2039
2040
2041 /* Update the current architecture. Return ZERO if the update request
2042 failed. */
2043
2044 int
2045 gdbarch_update_p (struct gdbarch_info info)
2046 {
2047 struct gdbarch *new_gdbarch;
2048 struct gdbarch_list **list;
2049 struct gdbarch_registration *rego;
2050
2051 /* Fill in missing parts of the INFO struct using a number of
2052 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2053
2054 /* \`\`(gdb) set architecture ...'' */
2055 if (info.bfd_arch_info == NULL
2056 && !TARGET_ARCHITECTURE_AUTO)
2057 info.bfd_arch_info = TARGET_ARCHITECTURE;
2058 if (info.bfd_arch_info == NULL
2059 && info.abfd != NULL
2060 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2061 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2062 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2063 if (info.bfd_arch_info == NULL)
2064 info.bfd_arch_info = TARGET_ARCHITECTURE;
2065
2066 /* \`\`(gdb) set byte-order ...'' */
2067 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2068 && !TARGET_BYTE_ORDER_AUTO)
2069 info.byte_order = TARGET_BYTE_ORDER;
2070 /* From the INFO struct. */
2071 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2072 && info.abfd != NULL)
2073 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2074 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2075 : BFD_ENDIAN_UNKNOWN);
2076 /* From the current target. */
2077 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2078 info.byte_order = TARGET_BYTE_ORDER;
2079
2080 /* Must have found some sort of architecture. */
2081 gdb_assert (info.bfd_arch_info != NULL);
2082
2083 if (gdbarch_debug)
2084 {
2085 fprintf_unfiltered (gdb_stdlog,
2086 "gdbarch_update: info.bfd_arch_info %s\n",
2087 (info.bfd_arch_info != NULL
2088 ? info.bfd_arch_info->printable_name
2089 : "(null)"));
2090 fprintf_unfiltered (gdb_stdlog,
2091 "gdbarch_update: info.byte_order %d (%s)\n",
2092 info.byte_order,
2093 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2094 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2095 : "default"));
2096 fprintf_unfiltered (gdb_stdlog,
2097 "gdbarch_update: info.abfd 0x%lx\n",
2098 (long) info.abfd);
2099 fprintf_unfiltered (gdb_stdlog,
2100 "gdbarch_update: info.tdep_info 0x%lx\n",
2101 (long) info.tdep_info);
2102 }
2103
2104 /* Find the target that knows about this architecture. */
2105 for (rego = gdbarch_registry;
2106 rego != NULL;
2107 rego = rego->next)
2108 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2109 break;
2110 if (rego == NULL)
2111 {
2112 if (gdbarch_debug)
2113 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2114 return 0;
2115 }
2116
2117 /* Ask the target for a replacement architecture. */
2118 new_gdbarch = rego->init (info, rego->arches);
2119
2120 /* Did the target like it? No. Reject the change. */
2121 if (new_gdbarch == NULL)
2122 {
2123 if (gdbarch_debug)
2124 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2125 return 0;
2126 }
2127
2128 /* Did the architecture change? No. Do nothing. */
2129 if (current_gdbarch == new_gdbarch)
2130 {
2131 if (gdbarch_debug)
2132 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2133 (long) new_gdbarch,
2134 new_gdbarch->bfd_arch_info->printable_name);
2135 return 1;
2136 }
2137
2138 /* Swap all data belonging to the old target out */
2139 swapout_gdbarch_swap (current_gdbarch);
2140
2141 /* Is this a pre-existing architecture? Yes. Swap it in. */
2142 for (list = &rego->arches;
2143 (*list) != NULL;
2144 list = &(*list)->next)
2145 {
2146 if ((*list)->gdbarch == new_gdbarch)
2147 {
2148 if (gdbarch_debug)
2149 fprintf_unfiltered (gdb_stdlog,
2150 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2151 (long) new_gdbarch,
2152 new_gdbarch->bfd_arch_info->printable_name);
2153 current_gdbarch = new_gdbarch;
2154 swapin_gdbarch_swap (new_gdbarch);
2155 architecture_changed_event ();
2156 return 1;
2157 }
2158 }
2159
2160 /* Append this new architecture to this targets list. */
2161 (*list) = XMALLOC (struct gdbarch_list);
2162 (*list)->next = NULL;
2163 (*list)->gdbarch = new_gdbarch;
2164
2165 /* Switch to this new architecture. Dump it out. */
2166 current_gdbarch = new_gdbarch;
2167 if (gdbarch_debug)
2168 {
2169 fprintf_unfiltered (gdb_stdlog,
2170 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2171 (long) new_gdbarch,
2172 new_gdbarch->bfd_arch_info->printable_name);
2173 }
2174
2175 /* Check that the newly installed architecture is valid. Plug in
2176 any post init values. */
2177 new_gdbarch->dump_tdep = rego->dump_tdep;
2178 verify_gdbarch (new_gdbarch);
2179
2180 /* Initialize the per-architecture memory (swap) areas.
2181 CURRENT_GDBARCH must be update before these modules are
2182 called. */
2183 init_gdbarch_swap (new_gdbarch);
2184
2185 /* Initialize the per-architecture data-pointer of all parties that
2186 registered an interest in this architecture. CURRENT_GDBARCH
2187 must be updated before these modules are called. */
2188 init_gdbarch_data (new_gdbarch);
2189 architecture_changed_event ();
2190
2191 if (gdbarch_debug)
2192 gdbarch_dump (current_gdbarch, gdb_stdlog);
2193
2194 return 1;
2195 }
2196
2197
2198 /* Disassembler */
2199
2200 /* Pointer to the target-dependent disassembly function. */
2201 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2202 disassemble_info tm_print_insn_info;
2203
2204
2205 extern void _initialize_gdbarch (void);
2206
2207 void
2208 _initialize_gdbarch (void)
2209 {
2210 struct cmd_list_element *c;
2211
2212 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2213 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2214 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2215 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2216 tm_print_insn_info.print_address_func = dis_asm_print_address;
2217
2218 add_show_from_set (add_set_cmd ("arch",
2219 class_maintenance,
2220 var_zinteger,
2221 (char *)&gdbarch_debug,
2222 "Set architecture debugging.\\n\\
2223 When non-zero, architecture debugging is enabled.", &setdebuglist),
2224 &showdebuglist);
2225 c = add_set_cmd ("archdebug",
2226 class_maintenance,
2227 var_zinteger,
2228 (char *)&gdbarch_debug,
2229 "Set architecture debugging.\\n\\
2230 When non-zero, architecture debugging is enabled.", &setlist);
2231
2232 deprecate_cmd (c, "set debug arch");
2233 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2234 }
2235 EOF
2236
2237 # close things off
2238 exec 1>&2
2239 #../move-if-change new-gdbarch.c gdbarch.c
2240 compare_new gdbarch.c
This page took 0.104534 seconds and 4 git commands to generate.