3835ac0b940b78bed4509cba86910f5248993f91
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 # Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
457 # that updates PC, NPC and even NNPC.
458 v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
473 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
618 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
619 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
620 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
621 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
622 #
623 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
624 #
625 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
626 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
627 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
628 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
629 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
630 # note, per UNWIND_PC's doco, that while the two have similar
631 # interfaces they have very different underlying implementations.
632 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
633 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
634 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
635 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
636 # frame-base. Enable frame-base before frame-unwind.
637 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
638 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
639 # frame-base. Enable frame-base before frame-unwind.
640 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
641 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
642 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
643 #
644 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
645 # to frame_align and the requirement that methods such as
646 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
647 # alignment.
648 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
649 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
650 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
651 # stabs_argument_has_addr.
652 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
653 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
654 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
655 v:2:PARM_BOUNDARY:int:parm_boundary
656 #
657 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
658 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
659 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
660 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
661 # On some machines there are bits in addresses which are not really
662 # part of the address, but are used by the kernel, the hardware, etc.
663 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
664 # we get a "real" address such as one would find in a symbol table.
665 # This is used only for addresses of instructions, and even then I'm
666 # not sure it's used in all contexts. It exists to deal with there
667 # being a few stray bits in the PC which would mislead us, not as some
668 # sort of generic thing to handle alignment or segmentation (it's
669 # possible it should be in TARGET_READ_PC instead).
670 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
671 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
672 # ADDR_BITS_REMOVE.
673 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
674 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
675 # the target needs software single step. An ISA method to implement it.
676 #
677 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
678 # using the breakpoint system instead of blatting memory directly (as with rs6000).
679 #
680 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
681 # single step. If not, then implement single step using breakpoints.
682 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
683 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
684 # disassembler. Perhaphs objdump can handle it?
685 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
686 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
687
688
689 # For SVR4 shared libraries, each call goes through a small piece of
690 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
691 # to nonzero if we are currently stopped in one of these.
692 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
693
694 # Some systems also have trampoline code for returning from shared libs.
695 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
696
697 # Sigtramp is a routine that the kernel calls (which then calls the
698 # signal handler). On most machines it is a library routine that is
699 # linked into the executable.
700 #
701 # This macro, given a program counter value and the name of the
702 # function in which that PC resides (which can be null if the name is
703 # not known), returns nonzero if the PC and name show that we are in
704 # sigtramp.
705 #
706 # On most machines just see if the name is sigtramp (and if we have
707 # no name, assume we are not in sigtramp).
708 #
709 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
710 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
711 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
712 # own local NAME lookup.
713 #
714 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
715 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
716 # does not.
717 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
718 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
719 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
720 # A target might have problems with watchpoints as soon as the stack
721 # frame of the current function has been destroyed. This mostly happens
722 # as the first action in a funtion's epilogue. in_function_epilogue_p()
723 # is defined to return a non-zero value if either the given addr is one
724 # instruction after the stack destroying instruction up to the trailing
725 # return instruction or if we can figure out that the stack frame has
726 # already been invalidated regardless of the value of addr. Targets
727 # which don't suffer from that problem could just let this functionality
728 # untouched.
729 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
730 # Given a vector of command-line arguments, return a newly allocated
731 # string which, when passed to the create_inferior function, will be
732 # parsed (on Unix systems, by the shell) to yield the same vector.
733 # This function should call error() if the argument vector is not
734 # representable for this target or if this target does not support
735 # command-line arguments.
736 # ARGC is the number of elements in the vector.
737 # ARGV is an array of strings, one per argument.
738 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
739 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
740 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
741 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
742 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
743 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
744 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
745 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
746 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
747 # Is a register in a group
748 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
749 # Fetch the pointer to the ith function argument.
750 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
751
752 # Return the appropriate register set for a core file section with
753 # name SECT_NAME and size SECT_SIZE.
754 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
755 EOF
756 }
757
758 #
759 # The .log file
760 #
761 exec > new-gdbarch.log
762 function_list | while do_read
763 do
764 cat <<EOF
765 ${class} ${macro}(${actual})
766 ${returntype} ${function} ($formal)${attrib}
767 EOF
768 for r in ${read}
769 do
770 eval echo \"\ \ \ \ ${r}=\${${r}}\"
771 done
772 if class_is_predicate_p && fallback_default_p
773 then
774 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
775 kill $$
776 exit 1
777 fi
778 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
779 then
780 echo "Error: postdefault is useless when invalid_p=0" 1>&2
781 kill $$
782 exit 1
783 fi
784 if class_is_multiarch_p
785 then
786 if class_is_predicate_p ; then :
787 elif test "x${predefault}" = "x"
788 then
789 echo "Error: pure multi-arch function must have a predefault" 1>&2
790 kill $$
791 exit 1
792 fi
793 fi
794 echo ""
795 done
796
797 exec 1>&2
798 compare_new gdbarch.log
799
800
801 copyright ()
802 {
803 cat <<EOF
804 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
805
806 /* Dynamic architecture support for GDB, the GNU debugger.
807 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
808
809 This file is part of GDB.
810
811 This program is free software; you can redistribute it and/or modify
812 it under the terms of the GNU General Public License as published by
813 the Free Software Foundation; either version 2 of the License, or
814 (at your option) any later version.
815
816 This program is distributed in the hope that it will be useful,
817 but WITHOUT ANY WARRANTY; without even the implied warranty of
818 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
819 GNU General Public License for more details.
820
821 You should have received a copy of the GNU General Public License
822 along with this program; if not, write to the Free Software
823 Foundation, Inc., 59 Temple Place - Suite 330,
824 Boston, MA 02111-1307, USA. */
825
826 /* This file was created with the aid of \`\`gdbarch.sh''.
827
828 The Bourne shell script \`\`gdbarch.sh'' creates the files
829 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
830 against the existing \`\`gdbarch.[hc]''. Any differences found
831 being reported.
832
833 If editing this file, please also run gdbarch.sh and merge any
834 changes into that script. Conversely, when making sweeping changes
835 to this file, modifying gdbarch.sh and using its output may prove
836 easier. */
837
838 EOF
839 }
840
841 #
842 # The .h file
843 #
844
845 exec > new-gdbarch.h
846 copyright
847 cat <<EOF
848 #ifndef GDBARCH_H
849 #define GDBARCH_H
850
851 struct floatformat;
852 struct ui_file;
853 struct frame_info;
854 struct value;
855 struct objfile;
856 struct minimal_symbol;
857 struct regcache;
858 struct reggroup;
859 struct regset;
860 struct disassemble_info;
861
862 extern struct gdbarch *current_gdbarch;
863
864
865 /* If any of the following are defined, the target wasn't correctly
866 converted. */
867
868 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
869 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
870 #endif
871 EOF
872
873 # function typedef's
874 printf "\n"
875 printf "\n"
876 printf "/* The following are pre-initialized by GDBARCH. */\n"
877 function_list | while do_read
878 do
879 if class_is_info_p
880 then
881 printf "\n"
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
883 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
884 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
885 printf "#error \"Non multi-arch definition of ${macro}\"\n"
886 printf "#endif\n"
887 printf "#if !defined (${macro})\n"
888 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
889 printf "#endif\n"
890 fi
891 done
892
893 # function typedef's
894 printf "\n"
895 printf "\n"
896 printf "/* The following are initialized by the target dependent code. */\n"
897 function_list | while do_read
898 do
899 if [ -n "${comment}" ]
900 then
901 echo "${comment}" | sed \
902 -e '2 s,#,/*,' \
903 -e '3,$ s,#, ,' \
904 -e '$ s,$, */,'
905 fi
906 if class_is_multiarch_p
907 then
908 if class_is_predicate_p
909 then
910 printf "\n"
911 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
912 fi
913 else
914 if class_is_predicate_p
915 then
916 printf "\n"
917 printf "#if defined (${macro})\n"
918 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
919 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
920 printf "#if !defined (${macro}_P)\n"
921 printf "#define ${macro}_P() (1)\n"
922 printf "#endif\n"
923 printf "#endif\n"
924 printf "\n"
925 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
926 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
927 printf "#error \"Non multi-arch definition of ${macro}\"\n"
928 printf "#endif\n"
929 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
930 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
931 printf "#endif\n"
932 fi
933 fi
934 if class_is_variable_p
935 then
936 printf "\n"
937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
938 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
939 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
940 printf "#error \"Non multi-arch definition of ${macro}\"\n"
941 printf "#endif\n"
942 printf "#if !defined (${macro})\n"
943 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
944 printf "#endif\n"
945 fi
946 if class_is_function_p
947 then
948 printf "\n"
949 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
950 then
951 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
952 elif class_is_multiarch_p
953 then
954 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
955 else
956 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
957 fi
958 if [ "x${formal}" = "xvoid" ]
959 then
960 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
961 else
962 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
963 fi
964 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
965 if class_is_multiarch_p ; then :
966 else
967 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
968 printf "#error \"Non multi-arch definition of ${macro}\"\n"
969 printf "#endif\n"
970 if [ "x${actual}" = "x" ]
971 then
972 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
973 elif [ "x${actual}" = "x-" ]
974 then
975 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
976 else
977 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
978 fi
979 printf "#if !defined (${macro})\n"
980 if [ "x${actual}" = "x" ]
981 then
982 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
983 elif [ "x${actual}" = "x-" ]
984 then
985 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
986 else
987 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
988 fi
989 printf "#endif\n"
990 fi
991 fi
992 done
993
994 # close it off
995 cat <<EOF
996
997 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
998
999
1000 /* Mechanism for co-ordinating the selection of a specific
1001 architecture.
1002
1003 GDB targets (*-tdep.c) can register an interest in a specific
1004 architecture. Other GDB components can register a need to maintain
1005 per-architecture data.
1006
1007 The mechanisms below ensures that there is only a loose connection
1008 between the set-architecture command and the various GDB
1009 components. Each component can independently register their need
1010 to maintain architecture specific data with gdbarch.
1011
1012 Pragmatics:
1013
1014 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1015 didn't scale.
1016
1017 The more traditional mega-struct containing architecture specific
1018 data for all the various GDB components was also considered. Since
1019 GDB is built from a variable number of (fairly independent)
1020 components it was determined that the global aproach was not
1021 applicable. */
1022
1023
1024 /* Register a new architectural family with GDB.
1025
1026 Register support for the specified ARCHITECTURE with GDB. When
1027 gdbarch determines that the specified architecture has been
1028 selected, the corresponding INIT function is called.
1029
1030 --
1031
1032 The INIT function takes two parameters: INFO which contains the
1033 information available to gdbarch about the (possibly new)
1034 architecture; ARCHES which is a list of the previously created
1035 \`\`struct gdbarch'' for this architecture.
1036
1037 The INFO parameter is, as far as possible, be pre-initialized with
1038 information obtained from INFO.ABFD or the previously selected
1039 architecture.
1040
1041 The ARCHES parameter is a linked list (sorted most recently used)
1042 of all the previously created architures for this architecture
1043 family. The (possibly NULL) ARCHES->gdbarch can used to access
1044 values from the previously selected architecture for this
1045 architecture family. The global \`\`current_gdbarch'' shall not be
1046 used.
1047
1048 The INIT function shall return any of: NULL - indicating that it
1049 doesn't recognize the selected architecture; an existing \`\`struct
1050 gdbarch'' from the ARCHES list - indicating that the new
1051 architecture is just a synonym for an earlier architecture (see
1052 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1053 - that describes the selected architecture (see gdbarch_alloc()).
1054
1055 The DUMP_TDEP function shall print out all target specific values.
1056 Care should be taken to ensure that the function works in both the
1057 multi-arch and non- multi-arch cases. */
1058
1059 struct gdbarch_list
1060 {
1061 struct gdbarch *gdbarch;
1062 struct gdbarch_list *next;
1063 };
1064
1065 struct gdbarch_info
1066 {
1067 /* Use default: NULL (ZERO). */
1068 const struct bfd_arch_info *bfd_arch_info;
1069
1070 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1071 int byte_order;
1072
1073 /* Use default: NULL (ZERO). */
1074 bfd *abfd;
1075
1076 /* Use default: NULL (ZERO). */
1077 struct gdbarch_tdep_info *tdep_info;
1078
1079 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1080 enum gdb_osabi osabi;
1081 };
1082
1083 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1084 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1085
1086 /* DEPRECATED - use gdbarch_register() */
1087 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1088
1089 extern void gdbarch_register (enum bfd_architecture architecture,
1090 gdbarch_init_ftype *,
1091 gdbarch_dump_tdep_ftype *);
1092
1093
1094 /* Return a freshly allocated, NULL terminated, array of the valid
1095 architecture names. Since architectures are registered during the
1096 _initialize phase this function only returns useful information
1097 once initialization has been completed. */
1098
1099 extern const char **gdbarch_printable_names (void);
1100
1101
1102 /* Helper function. Search the list of ARCHES for a GDBARCH that
1103 matches the information provided by INFO. */
1104
1105 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1106
1107
1108 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1109 basic initialization using values obtained from the INFO andTDEP
1110 parameters. set_gdbarch_*() functions are called to complete the
1111 initialization of the object. */
1112
1113 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1114
1115
1116 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1117 It is assumed that the caller freeds the \`\`struct
1118 gdbarch_tdep''. */
1119
1120 extern void gdbarch_free (struct gdbarch *);
1121
1122
1123 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1124 obstack. The memory is freed when the corresponding architecture
1125 is also freed. */
1126
1127 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1128 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1129 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1130
1131
1132 /* Helper function. Force an update of the current architecture.
1133
1134 The actual architecture selected is determined by INFO, \`\`(gdb) set
1135 architecture'' et.al., the existing architecture and BFD's default
1136 architecture. INFO should be initialized to zero and then selected
1137 fields should be updated.
1138
1139 Returns non-zero if the update succeeds */
1140
1141 extern int gdbarch_update_p (struct gdbarch_info info);
1142
1143
1144
1145 /* Register per-architecture data-pointer.
1146
1147 Reserve space for a per-architecture data-pointer. An identifier
1148 for the reserved data-pointer is returned. That identifer should
1149 be saved in a local static variable.
1150
1151 The per-architecture data-pointer is either initialized explicitly
1152 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1153 gdbarch_data()).
1154
1155 Memory for the per-architecture data shall be allocated using
1156 gdbarch_obstack_zalloc. That memory will be deleted when the
1157 corresponding architecture object is deleted.
1158
1159 When a previously created architecture is re-selected, the
1160 per-architecture data-pointer for that previous architecture is
1161 restored. INIT() is not re-called.
1162
1163 Multiple registrarants for any architecture are allowed (and
1164 strongly encouraged). */
1165
1166 struct gdbarch_data;
1167
1168 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1169 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1170 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1171 struct gdbarch_data *data,
1172 void *pointer);
1173
1174 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1175
1176
1177 /* Register per-architecture memory region.
1178
1179 Provide a memory-region swap mechanism. Per-architecture memory
1180 region are created. These memory regions are swapped whenever the
1181 architecture is changed. For a new architecture, the memory region
1182 is initialized with zero (0) and the INIT function is called.
1183
1184 Memory regions are swapped / initialized in the order that they are
1185 registered. NULL DATA and/or INIT values can be specified.
1186
1187 New code should use register_gdbarch_data(). */
1188
1189 typedef void (gdbarch_swap_ftype) (void);
1190 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1191 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1192
1193
1194
1195 /* The target-system-dependent byte order is dynamic */
1196
1197 extern int target_byte_order;
1198 #ifndef TARGET_BYTE_ORDER
1199 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1200 #endif
1201
1202 extern int target_byte_order_auto;
1203 #ifndef TARGET_BYTE_ORDER_AUTO
1204 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1205 #endif
1206
1207
1208
1209 /* The target-system-dependent BFD architecture is dynamic */
1210
1211 extern int target_architecture_auto;
1212 #ifndef TARGET_ARCHITECTURE_AUTO
1213 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1214 #endif
1215
1216 extern const struct bfd_arch_info *target_architecture;
1217 #ifndef TARGET_ARCHITECTURE
1218 #define TARGET_ARCHITECTURE (target_architecture + 0)
1219 #endif
1220
1221
1222 /* Set the dynamic target-system-dependent parameters (architecture,
1223 byte-order, ...) using information found in the BFD */
1224
1225 extern void set_gdbarch_from_file (bfd *);
1226
1227
1228 /* Initialize the current architecture to the "first" one we find on
1229 our list. */
1230
1231 extern void initialize_current_architecture (void);
1232
1233 /* For non-multiarched targets, do any initialization of the default
1234 gdbarch object necessary after the _initialize_MODULE functions
1235 have run. */
1236 extern void initialize_non_multiarch (void);
1237
1238 /* gdbarch trace variable */
1239 extern int gdbarch_debug;
1240
1241 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1242
1243 #endif
1244 EOF
1245 exec 1>&2
1246 #../move-if-change new-gdbarch.h gdbarch.h
1247 compare_new gdbarch.h
1248
1249
1250 #
1251 # C file
1252 #
1253
1254 exec > new-gdbarch.c
1255 copyright
1256 cat <<EOF
1257
1258 #include "defs.h"
1259 #include "arch-utils.h"
1260
1261 #include "gdbcmd.h"
1262 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1263 #include "symcat.h"
1264
1265 #include "floatformat.h"
1266
1267 #include "gdb_assert.h"
1268 #include "gdb_string.h"
1269 #include "gdb-events.h"
1270 #include "reggroups.h"
1271 #include "osabi.h"
1272 #include "symfile.h" /* For entry_point_address. */
1273 #include "gdb_obstack.h"
1274
1275 /* Static function declarations */
1276
1277 static void verify_gdbarch (struct gdbarch *gdbarch);
1278 static void alloc_gdbarch_data (struct gdbarch *);
1279 static void init_gdbarch_swap (struct gdbarch *);
1280 static void clear_gdbarch_swap (struct gdbarch *);
1281 static void swapout_gdbarch_swap (struct gdbarch *);
1282 static void swapin_gdbarch_swap (struct gdbarch *);
1283
1284 /* Non-zero if we want to trace architecture code. */
1285
1286 #ifndef GDBARCH_DEBUG
1287 #define GDBARCH_DEBUG 0
1288 #endif
1289 int gdbarch_debug = GDBARCH_DEBUG;
1290
1291 EOF
1292
1293 # gdbarch open the gdbarch object
1294 printf "\n"
1295 printf "/* Maintain the struct gdbarch object */\n"
1296 printf "\n"
1297 printf "struct gdbarch\n"
1298 printf "{\n"
1299 printf " /* Has this architecture been fully initialized? */\n"
1300 printf " int initialized_p;\n"
1301 printf "\n"
1302 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1303 printf " struct obstack *obstack;\n"
1304 printf "\n"
1305 printf " /* basic architectural information */\n"
1306 function_list | while do_read
1307 do
1308 if class_is_info_p
1309 then
1310 printf " ${returntype} ${function};\n"
1311 fi
1312 done
1313 printf "\n"
1314 printf " /* target specific vector. */\n"
1315 printf " struct gdbarch_tdep *tdep;\n"
1316 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1317 printf "\n"
1318 printf " /* per-architecture data-pointers */\n"
1319 printf " unsigned nr_data;\n"
1320 printf " void **data;\n"
1321 printf "\n"
1322 printf " /* per-architecture swap-regions */\n"
1323 printf " struct gdbarch_swap *swap;\n"
1324 printf "\n"
1325 cat <<EOF
1326 /* Multi-arch values.
1327
1328 When extending this structure you must:
1329
1330 Add the field below.
1331
1332 Declare set/get functions and define the corresponding
1333 macro in gdbarch.h.
1334
1335 gdbarch_alloc(): If zero/NULL is not a suitable default,
1336 initialize the new field.
1337
1338 verify_gdbarch(): Confirm that the target updated the field
1339 correctly.
1340
1341 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1342 field is dumped out
1343
1344 \`\`startup_gdbarch()'': Append an initial value to the static
1345 variable (base values on the host's c-type system).
1346
1347 get_gdbarch(): Implement the set/get functions (probably using
1348 the macro's as shortcuts).
1349
1350 */
1351
1352 EOF
1353 function_list | while do_read
1354 do
1355 if class_is_variable_p
1356 then
1357 printf " ${returntype} ${function};\n"
1358 elif class_is_function_p
1359 then
1360 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1361 fi
1362 done
1363 printf "};\n"
1364
1365 # A pre-initialized vector
1366 printf "\n"
1367 printf "\n"
1368 cat <<EOF
1369 /* The default architecture uses host values (for want of a better
1370 choice). */
1371 EOF
1372 printf "\n"
1373 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1374 printf "\n"
1375 printf "struct gdbarch startup_gdbarch =\n"
1376 printf "{\n"
1377 printf " 1, /* Always initialized. */\n"
1378 printf " NULL, /* The obstack. */\n"
1379 printf " /* basic architecture information */\n"
1380 function_list | while do_read
1381 do
1382 if class_is_info_p
1383 then
1384 printf " ${staticdefault}, /* ${function} */\n"
1385 fi
1386 done
1387 cat <<EOF
1388 /* target specific vector and its dump routine */
1389 NULL, NULL,
1390 /*per-architecture data-pointers and swap regions */
1391 0, NULL, NULL,
1392 /* Multi-arch values */
1393 EOF
1394 function_list | while do_read
1395 do
1396 if class_is_function_p || class_is_variable_p
1397 then
1398 printf " ${staticdefault}, /* ${function} */\n"
1399 fi
1400 done
1401 cat <<EOF
1402 /* startup_gdbarch() */
1403 };
1404
1405 struct gdbarch *current_gdbarch = &startup_gdbarch;
1406
1407 /* Do any initialization needed for a non-multiarch configuration
1408 after the _initialize_MODULE functions have been run. */
1409 void
1410 initialize_non_multiarch (void)
1411 {
1412 alloc_gdbarch_data (&startup_gdbarch);
1413 /* Ensure that all swap areas are zeroed so that they again think
1414 they are starting from scratch. */
1415 clear_gdbarch_swap (&startup_gdbarch);
1416 init_gdbarch_swap (&startup_gdbarch);
1417 }
1418 EOF
1419
1420 # Create a new gdbarch struct
1421 printf "\n"
1422 printf "\n"
1423 cat <<EOF
1424 /* Create a new \`\`struct gdbarch'' based on information provided by
1425 \`\`struct gdbarch_info''. */
1426 EOF
1427 printf "\n"
1428 cat <<EOF
1429 struct gdbarch *
1430 gdbarch_alloc (const struct gdbarch_info *info,
1431 struct gdbarch_tdep *tdep)
1432 {
1433 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1434 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1435 the current local architecture and not the previous global
1436 architecture. This ensures that the new architectures initial
1437 values are not influenced by the previous architecture. Once
1438 everything is parameterised with gdbarch, this will go away. */
1439 struct gdbarch *current_gdbarch;
1440
1441 /* Create an obstack for allocating all the per-architecture memory,
1442 then use that to allocate the architecture vector. */
1443 struct obstack *obstack = XMALLOC (struct obstack);
1444 obstack_init (obstack);
1445 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1446 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1447 current_gdbarch->obstack = obstack;
1448
1449 alloc_gdbarch_data (current_gdbarch);
1450
1451 current_gdbarch->tdep = tdep;
1452 EOF
1453 printf "\n"
1454 function_list | while do_read
1455 do
1456 if class_is_info_p
1457 then
1458 printf " current_gdbarch->${function} = info->${function};\n"
1459 fi
1460 done
1461 printf "\n"
1462 printf " /* Force the explicit initialization of these. */\n"
1463 function_list | while do_read
1464 do
1465 if class_is_function_p || class_is_variable_p
1466 then
1467 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1468 then
1469 printf " current_gdbarch->${function} = ${predefault};\n"
1470 fi
1471 fi
1472 done
1473 cat <<EOF
1474 /* gdbarch_alloc() */
1475
1476 return current_gdbarch;
1477 }
1478 EOF
1479
1480 # Free a gdbarch struct.
1481 printf "\n"
1482 printf "\n"
1483 cat <<EOF
1484 /* Allocate extra space using the per-architecture obstack. */
1485
1486 void *
1487 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1488 {
1489 void *data = obstack_alloc (arch->obstack, size);
1490 memset (data, 0, size);
1491 return data;
1492 }
1493
1494
1495 /* Free a gdbarch struct. This should never happen in normal
1496 operation --- once you've created a gdbarch, you keep it around.
1497 However, if an architecture's init function encounters an error
1498 building the structure, it may need to clean up a partially
1499 constructed gdbarch. */
1500
1501 void
1502 gdbarch_free (struct gdbarch *arch)
1503 {
1504 struct obstack *obstack;
1505 gdb_assert (arch != NULL);
1506 gdb_assert (!arch->initialized_p);
1507 obstack = arch->obstack;
1508 obstack_free (obstack, 0); /* Includes the ARCH. */
1509 xfree (obstack);
1510 }
1511 EOF
1512
1513 # verify a new architecture
1514 printf "\n"
1515 printf "\n"
1516 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1517 printf "\n"
1518 cat <<EOF
1519 static void
1520 verify_gdbarch (struct gdbarch *gdbarch)
1521 {
1522 struct ui_file *log;
1523 struct cleanup *cleanups;
1524 long dummy;
1525 char *buf;
1526 log = mem_fileopen ();
1527 cleanups = make_cleanup_ui_file_delete (log);
1528 /* fundamental */
1529 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1530 fprintf_unfiltered (log, "\n\tbyte-order");
1531 if (gdbarch->bfd_arch_info == NULL)
1532 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1533 /* Check those that need to be defined for the given multi-arch level. */
1534 EOF
1535 function_list | while do_read
1536 do
1537 if class_is_function_p || class_is_variable_p
1538 then
1539 if [ "x${invalid_p}" = "x0" ]
1540 then
1541 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1542 elif class_is_predicate_p
1543 then
1544 printf " /* Skip verify of ${function}, has predicate */\n"
1545 # FIXME: See do_read for potential simplification
1546 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1547 then
1548 printf " if (${invalid_p})\n"
1549 printf " gdbarch->${function} = ${postdefault};\n"
1550 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1551 then
1552 printf " if (gdbarch->${function} == ${predefault})\n"
1553 printf " gdbarch->${function} = ${postdefault};\n"
1554 elif [ -n "${postdefault}" ]
1555 then
1556 printf " if (gdbarch->${function} == 0)\n"
1557 printf " gdbarch->${function} = ${postdefault};\n"
1558 elif [ -n "${invalid_p}" ]
1559 then
1560 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1561 printf " && (${invalid_p}))\n"
1562 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1563 elif [ -n "${predefault}" ]
1564 then
1565 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1566 printf " && (gdbarch->${function} == ${predefault}))\n"
1567 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1568 fi
1569 fi
1570 done
1571 cat <<EOF
1572 buf = ui_file_xstrdup (log, &dummy);
1573 make_cleanup (xfree, buf);
1574 if (strlen (buf) > 0)
1575 internal_error (__FILE__, __LINE__,
1576 "verify_gdbarch: the following are invalid ...%s",
1577 buf);
1578 do_cleanups (cleanups);
1579 }
1580 EOF
1581
1582 # dump the structure
1583 printf "\n"
1584 printf "\n"
1585 cat <<EOF
1586 /* Print out the details of the current architecture. */
1587
1588 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1589 just happens to match the global variable \`\`current_gdbarch''. That
1590 way macros refering to that variable get the local and not the global
1591 version - ulgh. Once everything is parameterised with gdbarch, this
1592 will go away. */
1593
1594 void
1595 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1596 {
1597 fprintf_unfiltered (file,
1598 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1599 GDB_MULTI_ARCH);
1600 EOF
1601 function_list | sort -t: -k 3 | while do_read
1602 do
1603 # First the predicate
1604 if class_is_predicate_p
1605 then
1606 if class_is_multiarch_p
1607 then
1608 printf " fprintf_unfiltered (file,\n"
1609 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1610 printf " gdbarch_${function}_p (current_gdbarch));\n"
1611 else
1612 printf "#ifdef ${macro}_P\n"
1613 printf " fprintf_unfiltered (file,\n"
1614 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1615 printf " \"${macro}_P()\",\n"
1616 printf " XSTRING (${macro}_P ()));\n"
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1619 printf " ${macro}_P ());\n"
1620 printf "#endif\n"
1621 fi
1622 fi
1623 # multiarch functions don't have macros.
1624 if class_is_multiarch_p
1625 then
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1628 printf " (long) current_gdbarch->${function});\n"
1629 continue
1630 fi
1631 # Print the macro definition.
1632 printf "#ifdef ${macro}\n"
1633 if class_is_function_p
1634 then
1635 printf " fprintf_unfiltered (file,\n"
1636 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1637 printf " \"${macro}(${actual})\",\n"
1638 printf " XSTRING (${macro} (${actual})));\n"
1639 else
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1642 printf " XSTRING (${macro}));\n"
1643 fi
1644 if [ "x${print_p}" = "x()" ]
1645 then
1646 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1647 elif [ "x${print_p}" = "x0" ]
1648 then
1649 printf " /* skip print of ${macro}, print_p == 0. */\n"
1650 elif [ -n "${print_p}" ]
1651 then
1652 printf " if (${print_p})\n"
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1655 printf " ${print});\n"
1656 elif class_is_function_p
1657 then
1658 printf " fprintf_unfiltered (file,\n"
1659 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1660 printf " (long) current_gdbarch->${function}\n"
1661 printf " /*${macro} ()*/);\n"
1662 else
1663 printf " fprintf_unfiltered (file,\n"
1664 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1665 printf " ${print});\n"
1666 fi
1667 printf "#endif\n"
1668 done
1669 cat <<EOF
1670 if (current_gdbarch->dump_tdep != NULL)
1671 current_gdbarch->dump_tdep (current_gdbarch, file);
1672 }
1673 EOF
1674
1675
1676 # GET/SET
1677 printf "\n"
1678 cat <<EOF
1679 struct gdbarch_tdep *
1680 gdbarch_tdep (struct gdbarch *gdbarch)
1681 {
1682 if (gdbarch_debug >= 2)
1683 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1684 return gdbarch->tdep;
1685 }
1686 EOF
1687 printf "\n"
1688 function_list | while do_read
1689 do
1690 if class_is_predicate_p
1691 then
1692 printf "\n"
1693 printf "int\n"
1694 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1695 printf "{\n"
1696 printf " gdb_assert (gdbarch != NULL);\n"
1697 printf " return ${predicate};\n"
1698 printf "}\n"
1699 fi
1700 if class_is_function_p
1701 then
1702 printf "\n"
1703 printf "${returntype}\n"
1704 if [ "x${formal}" = "xvoid" ]
1705 then
1706 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1707 else
1708 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1709 fi
1710 printf "{\n"
1711 printf " gdb_assert (gdbarch != NULL);\n"
1712 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1713 if class_is_predicate_p && test -n "${predefault}"
1714 then
1715 # Allow a call to a function with a predicate.
1716 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1717 fi
1718 printf " if (gdbarch_debug >= 2)\n"
1719 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1720 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1721 then
1722 if class_is_multiarch_p
1723 then
1724 params="gdbarch"
1725 else
1726 params=""
1727 fi
1728 else
1729 if class_is_multiarch_p
1730 then
1731 params="gdbarch, ${actual}"
1732 else
1733 params="${actual}"
1734 fi
1735 fi
1736 if [ "x${returntype}" = "xvoid" ]
1737 then
1738 printf " gdbarch->${function} (${params});\n"
1739 else
1740 printf " return gdbarch->${function} (${params});\n"
1741 fi
1742 printf "}\n"
1743 printf "\n"
1744 printf "void\n"
1745 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1746 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1747 printf "{\n"
1748 printf " gdbarch->${function} = ${function};\n"
1749 printf "}\n"
1750 elif class_is_variable_p
1751 then
1752 printf "\n"
1753 printf "${returntype}\n"
1754 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1755 printf "{\n"
1756 printf " gdb_assert (gdbarch != NULL);\n"
1757 if [ "x${invalid_p}" = "x0" ]
1758 then
1759 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1760 elif [ -n "${invalid_p}" ]
1761 then
1762 printf " /* Check variable is valid. */\n"
1763 printf " gdb_assert (!(${invalid_p}));\n"
1764 elif [ -n "${predefault}" ]
1765 then
1766 printf " /* Check variable changed from pre-default. */\n"
1767 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1768 fi
1769 printf " if (gdbarch_debug >= 2)\n"
1770 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1771 printf " return gdbarch->${function};\n"
1772 printf "}\n"
1773 printf "\n"
1774 printf "void\n"
1775 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1776 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1777 printf "{\n"
1778 printf " gdbarch->${function} = ${function};\n"
1779 printf "}\n"
1780 elif class_is_info_p
1781 then
1782 printf "\n"
1783 printf "${returntype}\n"
1784 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1785 printf "{\n"
1786 printf " gdb_assert (gdbarch != NULL);\n"
1787 printf " if (gdbarch_debug >= 2)\n"
1788 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1789 printf " return gdbarch->${function};\n"
1790 printf "}\n"
1791 fi
1792 done
1793
1794 # All the trailing guff
1795 cat <<EOF
1796
1797
1798 /* Keep a registry of per-architecture data-pointers required by GDB
1799 modules. */
1800
1801 struct gdbarch_data
1802 {
1803 unsigned index;
1804 int init_p;
1805 gdbarch_data_init_ftype *init;
1806 };
1807
1808 struct gdbarch_data_registration
1809 {
1810 struct gdbarch_data *data;
1811 struct gdbarch_data_registration *next;
1812 };
1813
1814 struct gdbarch_data_registry
1815 {
1816 unsigned nr;
1817 struct gdbarch_data_registration *registrations;
1818 };
1819
1820 struct gdbarch_data_registry gdbarch_data_registry =
1821 {
1822 0, NULL,
1823 };
1824
1825 struct gdbarch_data *
1826 register_gdbarch_data (gdbarch_data_init_ftype *init)
1827 {
1828 struct gdbarch_data_registration **curr;
1829 /* Append the new registraration. */
1830 for (curr = &gdbarch_data_registry.registrations;
1831 (*curr) != NULL;
1832 curr = &(*curr)->next);
1833 (*curr) = XMALLOC (struct gdbarch_data_registration);
1834 (*curr)->next = NULL;
1835 (*curr)->data = XMALLOC (struct gdbarch_data);
1836 (*curr)->data->index = gdbarch_data_registry.nr++;
1837 (*curr)->data->init = init;
1838 (*curr)->data->init_p = 1;
1839 return (*curr)->data;
1840 }
1841
1842
1843 /* Create/delete the gdbarch data vector. */
1844
1845 static void
1846 alloc_gdbarch_data (struct gdbarch *gdbarch)
1847 {
1848 gdb_assert (gdbarch->data == NULL);
1849 gdbarch->nr_data = gdbarch_data_registry.nr;
1850 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1851 }
1852
1853 /* Initialize the current value of the specified per-architecture
1854 data-pointer. */
1855
1856 void
1857 set_gdbarch_data (struct gdbarch *gdbarch,
1858 struct gdbarch_data *data,
1859 void *pointer)
1860 {
1861 gdb_assert (data->index < gdbarch->nr_data);
1862 gdb_assert (gdbarch->data[data->index] == NULL);
1863 gdbarch->data[data->index] = pointer;
1864 }
1865
1866 /* Return the current value of the specified per-architecture
1867 data-pointer. */
1868
1869 void *
1870 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1871 {
1872 gdb_assert (data->index < gdbarch->nr_data);
1873 /* The data-pointer isn't initialized, call init() to get a value but
1874 only if the architecture initializaiton has completed. Otherwise
1875 punt - hope that the caller knows what they are doing. */
1876 if (gdbarch->data[data->index] == NULL
1877 && gdbarch->initialized_p)
1878 {
1879 /* Be careful to detect an initialization cycle. */
1880 gdb_assert (data->init_p);
1881 data->init_p = 0;
1882 gdb_assert (data->init != NULL);
1883 gdbarch->data[data->index] = data->init (gdbarch);
1884 data->init_p = 1;
1885 gdb_assert (gdbarch->data[data->index] != NULL);
1886 }
1887 return gdbarch->data[data->index];
1888 }
1889
1890
1891
1892 /* Keep a registry of swapped data required by GDB modules. */
1893
1894 struct gdbarch_swap
1895 {
1896 void *swap;
1897 struct gdbarch_swap_registration *source;
1898 struct gdbarch_swap *next;
1899 };
1900
1901 struct gdbarch_swap_registration
1902 {
1903 void *data;
1904 unsigned long sizeof_data;
1905 gdbarch_swap_ftype *init;
1906 struct gdbarch_swap_registration *next;
1907 };
1908
1909 struct gdbarch_swap_registry
1910 {
1911 int nr;
1912 struct gdbarch_swap_registration *registrations;
1913 };
1914
1915 struct gdbarch_swap_registry gdbarch_swap_registry =
1916 {
1917 0, NULL,
1918 };
1919
1920 void
1921 register_gdbarch_swap (void *data,
1922 unsigned long sizeof_data,
1923 gdbarch_swap_ftype *init)
1924 {
1925 struct gdbarch_swap_registration **rego;
1926 for (rego = &gdbarch_swap_registry.registrations;
1927 (*rego) != NULL;
1928 rego = &(*rego)->next);
1929 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1930 (*rego)->next = NULL;
1931 (*rego)->init = init;
1932 (*rego)->data = data;
1933 (*rego)->sizeof_data = sizeof_data;
1934 }
1935
1936 static void
1937 clear_gdbarch_swap (struct gdbarch *gdbarch)
1938 {
1939 struct gdbarch_swap *curr;
1940 for (curr = gdbarch->swap;
1941 curr != NULL;
1942 curr = curr->next)
1943 {
1944 memset (curr->source->data, 0, curr->source->sizeof_data);
1945 }
1946 }
1947
1948 static void
1949 init_gdbarch_swap (struct gdbarch *gdbarch)
1950 {
1951 struct gdbarch_swap_registration *rego;
1952 struct gdbarch_swap **curr = &gdbarch->swap;
1953 for (rego = gdbarch_swap_registry.registrations;
1954 rego != NULL;
1955 rego = rego->next)
1956 {
1957 if (rego->data != NULL)
1958 {
1959 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1960 (*curr)->source = rego;
1961 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1962 (*curr)->next = NULL;
1963 curr = &(*curr)->next;
1964 }
1965 if (rego->init != NULL)
1966 rego->init ();
1967 }
1968 }
1969
1970 static void
1971 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1972 {
1973 struct gdbarch_swap *curr;
1974 for (curr = gdbarch->swap;
1975 curr != NULL;
1976 curr = curr->next)
1977 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1978 }
1979
1980 static void
1981 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1982 {
1983 struct gdbarch_swap *curr;
1984 for (curr = gdbarch->swap;
1985 curr != NULL;
1986 curr = curr->next)
1987 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1988 }
1989
1990
1991 /* Keep a registry of the architectures known by GDB. */
1992
1993 struct gdbarch_registration
1994 {
1995 enum bfd_architecture bfd_architecture;
1996 gdbarch_init_ftype *init;
1997 gdbarch_dump_tdep_ftype *dump_tdep;
1998 struct gdbarch_list *arches;
1999 struct gdbarch_registration *next;
2000 };
2001
2002 static struct gdbarch_registration *gdbarch_registry = NULL;
2003
2004 static void
2005 append_name (const char ***buf, int *nr, const char *name)
2006 {
2007 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2008 (*buf)[*nr] = name;
2009 *nr += 1;
2010 }
2011
2012 const char **
2013 gdbarch_printable_names (void)
2014 {
2015 /* Accumulate a list of names based on the registed list of
2016 architectures. */
2017 enum bfd_architecture a;
2018 int nr_arches = 0;
2019 const char **arches = NULL;
2020 struct gdbarch_registration *rego;
2021 for (rego = gdbarch_registry;
2022 rego != NULL;
2023 rego = rego->next)
2024 {
2025 const struct bfd_arch_info *ap;
2026 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2027 if (ap == NULL)
2028 internal_error (__FILE__, __LINE__,
2029 "gdbarch_architecture_names: multi-arch unknown");
2030 do
2031 {
2032 append_name (&arches, &nr_arches, ap->printable_name);
2033 ap = ap->next;
2034 }
2035 while (ap != NULL);
2036 }
2037 append_name (&arches, &nr_arches, NULL);
2038 return arches;
2039 }
2040
2041
2042 void
2043 gdbarch_register (enum bfd_architecture bfd_architecture,
2044 gdbarch_init_ftype *init,
2045 gdbarch_dump_tdep_ftype *dump_tdep)
2046 {
2047 struct gdbarch_registration **curr;
2048 const struct bfd_arch_info *bfd_arch_info;
2049 /* Check that BFD recognizes this architecture */
2050 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2051 if (bfd_arch_info == NULL)
2052 {
2053 internal_error (__FILE__, __LINE__,
2054 "gdbarch: Attempt to register unknown architecture (%d)",
2055 bfd_architecture);
2056 }
2057 /* Check that we haven't seen this architecture before */
2058 for (curr = &gdbarch_registry;
2059 (*curr) != NULL;
2060 curr = &(*curr)->next)
2061 {
2062 if (bfd_architecture == (*curr)->bfd_architecture)
2063 internal_error (__FILE__, __LINE__,
2064 "gdbarch: Duplicate registraration of architecture (%s)",
2065 bfd_arch_info->printable_name);
2066 }
2067 /* log it */
2068 if (gdbarch_debug)
2069 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2070 bfd_arch_info->printable_name,
2071 (long) init);
2072 /* Append it */
2073 (*curr) = XMALLOC (struct gdbarch_registration);
2074 (*curr)->bfd_architecture = bfd_architecture;
2075 (*curr)->init = init;
2076 (*curr)->dump_tdep = dump_tdep;
2077 (*curr)->arches = NULL;
2078 (*curr)->next = NULL;
2079 }
2080
2081 void
2082 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2083 gdbarch_init_ftype *init)
2084 {
2085 gdbarch_register (bfd_architecture, init, NULL);
2086 }
2087
2088
2089 /* Look for an architecture using gdbarch_info. Base search on only
2090 BFD_ARCH_INFO and BYTE_ORDER. */
2091
2092 struct gdbarch_list *
2093 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2094 const struct gdbarch_info *info)
2095 {
2096 for (; arches != NULL; arches = arches->next)
2097 {
2098 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2099 continue;
2100 if (info->byte_order != arches->gdbarch->byte_order)
2101 continue;
2102 if (info->osabi != arches->gdbarch->osabi)
2103 continue;
2104 return arches;
2105 }
2106 return NULL;
2107 }
2108
2109
2110 /* Update the current architecture. Return ZERO if the update request
2111 failed. */
2112
2113 int
2114 gdbarch_update_p (struct gdbarch_info info)
2115 {
2116 struct gdbarch *new_gdbarch;
2117 struct gdbarch *old_gdbarch;
2118 struct gdbarch_registration *rego;
2119
2120 /* Fill in missing parts of the INFO struct using a number of
2121 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2122
2123 /* \`\`(gdb) set architecture ...'' */
2124 if (info.bfd_arch_info == NULL
2125 && !TARGET_ARCHITECTURE_AUTO)
2126 info.bfd_arch_info = TARGET_ARCHITECTURE;
2127 if (info.bfd_arch_info == NULL
2128 && info.abfd != NULL
2129 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2130 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2131 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2132 if (info.bfd_arch_info == NULL)
2133 info.bfd_arch_info = TARGET_ARCHITECTURE;
2134
2135 /* \`\`(gdb) set byte-order ...'' */
2136 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2137 && !TARGET_BYTE_ORDER_AUTO)
2138 info.byte_order = TARGET_BYTE_ORDER;
2139 /* From the INFO struct. */
2140 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2141 && info.abfd != NULL)
2142 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2143 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2144 : BFD_ENDIAN_UNKNOWN);
2145 /* From the current target. */
2146 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2147 info.byte_order = TARGET_BYTE_ORDER;
2148
2149 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2150 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2151 info.osabi = gdbarch_lookup_osabi (info.abfd);
2152 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2153 info.osabi = current_gdbarch->osabi;
2154
2155 /* Must have found some sort of architecture. */
2156 gdb_assert (info.bfd_arch_info != NULL);
2157
2158 if (gdbarch_debug)
2159 {
2160 fprintf_unfiltered (gdb_stdlog,
2161 "gdbarch_update: info.bfd_arch_info %s\n",
2162 (info.bfd_arch_info != NULL
2163 ? info.bfd_arch_info->printable_name
2164 : "(null)"));
2165 fprintf_unfiltered (gdb_stdlog,
2166 "gdbarch_update: info.byte_order %d (%s)\n",
2167 info.byte_order,
2168 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2169 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2170 : "default"));
2171 fprintf_unfiltered (gdb_stdlog,
2172 "gdbarch_update: info.osabi %d (%s)\n",
2173 info.osabi, gdbarch_osabi_name (info.osabi));
2174 fprintf_unfiltered (gdb_stdlog,
2175 "gdbarch_update: info.abfd 0x%lx\n",
2176 (long) info.abfd);
2177 fprintf_unfiltered (gdb_stdlog,
2178 "gdbarch_update: info.tdep_info 0x%lx\n",
2179 (long) info.tdep_info);
2180 }
2181
2182 /* Find the target that knows about this architecture. */
2183 for (rego = gdbarch_registry;
2184 rego != NULL;
2185 rego = rego->next)
2186 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2187 break;
2188 if (rego == NULL)
2189 {
2190 if (gdbarch_debug)
2191 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2192 return 0;
2193 }
2194
2195 /* Swap the data belonging to the old target out setting the
2196 installed data to zero. This stops the ->init() function trying
2197 to refer to the previous architecture's global data structures. */
2198 swapout_gdbarch_swap (current_gdbarch);
2199 clear_gdbarch_swap (current_gdbarch);
2200
2201 /* Save the previously selected architecture, setting the global to
2202 NULL. This stops ->init() trying to use the previous
2203 architecture's configuration. The previous architecture may not
2204 even be of the same architecture family. The most recent
2205 architecture of the same family is found at the head of the
2206 rego->arches list. */
2207 old_gdbarch = current_gdbarch;
2208 current_gdbarch = NULL;
2209
2210 /* Ask the target for a replacement architecture. */
2211 new_gdbarch = rego->init (info, rego->arches);
2212
2213 /* Did the target like it? No. Reject the change and revert to the
2214 old architecture. */
2215 if (new_gdbarch == NULL)
2216 {
2217 if (gdbarch_debug)
2218 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2219 swapin_gdbarch_swap (old_gdbarch);
2220 current_gdbarch = old_gdbarch;
2221 return 0;
2222 }
2223
2224 /* Did the architecture change? No. Oops, put the old architecture
2225 back. */
2226 if (old_gdbarch == new_gdbarch)
2227 {
2228 if (gdbarch_debug)
2229 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2230 (long) new_gdbarch,
2231 new_gdbarch->bfd_arch_info->printable_name);
2232 swapin_gdbarch_swap (old_gdbarch);
2233 current_gdbarch = old_gdbarch;
2234 return 1;
2235 }
2236
2237 /* Is this a pre-existing architecture? Yes. Move it to the front
2238 of the list of architectures (keeping the list sorted Most
2239 Recently Used) and then copy it in. */
2240 {
2241 struct gdbarch_list **list;
2242 for (list = &rego->arches;
2243 (*list) != NULL;
2244 list = &(*list)->next)
2245 {
2246 if ((*list)->gdbarch == new_gdbarch)
2247 {
2248 struct gdbarch_list *this;
2249 if (gdbarch_debug)
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2252 (long) new_gdbarch,
2253 new_gdbarch->bfd_arch_info->printable_name);
2254 /* Unlink this. */
2255 this = (*list);
2256 (*list) = this->next;
2257 /* Insert in the front. */
2258 this->next = rego->arches;
2259 rego->arches = this;
2260 /* Copy the new architecture in. */
2261 current_gdbarch = new_gdbarch;
2262 swapin_gdbarch_swap (new_gdbarch);
2263 architecture_changed_event ();
2264 return 1;
2265 }
2266 }
2267 }
2268
2269 /* Prepend this new architecture to the architecture list (keep the
2270 list sorted Most Recently Used). */
2271 {
2272 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2273 this->next = rego->arches;
2274 this->gdbarch = new_gdbarch;
2275 rego->arches = this;
2276 }
2277
2278 /* Switch to this new architecture marking it initialized. */
2279 current_gdbarch = new_gdbarch;
2280 current_gdbarch->initialized_p = 1;
2281 if (gdbarch_debug)
2282 {
2283 fprintf_unfiltered (gdb_stdlog,
2284 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2285 (long) new_gdbarch,
2286 new_gdbarch->bfd_arch_info->printable_name);
2287 }
2288
2289 /* Check that the newly installed architecture is valid. Plug in
2290 any post init values. */
2291 new_gdbarch->dump_tdep = rego->dump_tdep;
2292 verify_gdbarch (new_gdbarch);
2293
2294 /* Initialize the per-architecture memory (swap) areas.
2295 CURRENT_GDBARCH must be update before these modules are
2296 called. */
2297 init_gdbarch_swap (new_gdbarch);
2298
2299 /* Initialize the per-architecture data. CURRENT_GDBARCH
2300 must be updated before these modules are called. */
2301 architecture_changed_event ();
2302
2303 if (gdbarch_debug)
2304 gdbarch_dump (current_gdbarch, gdb_stdlog);
2305
2306 return 1;
2307 }
2308
2309
2310 extern void _initialize_gdbarch (void);
2311
2312 void
2313 _initialize_gdbarch (void)
2314 {
2315 struct cmd_list_element *c;
2316
2317 add_show_from_set (add_set_cmd ("arch",
2318 class_maintenance,
2319 var_zinteger,
2320 (char *)&gdbarch_debug,
2321 "Set architecture debugging.\\n\\
2322 When non-zero, architecture debugging is enabled.", &setdebuglist),
2323 &showdebuglist);
2324 c = add_set_cmd ("archdebug",
2325 class_maintenance,
2326 var_zinteger,
2327 (char *)&gdbarch_debug,
2328 "Set architecture debugging.\\n\\
2329 When non-zero, architecture debugging is enabled.", &setlist);
2330
2331 deprecate_cmd (c, "set debug arch");
2332 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2333 }
2334 EOF
2335
2336 # close things off
2337 exec 1>&2
2338 #../move-if-change new-gdbarch.c gdbarch.c
2339 compare_new gdbarch.c
This page took 0.08955 seconds and 4 git commands to generate.