45cce8b6b85d9123138a4132e7a1c0b3050f0a41
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 #
471 F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483 #
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507 #
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 #
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520 #
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524 #
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, char *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
527 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
528 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
529 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
530 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
531 f:2:POP_FRAME:void:pop_frame:void:-:::0
532 #
533 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
534 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
535 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
536 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
537 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
538 #
539 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
540 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
541 #
542 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
543 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
544 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
545 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
546 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
547 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
548 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
549 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
550 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
551 #
552 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
553 #
554 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
555 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
556 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
557 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
558 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
559 # given frame is the outermost one and has no caller.
560 #
561 # XXXX - both default and alternate frame_chain_valid functions are
562 # deprecated. New code should use dummy frames and one of the generic
563 # functions.
564 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
565 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
566 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
567 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
568 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
569 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
570 #
571 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
572 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
573 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
574 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
575 v:2:PARM_BOUNDARY:int:parm_boundary
576 #
577 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
578 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
579 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
580 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
581 # On some machines there are bits in addresses which are not really
582 # part of the address, but are used by the kernel, the hardware, etc.
583 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
584 # we get a "real" address such as one would find in a symbol table.
585 # This is used only for addresses of instructions, and even then I'm
586 # not sure it's used in all contexts. It exists to deal with there
587 # being a few stray bits in the PC which would mislead us, not as some
588 # sort of generic thing to handle alignment or segmentation (it's
589 # possible it should be in TARGET_READ_PC instead).
590 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
591 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
592 # ADDR_BITS_REMOVE.
593 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
594 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
595 # the target needs software single step. An ISA method to implement it.
596 #
597 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
598 # using the breakpoint system instead of blatting memory directly (as with rs6000).
599 #
600 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
601 # single step. If not, then implement single step using breakpoints.
602 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
603 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
604 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
605
606
607 # For SVR4 shared libraries, each call goes through a small piece of
608 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
609 # to nonzero if we are currently stopped in one of these.
610 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
611
612 # Some systems also have trampoline code for returning from shared libs.
613 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
614
615 # Sigtramp is a routine that the kernel calls (which then calls the
616 # signal handler). On most machines it is a library routine that is
617 # linked into the executable.
618 #
619 # This macro, given a program counter value and the name of the
620 # function in which that PC resides (which can be null if the name is
621 # not known), returns nonzero if the PC and name show that we are in
622 # sigtramp.
623 #
624 # On most machines just see if the name is sigtramp (and if we have
625 # no name, assume we are not in sigtramp).
626 #
627 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
628 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
629 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
630 # own local NAME lookup.
631 #
632 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
633 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
634 # does not.
635 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
636 # A target might have problems with watchpoints as soon as the stack
637 # frame of the current function has been destroyed. This mostly happens
638 # as the first action in a funtion's epilogue. in_function_epilogue_p()
639 # is defined to return a non-zero value if either the given addr is one
640 # instruction after the stack destroying instruction up to the trailing
641 # return instruction or if we can figure out that the stack frame has
642 # already been invalidated regardless of the value of addr. Targets
643 # which don't suffer from that problem could just let this functionality
644 # untouched.
645 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
646 # Given a vector of command-line arguments, return a newly allocated
647 # string which, when passed to the create_inferior function, will be
648 # parsed (on Unix systems, by the shell) to yield the same vector.
649 # This function should call error() if the argument vector is not
650 # representable for this target or if this target does not support
651 # command-line arguments.
652 # ARGC is the number of elements in the vector.
653 # ARGV is an array of strings, one per argument.
654 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
655 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
656 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
657 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
658 EOF
659 }
660
661 #
662 # The .log file
663 #
664 exec > new-gdbarch.log
665 function_list | while do_read
666 do
667 cat <<EOF
668 ${class} ${macro}(${actual})
669 ${returntype} ${function} ($formal)${attrib}
670 EOF
671 for r in ${read}
672 do
673 eval echo \"\ \ \ \ ${r}=\${${r}}\"
674 done
675 # #fallbackdefault=${fallbackdefault}
676 # #valid_p=${valid_p}
677 #EOF
678 if class_is_predicate_p && fallback_default_p
679 then
680 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
681 kill $$
682 exit 1
683 fi
684 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
685 then
686 echo "Error: postdefault is useless when invalid_p=0" 1>&2
687 kill $$
688 exit 1
689 fi
690 if class_is_multiarch_p
691 then
692 if class_is_predicate_p ; then :
693 elif test "x${predefault}" = "x"
694 then
695 echo "Error: pure multi-arch function must have a predefault" 1>&2
696 kill $$
697 exit 1
698 fi
699 fi
700 echo ""
701 done
702
703 exec 1>&2
704 compare_new gdbarch.log
705
706
707 copyright ()
708 {
709 cat <<EOF
710 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
711
712 /* Dynamic architecture support for GDB, the GNU debugger.
713 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
714
715 This file is part of GDB.
716
717 This program is free software; you can redistribute it and/or modify
718 it under the terms of the GNU General Public License as published by
719 the Free Software Foundation; either version 2 of the License, or
720 (at your option) any later version.
721
722 This program is distributed in the hope that it will be useful,
723 but WITHOUT ANY WARRANTY; without even the implied warranty of
724 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
725 GNU General Public License for more details.
726
727 You should have received a copy of the GNU General Public License
728 along with this program; if not, write to the Free Software
729 Foundation, Inc., 59 Temple Place - Suite 330,
730 Boston, MA 02111-1307, USA. */
731
732 /* This file was created with the aid of \`\`gdbarch.sh''.
733
734 The Bourne shell script \`\`gdbarch.sh'' creates the files
735 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
736 against the existing \`\`gdbarch.[hc]''. Any differences found
737 being reported.
738
739 If editing this file, please also run gdbarch.sh and merge any
740 changes into that script. Conversely, when making sweeping changes
741 to this file, modifying gdbarch.sh and using its output may prove
742 easier. */
743
744 EOF
745 }
746
747 #
748 # The .h file
749 #
750
751 exec > new-gdbarch.h
752 copyright
753 cat <<EOF
754 #ifndef GDBARCH_H
755 #define GDBARCH_H
756
757 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
758 #if !GDB_MULTI_ARCH
759 /* Pull in function declarations refered to, indirectly, via macros. */
760 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
761 #include "inferior.h" /* For unsigned_address_to_pointer(). */
762 #endif
763
764 struct frame_info;
765 struct value;
766 struct objfile;
767 struct minimal_symbol;
768 struct regcache;
769
770 extern struct gdbarch *current_gdbarch;
771
772
773 /* If any of the following are defined, the target wasn't correctly
774 converted. */
775
776 #if GDB_MULTI_ARCH
777 #if defined (EXTRA_FRAME_INFO)
778 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
779 #endif
780 #endif
781
782 #if GDB_MULTI_ARCH
783 #if defined (FRAME_FIND_SAVED_REGS)
784 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
785 #endif
786 #endif
787
788 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
789 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
790 #endif
791 EOF
792
793 # function typedef's
794 printf "\n"
795 printf "\n"
796 printf "/* The following are pre-initialized by GDBARCH. */\n"
797 function_list | while do_read
798 do
799 if class_is_info_p
800 then
801 printf "\n"
802 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
803 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
804 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
805 printf "#error \"Non multi-arch definition of ${macro}\"\n"
806 printf "#endif\n"
807 printf "#if GDB_MULTI_ARCH\n"
808 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
809 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
810 printf "#endif\n"
811 printf "#endif\n"
812 fi
813 done
814
815 # function typedef's
816 printf "\n"
817 printf "\n"
818 printf "/* The following are initialized by the target dependent code. */\n"
819 function_list | while do_read
820 do
821 if [ -n "${comment}" ]
822 then
823 echo "${comment}" | sed \
824 -e '2 s,#,/*,' \
825 -e '3,$ s,#, ,' \
826 -e '$ s,$, */,'
827 fi
828 if class_is_multiarch_p
829 then
830 if class_is_predicate_p
831 then
832 printf "\n"
833 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
834 fi
835 else
836 if class_is_predicate_p
837 then
838 printf "\n"
839 printf "#if defined (${macro})\n"
840 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
841 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
842 printf "#if !defined (${macro}_P)\n"
843 printf "#define ${macro}_P() (1)\n"
844 printf "#endif\n"
845 printf "#endif\n"
846 printf "\n"
847 printf "/* Default predicate for non- multi-arch targets. */\n"
848 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
849 printf "#define ${macro}_P() (0)\n"
850 printf "#endif\n"
851 printf "\n"
852 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
853 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
854 printf "#error \"Non multi-arch definition of ${macro}\"\n"
855 printf "#endif\n"
856 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
857 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
858 printf "#endif\n"
859 fi
860 fi
861 if class_is_variable_p
862 then
863 if fallback_default_p || class_is_predicate_p
864 then
865 printf "\n"
866 printf "/* Default (value) for non- multi-arch platforms. */\n"
867 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
868 echo "#define ${macro} (${fallbackdefault})" \
869 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
870 printf "#endif\n"
871 fi
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
875 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
878 printf "#if GDB_MULTI_ARCH\n"
879 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
880 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
881 printf "#endif\n"
882 printf "#endif\n"
883 fi
884 if class_is_function_p
885 then
886 if class_is_multiarch_p ; then :
887 elif fallback_default_p || class_is_predicate_p
888 then
889 printf "\n"
890 printf "/* Default (function) for non- multi-arch platforms. */\n"
891 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
892 if [ "x${fallbackdefault}" = "x0" ]
893 then
894 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
895 else
896 # FIXME: Should be passing current_gdbarch through!
897 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
898 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
899 fi
900 printf "#endif\n"
901 fi
902 printf "\n"
903 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
904 then
905 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
906 elif class_is_multiarch_p
907 then
908 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
909 else
910 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
911 fi
912 if [ "x${formal}" = "xvoid" ]
913 then
914 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
915 else
916 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
917 fi
918 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
919 if class_is_multiarch_p ; then :
920 else
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
922 printf "#error \"Non multi-arch definition of ${macro}\"\n"
923 printf "#endif\n"
924 printf "#if GDB_MULTI_ARCH\n"
925 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
926 if [ "x${actual}" = "x" ]
927 then
928 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
929 elif [ "x${actual}" = "x-" ]
930 then
931 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
932 else
933 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
934 fi
935 printf "#endif\n"
936 printf "#endif\n"
937 fi
938 fi
939 done
940
941 # close it off
942 cat <<EOF
943
944 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
945
946
947 /* Mechanism for co-ordinating the selection of a specific
948 architecture.
949
950 GDB targets (*-tdep.c) can register an interest in a specific
951 architecture. Other GDB components can register a need to maintain
952 per-architecture data.
953
954 The mechanisms below ensures that there is only a loose connection
955 between the set-architecture command and the various GDB
956 components. Each component can independently register their need
957 to maintain architecture specific data with gdbarch.
958
959 Pragmatics:
960
961 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
962 didn't scale.
963
964 The more traditional mega-struct containing architecture specific
965 data for all the various GDB components was also considered. Since
966 GDB is built from a variable number of (fairly independent)
967 components it was determined that the global aproach was not
968 applicable. */
969
970
971 /* Register a new architectural family with GDB.
972
973 Register support for the specified ARCHITECTURE with GDB. When
974 gdbarch determines that the specified architecture has been
975 selected, the corresponding INIT function is called.
976
977 --
978
979 The INIT function takes two parameters: INFO which contains the
980 information available to gdbarch about the (possibly new)
981 architecture; ARCHES which is a list of the previously created
982 \`\`struct gdbarch'' for this architecture.
983
984 The INFO parameter is, as far as possible, be pre-initialized with
985 information obtained from INFO.ABFD or the previously selected
986 architecture.
987
988 The ARCHES parameter is a linked list (sorted most recently used)
989 of all the previously created architures for this architecture
990 family. The (possibly NULL) ARCHES->gdbarch can used to access
991 values from the previously selected architecture for this
992 architecture family. The global \`\`current_gdbarch'' shall not be
993 used.
994
995 The INIT function shall return any of: NULL - indicating that it
996 doesn't recognize the selected architecture; an existing \`\`struct
997 gdbarch'' from the ARCHES list - indicating that the new
998 architecture is just a synonym for an earlier architecture (see
999 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1000 - that describes the selected architecture (see gdbarch_alloc()).
1001
1002 The DUMP_TDEP function shall print out all target specific values.
1003 Care should be taken to ensure that the function works in both the
1004 multi-arch and non- multi-arch cases. */
1005
1006 struct gdbarch_list
1007 {
1008 struct gdbarch *gdbarch;
1009 struct gdbarch_list *next;
1010 };
1011
1012 struct gdbarch_info
1013 {
1014 /* Use default: NULL (ZERO). */
1015 const struct bfd_arch_info *bfd_arch_info;
1016
1017 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1018 int byte_order;
1019
1020 /* Use default: NULL (ZERO). */
1021 bfd *abfd;
1022
1023 /* Use default: NULL (ZERO). */
1024 struct gdbarch_tdep_info *tdep_info;
1025 };
1026
1027 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1028 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1029
1030 /* DEPRECATED - use gdbarch_register() */
1031 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1032
1033 extern void gdbarch_register (enum bfd_architecture architecture,
1034 gdbarch_init_ftype *,
1035 gdbarch_dump_tdep_ftype *);
1036
1037
1038 /* Return a freshly allocated, NULL terminated, array of the valid
1039 architecture names. Since architectures are registered during the
1040 _initialize phase this function only returns useful information
1041 once initialization has been completed. */
1042
1043 extern const char **gdbarch_printable_names (void);
1044
1045
1046 /* Helper function. Search the list of ARCHES for a GDBARCH that
1047 matches the information provided by INFO. */
1048
1049 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1050
1051
1052 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1053 basic initialization using values obtained from the INFO andTDEP
1054 parameters. set_gdbarch_*() functions are called to complete the
1055 initialization of the object. */
1056
1057 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1058
1059
1060 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1061 It is assumed that the caller freeds the \`\`struct
1062 gdbarch_tdep''. */
1063
1064 extern void gdbarch_free (struct gdbarch *);
1065
1066
1067 /* Helper function. Force an update of the current architecture.
1068
1069 The actual architecture selected is determined by INFO, \`\`(gdb) set
1070 architecture'' et.al., the existing architecture and BFD's default
1071 architecture. INFO should be initialized to zero and then selected
1072 fields should be updated.
1073
1074 Returns non-zero if the update succeeds */
1075
1076 extern int gdbarch_update_p (struct gdbarch_info info);
1077
1078
1079
1080 /* Register per-architecture data-pointer.
1081
1082 Reserve space for a per-architecture data-pointer. An identifier
1083 for the reserved data-pointer is returned. That identifer should
1084 be saved in a local static variable.
1085
1086 The per-architecture data-pointer is either initialized explicitly
1087 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1088 gdbarch_data()). FREE() is called to delete either an existing
1089 data-pointer overridden by set_gdbarch_data() or when the
1090 architecture object is being deleted.
1091
1092 When a previously created architecture is re-selected, the
1093 per-architecture data-pointer for that previous architecture is
1094 restored. INIT() is not re-called.
1095
1096 Multiple registrarants for any architecture are allowed (and
1097 strongly encouraged). */
1098
1099 struct gdbarch_data;
1100
1101 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1102 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1103 void *pointer);
1104 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1105 gdbarch_data_free_ftype *free);
1106 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1107 struct gdbarch_data *data,
1108 void *pointer);
1109
1110 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1111
1112
1113 /* Register per-architecture memory region.
1114
1115 Provide a memory-region swap mechanism. Per-architecture memory
1116 region are created. These memory regions are swapped whenever the
1117 architecture is changed. For a new architecture, the memory region
1118 is initialized with zero (0) and the INIT function is called.
1119
1120 Memory regions are swapped / initialized in the order that they are
1121 registered. NULL DATA and/or INIT values can be specified.
1122
1123 New code should use register_gdbarch_data(). */
1124
1125 typedef void (gdbarch_swap_ftype) (void);
1126 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1127 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1128
1129
1130
1131 /* The target-system-dependent byte order is dynamic */
1132
1133 extern int target_byte_order;
1134 #ifndef TARGET_BYTE_ORDER
1135 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1136 #endif
1137
1138 extern int target_byte_order_auto;
1139 #ifndef TARGET_BYTE_ORDER_AUTO
1140 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1141 #endif
1142
1143
1144
1145 /* The target-system-dependent BFD architecture is dynamic */
1146
1147 extern int target_architecture_auto;
1148 #ifndef TARGET_ARCHITECTURE_AUTO
1149 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1150 #endif
1151
1152 extern const struct bfd_arch_info *target_architecture;
1153 #ifndef TARGET_ARCHITECTURE
1154 #define TARGET_ARCHITECTURE (target_architecture + 0)
1155 #endif
1156
1157
1158 /* The target-system-dependent disassembler is semi-dynamic */
1159
1160 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1161 unsigned int len, disassemble_info *info);
1162
1163 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1164 disassemble_info *info);
1165
1166 extern void dis_asm_print_address (bfd_vma addr,
1167 disassemble_info *info);
1168
1169 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1170 extern disassemble_info tm_print_insn_info;
1171 #ifndef TARGET_PRINT_INSN_INFO
1172 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1173 #endif
1174
1175
1176
1177 /* Set the dynamic target-system-dependent parameters (architecture,
1178 byte-order, ...) using information found in the BFD */
1179
1180 extern void set_gdbarch_from_file (bfd *);
1181
1182
1183 /* Initialize the current architecture to the "first" one we find on
1184 our list. */
1185
1186 extern void initialize_current_architecture (void);
1187
1188 /* For non-multiarched targets, do any initialization of the default
1189 gdbarch object necessary after the _initialize_MODULE functions
1190 have run. */
1191 extern void initialize_non_multiarch (void);
1192
1193 /* gdbarch trace variable */
1194 extern int gdbarch_debug;
1195
1196 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1197
1198 #endif
1199 EOF
1200 exec 1>&2
1201 #../move-if-change new-gdbarch.h gdbarch.h
1202 compare_new gdbarch.h
1203
1204
1205 #
1206 # C file
1207 #
1208
1209 exec > new-gdbarch.c
1210 copyright
1211 cat <<EOF
1212
1213 #include "defs.h"
1214 #include "arch-utils.h"
1215
1216 #if GDB_MULTI_ARCH
1217 #include "gdbcmd.h"
1218 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1219 #else
1220 /* Just include everything in sight so that the every old definition
1221 of macro is visible. */
1222 #include "gdb_string.h"
1223 #include <ctype.h>
1224 #include "symtab.h"
1225 #include "frame.h"
1226 #include "inferior.h"
1227 #include "breakpoint.h"
1228 #include "gdb_wait.h"
1229 #include "gdbcore.h"
1230 #include "gdbcmd.h"
1231 #include "target.h"
1232 #include "gdbthread.h"
1233 #include "annotate.h"
1234 #include "symfile.h" /* for overlay functions */
1235 #include "value.h" /* For old tm.h/nm.h macros. */
1236 #endif
1237 #include "symcat.h"
1238
1239 #include "floatformat.h"
1240
1241 #include "gdb_assert.h"
1242 #include "gdb_string.h"
1243 #include "gdb-events.h"
1244
1245 /* Static function declarations */
1246
1247 static void verify_gdbarch (struct gdbarch *gdbarch);
1248 static void alloc_gdbarch_data (struct gdbarch *);
1249 static void free_gdbarch_data (struct gdbarch *);
1250 static void init_gdbarch_swap (struct gdbarch *);
1251 static void clear_gdbarch_swap (struct gdbarch *);
1252 static void swapout_gdbarch_swap (struct gdbarch *);
1253 static void swapin_gdbarch_swap (struct gdbarch *);
1254
1255 /* Non-zero if we want to trace architecture code. */
1256
1257 #ifndef GDBARCH_DEBUG
1258 #define GDBARCH_DEBUG 0
1259 #endif
1260 int gdbarch_debug = GDBARCH_DEBUG;
1261
1262 EOF
1263
1264 # gdbarch open the gdbarch object
1265 printf "\n"
1266 printf "/* Maintain the struct gdbarch object */\n"
1267 printf "\n"
1268 printf "struct gdbarch\n"
1269 printf "{\n"
1270 printf " /* Has this architecture been fully initialized? */\n"
1271 printf " int initialized_p;\n"
1272 printf " /* basic architectural information */\n"
1273 function_list | while do_read
1274 do
1275 if class_is_info_p
1276 then
1277 printf " ${returntype} ${function};\n"
1278 fi
1279 done
1280 printf "\n"
1281 printf " /* target specific vector. */\n"
1282 printf " struct gdbarch_tdep *tdep;\n"
1283 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1284 printf "\n"
1285 printf " /* per-architecture data-pointers */\n"
1286 printf " unsigned nr_data;\n"
1287 printf " void **data;\n"
1288 printf "\n"
1289 printf " /* per-architecture swap-regions */\n"
1290 printf " struct gdbarch_swap *swap;\n"
1291 printf "\n"
1292 cat <<EOF
1293 /* Multi-arch values.
1294
1295 When extending this structure you must:
1296
1297 Add the field below.
1298
1299 Declare set/get functions and define the corresponding
1300 macro in gdbarch.h.
1301
1302 gdbarch_alloc(): If zero/NULL is not a suitable default,
1303 initialize the new field.
1304
1305 verify_gdbarch(): Confirm that the target updated the field
1306 correctly.
1307
1308 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1309 field is dumped out
1310
1311 \`\`startup_gdbarch()'': Append an initial value to the static
1312 variable (base values on the host's c-type system).
1313
1314 get_gdbarch(): Implement the set/get functions (probably using
1315 the macro's as shortcuts).
1316
1317 */
1318
1319 EOF
1320 function_list | while do_read
1321 do
1322 if class_is_variable_p
1323 then
1324 printf " ${returntype} ${function};\n"
1325 elif class_is_function_p
1326 then
1327 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1328 fi
1329 done
1330 printf "};\n"
1331
1332 # A pre-initialized vector
1333 printf "\n"
1334 printf "\n"
1335 cat <<EOF
1336 /* The default architecture uses host values (for want of a better
1337 choice). */
1338 EOF
1339 printf "\n"
1340 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1341 printf "\n"
1342 printf "struct gdbarch startup_gdbarch =\n"
1343 printf "{\n"
1344 printf " 1, /* Always initialized. */\n"
1345 printf " /* basic architecture information */\n"
1346 function_list | while do_read
1347 do
1348 if class_is_info_p
1349 then
1350 printf " ${staticdefault},\n"
1351 fi
1352 done
1353 cat <<EOF
1354 /* target specific vector and its dump routine */
1355 NULL, NULL,
1356 /*per-architecture data-pointers and swap regions */
1357 0, NULL, NULL,
1358 /* Multi-arch values */
1359 EOF
1360 function_list | while do_read
1361 do
1362 if class_is_function_p || class_is_variable_p
1363 then
1364 printf " ${staticdefault},\n"
1365 fi
1366 done
1367 cat <<EOF
1368 /* startup_gdbarch() */
1369 };
1370
1371 struct gdbarch *current_gdbarch = &startup_gdbarch;
1372
1373 /* Do any initialization needed for a non-multiarch configuration
1374 after the _initialize_MODULE functions have been run. */
1375 void
1376 initialize_non_multiarch (void)
1377 {
1378 alloc_gdbarch_data (&startup_gdbarch);
1379 /* Ensure that all swap areas are zeroed so that they again think
1380 they are starting from scratch. */
1381 clear_gdbarch_swap (&startup_gdbarch);
1382 init_gdbarch_swap (&startup_gdbarch);
1383 }
1384 EOF
1385
1386 # Create a new gdbarch struct
1387 printf "\n"
1388 printf "\n"
1389 cat <<EOF
1390 /* Create a new \`\`struct gdbarch'' based on information provided by
1391 \`\`struct gdbarch_info''. */
1392 EOF
1393 printf "\n"
1394 cat <<EOF
1395 struct gdbarch *
1396 gdbarch_alloc (const struct gdbarch_info *info,
1397 struct gdbarch_tdep *tdep)
1398 {
1399 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1400 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1401 the current local architecture and not the previous global
1402 architecture. This ensures that the new architectures initial
1403 values are not influenced by the previous architecture. Once
1404 everything is parameterised with gdbarch, this will go away. */
1405 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1406 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1407
1408 alloc_gdbarch_data (current_gdbarch);
1409
1410 current_gdbarch->tdep = tdep;
1411 EOF
1412 printf "\n"
1413 function_list | while do_read
1414 do
1415 if class_is_info_p
1416 then
1417 printf " current_gdbarch->${function} = info->${function};\n"
1418 fi
1419 done
1420 printf "\n"
1421 printf " /* Force the explicit initialization of these. */\n"
1422 function_list | while do_read
1423 do
1424 if class_is_function_p || class_is_variable_p
1425 then
1426 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1427 then
1428 printf " current_gdbarch->${function} = ${predefault};\n"
1429 fi
1430 fi
1431 done
1432 cat <<EOF
1433 /* gdbarch_alloc() */
1434
1435 return current_gdbarch;
1436 }
1437 EOF
1438
1439 # Free a gdbarch struct.
1440 printf "\n"
1441 printf "\n"
1442 cat <<EOF
1443 /* Free a gdbarch struct. This should never happen in normal
1444 operation --- once you've created a gdbarch, you keep it around.
1445 However, if an architecture's init function encounters an error
1446 building the structure, it may need to clean up a partially
1447 constructed gdbarch. */
1448
1449 void
1450 gdbarch_free (struct gdbarch *arch)
1451 {
1452 gdb_assert (arch != NULL);
1453 free_gdbarch_data (arch);
1454 xfree (arch);
1455 }
1456 EOF
1457
1458 # verify a new architecture
1459 printf "\n"
1460 printf "\n"
1461 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1462 printf "\n"
1463 cat <<EOF
1464 static void
1465 verify_gdbarch (struct gdbarch *gdbarch)
1466 {
1467 struct ui_file *log;
1468 struct cleanup *cleanups;
1469 long dummy;
1470 char *buf;
1471 /* Only perform sanity checks on a multi-arch target. */
1472 if (!GDB_MULTI_ARCH)
1473 return;
1474 log = mem_fileopen ();
1475 cleanups = make_cleanup_ui_file_delete (log);
1476 /* fundamental */
1477 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1478 fprintf_unfiltered (log, "\n\tbyte-order");
1479 if (gdbarch->bfd_arch_info == NULL)
1480 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1481 /* Check those that need to be defined for the given multi-arch level. */
1482 EOF
1483 function_list | while do_read
1484 do
1485 if class_is_function_p || class_is_variable_p
1486 then
1487 if [ "x${invalid_p}" = "x0" ]
1488 then
1489 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1490 elif class_is_predicate_p
1491 then
1492 printf " /* Skip verify of ${function}, has predicate */\n"
1493 # FIXME: See do_read for potential simplification
1494 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1495 then
1496 printf " if (${invalid_p})\n"
1497 printf " gdbarch->${function} = ${postdefault};\n"
1498 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1499 then
1500 printf " if (gdbarch->${function} == ${predefault})\n"
1501 printf " gdbarch->${function} = ${postdefault};\n"
1502 elif [ -n "${postdefault}" ]
1503 then
1504 printf " if (gdbarch->${function} == 0)\n"
1505 printf " gdbarch->${function} = ${postdefault};\n"
1506 elif [ -n "${invalid_p}" ]
1507 then
1508 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1509 printf " && (${invalid_p}))\n"
1510 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1511 elif [ -n "${predefault}" ]
1512 then
1513 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1514 printf " && (gdbarch->${function} == ${predefault}))\n"
1515 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1516 fi
1517 fi
1518 done
1519 cat <<EOF
1520 buf = ui_file_xstrdup (log, &dummy);
1521 make_cleanup (xfree, buf);
1522 if (strlen (buf) > 0)
1523 internal_error (__FILE__, __LINE__,
1524 "verify_gdbarch: the following are invalid ...%s",
1525 buf);
1526 do_cleanups (cleanups);
1527 }
1528 EOF
1529
1530 # dump the structure
1531 printf "\n"
1532 printf "\n"
1533 cat <<EOF
1534 /* Print out the details of the current architecture. */
1535
1536 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1537 just happens to match the global variable \`\`current_gdbarch''. That
1538 way macros refering to that variable get the local and not the global
1539 version - ulgh. Once everything is parameterised with gdbarch, this
1540 will go away. */
1541
1542 void
1543 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1544 {
1545 fprintf_unfiltered (file,
1546 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1547 GDB_MULTI_ARCH);
1548 EOF
1549 function_list | sort -t: +2 | while do_read
1550 do
1551 # multiarch functions don't have macros.
1552 if class_is_multiarch_p
1553 then
1554 printf " if (GDB_MULTI_ARCH)\n"
1555 printf " fprintf_unfiltered (file,\n"
1556 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1557 printf " (long) current_gdbarch->${function});\n"
1558 continue
1559 fi
1560 # Print the macro definition.
1561 printf "#ifdef ${macro}\n"
1562 if [ "x${returntype}" = "xvoid" ]
1563 then
1564 printf "#if GDB_MULTI_ARCH\n"
1565 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1566 fi
1567 if class_is_function_p
1568 then
1569 printf " fprintf_unfiltered (file,\n"
1570 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1571 printf " \"${macro}(${actual})\",\n"
1572 printf " XSTRING (${macro} (${actual})));\n"
1573 else
1574 printf " fprintf_unfiltered (file,\n"
1575 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1576 printf " XSTRING (${macro}));\n"
1577 fi
1578 # Print the architecture vector value
1579 if [ "x${returntype}" = "xvoid" ]
1580 then
1581 printf "#endif\n"
1582 fi
1583 if [ "x${print_p}" = "x()" ]
1584 then
1585 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1586 elif [ "x${print_p}" = "x0" ]
1587 then
1588 printf " /* skip print of ${macro}, print_p == 0. */\n"
1589 elif [ -n "${print_p}" ]
1590 then
1591 printf " if (${print_p})\n"
1592 printf " fprintf_unfiltered (file,\n"
1593 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1594 printf " ${print});\n"
1595 elif class_is_function_p
1596 then
1597 printf " if (GDB_MULTI_ARCH)\n"
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1600 printf " (long) current_gdbarch->${function}\n"
1601 printf " /*${macro} ()*/);\n"
1602 else
1603 printf " fprintf_unfiltered (file,\n"
1604 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1605 printf " ${print});\n"
1606 fi
1607 printf "#endif\n"
1608 done
1609 cat <<EOF
1610 if (current_gdbarch->dump_tdep != NULL)
1611 current_gdbarch->dump_tdep (current_gdbarch, file);
1612 }
1613 EOF
1614
1615
1616 # GET/SET
1617 printf "\n"
1618 cat <<EOF
1619 struct gdbarch_tdep *
1620 gdbarch_tdep (struct gdbarch *gdbarch)
1621 {
1622 if (gdbarch_debug >= 2)
1623 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1624 return gdbarch->tdep;
1625 }
1626 EOF
1627 printf "\n"
1628 function_list | while do_read
1629 do
1630 if class_is_predicate_p
1631 then
1632 printf "\n"
1633 printf "int\n"
1634 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1635 printf "{\n"
1636 printf " gdb_assert (gdbarch != NULL);\n"
1637 if [ -n "${valid_p}" ]
1638 then
1639 printf " return ${valid_p};\n"
1640 else
1641 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1642 fi
1643 printf "}\n"
1644 fi
1645 if class_is_function_p
1646 then
1647 printf "\n"
1648 printf "${returntype}\n"
1649 if [ "x${formal}" = "xvoid" ]
1650 then
1651 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1652 else
1653 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1654 fi
1655 printf "{\n"
1656 printf " gdb_assert (gdbarch != NULL);\n"
1657 printf " if (gdbarch->${function} == 0)\n"
1658 printf " internal_error (__FILE__, __LINE__,\n"
1659 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1660 printf " if (gdbarch_debug >= 2)\n"
1661 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1662 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1663 then
1664 if class_is_multiarch_p
1665 then
1666 params="gdbarch"
1667 else
1668 params=""
1669 fi
1670 else
1671 if class_is_multiarch_p
1672 then
1673 params="gdbarch, ${actual}"
1674 else
1675 params="${actual}"
1676 fi
1677 fi
1678 if [ "x${returntype}" = "xvoid" ]
1679 then
1680 printf " gdbarch->${function} (${params});\n"
1681 else
1682 printf " return gdbarch->${function} (${params});\n"
1683 fi
1684 printf "}\n"
1685 printf "\n"
1686 printf "void\n"
1687 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1688 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1689 printf "{\n"
1690 printf " gdbarch->${function} = ${function};\n"
1691 printf "}\n"
1692 elif class_is_variable_p
1693 then
1694 printf "\n"
1695 printf "${returntype}\n"
1696 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1697 printf "{\n"
1698 printf " gdb_assert (gdbarch != NULL);\n"
1699 if [ "x${invalid_p}" = "x0" ]
1700 then
1701 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1702 elif [ -n "${invalid_p}" ]
1703 then
1704 printf " if (${invalid_p})\n"
1705 printf " internal_error (__FILE__, __LINE__,\n"
1706 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1707 elif [ -n "${predefault}" ]
1708 then
1709 printf " if (gdbarch->${function} == ${predefault})\n"
1710 printf " internal_error (__FILE__, __LINE__,\n"
1711 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1712 fi
1713 printf " if (gdbarch_debug >= 2)\n"
1714 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1715 printf " return gdbarch->${function};\n"
1716 printf "}\n"
1717 printf "\n"
1718 printf "void\n"
1719 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1720 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1721 printf "{\n"
1722 printf " gdbarch->${function} = ${function};\n"
1723 printf "}\n"
1724 elif class_is_info_p
1725 then
1726 printf "\n"
1727 printf "${returntype}\n"
1728 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1729 printf "{\n"
1730 printf " gdb_assert (gdbarch != NULL);\n"
1731 printf " if (gdbarch_debug >= 2)\n"
1732 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1733 printf " return gdbarch->${function};\n"
1734 printf "}\n"
1735 fi
1736 done
1737
1738 # All the trailing guff
1739 cat <<EOF
1740
1741
1742 /* Keep a registry of per-architecture data-pointers required by GDB
1743 modules. */
1744
1745 struct gdbarch_data
1746 {
1747 unsigned index;
1748 int init_p;
1749 gdbarch_data_init_ftype *init;
1750 gdbarch_data_free_ftype *free;
1751 };
1752
1753 struct gdbarch_data_registration
1754 {
1755 struct gdbarch_data *data;
1756 struct gdbarch_data_registration *next;
1757 };
1758
1759 struct gdbarch_data_registry
1760 {
1761 unsigned nr;
1762 struct gdbarch_data_registration *registrations;
1763 };
1764
1765 struct gdbarch_data_registry gdbarch_data_registry =
1766 {
1767 0, NULL,
1768 };
1769
1770 struct gdbarch_data *
1771 register_gdbarch_data (gdbarch_data_init_ftype *init,
1772 gdbarch_data_free_ftype *free)
1773 {
1774 struct gdbarch_data_registration **curr;
1775 /* Append the new registraration. */
1776 for (curr = &gdbarch_data_registry.registrations;
1777 (*curr) != NULL;
1778 curr = &(*curr)->next);
1779 (*curr) = XMALLOC (struct gdbarch_data_registration);
1780 (*curr)->next = NULL;
1781 (*curr)->data = XMALLOC (struct gdbarch_data);
1782 (*curr)->data->index = gdbarch_data_registry.nr++;
1783 (*curr)->data->init = init;
1784 (*curr)->data->init_p = 1;
1785 (*curr)->data->free = free;
1786 return (*curr)->data;
1787 }
1788
1789
1790 /* Create/delete the gdbarch data vector. */
1791
1792 static void
1793 alloc_gdbarch_data (struct gdbarch *gdbarch)
1794 {
1795 gdb_assert (gdbarch->data == NULL);
1796 gdbarch->nr_data = gdbarch_data_registry.nr;
1797 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1798 }
1799
1800 static void
1801 free_gdbarch_data (struct gdbarch *gdbarch)
1802 {
1803 struct gdbarch_data_registration *rego;
1804 gdb_assert (gdbarch->data != NULL);
1805 for (rego = gdbarch_data_registry.registrations;
1806 rego != NULL;
1807 rego = rego->next)
1808 {
1809 struct gdbarch_data *data = rego->data;
1810 gdb_assert (data->index < gdbarch->nr_data);
1811 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1812 {
1813 data->free (gdbarch, gdbarch->data[data->index]);
1814 gdbarch->data[data->index] = NULL;
1815 }
1816 }
1817 xfree (gdbarch->data);
1818 gdbarch->data = NULL;
1819 }
1820
1821
1822 /* Initialize the current value of the specified per-architecture
1823 data-pointer. */
1824
1825 void
1826 set_gdbarch_data (struct gdbarch *gdbarch,
1827 struct gdbarch_data *data,
1828 void *pointer)
1829 {
1830 gdb_assert (data->index < gdbarch->nr_data);
1831 if (gdbarch->data[data->index] != NULL)
1832 {
1833 gdb_assert (data->free != NULL);
1834 data->free (gdbarch, gdbarch->data[data->index]);
1835 }
1836 gdbarch->data[data->index] = pointer;
1837 }
1838
1839 /* Return the current value of the specified per-architecture
1840 data-pointer. */
1841
1842 void *
1843 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1844 {
1845 gdb_assert (data->index < gdbarch->nr_data);
1846 /* The data-pointer isn't initialized, call init() to get a value but
1847 only if the architecture initializaiton has completed. Otherwise
1848 punt - hope that the caller knows what they are doing. */
1849 if (gdbarch->data[data->index] == NULL
1850 && gdbarch->initialized_p)
1851 {
1852 /* Be careful to detect an initialization cycle. */
1853 gdb_assert (data->init_p);
1854 data->init_p = 0;
1855 gdb_assert (data->init != NULL);
1856 gdbarch->data[data->index] = data->init (gdbarch);
1857 data->init_p = 1;
1858 gdb_assert (gdbarch->data[data->index] != NULL);
1859 }
1860 return gdbarch->data[data->index];
1861 }
1862
1863
1864
1865 /* Keep a registry of swapped data required by GDB modules. */
1866
1867 struct gdbarch_swap
1868 {
1869 void *swap;
1870 struct gdbarch_swap_registration *source;
1871 struct gdbarch_swap *next;
1872 };
1873
1874 struct gdbarch_swap_registration
1875 {
1876 void *data;
1877 unsigned long sizeof_data;
1878 gdbarch_swap_ftype *init;
1879 struct gdbarch_swap_registration *next;
1880 };
1881
1882 struct gdbarch_swap_registry
1883 {
1884 int nr;
1885 struct gdbarch_swap_registration *registrations;
1886 };
1887
1888 struct gdbarch_swap_registry gdbarch_swap_registry =
1889 {
1890 0, NULL,
1891 };
1892
1893 void
1894 register_gdbarch_swap (void *data,
1895 unsigned long sizeof_data,
1896 gdbarch_swap_ftype *init)
1897 {
1898 struct gdbarch_swap_registration **rego;
1899 for (rego = &gdbarch_swap_registry.registrations;
1900 (*rego) != NULL;
1901 rego = &(*rego)->next);
1902 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1903 (*rego)->next = NULL;
1904 (*rego)->init = init;
1905 (*rego)->data = data;
1906 (*rego)->sizeof_data = sizeof_data;
1907 }
1908
1909 static void
1910 clear_gdbarch_swap (struct gdbarch *gdbarch)
1911 {
1912 struct gdbarch_swap *curr;
1913 for (curr = gdbarch->swap;
1914 curr != NULL;
1915 curr = curr->next)
1916 {
1917 memset (curr->source->data, 0, curr->source->sizeof_data);
1918 }
1919 }
1920
1921 static void
1922 init_gdbarch_swap (struct gdbarch *gdbarch)
1923 {
1924 struct gdbarch_swap_registration *rego;
1925 struct gdbarch_swap **curr = &gdbarch->swap;
1926 for (rego = gdbarch_swap_registry.registrations;
1927 rego != NULL;
1928 rego = rego->next)
1929 {
1930 if (rego->data != NULL)
1931 {
1932 (*curr) = XMALLOC (struct gdbarch_swap);
1933 (*curr)->source = rego;
1934 (*curr)->swap = xmalloc (rego->sizeof_data);
1935 (*curr)->next = NULL;
1936 curr = &(*curr)->next;
1937 }
1938 if (rego->init != NULL)
1939 rego->init ();
1940 }
1941 }
1942
1943 static void
1944 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1945 {
1946 struct gdbarch_swap *curr;
1947 for (curr = gdbarch->swap;
1948 curr != NULL;
1949 curr = curr->next)
1950 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1951 }
1952
1953 static void
1954 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1955 {
1956 struct gdbarch_swap *curr;
1957 for (curr = gdbarch->swap;
1958 curr != NULL;
1959 curr = curr->next)
1960 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1961 }
1962
1963
1964 /* Keep a registry of the architectures known by GDB. */
1965
1966 struct gdbarch_registration
1967 {
1968 enum bfd_architecture bfd_architecture;
1969 gdbarch_init_ftype *init;
1970 gdbarch_dump_tdep_ftype *dump_tdep;
1971 struct gdbarch_list *arches;
1972 struct gdbarch_registration *next;
1973 };
1974
1975 static struct gdbarch_registration *gdbarch_registry = NULL;
1976
1977 static void
1978 append_name (const char ***buf, int *nr, const char *name)
1979 {
1980 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1981 (*buf)[*nr] = name;
1982 *nr += 1;
1983 }
1984
1985 const char **
1986 gdbarch_printable_names (void)
1987 {
1988 if (GDB_MULTI_ARCH)
1989 {
1990 /* Accumulate a list of names based on the registed list of
1991 architectures. */
1992 enum bfd_architecture a;
1993 int nr_arches = 0;
1994 const char **arches = NULL;
1995 struct gdbarch_registration *rego;
1996 for (rego = gdbarch_registry;
1997 rego != NULL;
1998 rego = rego->next)
1999 {
2000 const struct bfd_arch_info *ap;
2001 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2002 if (ap == NULL)
2003 internal_error (__FILE__, __LINE__,
2004 "gdbarch_architecture_names: multi-arch unknown");
2005 do
2006 {
2007 append_name (&arches, &nr_arches, ap->printable_name);
2008 ap = ap->next;
2009 }
2010 while (ap != NULL);
2011 }
2012 append_name (&arches, &nr_arches, NULL);
2013 return arches;
2014 }
2015 else
2016 /* Just return all the architectures that BFD knows. Assume that
2017 the legacy architecture framework supports them. */
2018 return bfd_arch_list ();
2019 }
2020
2021
2022 void
2023 gdbarch_register (enum bfd_architecture bfd_architecture,
2024 gdbarch_init_ftype *init,
2025 gdbarch_dump_tdep_ftype *dump_tdep)
2026 {
2027 struct gdbarch_registration **curr;
2028 const struct bfd_arch_info *bfd_arch_info;
2029 /* Check that BFD recognizes this architecture */
2030 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2031 if (bfd_arch_info == NULL)
2032 {
2033 internal_error (__FILE__, __LINE__,
2034 "gdbarch: Attempt to register unknown architecture (%d)",
2035 bfd_architecture);
2036 }
2037 /* Check that we haven't seen this architecture before */
2038 for (curr = &gdbarch_registry;
2039 (*curr) != NULL;
2040 curr = &(*curr)->next)
2041 {
2042 if (bfd_architecture == (*curr)->bfd_architecture)
2043 internal_error (__FILE__, __LINE__,
2044 "gdbarch: Duplicate registraration of architecture (%s)",
2045 bfd_arch_info->printable_name);
2046 }
2047 /* log it */
2048 if (gdbarch_debug)
2049 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2050 bfd_arch_info->printable_name,
2051 (long) init);
2052 /* Append it */
2053 (*curr) = XMALLOC (struct gdbarch_registration);
2054 (*curr)->bfd_architecture = bfd_architecture;
2055 (*curr)->init = init;
2056 (*curr)->dump_tdep = dump_tdep;
2057 (*curr)->arches = NULL;
2058 (*curr)->next = NULL;
2059 /* When non- multi-arch, install whatever target dump routine we've
2060 been provided - hopefully that routine has been written correctly
2061 and works regardless of multi-arch. */
2062 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2063 && startup_gdbarch.dump_tdep == NULL)
2064 startup_gdbarch.dump_tdep = dump_tdep;
2065 }
2066
2067 void
2068 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2069 gdbarch_init_ftype *init)
2070 {
2071 gdbarch_register (bfd_architecture, init, NULL);
2072 }
2073
2074
2075 /* Look for an architecture using gdbarch_info. Base search on only
2076 BFD_ARCH_INFO and BYTE_ORDER. */
2077
2078 struct gdbarch_list *
2079 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2080 const struct gdbarch_info *info)
2081 {
2082 for (; arches != NULL; arches = arches->next)
2083 {
2084 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2085 continue;
2086 if (info->byte_order != arches->gdbarch->byte_order)
2087 continue;
2088 return arches;
2089 }
2090 return NULL;
2091 }
2092
2093
2094 /* Update the current architecture. Return ZERO if the update request
2095 failed. */
2096
2097 int
2098 gdbarch_update_p (struct gdbarch_info info)
2099 {
2100 struct gdbarch *new_gdbarch;
2101 struct gdbarch *old_gdbarch;
2102 struct gdbarch_registration *rego;
2103
2104 /* Fill in missing parts of the INFO struct using a number of
2105 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2106
2107 /* \`\`(gdb) set architecture ...'' */
2108 if (info.bfd_arch_info == NULL
2109 && !TARGET_ARCHITECTURE_AUTO)
2110 info.bfd_arch_info = TARGET_ARCHITECTURE;
2111 if (info.bfd_arch_info == NULL
2112 && info.abfd != NULL
2113 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2114 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2115 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2116 if (info.bfd_arch_info == NULL)
2117 info.bfd_arch_info = TARGET_ARCHITECTURE;
2118
2119 /* \`\`(gdb) set byte-order ...'' */
2120 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2121 && !TARGET_BYTE_ORDER_AUTO)
2122 info.byte_order = TARGET_BYTE_ORDER;
2123 /* From the INFO struct. */
2124 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2125 && info.abfd != NULL)
2126 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2127 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2128 : BFD_ENDIAN_UNKNOWN);
2129 /* From the current target. */
2130 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2131 info.byte_order = TARGET_BYTE_ORDER;
2132
2133 /* Must have found some sort of architecture. */
2134 gdb_assert (info.bfd_arch_info != NULL);
2135
2136 if (gdbarch_debug)
2137 {
2138 fprintf_unfiltered (gdb_stdlog,
2139 "gdbarch_update: info.bfd_arch_info %s\n",
2140 (info.bfd_arch_info != NULL
2141 ? info.bfd_arch_info->printable_name
2142 : "(null)"));
2143 fprintf_unfiltered (gdb_stdlog,
2144 "gdbarch_update: info.byte_order %d (%s)\n",
2145 info.byte_order,
2146 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2147 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2148 : "default"));
2149 fprintf_unfiltered (gdb_stdlog,
2150 "gdbarch_update: info.abfd 0x%lx\n",
2151 (long) info.abfd);
2152 fprintf_unfiltered (gdb_stdlog,
2153 "gdbarch_update: info.tdep_info 0x%lx\n",
2154 (long) info.tdep_info);
2155 }
2156
2157 /* Find the target that knows about this architecture. */
2158 for (rego = gdbarch_registry;
2159 rego != NULL;
2160 rego = rego->next)
2161 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2162 break;
2163 if (rego == NULL)
2164 {
2165 if (gdbarch_debug)
2166 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2167 return 0;
2168 }
2169
2170 /* Swap the data belonging to the old target out setting the
2171 installed data to zero. This stops the ->init() function trying
2172 to refer to the previous architecture's global data structures. */
2173 swapout_gdbarch_swap (current_gdbarch);
2174 clear_gdbarch_swap (current_gdbarch);
2175
2176 /* Save the previously selected architecture, setting the global to
2177 NULL. This stops ->init() trying to use the previous
2178 architecture's configuration. The previous architecture may not
2179 even be of the same architecture family. The most recent
2180 architecture of the same family is found at the head of the
2181 rego->arches list. */
2182 old_gdbarch = current_gdbarch;
2183 current_gdbarch = NULL;
2184
2185 /* Ask the target for a replacement architecture. */
2186 new_gdbarch = rego->init (info, rego->arches);
2187
2188 /* Did the target like it? No. Reject the change and revert to the
2189 old architecture. */
2190 if (new_gdbarch == NULL)
2191 {
2192 if (gdbarch_debug)
2193 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2194 swapin_gdbarch_swap (old_gdbarch);
2195 current_gdbarch = old_gdbarch;
2196 return 0;
2197 }
2198
2199 /* Did the architecture change? No. Oops, put the old architecture
2200 back. */
2201 if (old_gdbarch == new_gdbarch)
2202 {
2203 if (gdbarch_debug)
2204 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2205 (long) new_gdbarch,
2206 new_gdbarch->bfd_arch_info->printable_name);
2207 swapin_gdbarch_swap (old_gdbarch);
2208 current_gdbarch = old_gdbarch;
2209 return 1;
2210 }
2211
2212 /* Is this a pre-existing architecture? Yes. Move it to the front
2213 of the list of architectures (keeping the list sorted Most
2214 Recently Used) and then copy it in. */
2215 {
2216 struct gdbarch_list **list;
2217 for (list = &rego->arches;
2218 (*list) != NULL;
2219 list = &(*list)->next)
2220 {
2221 if ((*list)->gdbarch == new_gdbarch)
2222 {
2223 struct gdbarch_list *this;
2224 if (gdbarch_debug)
2225 fprintf_unfiltered (gdb_stdlog,
2226 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2227 (long) new_gdbarch,
2228 new_gdbarch->bfd_arch_info->printable_name);
2229 /* Unlink this. */
2230 this = (*list);
2231 (*list) = this->next;
2232 /* Insert in the front. */
2233 this->next = rego->arches;
2234 rego->arches = this;
2235 /* Copy the new architecture in. */
2236 current_gdbarch = new_gdbarch;
2237 swapin_gdbarch_swap (new_gdbarch);
2238 architecture_changed_event ();
2239 return 1;
2240 }
2241 }
2242 }
2243
2244 /* Prepend this new architecture to the architecture list (keep the
2245 list sorted Most Recently Used). */
2246 {
2247 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2248 this->next = rego->arches;
2249 this->gdbarch = new_gdbarch;
2250 rego->arches = this;
2251 }
2252
2253 /* Switch to this new architecture marking it initialized. */
2254 current_gdbarch = new_gdbarch;
2255 current_gdbarch->initialized_p = 1;
2256 if (gdbarch_debug)
2257 {
2258 fprintf_unfiltered (gdb_stdlog,
2259 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2260 (long) new_gdbarch,
2261 new_gdbarch->bfd_arch_info->printable_name);
2262 }
2263
2264 /* Check that the newly installed architecture is valid. Plug in
2265 any post init values. */
2266 new_gdbarch->dump_tdep = rego->dump_tdep;
2267 verify_gdbarch (new_gdbarch);
2268
2269 /* Initialize the per-architecture memory (swap) areas.
2270 CURRENT_GDBARCH must be update before these modules are
2271 called. */
2272 init_gdbarch_swap (new_gdbarch);
2273
2274 /* Initialize the per-architecture data. CURRENT_GDBARCH
2275 must be updated before these modules are called. */
2276 architecture_changed_event ();
2277
2278 if (gdbarch_debug)
2279 gdbarch_dump (current_gdbarch, gdb_stdlog);
2280
2281 return 1;
2282 }
2283
2284
2285 /* Disassembler */
2286
2287 /* Pointer to the target-dependent disassembly function. */
2288 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2289 disassemble_info tm_print_insn_info;
2290
2291
2292 extern void _initialize_gdbarch (void);
2293
2294 void
2295 _initialize_gdbarch (void)
2296 {
2297 struct cmd_list_element *c;
2298
2299 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2300 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2301 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2302 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2303 tm_print_insn_info.print_address_func = dis_asm_print_address;
2304
2305 add_show_from_set (add_set_cmd ("arch",
2306 class_maintenance,
2307 var_zinteger,
2308 (char *)&gdbarch_debug,
2309 "Set architecture debugging.\\n\\
2310 When non-zero, architecture debugging is enabled.", &setdebuglist),
2311 &showdebuglist);
2312 c = add_set_cmd ("archdebug",
2313 class_maintenance,
2314 var_zinteger,
2315 (char *)&gdbarch_debug,
2316 "Set architecture debugging.\\n\\
2317 When non-zero, architecture debugging is enabled.", &setlist);
2318
2319 deprecate_cmd (c, "set debug arch");
2320 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2321 }
2322 EOF
2323
2324 # close things off
2325 exec 1>&2
2326 #../move-if-change new-gdbarch.c gdbarch.c
2327 compare_new gdbarch.c
This page took 0.108652 seconds and 4 git commands to generate.