Fix prologue analysis for moxie.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
600
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608 # How the core_stratum layer converts a PTID from a core file to a
609 # string.
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
617 # set this to one.
618 v:int:vtable_function_descriptors:::0:0::0
619
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
623
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
626
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
629
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
632 #
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
636 #
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
641 #
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
644 #
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
648 #
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
651 #
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
654 # here.
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657 # Fix up the state resulting from successfully single-stepping a
658 # displaced instruction, to give the result we would have gotten from
659 # stepping the instruction in its original location.
660 #
661 # REGS is the register state resulting from single-stepping the
662 # displaced instruction.
663 #
664 # CLOSURE is the result from the matching call to
665 # gdbarch_displaced_step_copy_insn.
666 #
667 # If you provide gdbarch_displaced_step_copy_insn.but not this
668 # function, then GDB assumes that no fixup is needed after
669 # single-stepping the instruction.
670 #
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
673 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
674
675 # Free a closure returned by gdbarch_displaced_step_copy_insn.
676 #
677 # If you provide gdbarch_displaced_step_copy_insn, you must provide
678 # this function as well.
679 #
680 # If your architecture uses closures that don't need to be freed, then
681 # you can use simple_displaced_step_free_closure here.
682 #
683 # For a general explanation of displaced stepping and how GDB uses it,
684 # see the comments in infrun.c.
685 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
686
687 # Return the address of an appropriate place to put displaced
688 # instructions while we step over them. There need only be one such
689 # place, since we're only stepping one thread over a breakpoint at a
690 # time.
691 #
692 # For a general explanation of displaced stepping and how GDB uses it,
693 # see the comments in infrun.c.
694 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
695
696 # Refresh overlay mapped state for section OSECT.
697 F:void:overlay_update:struct obj_section *osect:osect
698
699 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
700
701 # Handle special encoding of static variables in stabs debug info.
702 F:char *:static_transform_name:char *name:name
703 # Set if the address in N_SO or N_FUN stabs may be zero.
704 v:int:sofun_address_maybe_missing:::0:0::0
705
706 # Parse the instruction at ADDR storing in the record execution log
707 # the registers REGCACHE and memory ranges that will be affected when
708 # the instruction executes, along with their current values.
709 # Return -1 if something goes wrong, 0 otherwise.
710 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
711
712 # Signal translation: translate inferior's signal (host's) number into
713 # GDB's representation.
714 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
715 # Signal translation: translate GDB's signal number into inferior's host
716 # signal number.
717 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
718
719 # Extra signal info inspection.
720 #
721 # Return a type suitable to inspect extra signal information.
722 M:struct type *:get_siginfo_type:void:
723
724 # Record architecture-specific information from the symbol table.
725 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
726
727 # True if the list of shared libraries is one and only for all
728 # processes, as opposed to a list of shared libraries per inferior.
729 # This usually means that all processes, although may or may not share
730 # an address space, will see the same set of symbols at the same
731 # addresses.
732 v:int:has_global_solist:::0:0::0
733
734 # On some targets, even though each inferior has its own private
735 # address space, the debug interface takes care of making breakpoints
736 # visible to all address spaces automatically. For such cases,
737 # this property should be set to true.
738 v:int:has_global_breakpoints:::0:0::0
739 EOF
740 }
741
742 #
743 # The .log file
744 #
745 exec > new-gdbarch.log
746 function_list | while do_read
747 do
748 cat <<EOF
749 ${class} ${returntype} ${function} ($formal)
750 EOF
751 for r in ${read}
752 do
753 eval echo \"\ \ \ \ ${r}=\${${r}}\"
754 done
755 if class_is_predicate_p && fallback_default_p
756 then
757 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
758 kill $$
759 exit 1
760 fi
761 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
762 then
763 echo "Error: postdefault is useless when invalid_p=0" 1>&2
764 kill $$
765 exit 1
766 fi
767 if class_is_multiarch_p
768 then
769 if class_is_predicate_p ; then :
770 elif test "x${predefault}" = "x"
771 then
772 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
773 kill $$
774 exit 1
775 fi
776 fi
777 echo ""
778 done
779
780 exec 1>&2
781 compare_new gdbarch.log
782
783
784 copyright ()
785 {
786 cat <<EOF
787 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
788
789 /* Dynamic architecture support for GDB, the GNU debugger.
790
791 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
792 Free Software Foundation, Inc.
793
794 This file is part of GDB.
795
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
798 the Free Software Foundation; either version 3 of the License, or
799 (at your option) any later version.
800
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
805
806 You should have received a copy of the GNU General Public License
807 along with this program. If not, see <http://www.gnu.org/licenses/>. */
808
809 /* This file was created with the aid of \`\`gdbarch.sh''.
810
811 The Bourne shell script \`\`gdbarch.sh'' creates the files
812 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
813 against the existing \`\`gdbarch.[hc]''. Any differences found
814 being reported.
815
816 If editing this file, please also run gdbarch.sh and merge any
817 changes into that script. Conversely, when making sweeping changes
818 to this file, modifying gdbarch.sh and using its output may prove
819 easier. */
820
821 EOF
822 }
823
824 #
825 # The .h file
826 #
827
828 exec > new-gdbarch.h
829 copyright
830 cat <<EOF
831 #ifndef GDBARCH_H
832 #define GDBARCH_H
833
834 struct floatformat;
835 struct ui_file;
836 struct frame_info;
837 struct value;
838 struct objfile;
839 struct obj_section;
840 struct minimal_symbol;
841 struct regcache;
842 struct reggroup;
843 struct regset;
844 struct disassemble_info;
845 struct target_ops;
846 struct obstack;
847 struct bp_target_info;
848 struct target_desc;
849 struct displaced_step_closure;
850 struct core_regset_section;
851
852 /* The architecture associated with the connection to the target.
853
854 The architecture vector provides some information that is really
855 a property of the target: The layout of certain packets, for instance;
856 or the solib_ops vector. Etc. To differentiate architecture accesses
857 to per-target properties from per-thread/per-frame/per-objfile properties,
858 accesses to per-target properties should be made through target_gdbarch.
859
860 Eventually, when support for multiple targets is implemented in
861 GDB, this global should be made target-specific. */
862 extern struct gdbarch *target_gdbarch;
863 EOF
864
865 # function typedef's
866 printf "\n"
867 printf "\n"
868 printf "/* The following are pre-initialized by GDBARCH. */\n"
869 function_list | while do_read
870 do
871 if class_is_info_p
872 then
873 printf "\n"
874 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
875 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
876 fi
877 done
878
879 # function typedef's
880 printf "\n"
881 printf "\n"
882 printf "/* The following are initialized by the target dependent code. */\n"
883 function_list | while do_read
884 do
885 if [ -n "${comment}" ]
886 then
887 echo "${comment}" | sed \
888 -e '2 s,#,/*,' \
889 -e '3,$ s,#, ,' \
890 -e '$ s,$, */,'
891 fi
892
893 if class_is_predicate_p
894 then
895 printf "\n"
896 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
897 fi
898 if class_is_variable_p
899 then
900 printf "\n"
901 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
902 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
903 fi
904 if class_is_function_p
905 then
906 printf "\n"
907 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
908 then
909 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
910 elif class_is_multiarch_p
911 then
912 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
913 else
914 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
915 fi
916 if [ "x${formal}" = "xvoid" ]
917 then
918 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
919 else
920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
921 fi
922 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
923 fi
924 done
925
926 # close it off
927 cat <<EOF
928
929 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
930
931
932 /* Mechanism for co-ordinating the selection of a specific
933 architecture.
934
935 GDB targets (*-tdep.c) can register an interest in a specific
936 architecture. Other GDB components can register a need to maintain
937 per-architecture data.
938
939 The mechanisms below ensures that there is only a loose connection
940 between the set-architecture command and the various GDB
941 components. Each component can independently register their need
942 to maintain architecture specific data with gdbarch.
943
944 Pragmatics:
945
946 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
947 didn't scale.
948
949 The more traditional mega-struct containing architecture specific
950 data for all the various GDB components was also considered. Since
951 GDB is built from a variable number of (fairly independent)
952 components it was determined that the global aproach was not
953 applicable. */
954
955
956 /* Register a new architectural family with GDB.
957
958 Register support for the specified ARCHITECTURE with GDB. When
959 gdbarch determines that the specified architecture has been
960 selected, the corresponding INIT function is called.
961
962 --
963
964 The INIT function takes two parameters: INFO which contains the
965 information available to gdbarch about the (possibly new)
966 architecture; ARCHES which is a list of the previously created
967 \`\`struct gdbarch'' for this architecture.
968
969 The INFO parameter is, as far as possible, be pre-initialized with
970 information obtained from INFO.ABFD or the global defaults.
971
972 The ARCHES parameter is a linked list (sorted most recently used)
973 of all the previously created architures for this architecture
974 family. The (possibly NULL) ARCHES->gdbarch can used to access
975 values from the previously selected architecture for this
976 architecture family.
977
978 The INIT function shall return any of: NULL - indicating that it
979 doesn't recognize the selected architecture; an existing \`\`struct
980 gdbarch'' from the ARCHES list - indicating that the new
981 architecture is just a synonym for an earlier architecture (see
982 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
983 - that describes the selected architecture (see gdbarch_alloc()).
984
985 The DUMP_TDEP function shall print out all target specific values.
986 Care should be taken to ensure that the function works in both the
987 multi-arch and non- multi-arch cases. */
988
989 struct gdbarch_list
990 {
991 struct gdbarch *gdbarch;
992 struct gdbarch_list *next;
993 };
994
995 struct gdbarch_info
996 {
997 /* Use default: NULL (ZERO). */
998 const struct bfd_arch_info *bfd_arch_info;
999
1000 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1001 int byte_order;
1002
1003 int byte_order_for_code;
1004
1005 /* Use default: NULL (ZERO). */
1006 bfd *abfd;
1007
1008 /* Use default: NULL (ZERO). */
1009 struct gdbarch_tdep_info *tdep_info;
1010
1011 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1012 enum gdb_osabi osabi;
1013
1014 /* Use default: NULL (ZERO). */
1015 const struct target_desc *target_desc;
1016 };
1017
1018 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1019 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1020
1021 /* DEPRECATED - use gdbarch_register() */
1022 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1023
1024 extern void gdbarch_register (enum bfd_architecture architecture,
1025 gdbarch_init_ftype *,
1026 gdbarch_dump_tdep_ftype *);
1027
1028
1029 /* Return a freshly allocated, NULL terminated, array of the valid
1030 architecture names. Since architectures are registered during the
1031 _initialize phase this function only returns useful information
1032 once initialization has been completed. */
1033
1034 extern const char **gdbarch_printable_names (void);
1035
1036
1037 /* Helper function. Search the list of ARCHES for a GDBARCH that
1038 matches the information provided by INFO. */
1039
1040 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1041
1042
1043 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1044 basic initialization using values obtained from the INFO and TDEP
1045 parameters. set_gdbarch_*() functions are called to complete the
1046 initialization of the object. */
1047
1048 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1049
1050
1051 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1052 It is assumed that the caller freeds the \`\`struct
1053 gdbarch_tdep''. */
1054
1055 extern void gdbarch_free (struct gdbarch *);
1056
1057
1058 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1059 obstack. The memory is freed when the corresponding architecture
1060 is also freed. */
1061
1062 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1063 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1064 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1065
1066
1067 /* Helper function. Force an update of the current architecture.
1068
1069 The actual architecture selected is determined by INFO, \`\`(gdb) set
1070 architecture'' et.al., the existing architecture and BFD's default
1071 architecture. INFO should be initialized to zero and then selected
1072 fields should be updated.
1073
1074 Returns non-zero if the update succeeds */
1075
1076 extern int gdbarch_update_p (struct gdbarch_info info);
1077
1078
1079 /* Helper function. Find an architecture matching info.
1080
1081 INFO should be initialized using gdbarch_info_init, relevant fields
1082 set, and then finished using gdbarch_info_fill.
1083
1084 Returns the corresponding architecture, or NULL if no matching
1085 architecture was found. */
1086
1087 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1088
1089
1090 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1091
1092 FIXME: kettenis/20031124: Of the functions that follow, only
1093 gdbarch_from_bfd is supposed to survive. The others will
1094 dissappear since in the future GDB will (hopefully) be truly
1095 multi-arch. However, for now we're still stuck with the concept of
1096 a single active architecture. */
1097
1098 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1099
1100
1101 /* Register per-architecture data-pointer.
1102
1103 Reserve space for a per-architecture data-pointer. An identifier
1104 for the reserved data-pointer is returned. That identifer should
1105 be saved in a local static variable.
1106
1107 Memory for the per-architecture data shall be allocated using
1108 gdbarch_obstack_zalloc. That memory will be deleted when the
1109 corresponding architecture object is deleted.
1110
1111 When a previously created architecture is re-selected, the
1112 per-architecture data-pointer for that previous architecture is
1113 restored. INIT() is not re-called.
1114
1115 Multiple registrarants for any architecture are allowed (and
1116 strongly encouraged). */
1117
1118 struct gdbarch_data;
1119
1120 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1121 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1122 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1123 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1124 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1125 struct gdbarch_data *data,
1126 void *pointer);
1127
1128 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1129
1130
1131 /* Set the dynamic target-system-dependent parameters (architecture,
1132 byte-order, ...) using information found in the BFD */
1133
1134 extern void set_gdbarch_from_file (bfd *);
1135
1136
1137 /* Initialize the current architecture to the "first" one we find on
1138 our list. */
1139
1140 extern void initialize_current_architecture (void);
1141
1142 /* gdbarch trace variable */
1143 extern int gdbarch_debug;
1144
1145 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1146
1147 #endif
1148 EOF
1149 exec 1>&2
1150 #../move-if-change new-gdbarch.h gdbarch.h
1151 compare_new gdbarch.h
1152
1153
1154 #
1155 # C file
1156 #
1157
1158 exec > new-gdbarch.c
1159 copyright
1160 cat <<EOF
1161
1162 #include "defs.h"
1163 #include "arch-utils.h"
1164
1165 #include "gdbcmd.h"
1166 #include "inferior.h"
1167 #include "symcat.h"
1168
1169 #include "floatformat.h"
1170
1171 #include "gdb_assert.h"
1172 #include "gdb_string.h"
1173 #include "reggroups.h"
1174 #include "osabi.h"
1175 #include "gdb_obstack.h"
1176 #include "observer.h"
1177 #include "regcache.h"
1178
1179 /* Static function declarations */
1180
1181 static void alloc_gdbarch_data (struct gdbarch *);
1182
1183 /* Non-zero if we want to trace architecture code. */
1184
1185 #ifndef GDBARCH_DEBUG
1186 #define GDBARCH_DEBUG 0
1187 #endif
1188 int gdbarch_debug = GDBARCH_DEBUG;
1189 static void
1190 show_gdbarch_debug (struct ui_file *file, int from_tty,
1191 struct cmd_list_element *c, const char *value)
1192 {
1193 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1194 }
1195
1196 static const char *
1197 pformat (const struct floatformat **format)
1198 {
1199 if (format == NULL)
1200 return "(null)";
1201 else
1202 /* Just print out one of them - this is only for diagnostics. */
1203 return format[0]->name;
1204 }
1205
1206 EOF
1207
1208 # gdbarch open the gdbarch object
1209 printf "\n"
1210 printf "/* Maintain the struct gdbarch object */\n"
1211 printf "\n"
1212 printf "struct gdbarch\n"
1213 printf "{\n"
1214 printf " /* Has this architecture been fully initialized? */\n"
1215 printf " int initialized_p;\n"
1216 printf "\n"
1217 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1218 printf " struct obstack *obstack;\n"
1219 printf "\n"
1220 printf " /* basic architectural information */\n"
1221 function_list | while do_read
1222 do
1223 if class_is_info_p
1224 then
1225 printf " ${returntype} ${function};\n"
1226 fi
1227 done
1228 printf "\n"
1229 printf " /* target specific vector. */\n"
1230 printf " struct gdbarch_tdep *tdep;\n"
1231 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1232 printf "\n"
1233 printf " /* per-architecture data-pointers */\n"
1234 printf " unsigned nr_data;\n"
1235 printf " void **data;\n"
1236 printf "\n"
1237 printf " /* per-architecture swap-regions */\n"
1238 printf " struct gdbarch_swap *swap;\n"
1239 printf "\n"
1240 cat <<EOF
1241 /* Multi-arch values.
1242
1243 When extending this structure you must:
1244
1245 Add the field below.
1246
1247 Declare set/get functions and define the corresponding
1248 macro in gdbarch.h.
1249
1250 gdbarch_alloc(): If zero/NULL is not a suitable default,
1251 initialize the new field.
1252
1253 verify_gdbarch(): Confirm that the target updated the field
1254 correctly.
1255
1256 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1257 field is dumped out
1258
1259 \`\`startup_gdbarch()'': Append an initial value to the static
1260 variable (base values on the host's c-type system).
1261
1262 get_gdbarch(): Implement the set/get functions (probably using
1263 the macro's as shortcuts).
1264
1265 */
1266
1267 EOF
1268 function_list | while do_read
1269 do
1270 if class_is_variable_p
1271 then
1272 printf " ${returntype} ${function};\n"
1273 elif class_is_function_p
1274 then
1275 printf " gdbarch_${function}_ftype *${function};\n"
1276 fi
1277 done
1278 printf "};\n"
1279
1280 # A pre-initialized vector
1281 printf "\n"
1282 printf "\n"
1283 cat <<EOF
1284 /* The default architecture uses host values (for want of a better
1285 choice). */
1286 EOF
1287 printf "\n"
1288 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1289 printf "\n"
1290 printf "struct gdbarch startup_gdbarch =\n"
1291 printf "{\n"
1292 printf " 1, /* Always initialized. */\n"
1293 printf " NULL, /* The obstack. */\n"
1294 printf " /* basic architecture information */\n"
1295 function_list | while do_read
1296 do
1297 if class_is_info_p
1298 then
1299 printf " ${staticdefault}, /* ${function} */\n"
1300 fi
1301 done
1302 cat <<EOF
1303 /* target specific vector and its dump routine */
1304 NULL, NULL,
1305 /*per-architecture data-pointers and swap regions */
1306 0, NULL, NULL,
1307 /* Multi-arch values */
1308 EOF
1309 function_list | while do_read
1310 do
1311 if class_is_function_p || class_is_variable_p
1312 then
1313 printf " ${staticdefault}, /* ${function} */\n"
1314 fi
1315 done
1316 cat <<EOF
1317 /* startup_gdbarch() */
1318 };
1319
1320 struct gdbarch *target_gdbarch = &startup_gdbarch;
1321 EOF
1322
1323 # Create a new gdbarch struct
1324 cat <<EOF
1325
1326 /* Create a new \`\`struct gdbarch'' based on information provided by
1327 \`\`struct gdbarch_info''. */
1328 EOF
1329 printf "\n"
1330 cat <<EOF
1331 struct gdbarch *
1332 gdbarch_alloc (const struct gdbarch_info *info,
1333 struct gdbarch_tdep *tdep)
1334 {
1335 struct gdbarch *gdbarch;
1336
1337 /* Create an obstack for allocating all the per-architecture memory,
1338 then use that to allocate the architecture vector. */
1339 struct obstack *obstack = XMALLOC (struct obstack);
1340 obstack_init (obstack);
1341 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1342 memset (gdbarch, 0, sizeof (*gdbarch));
1343 gdbarch->obstack = obstack;
1344
1345 alloc_gdbarch_data (gdbarch);
1346
1347 gdbarch->tdep = tdep;
1348 EOF
1349 printf "\n"
1350 function_list | while do_read
1351 do
1352 if class_is_info_p
1353 then
1354 printf " gdbarch->${function} = info->${function};\n"
1355 fi
1356 done
1357 printf "\n"
1358 printf " /* Force the explicit initialization of these. */\n"
1359 function_list | while do_read
1360 do
1361 if class_is_function_p || class_is_variable_p
1362 then
1363 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1364 then
1365 printf " gdbarch->${function} = ${predefault};\n"
1366 fi
1367 fi
1368 done
1369 cat <<EOF
1370 /* gdbarch_alloc() */
1371
1372 return gdbarch;
1373 }
1374 EOF
1375
1376 # Free a gdbarch struct.
1377 printf "\n"
1378 printf "\n"
1379 cat <<EOF
1380 /* Allocate extra space using the per-architecture obstack. */
1381
1382 void *
1383 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1384 {
1385 void *data = obstack_alloc (arch->obstack, size);
1386 memset (data, 0, size);
1387 return data;
1388 }
1389
1390
1391 /* Free a gdbarch struct. This should never happen in normal
1392 operation --- once you've created a gdbarch, you keep it around.
1393 However, if an architecture's init function encounters an error
1394 building the structure, it may need to clean up a partially
1395 constructed gdbarch. */
1396
1397 void
1398 gdbarch_free (struct gdbarch *arch)
1399 {
1400 struct obstack *obstack;
1401 gdb_assert (arch != NULL);
1402 gdb_assert (!arch->initialized_p);
1403 obstack = arch->obstack;
1404 obstack_free (obstack, 0); /* Includes the ARCH. */
1405 xfree (obstack);
1406 }
1407 EOF
1408
1409 # verify a new architecture
1410 cat <<EOF
1411
1412
1413 /* Ensure that all values in a GDBARCH are reasonable. */
1414
1415 static void
1416 verify_gdbarch (struct gdbarch *gdbarch)
1417 {
1418 struct ui_file *log;
1419 struct cleanup *cleanups;
1420 long dummy;
1421 char *buf;
1422 log = mem_fileopen ();
1423 cleanups = make_cleanup_ui_file_delete (log);
1424 /* fundamental */
1425 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1426 fprintf_unfiltered (log, "\n\tbyte-order");
1427 if (gdbarch->bfd_arch_info == NULL)
1428 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1429 /* Check those that need to be defined for the given multi-arch level. */
1430 EOF
1431 function_list | while do_read
1432 do
1433 if class_is_function_p || class_is_variable_p
1434 then
1435 if [ "x${invalid_p}" = "x0" ]
1436 then
1437 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1438 elif class_is_predicate_p
1439 then
1440 printf " /* Skip verify of ${function}, has predicate */\n"
1441 # FIXME: See do_read for potential simplification
1442 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1443 then
1444 printf " if (${invalid_p})\n"
1445 printf " gdbarch->${function} = ${postdefault};\n"
1446 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1447 then
1448 printf " if (gdbarch->${function} == ${predefault})\n"
1449 printf " gdbarch->${function} = ${postdefault};\n"
1450 elif [ -n "${postdefault}" ]
1451 then
1452 printf " if (gdbarch->${function} == 0)\n"
1453 printf " gdbarch->${function} = ${postdefault};\n"
1454 elif [ -n "${invalid_p}" ]
1455 then
1456 printf " if (${invalid_p})\n"
1457 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1458 elif [ -n "${predefault}" ]
1459 then
1460 printf " if (gdbarch->${function} == ${predefault})\n"
1461 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1462 fi
1463 fi
1464 done
1465 cat <<EOF
1466 buf = ui_file_xstrdup (log, &dummy);
1467 make_cleanup (xfree, buf);
1468 if (strlen (buf) > 0)
1469 internal_error (__FILE__, __LINE__,
1470 _("verify_gdbarch: the following are invalid ...%s"),
1471 buf);
1472 do_cleanups (cleanups);
1473 }
1474 EOF
1475
1476 # dump the structure
1477 printf "\n"
1478 printf "\n"
1479 cat <<EOF
1480 /* Print out the details of the current architecture. */
1481
1482 void
1483 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1484 {
1485 const char *gdb_nm_file = "<not-defined>";
1486 #if defined (GDB_NM_FILE)
1487 gdb_nm_file = GDB_NM_FILE;
1488 #endif
1489 fprintf_unfiltered (file,
1490 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1491 gdb_nm_file);
1492 EOF
1493 function_list | sort -t: -k 3 | while do_read
1494 do
1495 # First the predicate
1496 if class_is_predicate_p
1497 then
1498 printf " fprintf_unfiltered (file,\n"
1499 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1500 printf " gdbarch_${function}_p (gdbarch));\n"
1501 fi
1502 # Print the corresponding value.
1503 if class_is_function_p
1504 then
1505 printf " fprintf_unfiltered (file,\n"
1506 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1507 printf " host_address_to_string (gdbarch->${function}));\n"
1508 else
1509 # It is a variable
1510 case "${print}:${returntype}" in
1511 :CORE_ADDR )
1512 fmt="%s"
1513 print="core_addr_to_string_nz (gdbarch->${function})"
1514 ;;
1515 :* )
1516 fmt="%s"
1517 print="plongest (gdbarch->${function})"
1518 ;;
1519 * )
1520 fmt="%s"
1521 ;;
1522 esac
1523 printf " fprintf_unfiltered (file,\n"
1524 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1525 printf " ${print});\n"
1526 fi
1527 done
1528 cat <<EOF
1529 if (gdbarch->dump_tdep != NULL)
1530 gdbarch->dump_tdep (gdbarch, file);
1531 }
1532 EOF
1533
1534
1535 # GET/SET
1536 printf "\n"
1537 cat <<EOF
1538 struct gdbarch_tdep *
1539 gdbarch_tdep (struct gdbarch *gdbarch)
1540 {
1541 if (gdbarch_debug >= 2)
1542 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1543 return gdbarch->tdep;
1544 }
1545 EOF
1546 printf "\n"
1547 function_list | while do_read
1548 do
1549 if class_is_predicate_p
1550 then
1551 printf "\n"
1552 printf "int\n"
1553 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1554 printf "{\n"
1555 printf " gdb_assert (gdbarch != NULL);\n"
1556 printf " return ${predicate};\n"
1557 printf "}\n"
1558 fi
1559 if class_is_function_p
1560 then
1561 printf "\n"
1562 printf "${returntype}\n"
1563 if [ "x${formal}" = "xvoid" ]
1564 then
1565 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1566 else
1567 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1568 fi
1569 printf "{\n"
1570 printf " gdb_assert (gdbarch != NULL);\n"
1571 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1572 if class_is_predicate_p && test -n "${predefault}"
1573 then
1574 # Allow a call to a function with a predicate.
1575 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1576 fi
1577 printf " if (gdbarch_debug >= 2)\n"
1578 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1579 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1580 then
1581 if class_is_multiarch_p
1582 then
1583 params="gdbarch"
1584 else
1585 params=""
1586 fi
1587 else
1588 if class_is_multiarch_p
1589 then
1590 params="gdbarch, ${actual}"
1591 else
1592 params="${actual}"
1593 fi
1594 fi
1595 if [ "x${returntype}" = "xvoid" ]
1596 then
1597 printf " gdbarch->${function} (${params});\n"
1598 else
1599 printf " return gdbarch->${function} (${params});\n"
1600 fi
1601 printf "}\n"
1602 printf "\n"
1603 printf "void\n"
1604 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1605 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1606 printf "{\n"
1607 printf " gdbarch->${function} = ${function};\n"
1608 printf "}\n"
1609 elif class_is_variable_p
1610 then
1611 printf "\n"
1612 printf "${returntype}\n"
1613 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1614 printf "{\n"
1615 printf " gdb_assert (gdbarch != NULL);\n"
1616 if [ "x${invalid_p}" = "x0" ]
1617 then
1618 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1619 elif [ -n "${invalid_p}" ]
1620 then
1621 printf " /* Check variable is valid. */\n"
1622 printf " gdb_assert (!(${invalid_p}));\n"
1623 elif [ -n "${predefault}" ]
1624 then
1625 printf " /* Check variable changed from pre-default. */\n"
1626 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1627 fi
1628 printf " if (gdbarch_debug >= 2)\n"
1629 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1630 printf " return gdbarch->${function};\n"
1631 printf "}\n"
1632 printf "\n"
1633 printf "void\n"
1634 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1635 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1636 printf "{\n"
1637 printf " gdbarch->${function} = ${function};\n"
1638 printf "}\n"
1639 elif class_is_info_p
1640 then
1641 printf "\n"
1642 printf "${returntype}\n"
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1644 printf "{\n"
1645 printf " gdb_assert (gdbarch != NULL);\n"
1646 printf " if (gdbarch_debug >= 2)\n"
1647 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1648 printf " return gdbarch->${function};\n"
1649 printf "}\n"
1650 fi
1651 done
1652
1653 # All the trailing guff
1654 cat <<EOF
1655
1656
1657 /* Keep a registry of per-architecture data-pointers required by GDB
1658 modules. */
1659
1660 struct gdbarch_data
1661 {
1662 unsigned index;
1663 int init_p;
1664 gdbarch_data_pre_init_ftype *pre_init;
1665 gdbarch_data_post_init_ftype *post_init;
1666 };
1667
1668 struct gdbarch_data_registration
1669 {
1670 struct gdbarch_data *data;
1671 struct gdbarch_data_registration *next;
1672 };
1673
1674 struct gdbarch_data_registry
1675 {
1676 unsigned nr;
1677 struct gdbarch_data_registration *registrations;
1678 };
1679
1680 struct gdbarch_data_registry gdbarch_data_registry =
1681 {
1682 0, NULL,
1683 };
1684
1685 static struct gdbarch_data *
1686 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1687 gdbarch_data_post_init_ftype *post_init)
1688 {
1689 struct gdbarch_data_registration **curr;
1690 /* Append the new registraration. */
1691 for (curr = &gdbarch_data_registry.registrations;
1692 (*curr) != NULL;
1693 curr = &(*curr)->next);
1694 (*curr) = XMALLOC (struct gdbarch_data_registration);
1695 (*curr)->next = NULL;
1696 (*curr)->data = XMALLOC (struct gdbarch_data);
1697 (*curr)->data->index = gdbarch_data_registry.nr++;
1698 (*curr)->data->pre_init = pre_init;
1699 (*curr)->data->post_init = post_init;
1700 (*curr)->data->init_p = 1;
1701 return (*curr)->data;
1702 }
1703
1704 struct gdbarch_data *
1705 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1706 {
1707 return gdbarch_data_register (pre_init, NULL);
1708 }
1709
1710 struct gdbarch_data *
1711 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1712 {
1713 return gdbarch_data_register (NULL, post_init);
1714 }
1715
1716 /* Create/delete the gdbarch data vector. */
1717
1718 static void
1719 alloc_gdbarch_data (struct gdbarch *gdbarch)
1720 {
1721 gdb_assert (gdbarch->data == NULL);
1722 gdbarch->nr_data = gdbarch_data_registry.nr;
1723 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1724 }
1725
1726 /* Initialize the current value of the specified per-architecture
1727 data-pointer. */
1728
1729 void
1730 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1731 struct gdbarch_data *data,
1732 void *pointer)
1733 {
1734 gdb_assert (data->index < gdbarch->nr_data);
1735 gdb_assert (gdbarch->data[data->index] == NULL);
1736 gdb_assert (data->pre_init == NULL);
1737 gdbarch->data[data->index] = pointer;
1738 }
1739
1740 /* Return the current value of the specified per-architecture
1741 data-pointer. */
1742
1743 void *
1744 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1745 {
1746 gdb_assert (data->index < gdbarch->nr_data);
1747 if (gdbarch->data[data->index] == NULL)
1748 {
1749 /* The data-pointer isn't initialized, call init() to get a
1750 value. */
1751 if (data->pre_init != NULL)
1752 /* Mid architecture creation: pass just the obstack, and not
1753 the entire architecture, as that way it isn't possible for
1754 pre-init code to refer to undefined architecture
1755 fields. */
1756 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1757 else if (gdbarch->initialized_p
1758 && data->post_init != NULL)
1759 /* Post architecture creation: pass the entire architecture
1760 (as all fields are valid), but be careful to also detect
1761 recursive references. */
1762 {
1763 gdb_assert (data->init_p);
1764 data->init_p = 0;
1765 gdbarch->data[data->index] = data->post_init (gdbarch);
1766 data->init_p = 1;
1767 }
1768 else
1769 /* The architecture initialization hasn't completed - punt -
1770 hope that the caller knows what they are doing. Once
1771 deprecated_set_gdbarch_data has been initialized, this can be
1772 changed to an internal error. */
1773 return NULL;
1774 gdb_assert (gdbarch->data[data->index] != NULL);
1775 }
1776 return gdbarch->data[data->index];
1777 }
1778
1779
1780 /* Keep a registry of the architectures known by GDB. */
1781
1782 struct gdbarch_registration
1783 {
1784 enum bfd_architecture bfd_architecture;
1785 gdbarch_init_ftype *init;
1786 gdbarch_dump_tdep_ftype *dump_tdep;
1787 struct gdbarch_list *arches;
1788 struct gdbarch_registration *next;
1789 };
1790
1791 static struct gdbarch_registration *gdbarch_registry = NULL;
1792
1793 static void
1794 append_name (const char ***buf, int *nr, const char *name)
1795 {
1796 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1797 (*buf)[*nr] = name;
1798 *nr += 1;
1799 }
1800
1801 const char **
1802 gdbarch_printable_names (void)
1803 {
1804 /* Accumulate a list of names based on the registed list of
1805 architectures. */
1806 enum bfd_architecture a;
1807 int nr_arches = 0;
1808 const char **arches = NULL;
1809 struct gdbarch_registration *rego;
1810 for (rego = gdbarch_registry;
1811 rego != NULL;
1812 rego = rego->next)
1813 {
1814 const struct bfd_arch_info *ap;
1815 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1816 if (ap == NULL)
1817 internal_error (__FILE__, __LINE__,
1818 _("gdbarch_architecture_names: multi-arch unknown"));
1819 do
1820 {
1821 append_name (&arches, &nr_arches, ap->printable_name);
1822 ap = ap->next;
1823 }
1824 while (ap != NULL);
1825 }
1826 append_name (&arches, &nr_arches, NULL);
1827 return arches;
1828 }
1829
1830
1831 void
1832 gdbarch_register (enum bfd_architecture bfd_architecture,
1833 gdbarch_init_ftype *init,
1834 gdbarch_dump_tdep_ftype *dump_tdep)
1835 {
1836 struct gdbarch_registration **curr;
1837 const struct bfd_arch_info *bfd_arch_info;
1838 /* Check that BFD recognizes this architecture */
1839 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1840 if (bfd_arch_info == NULL)
1841 {
1842 internal_error (__FILE__, __LINE__,
1843 _("gdbarch: Attempt to register unknown architecture (%d)"),
1844 bfd_architecture);
1845 }
1846 /* Check that we haven't seen this architecture before */
1847 for (curr = &gdbarch_registry;
1848 (*curr) != NULL;
1849 curr = &(*curr)->next)
1850 {
1851 if (bfd_architecture == (*curr)->bfd_architecture)
1852 internal_error (__FILE__, __LINE__,
1853 _("gdbarch: Duplicate registraration of architecture (%s)"),
1854 bfd_arch_info->printable_name);
1855 }
1856 /* log it */
1857 if (gdbarch_debug)
1858 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1859 bfd_arch_info->printable_name,
1860 host_address_to_string (init));
1861 /* Append it */
1862 (*curr) = XMALLOC (struct gdbarch_registration);
1863 (*curr)->bfd_architecture = bfd_architecture;
1864 (*curr)->init = init;
1865 (*curr)->dump_tdep = dump_tdep;
1866 (*curr)->arches = NULL;
1867 (*curr)->next = NULL;
1868 }
1869
1870 void
1871 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1872 gdbarch_init_ftype *init)
1873 {
1874 gdbarch_register (bfd_architecture, init, NULL);
1875 }
1876
1877
1878 /* Look for an architecture using gdbarch_info. */
1879
1880 struct gdbarch_list *
1881 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1882 const struct gdbarch_info *info)
1883 {
1884 for (; arches != NULL; arches = arches->next)
1885 {
1886 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1887 continue;
1888 if (info->byte_order != arches->gdbarch->byte_order)
1889 continue;
1890 if (info->osabi != arches->gdbarch->osabi)
1891 continue;
1892 if (info->target_desc != arches->gdbarch->target_desc)
1893 continue;
1894 return arches;
1895 }
1896 return NULL;
1897 }
1898
1899
1900 /* Find an architecture that matches the specified INFO. Create a new
1901 architecture if needed. Return that new architecture. */
1902
1903 struct gdbarch *
1904 gdbarch_find_by_info (struct gdbarch_info info)
1905 {
1906 struct gdbarch *new_gdbarch;
1907 struct gdbarch_registration *rego;
1908
1909 /* Fill in missing parts of the INFO struct using a number of
1910 sources: "set ..."; INFOabfd supplied; and the global
1911 defaults. */
1912 gdbarch_info_fill (&info);
1913
1914 /* Must have found some sort of architecture. */
1915 gdb_assert (info.bfd_arch_info != NULL);
1916
1917 if (gdbarch_debug)
1918 {
1919 fprintf_unfiltered (gdb_stdlog,
1920 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1921 (info.bfd_arch_info != NULL
1922 ? info.bfd_arch_info->printable_name
1923 : "(null)"));
1924 fprintf_unfiltered (gdb_stdlog,
1925 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1926 info.byte_order,
1927 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1928 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1929 : "default"));
1930 fprintf_unfiltered (gdb_stdlog,
1931 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1932 info.osabi, gdbarch_osabi_name (info.osabi));
1933 fprintf_unfiltered (gdb_stdlog,
1934 "gdbarch_find_by_info: info.abfd %s\n",
1935 host_address_to_string (info.abfd));
1936 fprintf_unfiltered (gdb_stdlog,
1937 "gdbarch_find_by_info: info.tdep_info %s\n",
1938 host_address_to_string (info.tdep_info));
1939 }
1940
1941 /* Find the tdep code that knows about this architecture. */
1942 for (rego = gdbarch_registry;
1943 rego != NULL;
1944 rego = rego->next)
1945 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1946 break;
1947 if (rego == NULL)
1948 {
1949 if (gdbarch_debug)
1950 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1951 "No matching architecture\n");
1952 return 0;
1953 }
1954
1955 /* Ask the tdep code for an architecture that matches "info". */
1956 new_gdbarch = rego->init (info, rego->arches);
1957
1958 /* Did the tdep code like it? No. Reject the change and revert to
1959 the old architecture. */
1960 if (new_gdbarch == NULL)
1961 {
1962 if (gdbarch_debug)
1963 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1964 "Target rejected architecture\n");
1965 return NULL;
1966 }
1967
1968 /* Is this a pre-existing architecture (as determined by already
1969 being initialized)? Move it to the front of the architecture
1970 list (keeping the list sorted Most Recently Used). */
1971 if (new_gdbarch->initialized_p)
1972 {
1973 struct gdbarch_list **list;
1974 struct gdbarch_list *this;
1975 if (gdbarch_debug)
1976 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1977 "Previous architecture %s (%s) selected\n",
1978 host_address_to_string (new_gdbarch),
1979 new_gdbarch->bfd_arch_info->printable_name);
1980 /* Find the existing arch in the list. */
1981 for (list = &rego->arches;
1982 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1983 list = &(*list)->next);
1984 /* It had better be in the list of architectures. */
1985 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1986 /* Unlink THIS. */
1987 this = (*list);
1988 (*list) = this->next;
1989 /* Insert THIS at the front. */
1990 this->next = rego->arches;
1991 rego->arches = this;
1992 /* Return it. */
1993 return new_gdbarch;
1994 }
1995
1996 /* It's a new architecture. */
1997 if (gdbarch_debug)
1998 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1999 "New architecture %s (%s) selected\n",
2000 host_address_to_string (new_gdbarch),
2001 new_gdbarch->bfd_arch_info->printable_name);
2002
2003 /* Insert the new architecture into the front of the architecture
2004 list (keep the list sorted Most Recently Used). */
2005 {
2006 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2007 this->next = rego->arches;
2008 this->gdbarch = new_gdbarch;
2009 rego->arches = this;
2010 }
2011
2012 /* Check that the newly installed architecture is valid. Plug in
2013 any post init values. */
2014 new_gdbarch->dump_tdep = rego->dump_tdep;
2015 verify_gdbarch (new_gdbarch);
2016 new_gdbarch->initialized_p = 1;
2017
2018 if (gdbarch_debug)
2019 gdbarch_dump (new_gdbarch, gdb_stdlog);
2020
2021 return new_gdbarch;
2022 }
2023
2024 /* Make the specified architecture current. */
2025
2026 void
2027 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2028 {
2029 gdb_assert (new_gdbarch != NULL);
2030 gdb_assert (new_gdbarch->initialized_p);
2031 target_gdbarch = new_gdbarch;
2032 observer_notify_architecture_changed (new_gdbarch);
2033 registers_changed ();
2034 }
2035
2036 extern void _initialize_gdbarch (void);
2037
2038 void
2039 _initialize_gdbarch (void)
2040 {
2041 struct cmd_list_element *c;
2042
2043 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2044 Set architecture debugging."), _("\\
2045 Show architecture debugging."), _("\\
2046 When non-zero, architecture debugging is enabled."),
2047 NULL,
2048 show_gdbarch_debug,
2049 &setdebuglist, &showdebuglist);
2050 }
2051 EOF
2052
2053 # close things off
2054 exec 1>&2
2055 #../move-if-change new-gdbarch.c gdbarch.c
2056 compare_new gdbarch.c
This page took 0.100639 seconds and 4 git commands to generate.