PR gdb/12623: non-stop crashes inferior, PC adjustment and 1-byte insns
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Iterate over all supported register notes in a core file. For each
655 # supported register note section, the iterator must call CB and pass
656 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
657 # the supported register note sections based on the current register
658 # values. Otherwise it should enumerate all supported register note
659 # sections.
660 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
661
662 # Create core file notes
663 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
664
665 # The elfcore writer hook to use to write Linux prpsinfo notes to core
666 # files. Most Linux architectures use the same prpsinfo32 or
667 # prpsinfo64 layouts, and so won't need to provide this hook, as we
668 # call the Linux generic routines in bfd to write prpsinfo notes by
669 # default.
670 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
671
672 # Find core file memory regions
673 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
674
675 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
676 # core file into buffer READBUF with length LEN. Return the number of bytes read
677 # (zero indicates failure).
678 # failed, otherwise, return the red length of READBUF.
679 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
680
681 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
682 # libraries list from core file into buffer READBUF with length LEN.
683 # Return the number of bytes read (zero indicates failure).
684 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
685
686 # How the core target converts a PTID from a core file to a string.
687 M:char *:core_pid_to_str:ptid_t ptid:ptid
688
689 # BFD target to use when generating a core file.
690 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
691
692 # If the elements of C++ vtables are in-place function descriptors rather
693 # than normal function pointers (which may point to code or a descriptor),
694 # set this to one.
695 v:int:vtable_function_descriptors:::0:0::0
696
697 # Set if the least significant bit of the delta is used instead of the least
698 # significant bit of the pfn for pointers to virtual member functions.
699 v:int:vbit_in_delta:::0:0::0
700
701 # Advance PC to next instruction in order to skip a permanent breakpoint.
702 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
703
704 # The maximum length of an instruction on this architecture in bytes.
705 V:ULONGEST:max_insn_length:::0:0
706
707 # Copy the instruction at FROM to TO, and make any adjustments
708 # necessary to single-step it at that address.
709 #
710 # REGS holds the state the thread's registers will have before
711 # executing the copied instruction; the PC in REGS will refer to FROM,
712 # not the copy at TO. The caller should update it to point at TO later.
713 #
714 # Return a pointer to data of the architecture's choice to be passed
715 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
716 # the instruction's effects have been completely simulated, with the
717 # resulting state written back to REGS.
718 #
719 # For a general explanation of displaced stepping and how GDB uses it,
720 # see the comments in infrun.c.
721 #
722 # The TO area is only guaranteed to have space for
723 # gdbarch_max_insn_length (arch) bytes, so this function must not
724 # write more bytes than that to that area.
725 #
726 # If you do not provide this function, GDB assumes that the
727 # architecture does not support displaced stepping.
728 #
729 # If your architecture doesn't need to adjust instructions before
730 # single-stepping them, consider using simple_displaced_step_copy_insn
731 # here.
732 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
733
734 # Return true if GDB should use hardware single-stepping to execute
735 # the displaced instruction identified by CLOSURE. If false,
736 # GDB will simply restart execution at the displaced instruction
737 # location, and it is up to the target to ensure GDB will receive
738 # control again (e.g. by placing a software breakpoint instruction
739 # into the displaced instruction buffer).
740 #
741 # The default implementation returns false on all targets that
742 # provide a gdbarch_software_single_step routine, and true otherwise.
743 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
744
745 # Fix up the state resulting from successfully single-stepping a
746 # displaced instruction, to give the result we would have gotten from
747 # stepping the instruction in its original location.
748 #
749 # REGS is the register state resulting from single-stepping the
750 # displaced instruction.
751 #
752 # CLOSURE is the result from the matching call to
753 # gdbarch_displaced_step_copy_insn.
754 #
755 # If you provide gdbarch_displaced_step_copy_insn.but not this
756 # function, then GDB assumes that no fixup is needed after
757 # single-stepping the instruction.
758 #
759 # For a general explanation of displaced stepping and how GDB uses it,
760 # see the comments in infrun.c.
761 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
762
763 # Free a closure returned by gdbarch_displaced_step_copy_insn.
764 #
765 # If you provide gdbarch_displaced_step_copy_insn, you must provide
766 # this function as well.
767 #
768 # If your architecture uses closures that don't need to be freed, then
769 # you can use simple_displaced_step_free_closure here.
770 #
771 # For a general explanation of displaced stepping and how GDB uses it,
772 # see the comments in infrun.c.
773 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
774
775 # Return the address of an appropriate place to put displaced
776 # instructions while we step over them. There need only be one such
777 # place, since we're only stepping one thread over a breakpoint at a
778 # time.
779 #
780 # For a general explanation of displaced stepping and how GDB uses it,
781 # see the comments in infrun.c.
782 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
783
784 # Relocate an instruction to execute at a different address. OLDLOC
785 # is the address in the inferior memory where the instruction to
786 # relocate is currently at. On input, TO points to the destination
787 # where we want the instruction to be copied (and possibly adjusted)
788 # to. On output, it points to one past the end of the resulting
789 # instruction(s). The effect of executing the instruction at TO shall
790 # be the same as if executing it at FROM. For example, call
791 # instructions that implicitly push the return address on the stack
792 # should be adjusted to return to the instruction after OLDLOC;
793 # relative branches, and other PC-relative instructions need the
794 # offset adjusted; etc.
795 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
796
797 # Refresh overlay mapped state for section OSECT.
798 F:void:overlay_update:struct obj_section *osect:osect
799
800 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
801
802 # Handle special encoding of static variables in stabs debug info.
803 F:const char *:static_transform_name:const char *name:name
804 # Set if the address in N_SO or N_FUN stabs may be zero.
805 v:int:sofun_address_maybe_missing:::0:0::0
806
807 # Parse the instruction at ADDR storing in the record execution log
808 # the registers REGCACHE and memory ranges that will be affected when
809 # the instruction executes, along with their current values.
810 # Return -1 if something goes wrong, 0 otherwise.
811 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
812
813 # Save process state after a signal.
814 # Return -1 if something goes wrong, 0 otherwise.
815 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
816
817 # Signal translation: translate inferior's signal (target's) number
818 # into GDB's representation. The implementation of this method must
819 # be host independent. IOW, don't rely on symbols of the NAT_FILE
820 # header (the nm-*.h files), the host <signal.h> header, or similar
821 # headers. This is mainly used when cross-debugging core files ---
822 # "Live" targets hide the translation behind the target interface
823 # (target_wait, target_resume, etc.).
824 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
825
826 # Signal translation: translate the GDB's internal signal number into
827 # the inferior's signal (target's) representation. The implementation
828 # of this method must be host independent. IOW, don't rely on symbols
829 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
830 # header, or similar headers.
831 # Return the target signal number if found, or -1 if the GDB internal
832 # signal number is invalid.
833 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
834
835 # Extra signal info inspection.
836 #
837 # Return a type suitable to inspect extra signal information.
838 M:struct type *:get_siginfo_type:void:
839
840 # Record architecture-specific information from the symbol table.
841 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
842
843 # Function for the 'catch syscall' feature.
844
845 # Get architecture-specific system calls information from registers.
846 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
847
848 # SystemTap related fields and functions.
849
850 # A NULL-terminated array of prefixes used to mark an integer constant
851 # on the architecture's assembly.
852 # For example, on x86 integer constants are written as:
853 #
854 # \$10 ;; integer constant 10
855 #
856 # in this case, this prefix would be the character \`\$\'.
857 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
858
859 # A NULL-terminated array of suffixes used to mark an integer constant
860 # on the architecture's assembly.
861 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
862
863 # A NULL-terminated array of prefixes used to mark a register name on
864 # the architecture's assembly.
865 # For example, on x86 the register name is written as:
866 #
867 # \%eax ;; register eax
868 #
869 # in this case, this prefix would be the character \`\%\'.
870 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
871
872 # A NULL-terminated array of suffixes used to mark a register name on
873 # the architecture's assembly.
874 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
875
876 # A NULL-terminated array of prefixes used to mark a register
877 # indirection on the architecture's assembly.
878 # For example, on x86 the register indirection is written as:
879 #
880 # \(\%eax\) ;; indirecting eax
881 #
882 # in this case, this prefix would be the charater \`\(\'.
883 #
884 # Please note that we use the indirection prefix also for register
885 # displacement, e.g., \`4\(\%eax\)\' on x86.
886 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
887
888 # A NULL-terminated array of suffixes used to mark a register
889 # indirection on the architecture's assembly.
890 # For example, on x86 the register indirection is written as:
891 #
892 # \(\%eax\) ;; indirecting eax
893 #
894 # in this case, this prefix would be the charater \`\)\'.
895 #
896 # Please note that we use the indirection suffix also for register
897 # displacement, e.g., \`4\(\%eax\)\' on x86.
898 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
899
900 # Prefix(es) used to name a register using GDB's nomenclature.
901 #
902 # For example, on PPC a register is represented by a number in the assembly
903 # language (e.g., \`10\' is the 10th general-purpose register). However,
904 # inside GDB this same register has an \`r\' appended to its name, so the 10th
905 # register would be represented as \`r10\' internally.
906 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
907
908 # Suffix used to name a register using GDB's nomenclature.
909 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
910
911 # Check if S is a single operand.
912 #
913 # Single operands can be:
914 # \- Literal integers, e.g. \`\$10\' on x86
915 # \- Register access, e.g. \`\%eax\' on x86
916 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
917 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
918 #
919 # This function should check for these patterns on the string
920 # and return 1 if some were found, or zero otherwise. Please try to match
921 # as much info as you can from the string, i.e., if you have to match
922 # something like \`\(\%\', do not match just the \`\(\'.
923 M:int:stap_is_single_operand:const char *s:s
924
925 # Function used to handle a "special case" in the parser.
926 #
927 # A "special case" is considered to be an unknown token, i.e., a token
928 # that the parser does not know how to parse. A good example of special
929 # case would be ARM's register displacement syntax:
930 #
931 # [R0, #4] ;; displacing R0 by 4
932 #
933 # Since the parser assumes that a register displacement is of the form:
934 #
935 # <number> <indirection_prefix> <register_name> <indirection_suffix>
936 #
937 # it means that it will not be able to recognize and parse this odd syntax.
938 # Therefore, we should add a special case function that will handle this token.
939 #
940 # This function should generate the proper expression form of the expression
941 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
942 # and so on). It should also return 1 if the parsing was successful, or zero
943 # if the token was not recognized as a special token (in this case, returning
944 # zero means that the special parser is deferring the parsing to the generic
945 # parser), and should advance the buffer pointer (p->arg).
946 M:int:stap_parse_special_token:struct stap_parse_info *p:p
947
948
949 # True if the list of shared libraries is one and only for all
950 # processes, as opposed to a list of shared libraries per inferior.
951 # This usually means that all processes, although may or may not share
952 # an address space, will see the same set of symbols at the same
953 # addresses.
954 v:int:has_global_solist:::0:0::0
955
956 # On some targets, even though each inferior has its own private
957 # address space, the debug interface takes care of making breakpoints
958 # visible to all address spaces automatically. For such cases,
959 # this property should be set to true.
960 v:int:has_global_breakpoints:::0:0::0
961
962 # True if inferiors share an address space (e.g., uClinux).
963 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
964
965 # True if a fast tracepoint can be set at an address.
966 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
967
968 # Return the "auto" target charset.
969 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
970 # Return the "auto" target wide charset.
971 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
972
973 # If non-empty, this is a file extension that will be opened in place
974 # of the file extension reported by the shared library list.
975 #
976 # This is most useful for toolchains that use a post-linker tool,
977 # where the names of the files run on the target differ in extension
978 # compared to the names of the files GDB should load for debug info.
979 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
980
981 # If true, the target OS has DOS-based file system semantics. That
982 # is, absolute paths include a drive name, and the backslash is
983 # considered a directory separator.
984 v:int:has_dos_based_file_system:::0:0::0
985
986 # Generate bytecodes to collect the return address in a frame.
987 # Since the bytecodes run on the target, possibly with GDB not even
988 # connected, the full unwinding machinery is not available, and
989 # typically this function will issue bytecodes for one or more likely
990 # places that the return address may be found.
991 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
992
993 # Implement the "info proc" command.
994 M:void:info_proc:const char *args, enum info_proc_what what:args, what
995
996 # Implement the "info proc" command for core files. Noe that there
997 # are two "info_proc"-like methods on gdbarch -- one for core files,
998 # one for live targets.
999 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1000
1001 # Iterate over all objfiles in the order that makes the most sense
1002 # for the architecture to make global symbol searches.
1003 #
1004 # CB is a callback function where OBJFILE is the objfile to be searched,
1005 # and CB_DATA a pointer to user-defined data (the same data that is passed
1006 # when calling this gdbarch method). The iteration stops if this function
1007 # returns nonzero.
1008 #
1009 # CB_DATA is a pointer to some user-defined data to be passed to
1010 # the callback.
1011 #
1012 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1013 # inspected when the symbol search was requested.
1014 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1015
1016 # Ravenscar arch-dependent ops.
1017 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1018
1019 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1020 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1021
1022 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1023 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1024
1025 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1026 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1027
1028 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1029 # Return 0 if *READPTR is already at the end of the buffer.
1030 # Return -1 if there is insufficient buffer for a whole entry.
1031 # Return 1 if an entry was read into *TYPEP and *VALP.
1032 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1033
1034 # Find the address range of the current inferior's vsyscall/vDSO, and
1035 # write it to *RANGE. If the vsyscall's length can't be determined, a
1036 # range with zero length is returned. Returns true if the vsyscall is
1037 # found, false otherwise.
1038 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1039 EOF
1040 }
1041
1042 #
1043 # The .log file
1044 #
1045 exec > new-gdbarch.log
1046 function_list | while do_read
1047 do
1048 cat <<EOF
1049 ${class} ${returntype} ${function} ($formal)
1050 EOF
1051 for r in ${read}
1052 do
1053 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1054 done
1055 if class_is_predicate_p && fallback_default_p
1056 then
1057 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1058 kill $$
1059 exit 1
1060 fi
1061 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1062 then
1063 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1064 kill $$
1065 exit 1
1066 fi
1067 if class_is_multiarch_p
1068 then
1069 if class_is_predicate_p ; then :
1070 elif test "x${predefault}" = "x"
1071 then
1072 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1073 kill $$
1074 exit 1
1075 fi
1076 fi
1077 echo ""
1078 done
1079
1080 exec 1>&2
1081 compare_new gdbarch.log
1082
1083
1084 copyright ()
1085 {
1086 cat <<EOF
1087 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1088 /* vi:set ro: */
1089
1090 /* Dynamic architecture support for GDB, the GNU debugger.
1091
1092 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1093
1094 This file is part of GDB.
1095
1096 This program is free software; you can redistribute it and/or modify
1097 it under the terms of the GNU General Public License as published by
1098 the Free Software Foundation; either version 3 of the License, or
1099 (at your option) any later version.
1100
1101 This program is distributed in the hope that it will be useful,
1102 but WITHOUT ANY WARRANTY; without even the implied warranty of
1103 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1104 GNU General Public License for more details.
1105
1106 You should have received a copy of the GNU General Public License
1107 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1108
1109 /* This file was created with the aid of \`\`gdbarch.sh''.
1110
1111 The Bourne shell script \`\`gdbarch.sh'' creates the files
1112 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1113 against the existing \`\`gdbarch.[hc]''. Any differences found
1114 being reported.
1115
1116 If editing this file, please also run gdbarch.sh and merge any
1117 changes into that script. Conversely, when making sweeping changes
1118 to this file, modifying gdbarch.sh and using its output may prove
1119 easier. */
1120
1121 EOF
1122 }
1123
1124 #
1125 # The .h file
1126 #
1127
1128 exec > new-gdbarch.h
1129 copyright
1130 cat <<EOF
1131 #ifndef GDBARCH_H
1132 #define GDBARCH_H
1133
1134 #include "frame.h"
1135
1136 struct floatformat;
1137 struct ui_file;
1138 struct value;
1139 struct objfile;
1140 struct obj_section;
1141 struct minimal_symbol;
1142 struct regcache;
1143 struct reggroup;
1144 struct regset;
1145 struct disassemble_info;
1146 struct target_ops;
1147 struct obstack;
1148 struct bp_target_info;
1149 struct target_desc;
1150 struct displaced_step_closure;
1151 struct core_regset_section;
1152 struct syscall;
1153 struct agent_expr;
1154 struct axs_value;
1155 struct stap_parse_info;
1156 struct ravenscar_arch_ops;
1157 struct elf_internal_linux_prpsinfo;
1158 struct mem_range;
1159
1160 /* The architecture associated with the inferior through the
1161 connection to the target.
1162
1163 The architecture vector provides some information that is really a
1164 property of the inferior, accessed through a particular target:
1165 ptrace operations; the layout of certain RSP packets; the solib_ops
1166 vector; etc. To differentiate architecture accesses to
1167 per-inferior/target properties from
1168 per-thread/per-frame/per-objfile properties, accesses to
1169 per-inferior/target properties should be made through this
1170 gdbarch. */
1171
1172 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1173 extern struct gdbarch *target_gdbarch (void);
1174
1175 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1176 gdbarch method. */
1177
1178 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1179 (struct objfile *objfile, void *cb_data);
1180
1181 typedef void (iterate_over_regset_sections_cb)
1182 (const char *sect_name, int size, const struct regset *regset,
1183 const char *human_name, void *cb_data);
1184 EOF
1185
1186 # function typedef's
1187 printf "\n"
1188 printf "\n"
1189 printf "/* The following are pre-initialized by GDBARCH. */\n"
1190 function_list | while do_read
1191 do
1192 if class_is_info_p
1193 then
1194 printf "\n"
1195 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1196 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1197 fi
1198 done
1199
1200 # function typedef's
1201 printf "\n"
1202 printf "\n"
1203 printf "/* The following are initialized by the target dependent code. */\n"
1204 function_list | while do_read
1205 do
1206 if [ -n "${comment}" ]
1207 then
1208 echo "${comment}" | sed \
1209 -e '2 s,#,/*,' \
1210 -e '3,$ s,#, ,' \
1211 -e '$ s,$, */,'
1212 fi
1213
1214 if class_is_predicate_p
1215 then
1216 printf "\n"
1217 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1218 fi
1219 if class_is_variable_p
1220 then
1221 printf "\n"
1222 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1223 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1224 fi
1225 if class_is_function_p
1226 then
1227 printf "\n"
1228 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1229 then
1230 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1231 elif class_is_multiarch_p
1232 then
1233 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1234 else
1235 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1236 fi
1237 if [ "x${formal}" = "xvoid" ]
1238 then
1239 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1240 else
1241 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1242 fi
1243 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1244 fi
1245 done
1246
1247 # close it off
1248 cat <<EOF
1249
1250 /* Definition for an unknown syscall, used basically in error-cases. */
1251 #define UNKNOWN_SYSCALL (-1)
1252
1253 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1254
1255
1256 /* Mechanism for co-ordinating the selection of a specific
1257 architecture.
1258
1259 GDB targets (*-tdep.c) can register an interest in a specific
1260 architecture. Other GDB components can register a need to maintain
1261 per-architecture data.
1262
1263 The mechanisms below ensures that there is only a loose connection
1264 between the set-architecture command and the various GDB
1265 components. Each component can independently register their need
1266 to maintain architecture specific data with gdbarch.
1267
1268 Pragmatics:
1269
1270 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1271 didn't scale.
1272
1273 The more traditional mega-struct containing architecture specific
1274 data for all the various GDB components was also considered. Since
1275 GDB is built from a variable number of (fairly independent)
1276 components it was determined that the global aproach was not
1277 applicable. */
1278
1279
1280 /* Register a new architectural family with GDB.
1281
1282 Register support for the specified ARCHITECTURE with GDB. When
1283 gdbarch determines that the specified architecture has been
1284 selected, the corresponding INIT function is called.
1285
1286 --
1287
1288 The INIT function takes two parameters: INFO which contains the
1289 information available to gdbarch about the (possibly new)
1290 architecture; ARCHES which is a list of the previously created
1291 \`\`struct gdbarch'' for this architecture.
1292
1293 The INFO parameter is, as far as possible, be pre-initialized with
1294 information obtained from INFO.ABFD or the global defaults.
1295
1296 The ARCHES parameter is a linked list (sorted most recently used)
1297 of all the previously created architures for this architecture
1298 family. The (possibly NULL) ARCHES->gdbarch can used to access
1299 values from the previously selected architecture for this
1300 architecture family.
1301
1302 The INIT function shall return any of: NULL - indicating that it
1303 doesn't recognize the selected architecture; an existing \`\`struct
1304 gdbarch'' from the ARCHES list - indicating that the new
1305 architecture is just a synonym for an earlier architecture (see
1306 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1307 - that describes the selected architecture (see gdbarch_alloc()).
1308
1309 The DUMP_TDEP function shall print out all target specific values.
1310 Care should be taken to ensure that the function works in both the
1311 multi-arch and non- multi-arch cases. */
1312
1313 struct gdbarch_list
1314 {
1315 struct gdbarch *gdbarch;
1316 struct gdbarch_list *next;
1317 };
1318
1319 struct gdbarch_info
1320 {
1321 /* Use default: NULL (ZERO). */
1322 const struct bfd_arch_info *bfd_arch_info;
1323
1324 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1325 enum bfd_endian byte_order;
1326
1327 enum bfd_endian byte_order_for_code;
1328
1329 /* Use default: NULL (ZERO). */
1330 bfd *abfd;
1331
1332 /* Use default: NULL (ZERO). */
1333 struct gdbarch_tdep_info *tdep_info;
1334
1335 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1336 enum gdb_osabi osabi;
1337
1338 /* Use default: NULL (ZERO). */
1339 const struct target_desc *target_desc;
1340 };
1341
1342 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1343 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1344
1345 /* DEPRECATED - use gdbarch_register() */
1346 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1347
1348 extern void gdbarch_register (enum bfd_architecture architecture,
1349 gdbarch_init_ftype *,
1350 gdbarch_dump_tdep_ftype *);
1351
1352
1353 /* Return a freshly allocated, NULL terminated, array of the valid
1354 architecture names. Since architectures are registered during the
1355 _initialize phase this function only returns useful information
1356 once initialization has been completed. */
1357
1358 extern const char **gdbarch_printable_names (void);
1359
1360
1361 /* Helper function. Search the list of ARCHES for a GDBARCH that
1362 matches the information provided by INFO. */
1363
1364 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1365
1366
1367 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1368 basic initialization using values obtained from the INFO and TDEP
1369 parameters. set_gdbarch_*() functions are called to complete the
1370 initialization of the object. */
1371
1372 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1373
1374
1375 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1376 It is assumed that the caller freeds the \`\`struct
1377 gdbarch_tdep''. */
1378
1379 extern void gdbarch_free (struct gdbarch *);
1380
1381
1382 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1383 obstack. The memory is freed when the corresponding architecture
1384 is also freed. */
1385
1386 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1387 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1388 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1389
1390
1391 /* Helper function. Force an update of the current architecture.
1392
1393 The actual architecture selected is determined by INFO, \`\`(gdb) set
1394 architecture'' et.al., the existing architecture and BFD's default
1395 architecture. INFO should be initialized to zero and then selected
1396 fields should be updated.
1397
1398 Returns non-zero if the update succeeds. */
1399
1400 extern int gdbarch_update_p (struct gdbarch_info info);
1401
1402
1403 /* Helper function. Find an architecture matching info.
1404
1405 INFO should be initialized using gdbarch_info_init, relevant fields
1406 set, and then finished using gdbarch_info_fill.
1407
1408 Returns the corresponding architecture, or NULL if no matching
1409 architecture was found. */
1410
1411 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1412
1413
1414 /* Helper function. Set the target gdbarch to "gdbarch". */
1415
1416 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1417
1418
1419 /* Register per-architecture data-pointer.
1420
1421 Reserve space for a per-architecture data-pointer. An identifier
1422 for the reserved data-pointer is returned. That identifer should
1423 be saved in a local static variable.
1424
1425 Memory for the per-architecture data shall be allocated using
1426 gdbarch_obstack_zalloc. That memory will be deleted when the
1427 corresponding architecture object is deleted.
1428
1429 When a previously created architecture is re-selected, the
1430 per-architecture data-pointer for that previous architecture is
1431 restored. INIT() is not re-called.
1432
1433 Multiple registrarants for any architecture are allowed (and
1434 strongly encouraged). */
1435
1436 struct gdbarch_data;
1437
1438 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1439 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1440 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1441 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1442 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1443 struct gdbarch_data *data,
1444 void *pointer);
1445
1446 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1447
1448
1449 /* Set the dynamic target-system-dependent parameters (architecture,
1450 byte-order, ...) using information found in the BFD. */
1451
1452 extern void set_gdbarch_from_file (bfd *);
1453
1454
1455 /* Initialize the current architecture to the "first" one we find on
1456 our list. */
1457
1458 extern void initialize_current_architecture (void);
1459
1460 /* gdbarch trace variable */
1461 extern unsigned int gdbarch_debug;
1462
1463 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1464
1465 #endif
1466 EOF
1467 exec 1>&2
1468 #../move-if-change new-gdbarch.h gdbarch.h
1469 compare_new gdbarch.h
1470
1471
1472 #
1473 # C file
1474 #
1475
1476 exec > new-gdbarch.c
1477 copyright
1478 cat <<EOF
1479
1480 #include "defs.h"
1481 #include "arch-utils.h"
1482
1483 #include "gdbcmd.h"
1484 #include "inferior.h"
1485 #include "symcat.h"
1486
1487 #include "floatformat.h"
1488 #include "reggroups.h"
1489 #include "osabi.h"
1490 #include "gdb_obstack.h"
1491 #include "observer.h"
1492 #include "regcache.h"
1493 #include "objfiles.h"
1494
1495 /* Static function declarations */
1496
1497 static void alloc_gdbarch_data (struct gdbarch *);
1498
1499 /* Non-zero if we want to trace architecture code. */
1500
1501 #ifndef GDBARCH_DEBUG
1502 #define GDBARCH_DEBUG 0
1503 #endif
1504 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1505 static void
1506 show_gdbarch_debug (struct ui_file *file, int from_tty,
1507 struct cmd_list_element *c, const char *value)
1508 {
1509 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1510 }
1511
1512 static const char *
1513 pformat (const struct floatformat **format)
1514 {
1515 if (format == NULL)
1516 return "(null)";
1517 else
1518 /* Just print out one of them - this is only for diagnostics. */
1519 return format[0]->name;
1520 }
1521
1522 static const char *
1523 pstring (const char *string)
1524 {
1525 if (string == NULL)
1526 return "(null)";
1527 return string;
1528 }
1529
1530 /* Helper function to print a list of strings, represented as "const
1531 char *const *". The list is printed comma-separated. */
1532
1533 static char *
1534 pstring_list (const char *const *list)
1535 {
1536 static char ret[100];
1537 const char *const *p;
1538 size_t offset = 0;
1539
1540 if (list == NULL)
1541 return "(null)";
1542
1543 ret[0] = '\0';
1544 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1545 {
1546 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1547 offset += 2 + s;
1548 }
1549
1550 if (offset > 0)
1551 {
1552 gdb_assert (offset - 2 < sizeof (ret));
1553 ret[offset - 2] = '\0';
1554 }
1555
1556 return ret;
1557 }
1558
1559 EOF
1560
1561 # gdbarch open the gdbarch object
1562 printf "\n"
1563 printf "/* Maintain the struct gdbarch object. */\n"
1564 printf "\n"
1565 printf "struct gdbarch\n"
1566 printf "{\n"
1567 printf " /* Has this architecture been fully initialized? */\n"
1568 printf " int initialized_p;\n"
1569 printf "\n"
1570 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1571 printf " struct obstack *obstack;\n"
1572 printf "\n"
1573 printf " /* basic architectural information. */\n"
1574 function_list | while do_read
1575 do
1576 if class_is_info_p
1577 then
1578 printf " ${returntype} ${function};\n"
1579 fi
1580 done
1581 printf "\n"
1582 printf " /* target specific vector. */\n"
1583 printf " struct gdbarch_tdep *tdep;\n"
1584 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1585 printf "\n"
1586 printf " /* per-architecture data-pointers. */\n"
1587 printf " unsigned nr_data;\n"
1588 printf " void **data;\n"
1589 printf "\n"
1590 cat <<EOF
1591 /* Multi-arch values.
1592
1593 When extending this structure you must:
1594
1595 Add the field below.
1596
1597 Declare set/get functions and define the corresponding
1598 macro in gdbarch.h.
1599
1600 gdbarch_alloc(): If zero/NULL is not a suitable default,
1601 initialize the new field.
1602
1603 verify_gdbarch(): Confirm that the target updated the field
1604 correctly.
1605
1606 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1607 field is dumped out
1608
1609 get_gdbarch(): Implement the set/get functions (probably using
1610 the macro's as shortcuts).
1611
1612 */
1613
1614 EOF
1615 function_list | while do_read
1616 do
1617 if class_is_variable_p
1618 then
1619 printf " ${returntype} ${function};\n"
1620 elif class_is_function_p
1621 then
1622 printf " gdbarch_${function}_ftype *${function};\n"
1623 fi
1624 done
1625 printf "};\n"
1626
1627 # Create a new gdbarch struct
1628 cat <<EOF
1629
1630 /* Create a new \`\`struct gdbarch'' based on information provided by
1631 \`\`struct gdbarch_info''. */
1632 EOF
1633 printf "\n"
1634 cat <<EOF
1635 struct gdbarch *
1636 gdbarch_alloc (const struct gdbarch_info *info,
1637 struct gdbarch_tdep *tdep)
1638 {
1639 struct gdbarch *gdbarch;
1640
1641 /* Create an obstack for allocating all the per-architecture memory,
1642 then use that to allocate the architecture vector. */
1643 struct obstack *obstack = XNEW (struct obstack);
1644 obstack_init (obstack);
1645 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1646 memset (gdbarch, 0, sizeof (*gdbarch));
1647 gdbarch->obstack = obstack;
1648
1649 alloc_gdbarch_data (gdbarch);
1650
1651 gdbarch->tdep = tdep;
1652 EOF
1653 printf "\n"
1654 function_list | while do_read
1655 do
1656 if class_is_info_p
1657 then
1658 printf " gdbarch->${function} = info->${function};\n"
1659 fi
1660 done
1661 printf "\n"
1662 printf " /* Force the explicit initialization of these. */\n"
1663 function_list | while do_read
1664 do
1665 if class_is_function_p || class_is_variable_p
1666 then
1667 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1668 then
1669 printf " gdbarch->${function} = ${predefault};\n"
1670 fi
1671 fi
1672 done
1673 cat <<EOF
1674 /* gdbarch_alloc() */
1675
1676 return gdbarch;
1677 }
1678 EOF
1679
1680 # Free a gdbarch struct.
1681 printf "\n"
1682 printf "\n"
1683 cat <<EOF
1684 /* Allocate extra space using the per-architecture obstack. */
1685
1686 void *
1687 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1688 {
1689 void *data = obstack_alloc (arch->obstack, size);
1690
1691 memset (data, 0, size);
1692 return data;
1693 }
1694
1695
1696 /* Free a gdbarch struct. This should never happen in normal
1697 operation --- once you've created a gdbarch, you keep it around.
1698 However, if an architecture's init function encounters an error
1699 building the structure, it may need to clean up a partially
1700 constructed gdbarch. */
1701
1702 void
1703 gdbarch_free (struct gdbarch *arch)
1704 {
1705 struct obstack *obstack;
1706
1707 gdb_assert (arch != NULL);
1708 gdb_assert (!arch->initialized_p);
1709 obstack = arch->obstack;
1710 obstack_free (obstack, 0); /* Includes the ARCH. */
1711 xfree (obstack);
1712 }
1713 EOF
1714
1715 # verify a new architecture
1716 cat <<EOF
1717
1718
1719 /* Ensure that all values in a GDBARCH are reasonable. */
1720
1721 static void
1722 verify_gdbarch (struct gdbarch *gdbarch)
1723 {
1724 struct ui_file *log;
1725 struct cleanup *cleanups;
1726 long length;
1727 char *buf;
1728
1729 log = mem_fileopen ();
1730 cleanups = make_cleanup_ui_file_delete (log);
1731 /* fundamental */
1732 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1733 fprintf_unfiltered (log, "\n\tbyte-order");
1734 if (gdbarch->bfd_arch_info == NULL)
1735 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1736 /* Check those that need to be defined for the given multi-arch level. */
1737 EOF
1738 function_list | while do_read
1739 do
1740 if class_is_function_p || class_is_variable_p
1741 then
1742 if [ "x${invalid_p}" = "x0" ]
1743 then
1744 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1745 elif class_is_predicate_p
1746 then
1747 printf " /* Skip verify of ${function}, has predicate. */\n"
1748 # FIXME: See do_read for potential simplification
1749 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1750 then
1751 printf " if (${invalid_p})\n"
1752 printf " gdbarch->${function} = ${postdefault};\n"
1753 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1754 then
1755 printf " if (gdbarch->${function} == ${predefault})\n"
1756 printf " gdbarch->${function} = ${postdefault};\n"
1757 elif [ -n "${postdefault}" ]
1758 then
1759 printf " if (gdbarch->${function} == 0)\n"
1760 printf " gdbarch->${function} = ${postdefault};\n"
1761 elif [ -n "${invalid_p}" ]
1762 then
1763 printf " if (${invalid_p})\n"
1764 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1765 elif [ -n "${predefault}" ]
1766 then
1767 printf " if (gdbarch->${function} == ${predefault})\n"
1768 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1769 fi
1770 fi
1771 done
1772 cat <<EOF
1773 buf = ui_file_xstrdup (log, &length);
1774 make_cleanup (xfree, buf);
1775 if (length > 0)
1776 internal_error (__FILE__, __LINE__,
1777 _("verify_gdbarch: the following are invalid ...%s"),
1778 buf);
1779 do_cleanups (cleanups);
1780 }
1781 EOF
1782
1783 # dump the structure
1784 printf "\n"
1785 printf "\n"
1786 cat <<EOF
1787 /* Print out the details of the current architecture. */
1788
1789 void
1790 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1791 {
1792 const char *gdb_nm_file = "<not-defined>";
1793
1794 #if defined (GDB_NM_FILE)
1795 gdb_nm_file = GDB_NM_FILE;
1796 #endif
1797 fprintf_unfiltered (file,
1798 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1799 gdb_nm_file);
1800 EOF
1801 function_list | sort -t: -k 3 | while do_read
1802 do
1803 # First the predicate
1804 if class_is_predicate_p
1805 then
1806 printf " fprintf_unfiltered (file,\n"
1807 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1808 printf " gdbarch_${function}_p (gdbarch));\n"
1809 fi
1810 # Print the corresponding value.
1811 if class_is_function_p
1812 then
1813 printf " fprintf_unfiltered (file,\n"
1814 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1815 printf " host_address_to_string (gdbarch->${function}));\n"
1816 else
1817 # It is a variable
1818 case "${print}:${returntype}" in
1819 :CORE_ADDR )
1820 fmt="%s"
1821 print="core_addr_to_string_nz (gdbarch->${function})"
1822 ;;
1823 :* )
1824 fmt="%s"
1825 print="plongest (gdbarch->${function})"
1826 ;;
1827 * )
1828 fmt="%s"
1829 ;;
1830 esac
1831 printf " fprintf_unfiltered (file,\n"
1832 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1833 printf " ${print});\n"
1834 fi
1835 done
1836 cat <<EOF
1837 if (gdbarch->dump_tdep != NULL)
1838 gdbarch->dump_tdep (gdbarch, file);
1839 }
1840 EOF
1841
1842
1843 # GET/SET
1844 printf "\n"
1845 cat <<EOF
1846 struct gdbarch_tdep *
1847 gdbarch_tdep (struct gdbarch *gdbarch)
1848 {
1849 if (gdbarch_debug >= 2)
1850 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1851 return gdbarch->tdep;
1852 }
1853 EOF
1854 printf "\n"
1855 function_list | while do_read
1856 do
1857 if class_is_predicate_p
1858 then
1859 printf "\n"
1860 printf "int\n"
1861 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1862 printf "{\n"
1863 printf " gdb_assert (gdbarch != NULL);\n"
1864 printf " return ${predicate};\n"
1865 printf "}\n"
1866 fi
1867 if class_is_function_p
1868 then
1869 printf "\n"
1870 printf "${returntype}\n"
1871 if [ "x${formal}" = "xvoid" ]
1872 then
1873 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1874 else
1875 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1876 fi
1877 printf "{\n"
1878 printf " gdb_assert (gdbarch != NULL);\n"
1879 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1880 if class_is_predicate_p && test -n "${predefault}"
1881 then
1882 # Allow a call to a function with a predicate.
1883 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1884 fi
1885 printf " if (gdbarch_debug >= 2)\n"
1886 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1887 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1888 then
1889 if class_is_multiarch_p
1890 then
1891 params="gdbarch"
1892 else
1893 params=""
1894 fi
1895 else
1896 if class_is_multiarch_p
1897 then
1898 params="gdbarch, ${actual}"
1899 else
1900 params="${actual}"
1901 fi
1902 fi
1903 if [ "x${returntype}" = "xvoid" ]
1904 then
1905 printf " gdbarch->${function} (${params});\n"
1906 else
1907 printf " return gdbarch->${function} (${params});\n"
1908 fi
1909 printf "}\n"
1910 printf "\n"
1911 printf "void\n"
1912 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1913 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1914 printf "{\n"
1915 printf " gdbarch->${function} = ${function};\n"
1916 printf "}\n"
1917 elif class_is_variable_p
1918 then
1919 printf "\n"
1920 printf "${returntype}\n"
1921 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1922 printf "{\n"
1923 printf " gdb_assert (gdbarch != NULL);\n"
1924 if [ "x${invalid_p}" = "x0" ]
1925 then
1926 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1927 elif [ -n "${invalid_p}" ]
1928 then
1929 printf " /* Check variable is valid. */\n"
1930 printf " gdb_assert (!(${invalid_p}));\n"
1931 elif [ -n "${predefault}" ]
1932 then
1933 printf " /* Check variable changed from pre-default. */\n"
1934 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1935 fi
1936 printf " if (gdbarch_debug >= 2)\n"
1937 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1938 printf " return gdbarch->${function};\n"
1939 printf "}\n"
1940 printf "\n"
1941 printf "void\n"
1942 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1943 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1944 printf "{\n"
1945 printf " gdbarch->${function} = ${function};\n"
1946 printf "}\n"
1947 elif class_is_info_p
1948 then
1949 printf "\n"
1950 printf "${returntype}\n"
1951 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1952 printf "{\n"
1953 printf " gdb_assert (gdbarch != NULL);\n"
1954 printf " if (gdbarch_debug >= 2)\n"
1955 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1956 printf " return gdbarch->${function};\n"
1957 printf "}\n"
1958 fi
1959 done
1960
1961 # All the trailing guff
1962 cat <<EOF
1963
1964
1965 /* Keep a registry of per-architecture data-pointers required by GDB
1966 modules. */
1967
1968 struct gdbarch_data
1969 {
1970 unsigned index;
1971 int init_p;
1972 gdbarch_data_pre_init_ftype *pre_init;
1973 gdbarch_data_post_init_ftype *post_init;
1974 };
1975
1976 struct gdbarch_data_registration
1977 {
1978 struct gdbarch_data *data;
1979 struct gdbarch_data_registration *next;
1980 };
1981
1982 struct gdbarch_data_registry
1983 {
1984 unsigned nr;
1985 struct gdbarch_data_registration *registrations;
1986 };
1987
1988 struct gdbarch_data_registry gdbarch_data_registry =
1989 {
1990 0, NULL,
1991 };
1992
1993 static struct gdbarch_data *
1994 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1995 gdbarch_data_post_init_ftype *post_init)
1996 {
1997 struct gdbarch_data_registration **curr;
1998
1999 /* Append the new registration. */
2000 for (curr = &gdbarch_data_registry.registrations;
2001 (*curr) != NULL;
2002 curr = &(*curr)->next);
2003 (*curr) = XNEW (struct gdbarch_data_registration);
2004 (*curr)->next = NULL;
2005 (*curr)->data = XNEW (struct gdbarch_data);
2006 (*curr)->data->index = gdbarch_data_registry.nr++;
2007 (*curr)->data->pre_init = pre_init;
2008 (*curr)->data->post_init = post_init;
2009 (*curr)->data->init_p = 1;
2010 return (*curr)->data;
2011 }
2012
2013 struct gdbarch_data *
2014 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2015 {
2016 return gdbarch_data_register (pre_init, NULL);
2017 }
2018
2019 struct gdbarch_data *
2020 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2021 {
2022 return gdbarch_data_register (NULL, post_init);
2023 }
2024
2025 /* Create/delete the gdbarch data vector. */
2026
2027 static void
2028 alloc_gdbarch_data (struct gdbarch *gdbarch)
2029 {
2030 gdb_assert (gdbarch->data == NULL);
2031 gdbarch->nr_data = gdbarch_data_registry.nr;
2032 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2033 }
2034
2035 /* Initialize the current value of the specified per-architecture
2036 data-pointer. */
2037
2038 void
2039 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2040 struct gdbarch_data *data,
2041 void *pointer)
2042 {
2043 gdb_assert (data->index < gdbarch->nr_data);
2044 gdb_assert (gdbarch->data[data->index] == NULL);
2045 gdb_assert (data->pre_init == NULL);
2046 gdbarch->data[data->index] = pointer;
2047 }
2048
2049 /* Return the current value of the specified per-architecture
2050 data-pointer. */
2051
2052 void *
2053 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2054 {
2055 gdb_assert (data->index < gdbarch->nr_data);
2056 if (gdbarch->data[data->index] == NULL)
2057 {
2058 /* The data-pointer isn't initialized, call init() to get a
2059 value. */
2060 if (data->pre_init != NULL)
2061 /* Mid architecture creation: pass just the obstack, and not
2062 the entire architecture, as that way it isn't possible for
2063 pre-init code to refer to undefined architecture
2064 fields. */
2065 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2066 else if (gdbarch->initialized_p
2067 && data->post_init != NULL)
2068 /* Post architecture creation: pass the entire architecture
2069 (as all fields are valid), but be careful to also detect
2070 recursive references. */
2071 {
2072 gdb_assert (data->init_p);
2073 data->init_p = 0;
2074 gdbarch->data[data->index] = data->post_init (gdbarch);
2075 data->init_p = 1;
2076 }
2077 else
2078 /* The architecture initialization hasn't completed - punt -
2079 hope that the caller knows what they are doing. Once
2080 deprecated_set_gdbarch_data has been initialized, this can be
2081 changed to an internal error. */
2082 return NULL;
2083 gdb_assert (gdbarch->data[data->index] != NULL);
2084 }
2085 return gdbarch->data[data->index];
2086 }
2087
2088
2089 /* Keep a registry of the architectures known by GDB. */
2090
2091 struct gdbarch_registration
2092 {
2093 enum bfd_architecture bfd_architecture;
2094 gdbarch_init_ftype *init;
2095 gdbarch_dump_tdep_ftype *dump_tdep;
2096 struct gdbarch_list *arches;
2097 struct gdbarch_registration *next;
2098 };
2099
2100 static struct gdbarch_registration *gdbarch_registry = NULL;
2101
2102 static void
2103 append_name (const char ***buf, int *nr, const char *name)
2104 {
2105 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2106 (*buf)[*nr] = name;
2107 *nr += 1;
2108 }
2109
2110 const char **
2111 gdbarch_printable_names (void)
2112 {
2113 /* Accumulate a list of names based on the registed list of
2114 architectures. */
2115 int nr_arches = 0;
2116 const char **arches = NULL;
2117 struct gdbarch_registration *rego;
2118
2119 for (rego = gdbarch_registry;
2120 rego != NULL;
2121 rego = rego->next)
2122 {
2123 const struct bfd_arch_info *ap;
2124 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2125 if (ap == NULL)
2126 internal_error (__FILE__, __LINE__,
2127 _("gdbarch_architecture_names: multi-arch unknown"));
2128 do
2129 {
2130 append_name (&arches, &nr_arches, ap->printable_name);
2131 ap = ap->next;
2132 }
2133 while (ap != NULL);
2134 }
2135 append_name (&arches, &nr_arches, NULL);
2136 return arches;
2137 }
2138
2139
2140 void
2141 gdbarch_register (enum bfd_architecture bfd_architecture,
2142 gdbarch_init_ftype *init,
2143 gdbarch_dump_tdep_ftype *dump_tdep)
2144 {
2145 struct gdbarch_registration **curr;
2146 const struct bfd_arch_info *bfd_arch_info;
2147
2148 /* Check that BFD recognizes this architecture */
2149 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2150 if (bfd_arch_info == NULL)
2151 {
2152 internal_error (__FILE__, __LINE__,
2153 _("gdbarch: Attempt to register "
2154 "unknown architecture (%d)"),
2155 bfd_architecture);
2156 }
2157 /* Check that we haven't seen this architecture before. */
2158 for (curr = &gdbarch_registry;
2159 (*curr) != NULL;
2160 curr = &(*curr)->next)
2161 {
2162 if (bfd_architecture == (*curr)->bfd_architecture)
2163 internal_error (__FILE__, __LINE__,
2164 _("gdbarch: Duplicate registration "
2165 "of architecture (%s)"),
2166 bfd_arch_info->printable_name);
2167 }
2168 /* log it */
2169 if (gdbarch_debug)
2170 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2171 bfd_arch_info->printable_name,
2172 host_address_to_string (init));
2173 /* Append it */
2174 (*curr) = XNEW (struct gdbarch_registration);
2175 (*curr)->bfd_architecture = bfd_architecture;
2176 (*curr)->init = init;
2177 (*curr)->dump_tdep = dump_tdep;
2178 (*curr)->arches = NULL;
2179 (*curr)->next = NULL;
2180 }
2181
2182 void
2183 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2184 gdbarch_init_ftype *init)
2185 {
2186 gdbarch_register (bfd_architecture, init, NULL);
2187 }
2188
2189
2190 /* Look for an architecture using gdbarch_info. */
2191
2192 struct gdbarch_list *
2193 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2194 const struct gdbarch_info *info)
2195 {
2196 for (; arches != NULL; arches = arches->next)
2197 {
2198 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2199 continue;
2200 if (info->byte_order != arches->gdbarch->byte_order)
2201 continue;
2202 if (info->osabi != arches->gdbarch->osabi)
2203 continue;
2204 if (info->target_desc != arches->gdbarch->target_desc)
2205 continue;
2206 return arches;
2207 }
2208 return NULL;
2209 }
2210
2211
2212 /* Find an architecture that matches the specified INFO. Create a new
2213 architecture if needed. Return that new architecture. */
2214
2215 struct gdbarch *
2216 gdbarch_find_by_info (struct gdbarch_info info)
2217 {
2218 struct gdbarch *new_gdbarch;
2219 struct gdbarch_registration *rego;
2220
2221 /* Fill in missing parts of the INFO struct using a number of
2222 sources: "set ..."; INFOabfd supplied; and the global
2223 defaults. */
2224 gdbarch_info_fill (&info);
2225
2226 /* Must have found some sort of architecture. */
2227 gdb_assert (info.bfd_arch_info != NULL);
2228
2229 if (gdbarch_debug)
2230 {
2231 fprintf_unfiltered (gdb_stdlog,
2232 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2233 (info.bfd_arch_info != NULL
2234 ? info.bfd_arch_info->printable_name
2235 : "(null)"));
2236 fprintf_unfiltered (gdb_stdlog,
2237 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2238 info.byte_order,
2239 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2240 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2241 : "default"));
2242 fprintf_unfiltered (gdb_stdlog,
2243 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2244 info.osabi, gdbarch_osabi_name (info.osabi));
2245 fprintf_unfiltered (gdb_stdlog,
2246 "gdbarch_find_by_info: info.abfd %s\n",
2247 host_address_to_string (info.abfd));
2248 fprintf_unfiltered (gdb_stdlog,
2249 "gdbarch_find_by_info: info.tdep_info %s\n",
2250 host_address_to_string (info.tdep_info));
2251 }
2252
2253 /* Find the tdep code that knows about this architecture. */
2254 for (rego = gdbarch_registry;
2255 rego != NULL;
2256 rego = rego->next)
2257 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2258 break;
2259 if (rego == NULL)
2260 {
2261 if (gdbarch_debug)
2262 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2263 "No matching architecture\n");
2264 return 0;
2265 }
2266
2267 /* Ask the tdep code for an architecture that matches "info". */
2268 new_gdbarch = rego->init (info, rego->arches);
2269
2270 /* Did the tdep code like it? No. Reject the change and revert to
2271 the old architecture. */
2272 if (new_gdbarch == NULL)
2273 {
2274 if (gdbarch_debug)
2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2276 "Target rejected architecture\n");
2277 return NULL;
2278 }
2279
2280 /* Is this a pre-existing architecture (as determined by already
2281 being initialized)? Move it to the front of the architecture
2282 list (keeping the list sorted Most Recently Used). */
2283 if (new_gdbarch->initialized_p)
2284 {
2285 struct gdbarch_list **list;
2286 struct gdbarch_list *this;
2287 if (gdbarch_debug)
2288 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2289 "Previous architecture %s (%s) selected\n",
2290 host_address_to_string (new_gdbarch),
2291 new_gdbarch->bfd_arch_info->printable_name);
2292 /* Find the existing arch in the list. */
2293 for (list = &rego->arches;
2294 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2295 list = &(*list)->next);
2296 /* It had better be in the list of architectures. */
2297 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2298 /* Unlink THIS. */
2299 this = (*list);
2300 (*list) = this->next;
2301 /* Insert THIS at the front. */
2302 this->next = rego->arches;
2303 rego->arches = this;
2304 /* Return it. */
2305 return new_gdbarch;
2306 }
2307
2308 /* It's a new architecture. */
2309 if (gdbarch_debug)
2310 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2311 "New architecture %s (%s) selected\n",
2312 host_address_to_string (new_gdbarch),
2313 new_gdbarch->bfd_arch_info->printable_name);
2314
2315 /* Insert the new architecture into the front of the architecture
2316 list (keep the list sorted Most Recently Used). */
2317 {
2318 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2319 this->next = rego->arches;
2320 this->gdbarch = new_gdbarch;
2321 rego->arches = this;
2322 }
2323
2324 /* Check that the newly installed architecture is valid. Plug in
2325 any post init values. */
2326 new_gdbarch->dump_tdep = rego->dump_tdep;
2327 verify_gdbarch (new_gdbarch);
2328 new_gdbarch->initialized_p = 1;
2329
2330 if (gdbarch_debug)
2331 gdbarch_dump (new_gdbarch, gdb_stdlog);
2332
2333 return new_gdbarch;
2334 }
2335
2336 /* Make the specified architecture current. */
2337
2338 void
2339 set_target_gdbarch (struct gdbarch *new_gdbarch)
2340 {
2341 gdb_assert (new_gdbarch != NULL);
2342 gdb_assert (new_gdbarch->initialized_p);
2343 current_inferior ()->gdbarch = new_gdbarch;
2344 observer_notify_architecture_changed (new_gdbarch);
2345 registers_changed ();
2346 }
2347
2348 /* Return the current inferior's arch. */
2349
2350 struct gdbarch *
2351 target_gdbarch (void)
2352 {
2353 return current_inferior ()->gdbarch;
2354 }
2355
2356 extern void _initialize_gdbarch (void);
2357
2358 void
2359 _initialize_gdbarch (void)
2360 {
2361 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2362 Set architecture debugging."), _("\\
2363 Show architecture debugging."), _("\\
2364 When non-zero, architecture debugging is enabled."),
2365 NULL,
2366 show_gdbarch_debug,
2367 &setdebuglist, &showdebuglist);
2368 }
2369 EOF
2370
2371 # close things off
2372 exec 1>&2
2373 #../move-if-change new-gdbarch.c gdbarch.c
2374 compare_new gdbarch.c
This page took 0.136893 seconds and 4 git commands to generate.