*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
474 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
475 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
476 # by REGISTER_TYPE.
477 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
481 # by REGISTER_TYPE.
482 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
486 # by REGISTER_TYPE.
487 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
491 # by REGISTER_TYPE.
492 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
496 # by REGISTER_TYPE.
497 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
498 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
499 #
500 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
501 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
502 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
503 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 # MAP a GDB RAW register number onto a simulator register number. See
505 # also include/...-sim.h.
506 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
507 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
508 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
509 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
510 # setjmp/longjmp support.
511 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
512 #
513 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
514 # much better but at least they are vaguely consistent). The headers
515 # and body contain convoluted #if/#else sequences for determine how
516 # things should be compiled. Instead of trying to mimic that
517 # behaviour here (and hence entrench it further) gdbarch simply
518 # reqires that these methods be set up from the word go. This also
519 # avoids any potential problems with moving beyond multi-arch partial.
520 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
522 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
523 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
524 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
525 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
526 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
534 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
535 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
536 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
537 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
538 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
539 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
540 #
541 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
542 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
543 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
544 #
545 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
546 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
547 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
548 #
549 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
550 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
551 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
552 #
553 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
554 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
555 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
556 #
557 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
558 # Replaced by PUSH_DUMMY_CALL
559 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
560 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
561 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
562 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
563 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
564 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
565 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
566 #
567 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
568 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
569 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
570 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
571 #
572 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
573 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
574 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
575 #
576 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
577 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
578 #
579 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
580 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
581 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
582 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
583 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
584 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
585 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
586 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
587 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
588 #
589 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
590 #
591 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
592 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
593 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
594 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
595 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
596 # note, per UNWIND_PC's doco, that while the two have similar
597 # interfaces they have very different underlying implementations.
598 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
599 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
600 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
601 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
602 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
603 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
604 #
605 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
606 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
607 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
608 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
609 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
610 # FIXME: kettenis/2003-03-08: This should be replaced by a function
611 # parametrized with (at least) the regcache.
612 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
613 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
614 v:2:PARM_BOUNDARY:int:parm_boundary
615 #
616 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
617 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
618 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
619 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
620 # On some machines there are bits in addresses which are not really
621 # part of the address, but are used by the kernel, the hardware, etc.
622 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
623 # we get a "real" address such as one would find in a symbol table.
624 # This is used only for addresses of instructions, and even then I'm
625 # not sure it's used in all contexts. It exists to deal with there
626 # being a few stray bits in the PC which would mislead us, not as some
627 # sort of generic thing to handle alignment or segmentation (it's
628 # possible it should be in TARGET_READ_PC instead).
629 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
630 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
631 # ADDR_BITS_REMOVE.
632 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
633 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
634 # the target needs software single step. An ISA method to implement it.
635 #
636 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
637 # using the breakpoint system instead of blatting memory directly (as with rs6000).
638 #
639 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
640 # single step. If not, then implement single step using breakpoints.
641 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
642 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
643 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
644
645
646 # For SVR4 shared libraries, each call goes through a small piece of
647 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
648 # to nonzero if we are currently stopped in one of these.
649 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
650
651 # Some systems also have trampoline code for returning from shared libs.
652 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
653
654 # Sigtramp is a routine that the kernel calls (which then calls the
655 # signal handler). On most machines it is a library routine that is
656 # linked into the executable.
657 #
658 # This macro, given a program counter value and the name of the
659 # function in which that PC resides (which can be null if the name is
660 # not known), returns nonzero if the PC and name show that we are in
661 # sigtramp.
662 #
663 # On most machines just see if the name is sigtramp (and if we have
664 # no name, assume we are not in sigtramp).
665 #
666 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
667 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
668 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
669 # own local NAME lookup.
670 #
671 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
672 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
673 # does not.
674 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
675 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
676 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
677 # A target might have problems with watchpoints as soon as the stack
678 # frame of the current function has been destroyed. This mostly happens
679 # as the first action in a funtion's epilogue. in_function_epilogue_p()
680 # is defined to return a non-zero value if either the given addr is one
681 # instruction after the stack destroying instruction up to the trailing
682 # return instruction or if we can figure out that the stack frame has
683 # already been invalidated regardless of the value of addr. Targets
684 # which don't suffer from that problem could just let this functionality
685 # untouched.
686 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
687 # Given a vector of command-line arguments, return a newly allocated
688 # string which, when passed to the create_inferior function, will be
689 # parsed (on Unix systems, by the shell) to yield the same vector.
690 # This function should call error() if the argument vector is not
691 # representable for this target or if this target does not support
692 # command-line arguments.
693 # ARGC is the number of elements in the vector.
694 # ARGV is an array of strings, one per argument.
695 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
696 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
697 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
698 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
699 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
700 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
701 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
702 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
703 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
704 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
705 # Is a register in a group
706 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
707 EOF
708 }
709
710 #
711 # The .log file
712 #
713 exec > new-gdbarch.log
714 function_list | while do_read
715 do
716 cat <<EOF
717 ${class} ${macro}(${actual})
718 ${returntype} ${function} ($formal)${attrib}
719 EOF
720 for r in ${read}
721 do
722 eval echo \"\ \ \ \ ${r}=\${${r}}\"
723 done
724 if class_is_predicate_p && fallback_default_p
725 then
726 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
727 kill $$
728 exit 1
729 fi
730 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
731 then
732 echo "Error: postdefault is useless when invalid_p=0" 1>&2
733 kill $$
734 exit 1
735 fi
736 if class_is_multiarch_p
737 then
738 if class_is_predicate_p ; then :
739 elif test "x${predefault}" = "x"
740 then
741 echo "Error: pure multi-arch function must have a predefault" 1>&2
742 kill $$
743 exit 1
744 fi
745 fi
746 echo ""
747 done
748
749 exec 1>&2
750 compare_new gdbarch.log
751
752
753 copyright ()
754 {
755 cat <<EOF
756 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
757
758 /* Dynamic architecture support for GDB, the GNU debugger.
759 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
760
761 This file is part of GDB.
762
763 This program is free software; you can redistribute it and/or modify
764 it under the terms of the GNU General Public License as published by
765 the Free Software Foundation; either version 2 of the License, or
766 (at your option) any later version.
767
768 This program is distributed in the hope that it will be useful,
769 but WITHOUT ANY WARRANTY; without even the implied warranty of
770 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
771 GNU General Public License for more details.
772
773 You should have received a copy of the GNU General Public License
774 along with this program; if not, write to the Free Software
775 Foundation, Inc., 59 Temple Place - Suite 330,
776 Boston, MA 02111-1307, USA. */
777
778 /* This file was created with the aid of \`\`gdbarch.sh''.
779
780 The Bourne shell script \`\`gdbarch.sh'' creates the files
781 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
782 against the existing \`\`gdbarch.[hc]''. Any differences found
783 being reported.
784
785 If editing this file, please also run gdbarch.sh and merge any
786 changes into that script. Conversely, when making sweeping changes
787 to this file, modifying gdbarch.sh and using its output may prove
788 easier. */
789
790 EOF
791 }
792
793 #
794 # The .h file
795 #
796
797 exec > new-gdbarch.h
798 copyright
799 cat <<EOF
800 #ifndef GDBARCH_H
801 #define GDBARCH_H
802
803 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
804 #if !GDB_MULTI_ARCH
805 /* Pull in function declarations refered to, indirectly, via macros. */
806 #include "inferior.h" /* For unsigned_address_to_pointer(). */
807 #endif
808
809 struct frame_info;
810 struct value;
811 struct objfile;
812 struct minimal_symbol;
813 struct regcache;
814 struct reggroup;
815
816 extern struct gdbarch *current_gdbarch;
817
818
819 /* If any of the following are defined, the target wasn't correctly
820 converted. */
821
822 #if GDB_MULTI_ARCH
823 #if defined (EXTRA_FRAME_INFO)
824 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
825 #endif
826 #endif
827
828 #if GDB_MULTI_ARCH
829 #if defined (FRAME_FIND_SAVED_REGS)
830 #error "FRAME_FIND_SAVED_REGS: replaced by DEPRECATED_FRAME_INIT_SAVED_REGS"
831 #endif
832 #endif
833
834 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
835 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
836 #endif
837 EOF
838
839 # function typedef's
840 printf "\n"
841 printf "\n"
842 printf "/* The following are pre-initialized by GDBARCH. */\n"
843 function_list | while do_read
844 do
845 if class_is_info_p
846 then
847 printf "\n"
848 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
849 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
850 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
851 printf "#error \"Non multi-arch definition of ${macro}\"\n"
852 printf "#endif\n"
853 printf "#if GDB_MULTI_ARCH\n"
854 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
855 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
856 printf "#endif\n"
857 printf "#endif\n"
858 fi
859 done
860
861 # function typedef's
862 printf "\n"
863 printf "\n"
864 printf "/* The following are initialized by the target dependent code. */\n"
865 function_list | while do_read
866 do
867 if [ -n "${comment}" ]
868 then
869 echo "${comment}" | sed \
870 -e '2 s,#,/*,' \
871 -e '3,$ s,#, ,' \
872 -e '$ s,$, */,'
873 fi
874 if class_is_multiarch_p
875 then
876 if class_is_predicate_p
877 then
878 printf "\n"
879 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
880 fi
881 else
882 if class_is_predicate_p
883 then
884 printf "\n"
885 printf "#if defined (${macro})\n"
886 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
887 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
888 printf "#if !defined (${macro}_P)\n"
889 printf "#define ${macro}_P() (1)\n"
890 printf "#endif\n"
891 printf "#endif\n"
892 printf "\n"
893 printf "/* Default predicate for non- multi-arch targets. */\n"
894 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
895 printf "#define ${macro}_P() (0)\n"
896 printf "#endif\n"
897 printf "\n"
898 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
899 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
900 printf "#error \"Non multi-arch definition of ${macro}\"\n"
901 printf "#endif\n"
902 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
903 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
904 printf "#endif\n"
905 fi
906 fi
907 if class_is_variable_p
908 then
909 if fallback_default_p || class_is_predicate_p
910 then
911 printf "\n"
912 printf "/* Default (value) for non- multi-arch platforms. */\n"
913 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
914 echo "#define ${macro} (${fallbackdefault})" \
915 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
916 printf "#endif\n"
917 fi
918 printf "\n"
919 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
920 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
921 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
922 printf "#error \"Non multi-arch definition of ${macro}\"\n"
923 printf "#endif\n"
924 if test "${level}" = ""
925 then
926 printf "#if !defined (${macro})\n"
927 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 printf "#endif\n"
929 else
930 printf "#if GDB_MULTI_ARCH\n"
931 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
932 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
933 printf "#endif\n"
934 printf "#endif\n"
935 fi
936 fi
937 if class_is_function_p
938 then
939 if class_is_multiarch_p ; then :
940 elif fallback_default_p || class_is_predicate_p
941 then
942 printf "\n"
943 printf "/* Default (function) for non- multi-arch platforms. */\n"
944 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
945 if [ "x${fallbackdefault}" = "x0" ]
946 then
947 if [ "x${actual}" = "x-" ]
948 then
949 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
950 else
951 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
952 fi
953 else
954 # FIXME: Should be passing current_gdbarch through!
955 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
956 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
957 fi
958 printf "#endif\n"
959 fi
960 printf "\n"
961 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
962 then
963 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
964 elif class_is_multiarch_p
965 then
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
967 else
968 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
969 fi
970 if [ "x${formal}" = "xvoid" ]
971 then
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
973 else
974 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
975 fi
976 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
977 if class_is_multiarch_p ; then :
978 else
979 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
980 printf "#error \"Non multi-arch definition of ${macro}\"\n"
981 printf "#endif\n"
982 printf "#if GDB_MULTI_ARCH\n"
983 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
984 if [ "x${actual}" = "x" ]
985 then
986 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
987 elif [ "x${actual}" = "x-" ]
988 then
989 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
990 else
991 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
992 fi
993 printf "#endif\n"
994 printf "#endif\n"
995 fi
996 fi
997 done
998
999 # close it off
1000 cat <<EOF
1001
1002 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1003
1004
1005 /* Mechanism for co-ordinating the selection of a specific
1006 architecture.
1007
1008 GDB targets (*-tdep.c) can register an interest in a specific
1009 architecture. Other GDB components can register a need to maintain
1010 per-architecture data.
1011
1012 The mechanisms below ensures that there is only a loose connection
1013 between the set-architecture command and the various GDB
1014 components. Each component can independently register their need
1015 to maintain architecture specific data with gdbarch.
1016
1017 Pragmatics:
1018
1019 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1020 didn't scale.
1021
1022 The more traditional mega-struct containing architecture specific
1023 data for all the various GDB components was also considered. Since
1024 GDB is built from a variable number of (fairly independent)
1025 components it was determined that the global aproach was not
1026 applicable. */
1027
1028
1029 /* Register a new architectural family with GDB.
1030
1031 Register support for the specified ARCHITECTURE with GDB. When
1032 gdbarch determines that the specified architecture has been
1033 selected, the corresponding INIT function is called.
1034
1035 --
1036
1037 The INIT function takes two parameters: INFO which contains the
1038 information available to gdbarch about the (possibly new)
1039 architecture; ARCHES which is a list of the previously created
1040 \`\`struct gdbarch'' for this architecture.
1041
1042 The INFO parameter is, as far as possible, be pre-initialized with
1043 information obtained from INFO.ABFD or the previously selected
1044 architecture.
1045
1046 The ARCHES parameter is a linked list (sorted most recently used)
1047 of all the previously created architures for this architecture
1048 family. The (possibly NULL) ARCHES->gdbarch can used to access
1049 values from the previously selected architecture for this
1050 architecture family. The global \`\`current_gdbarch'' shall not be
1051 used.
1052
1053 The INIT function shall return any of: NULL - indicating that it
1054 doesn't recognize the selected architecture; an existing \`\`struct
1055 gdbarch'' from the ARCHES list - indicating that the new
1056 architecture is just a synonym for an earlier architecture (see
1057 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1058 - that describes the selected architecture (see gdbarch_alloc()).
1059
1060 The DUMP_TDEP function shall print out all target specific values.
1061 Care should be taken to ensure that the function works in both the
1062 multi-arch and non- multi-arch cases. */
1063
1064 struct gdbarch_list
1065 {
1066 struct gdbarch *gdbarch;
1067 struct gdbarch_list *next;
1068 };
1069
1070 struct gdbarch_info
1071 {
1072 /* Use default: NULL (ZERO). */
1073 const struct bfd_arch_info *bfd_arch_info;
1074
1075 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1076 int byte_order;
1077
1078 /* Use default: NULL (ZERO). */
1079 bfd *abfd;
1080
1081 /* Use default: NULL (ZERO). */
1082 struct gdbarch_tdep_info *tdep_info;
1083
1084 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1085 enum gdb_osabi osabi;
1086 };
1087
1088 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1089 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1090
1091 /* DEPRECATED - use gdbarch_register() */
1092 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1093
1094 extern void gdbarch_register (enum bfd_architecture architecture,
1095 gdbarch_init_ftype *,
1096 gdbarch_dump_tdep_ftype *);
1097
1098
1099 /* Return a freshly allocated, NULL terminated, array of the valid
1100 architecture names. Since architectures are registered during the
1101 _initialize phase this function only returns useful information
1102 once initialization has been completed. */
1103
1104 extern const char **gdbarch_printable_names (void);
1105
1106
1107 /* Helper function. Search the list of ARCHES for a GDBARCH that
1108 matches the information provided by INFO. */
1109
1110 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1111
1112
1113 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1114 basic initialization using values obtained from the INFO andTDEP
1115 parameters. set_gdbarch_*() functions are called to complete the
1116 initialization of the object. */
1117
1118 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1119
1120
1121 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1122 It is assumed that the caller freeds the \`\`struct
1123 gdbarch_tdep''. */
1124
1125 extern void gdbarch_free (struct gdbarch *);
1126
1127
1128 /* Helper function. Force an update of the current architecture.
1129
1130 The actual architecture selected is determined by INFO, \`\`(gdb) set
1131 architecture'' et.al., the existing architecture and BFD's default
1132 architecture. INFO should be initialized to zero and then selected
1133 fields should be updated.
1134
1135 Returns non-zero if the update succeeds */
1136
1137 extern int gdbarch_update_p (struct gdbarch_info info);
1138
1139
1140
1141 /* Register per-architecture data-pointer.
1142
1143 Reserve space for a per-architecture data-pointer. An identifier
1144 for the reserved data-pointer is returned. That identifer should
1145 be saved in a local static variable.
1146
1147 The per-architecture data-pointer is either initialized explicitly
1148 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1149 gdbarch_data()). FREE() is called to delete either an existing
1150 data-pointer overridden by set_gdbarch_data() or when the
1151 architecture object is being deleted.
1152
1153 When a previously created architecture is re-selected, the
1154 per-architecture data-pointer for that previous architecture is
1155 restored. INIT() is not re-called.
1156
1157 Multiple registrarants for any architecture are allowed (and
1158 strongly encouraged). */
1159
1160 struct gdbarch_data;
1161
1162 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1163 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1164 void *pointer);
1165 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1166 gdbarch_data_free_ftype *free);
1167 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1168 struct gdbarch_data *data,
1169 void *pointer);
1170
1171 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1172
1173
1174 /* Register per-architecture memory region.
1175
1176 Provide a memory-region swap mechanism. Per-architecture memory
1177 region are created. These memory regions are swapped whenever the
1178 architecture is changed. For a new architecture, the memory region
1179 is initialized with zero (0) and the INIT function is called.
1180
1181 Memory regions are swapped / initialized in the order that they are
1182 registered. NULL DATA and/or INIT values can be specified.
1183
1184 New code should use register_gdbarch_data(). */
1185
1186 typedef void (gdbarch_swap_ftype) (void);
1187 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1188 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1189
1190
1191
1192 /* The target-system-dependent byte order is dynamic */
1193
1194 extern int target_byte_order;
1195 #ifndef TARGET_BYTE_ORDER
1196 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1197 #endif
1198
1199 extern int target_byte_order_auto;
1200 #ifndef TARGET_BYTE_ORDER_AUTO
1201 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1202 #endif
1203
1204
1205
1206 /* The target-system-dependent BFD architecture is dynamic */
1207
1208 extern int target_architecture_auto;
1209 #ifndef TARGET_ARCHITECTURE_AUTO
1210 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1211 #endif
1212
1213 extern const struct bfd_arch_info *target_architecture;
1214 #ifndef TARGET_ARCHITECTURE
1215 #define TARGET_ARCHITECTURE (target_architecture + 0)
1216 #endif
1217
1218
1219 /* The target-system-dependent disassembler is semi-dynamic */
1220
1221 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1222 unsigned int len, disassemble_info *info);
1223
1224 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1225 disassemble_info *info);
1226
1227 extern void dis_asm_print_address (bfd_vma addr,
1228 disassemble_info *info);
1229
1230 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1231 extern disassemble_info tm_print_insn_info;
1232 #ifndef TARGET_PRINT_INSN_INFO
1233 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1234 #endif
1235
1236
1237
1238 /* Set the dynamic target-system-dependent parameters (architecture,
1239 byte-order, ...) using information found in the BFD */
1240
1241 extern void set_gdbarch_from_file (bfd *);
1242
1243
1244 /* Initialize the current architecture to the "first" one we find on
1245 our list. */
1246
1247 extern void initialize_current_architecture (void);
1248
1249 /* For non-multiarched targets, do any initialization of the default
1250 gdbarch object necessary after the _initialize_MODULE functions
1251 have run. */
1252 extern void initialize_non_multiarch (void);
1253
1254 /* gdbarch trace variable */
1255 extern int gdbarch_debug;
1256
1257 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1258
1259 #endif
1260 EOF
1261 exec 1>&2
1262 #../move-if-change new-gdbarch.h gdbarch.h
1263 compare_new gdbarch.h
1264
1265
1266 #
1267 # C file
1268 #
1269
1270 exec > new-gdbarch.c
1271 copyright
1272 cat <<EOF
1273
1274 #include "defs.h"
1275 #include "arch-utils.h"
1276
1277 #if GDB_MULTI_ARCH
1278 #include "gdbcmd.h"
1279 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1280 #else
1281 /* Just include everything in sight so that the every old definition
1282 of macro is visible. */
1283 #include "gdb_string.h"
1284 #include <ctype.h>
1285 #include "symtab.h"
1286 #include "frame.h"
1287 #include "inferior.h"
1288 #include "breakpoint.h"
1289 #include "gdb_wait.h"
1290 #include "gdbcore.h"
1291 #include "gdbcmd.h"
1292 #include "target.h"
1293 #include "gdbthread.h"
1294 #include "annotate.h"
1295 #include "symfile.h" /* for overlay functions */
1296 #include "value.h" /* For old tm.h/nm.h macros. */
1297 #endif
1298 #include "symcat.h"
1299
1300 #include "floatformat.h"
1301
1302 #include "gdb_assert.h"
1303 #include "gdb_string.h"
1304 #include "gdb-events.h"
1305 #include "reggroups.h"
1306 #include "osabi.h"
1307
1308 /* Static function declarations */
1309
1310 static void verify_gdbarch (struct gdbarch *gdbarch);
1311 static void alloc_gdbarch_data (struct gdbarch *);
1312 static void free_gdbarch_data (struct gdbarch *);
1313 static void init_gdbarch_swap (struct gdbarch *);
1314 static void clear_gdbarch_swap (struct gdbarch *);
1315 static void swapout_gdbarch_swap (struct gdbarch *);
1316 static void swapin_gdbarch_swap (struct gdbarch *);
1317
1318 /* Non-zero if we want to trace architecture code. */
1319
1320 #ifndef GDBARCH_DEBUG
1321 #define GDBARCH_DEBUG 0
1322 #endif
1323 int gdbarch_debug = GDBARCH_DEBUG;
1324
1325 EOF
1326
1327 # gdbarch open the gdbarch object
1328 printf "\n"
1329 printf "/* Maintain the struct gdbarch object */\n"
1330 printf "\n"
1331 printf "struct gdbarch\n"
1332 printf "{\n"
1333 printf " /* Has this architecture been fully initialized? */\n"
1334 printf " int initialized_p;\n"
1335 printf " /* basic architectural information */\n"
1336 function_list | while do_read
1337 do
1338 if class_is_info_p
1339 then
1340 printf " ${returntype} ${function};\n"
1341 fi
1342 done
1343 printf "\n"
1344 printf " /* target specific vector. */\n"
1345 printf " struct gdbarch_tdep *tdep;\n"
1346 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1347 printf "\n"
1348 printf " /* per-architecture data-pointers */\n"
1349 printf " unsigned nr_data;\n"
1350 printf " void **data;\n"
1351 printf "\n"
1352 printf " /* per-architecture swap-regions */\n"
1353 printf " struct gdbarch_swap *swap;\n"
1354 printf "\n"
1355 cat <<EOF
1356 /* Multi-arch values.
1357
1358 When extending this structure you must:
1359
1360 Add the field below.
1361
1362 Declare set/get functions and define the corresponding
1363 macro in gdbarch.h.
1364
1365 gdbarch_alloc(): If zero/NULL is not a suitable default,
1366 initialize the new field.
1367
1368 verify_gdbarch(): Confirm that the target updated the field
1369 correctly.
1370
1371 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1372 field is dumped out
1373
1374 \`\`startup_gdbarch()'': Append an initial value to the static
1375 variable (base values on the host's c-type system).
1376
1377 get_gdbarch(): Implement the set/get functions (probably using
1378 the macro's as shortcuts).
1379
1380 */
1381
1382 EOF
1383 function_list | while do_read
1384 do
1385 if class_is_variable_p
1386 then
1387 printf " ${returntype} ${function};\n"
1388 elif class_is_function_p
1389 then
1390 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1391 fi
1392 done
1393 printf "};\n"
1394
1395 # A pre-initialized vector
1396 printf "\n"
1397 printf "\n"
1398 cat <<EOF
1399 /* The default architecture uses host values (for want of a better
1400 choice). */
1401 EOF
1402 printf "\n"
1403 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1404 printf "\n"
1405 printf "struct gdbarch startup_gdbarch =\n"
1406 printf "{\n"
1407 printf " 1, /* Always initialized. */\n"
1408 printf " /* basic architecture information */\n"
1409 function_list | while do_read
1410 do
1411 if class_is_info_p
1412 then
1413 printf " ${staticdefault},\n"
1414 fi
1415 done
1416 cat <<EOF
1417 /* target specific vector and its dump routine */
1418 NULL, NULL,
1419 /*per-architecture data-pointers and swap regions */
1420 0, NULL, NULL,
1421 /* Multi-arch values */
1422 EOF
1423 function_list | while do_read
1424 do
1425 if class_is_function_p || class_is_variable_p
1426 then
1427 printf " ${staticdefault},\n"
1428 fi
1429 done
1430 cat <<EOF
1431 /* startup_gdbarch() */
1432 };
1433
1434 struct gdbarch *current_gdbarch = &startup_gdbarch;
1435
1436 /* Do any initialization needed for a non-multiarch configuration
1437 after the _initialize_MODULE functions have been run. */
1438 void
1439 initialize_non_multiarch (void)
1440 {
1441 alloc_gdbarch_data (&startup_gdbarch);
1442 /* Ensure that all swap areas are zeroed so that they again think
1443 they are starting from scratch. */
1444 clear_gdbarch_swap (&startup_gdbarch);
1445 init_gdbarch_swap (&startup_gdbarch);
1446 }
1447 EOF
1448
1449 # Create a new gdbarch struct
1450 printf "\n"
1451 printf "\n"
1452 cat <<EOF
1453 /* Create a new \`\`struct gdbarch'' based on information provided by
1454 \`\`struct gdbarch_info''. */
1455 EOF
1456 printf "\n"
1457 cat <<EOF
1458 struct gdbarch *
1459 gdbarch_alloc (const struct gdbarch_info *info,
1460 struct gdbarch_tdep *tdep)
1461 {
1462 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1463 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1464 the current local architecture and not the previous global
1465 architecture. This ensures that the new architectures initial
1466 values are not influenced by the previous architecture. Once
1467 everything is parameterised with gdbarch, this will go away. */
1468 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1469 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1470
1471 alloc_gdbarch_data (current_gdbarch);
1472
1473 current_gdbarch->tdep = tdep;
1474 EOF
1475 printf "\n"
1476 function_list | while do_read
1477 do
1478 if class_is_info_p
1479 then
1480 printf " current_gdbarch->${function} = info->${function};\n"
1481 fi
1482 done
1483 printf "\n"
1484 printf " /* Force the explicit initialization of these. */\n"
1485 function_list | while do_read
1486 do
1487 if class_is_function_p || class_is_variable_p
1488 then
1489 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1490 then
1491 printf " current_gdbarch->${function} = ${predefault};\n"
1492 fi
1493 fi
1494 done
1495 cat <<EOF
1496 /* gdbarch_alloc() */
1497
1498 return current_gdbarch;
1499 }
1500 EOF
1501
1502 # Free a gdbarch struct.
1503 printf "\n"
1504 printf "\n"
1505 cat <<EOF
1506 /* Free a gdbarch struct. This should never happen in normal
1507 operation --- once you've created a gdbarch, you keep it around.
1508 However, if an architecture's init function encounters an error
1509 building the structure, it may need to clean up a partially
1510 constructed gdbarch. */
1511
1512 void
1513 gdbarch_free (struct gdbarch *arch)
1514 {
1515 gdb_assert (arch != NULL);
1516 free_gdbarch_data (arch);
1517 xfree (arch);
1518 }
1519 EOF
1520
1521 # verify a new architecture
1522 printf "\n"
1523 printf "\n"
1524 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1525 printf "\n"
1526 cat <<EOF
1527 static void
1528 verify_gdbarch (struct gdbarch *gdbarch)
1529 {
1530 struct ui_file *log;
1531 struct cleanup *cleanups;
1532 long dummy;
1533 char *buf;
1534 /* Only perform sanity checks on a multi-arch target. */
1535 if (!GDB_MULTI_ARCH)
1536 return;
1537 log = mem_fileopen ();
1538 cleanups = make_cleanup_ui_file_delete (log);
1539 /* fundamental */
1540 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1541 fprintf_unfiltered (log, "\n\tbyte-order");
1542 if (gdbarch->bfd_arch_info == NULL)
1543 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1544 /* Check those that need to be defined for the given multi-arch level. */
1545 EOF
1546 function_list | while do_read
1547 do
1548 if class_is_function_p || class_is_variable_p
1549 then
1550 if [ "x${invalid_p}" = "x0" ]
1551 then
1552 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1553 elif class_is_predicate_p
1554 then
1555 printf " /* Skip verify of ${function}, has predicate */\n"
1556 # FIXME: See do_read for potential simplification
1557 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1558 then
1559 printf " if (${invalid_p})\n"
1560 printf " gdbarch->${function} = ${postdefault};\n"
1561 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1562 then
1563 printf " if (gdbarch->${function} == ${predefault})\n"
1564 printf " gdbarch->${function} = ${postdefault};\n"
1565 elif [ -n "${postdefault}" ]
1566 then
1567 printf " if (gdbarch->${function} == 0)\n"
1568 printf " gdbarch->${function} = ${postdefault};\n"
1569 elif [ -n "${invalid_p}" ]
1570 then
1571 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1572 printf " && (${invalid_p}))\n"
1573 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1574 elif [ -n "${predefault}" ]
1575 then
1576 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1577 printf " && (gdbarch->${function} == ${predefault}))\n"
1578 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1579 fi
1580 fi
1581 done
1582 cat <<EOF
1583 buf = ui_file_xstrdup (log, &dummy);
1584 make_cleanup (xfree, buf);
1585 if (strlen (buf) > 0)
1586 internal_error (__FILE__, __LINE__,
1587 "verify_gdbarch: the following are invalid ...%s",
1588 buf);
1589 do_cleanups (cleanups);
1590 }
1591 EOF
1592
1593 # dump the structure
1594 printf "\n"
1595 printf "\n"
1596 cat <<EOF
1597 /* Print out the details of the current architecture. */
1598
1599 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1600 just happens to match the global variable \`\`current_gdbarch''. That
1601 way macros refering to that variable get the local and not the global
1602 version - ulgh. Once everything is parameterised with gdbarch, this
1603 will go away. */
1604
1605 void
1606 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1607 {
1608 fprintf_unfiltered (file,
1609 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1610 GDB_MULTI_ARCH);
1611 EOF
1612 function_list | sort -t: -k 3 | while do_read
1613 do
1614 # First the predicate
1615 if class_is_predicate_p
1616 then
1617 if class_is_multiarch_p
1618 then
1619 printf " if (GDB_MULTI_ARCH)\n"
1620 printf " fprintf_unfiltered (file,\n"
1621 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1622 printf " gdbarch_${function}_p (current_gdbarch));\n"
1623 else
1624 printf "#ifdef ${macro}_P\n"
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1627 printf " \"${macro}_P()\",\n"
1628 printf " XSTRING (${macro}_P ()));\n"
1629 printf " fprintf_unfiltered (file,\n"
1630 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1631 printf " ${macro}_P ());\n"
1632 printf "#endif\n"
1633 fi
1634 fi
1635 # multiarch functions don't have macros.
1636 if class_is_multiarch_p
1637 then
1638 printf " if (GDB_MULTI_ARCH)\n"
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1641 printf " (long) current_gdbarch->${function});\n"
1642 continue
1643 fi
1644 # Print the macro definition.
1645 printf "#ifdef ${macro}\n"
1646 if [ "x${returntype}" = "xvoid" ]
1647 then
1648 printf "#if GDB_MULTI_ARCH\n"
1649 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1650 fi
1651 if class_is_function_p
1652 then
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1655 printf " \"${macro}(${actual})\",\n"
1656 printf " XSTRING (${macro} (${actual})));\n"
1657 else
1658 printf " fprintf_unfiltered (file,\n"
1659 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1660 printf " XSTRING (${macro}));\n"
1661 fi
1662 # Print the architecture vector value
1663 if [ "x${returntype}" = "xvoid" ]
1664 then
1665 printf "#endif\n"
1666 fi
1667 if [ "x${print_p}" = "x()" ]
1668 then
1669 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1670 elif [ "x${print_p}" = "x0" ]
1671 then
1672 printf " /* skip print of ${macro}, print_p == 0. */\n"
1673 elif [ -n "${print_p}" ]
1674 then
1675 printf " if (${print_p})\n"
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1678 printf " ${print});\n"
1679 elif class_is_function_p
1680 then
1681 printf " if (GDB_MULTI_ARCH)\n"
1682 printf " fprintf_unfiltered (file,\n"
1683 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1684 printf " (long) current_gdbarch->${function}\n"
1685 printf " /*${macro} ()*/);\n"
1686 else
1687 printf " fprintf_unfiltered (file,\n"
1688 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1689 printf " ${print});\n"
1690 fi
1691 printf "#endif\n"
1692 done
1693 cat <<EOF
1694 if (current_gdbarch->dump_tdep != NULL)
1695 current_gdbarch->dump_tdep (current_gdbarch, file);
1696 }
1697 EOF
1698
1699
1700 # GET/SET
1701 printf "\n"
1702 cat <<EOF
1703 struct gdbarch_tdep *
1704 gdbarch_tdep (struct gdbarch *gdbarch)
1705 {
1706 if (gdbarch_debug >= 2)
1707 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1708 return gdbarch->tdep;
1709 }
1710 EOF
1711 printf "\n"
1712 function_list | while do_read
1713 do
1714 if class_is_predicate_p
1715 then
1716 printf "\n"
1717 printf "int\n"
1718 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1719 printf "{\n"
1720 printf " gdb_assert (gdbarch != NULL);\n"
1721 if [ -n "${predicate}" ]
1722 then
1723 printf " return ${predicate};\n"
1724 else
1725 printf " return gdbarch->${function} != 0;\n"
1726 fi
1727 printf "}\n"
1728 fi
1729 if class_is_function_p
1730 then
1731 printf "\n"
1732 printf "${returntype}\n"
1733 if [ "x${formal}" = "xvoid" ]
1734 then
1735 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1736 else
1737 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1738 fi
1739 printf "{\n"
1740 printf " gdb_assert (gdbarch != NULL);\n"
1741 printf " if (gdbarch->${function} == 0)\n"
1742 printf " internal_error (__FILE__, __LINE__,\n"
1743 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1744 if class_is_predicate_p && test -n "${predicate}"
1745 then
1746 # Allow a call to a function with a predicate.
1747 printf " /* Ignore predicate (${predicate}). */\n"
1748 fi
1749 printf " if (gdbarch_debug >= 2)\n"
1750 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1751 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1752 then
1753 if class_is_multiarch_p
1754 then
1755 params="gdbarch"
1756 else
1757 params=""
1758 fi
1759 else
1760 if class_is_multiarch_p
1761 then
1762 params="gdbarch, ${actual}"
1763 else
1764 params="${actual}"
1765 fi
1766 fi
1767 if [ "x${returntype}" = "xvoid" ]
1768 then
1769 printf " gdbarch->${function} (${params});\n"
1770 else
1771 printf " return gdbarch->${function} (${params});\n"
1772 fi
1773 printf "}\n"
1774 printf "\n"
1775 printf "void\n"
1776 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1777 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1778 printf "{\n"
1779 printf " gdbarch->${function} = ${function};\n"
1780 printf "}\n"
1781 elif class_is_variable_p
1782 then
1783 printf "\n"
1784 printf "${returntype}\n"
1785 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1786 printf "{\n"
1787 printf " gdb_assert (gdbarch != NULL);\n"
1788 if [ "x${invalid_p}" = "x0" ]
1789 then
1790 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1791 elif [ -n "${invalid_p}" ]
1792 then
1793 printf " if (${invalid_p})\n"
1794 printf " internal_error (__FILE__, __LINE__,\n"
1795 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1796 elif [ -n "${predefault}" ]
1797 then
1798 printf " if (gdbarch->${function} == ${predefault})\n"
1799 printf " internal_error (__FILE__, __LINE__,\n"
1800 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1801 fi
1802 printf " if (gdbarch_debug >= 2)\n"
1803 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1804 printf " return gdbarch->${function};\n"
1805 printf "}\n"
1806 printf "\n"
1807 printf "void\n"
1808 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1809 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1810 printf "{\n"
1811 printf " gdbarch->${function} = ${function};\n"
1812 printf "}\n"
1813 elif class_is_info_p
1814 then
1815 printf "\n"
1816 printf "${returntype}\n"
1817 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1818 printf "{\n"
1819 printf " gdb_assert (gdbarch != NULL);\n"
1820 printf " if (gdbarch_debug >= 2)\n"
1821 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1822 printf " return gdbarch->${function};\n"
1823 printf "}\n"
1824 fi
1825 done
1826
1827 # All the trailing guff
1828 cat <<EOF
1829
1830
1831 /* Keep a registry of per-architecture data-pointers required by GDB
1832 modules. */
1833
1834 struct gdbarch_data
1835 {
1836 unsigned index;
1837 int init_p;
1838 gdbarch_data_init_ftype *init;
1839 gdbarch_data_free_ftype *free;
1840 };
1841
1842 struct gdbarch_data_registration
1843 {
1844 struct gdbarch_data *data;
1845 struct gdbarch_data_registration *next;
1846 };
1847
1848 struct gdbarch_data_registry
1849 {
1850 unsigned nr;
1851 struct gdbarch_data_registration *registrations;
1852 };
1853
1854 struct gdbarch_data_registry gdbarch_data_registry =
1855 {
1856 0, NULL,
1857 };
1858
1859 struct gdbarch_data *
1860 register_gdbarch_data (gdbarch_data_init_ftype *init,
1861 gdbarch_data_free_ftype *free)
1862 {
1863 struct gdbarch_data_registration **curr;
1864 /* Append the new registraration. */
1865 for (curr = &gdbarch_data_registry.registrations;
1866 (*curr) != NULL;
1867 curr = &(*curr)->next);
1868 (*curr) = XMALLOC (struct gdbarch_data_registration);
1869 (*curr)->next = NULL;
1870 (*curr)->data = XMALLOC (struct gdbarch_data);
1871 (*curr)->data->index = gdbarch_data_registry.nr++;
1872 (*curr)->data->init = init;
1873 (*curr)->data->init_p = 1;
1874 (*curr)->data->free = free;
1875 return (*curr)->data;
1876 }
1877
1878
1879 /* Create/delete the gdbarch data vector. */
1880
1881 static void
1882 alloc_gdbarch_data (struct gdbarch *gdbarch)
1883 {
1884 gdb_assert (gdbarch->data == NULL);
1885 gdbarch->nr_data = gdbarch_data_registry.nr;
1886 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1887 }
1888
1889 static void
1890 free_gdbarch_data (struct gdbarch *gdbarch)
1891 {
1892 struct gdbarch_data_registration *rego;
1893 gdb_assert (gdbarch->data != NULL);
1894 for (rego = gdbarch_data_registry.registrations;
1895 rego != NULL;
1896 rego = rego->next)
1897 {
1898 struct gdbarch_data *data = rego->data;
1899 gdb_assert (data->index < gdbarch->nr_data);
1900 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1901 {
1902 data->free (gdbarch, gdbarch->data[data->index]);
1903 gdbarch->data[data->index] = NULL;
1904 }
1905 }
1906 xfree (gdbarch->data);
1907 gdbarch->data = NULL;
1908 }
1909
1910
1911 /* Initialize the current value of the specified per-architecture
1912 data-pointer. */
1913
1914 void
1915 set_gdbarch_data (struct gdbarch *gdbarch,
1916 struct gdbarch_data *data,
1917 void *pointer)
1918 {
1919 gdb_assert (data->index < gdbarch->nr_data);
1920 if (gdbarch->data[data->index] != NULL)
1921 {
1922 gdb_assert (data->free != NULL);
1923 data->free (gdbarch, gdbarch->data[data->index]);
1924 }
1925 gdbarch->data[data->index] = pointer;
1926 }
1927
1928 /* Return the current value of the specified per-architecture
1929 data-pointer. */
1930
1931 void *
1932 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1933 {
1934 gdb_assert (data->index < gdbarch->nr_data);
1935 /* The data-pointer isn't initialized, call init() to get a value but
1936 only if the architecture initializaiton has completed. Otherwise
1937 punt - hope that the caller knows what they are doing. */
1938 if (gdbarch->data[data->index] == NULL
1939 && gdbarch->initialized_p)
1940 {
1941 /* Be careful to detect an initialization cycle. */
1942 gdb_assert (data->init_p);
1943 data->init_p = 0;
1944 gdb_assert (data->init != NULL);
1945 gdbarch->data[data->index] = data->init (gdbarch);
1946 data->init_p = 1;
1947 gdb_assert (gdbarch->data[data->index] != NULL);
1948 }
1949 return gdbarch->data[data->index];
1950 }
1951
1952
1953
1954 /* Keep a registry of swapped data required by GDB modules. */
1955
1956 struct gdbarch_swap
1957 {
1958 void *swap;
1959 struct gdbarch_swap_registration *source;
1960 struct gdbarch_swap *next;
1961 };
1962
1963 struct gdbarch_swap_registration
1964 {
1965 void *data;
1966 unsigned long sizeof_data;
1967 gdbarch_swap_ftype *init;
1968 struct gdbarch_swap_registration *next;
1969 };
1970
1971 struct gdbarch_swap_registry
1972 {
1973 int nr;
1974 struct gdbarch_swap_registration *registrations;
1975 };
1976
1977 struct gdbarch_swap_registry gdbarch_swap_registry =
1978 {
1979 0, NULL,
1980 };
1981
1982 void
1983 register_gdbarch_swap (void *data,
1984 unsigned long sizeof_data,
1985 gdbarch_swap_ftype *init)
1986 {
1987 struct gdbarch_swap_registration **rego;
1988 for (rego = &gdbarch_swap_registry.registrations;
1989 (*rego) != NULL;
1990 rego = &(*rego)->next);
1991 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1992 (*rego)->next = NULL;
1993 (*rego)->init = init;
1994 (*rego)->data = data;
1995 (*rego)->sizeof_data = sizeof_data;
1996 }
1997
1998 static void
1999 clear_gdbarch_swap (struct gdbarch *gdbarch)
2000 {
2001 struct gdbarch_swap *curr;
2002 for (curr = gdbarch->swap;
2003 curr != NULL;
2004 curr = curr->next)
2005 {
2006 memset (curr->source->data, 0, curr->source->sizeof_data);
2007 }
2008 }
2009
2010 static void
2011 init_gdbarch_swap (struct gdbarch *gdbarch)
2012 {
2013 struct gdbarch_swap_registration *rego;
2014 struct gdbarch_swap **curr = &gdbarch->swap;
2015 for (rego = gdbarch_swap_registry.registrations;
2016 rego != NULL;
2017 rego = rego->next)
2018 {
2019 if (rego->data != NULL)
2020 {
2021 (*curr) = XMALLOC (struct gdbarch_swap);
2022 (*curr)->source = rego;
2023 (*curr)->swap = xmalloc (rego->sizeof_data);
2024 (*curr)->next = NULL;
2025 curr = &(*curr)->next;
2026 }
2027 if (rego->init != NULL)
2028 rego->init ();
2029 }
2030 }
2031
2032 static void
2033 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2034 {
2035 struct gdbarch_swap *curr;
2036 for (curr = gdbarch->swap;
2037 curr != NULL;
2038 curr = curr->next)
2039 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2040 }
2041
2042 static void
2043 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2044 {
2045 struct gdbarch_swap *curr;
2046 for (curr = gdbarch->swap;
2047 curr != NULL;
2048 curr = curr->next)
2049 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2050 }
2051
2052
2053 /* Keep a registry of the architectures known by GDB. */
2054
2055 struct gdbarch_registration
2056 {
2057 enum bfd_architecture bfd_architecture;
2058 gdbarch_init_ftype *init;
2059 gdbarch_dump_tdep_ftype *dump_tdep;
2060 struct gdbarch_list *arches;
2061 struct gdbarch_registration *next;
2062 };
2063
2064 static struct gdbarch_registration *gdbarch_registry = NULL;
2065
2066 static void
2067 append_name (const char ***buf, int *nr, const char *name)
2068 {
2069 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2070 (*buf)[*nr] = name;
2071 *nr += 1;
2072 }
2073
2074 const char **
2075 gdbarch_printable_names (void)
2076 {
2077 if (GDB_MULTI_ARCH)
2078 {
2079 /* Accumulate a list of names based on the registed list of
2080 architectures. */
2081 enum bfd_architecture a;
2082 int nr_arches = 0;
2083 const char **arches = NULL;
2084 struct gdbarch_registration *rego;
2085 for (rego = gdbarch_registry;
2086 rego != NULL;
2087 rego = rego->next)
2088 {
2089 const struct bfd_arch_info *ap;
2090 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2091 if (ap == NULL)
2092 internal_error (__FILE__, __LINE__,
2093 "gdbarch_architecture_names: multi-arch unknown");
2094 do
2095 {
2096 append_name (&arches, &nr_arches, ap->printable_name);
2097 ap = ap->next;
2098 }
2099 while (ap != NULL);
2100 }
2101 append_name (&arches, &nr_arches, NULL);
2102 return arches;
2103 }
2104 else
2105 /* Just return all the architectures that BFD knows. Assume that
2106 the legacy architecture framework supports them. */
2107 return bfd_arch_list ();
2108 }
2109
2110
2111 void
2112 gdbarch_register (enum bfd_architecture bfd_architecture,
2113 gdbarch_init_ftype *init,
2114 gdbarch_dump_tdep_ftype *dump_tdep)
2115 {
2116 struct gdbarch_registration **curr;
2117 const struct bfd_arch_info *bfd_arch_info;
2118 /* Check that BFD recognizes this architecture */
2119 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2120 if (bfd_arch_info == NULL)
2121 {
2122 internal_error (__FILE__, __LINE__,
2123 "gdbarch: Attempt to register unknown architecture (%d)",
2124 bfd_architecture);
2125 }
2126 /* Check that we haven't seen this architecture before */
2127 for (curr = &gdbarch_registry;
2128 (*curr) != NULL;
2129 curr = &(*curr)->next)
2130 {
2131 if (bfd_architecture == (*curr)->bfd_architecture)
2132 internal_error (__FILE__, __LINE__,
2133 "gdbarch: Duplicate registraration of architecture (%s)",
2134 bfd_arch_info->printable_name);
2135 }
2136 /* log it */
2137 if (gdbarch_debug)
2138 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2139 bfd_arch_info->printable_name,
2140 (long) init);
2141 /* Append it */
2142 (*curr) = XMALLOC (struct gdbarch_registration);
2143 (*curr)->bfd_architecture = bfd_architecture;
2144 (*curr)->init = init;
2145 (*curr)->dump_tdep = dump_tdep;
2146 (*curr)->arches = NULL;
2147 (*curr)->next = NULL;
2148 /* When non- multi-arch, install whatever target dump routine we've
2149 been provided - hopefully that routine has been written correctly
2150 and works regardless of multi-arch. */
2151 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2152 && startup_gdbarch.dump_tdep == NULL)
2153 startup_gdbarch.dump_tdep = dump_tdep;
2154 }
2155
2156 void
2157 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2158 gdbarch_init_ftype *init)
2159 {
2160 gdbarch_register (bfd_architecture, init, NULL);
2161 }
2162
2163
2164 /* Look for an architecture using gdbarch_info. Base search on only
2165 BFD_ARCH_INFO and BYTE_ORDER. */
2166
2167 struct gdbarch_list *
2168 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2169 const struct gdbarch_info *info)
2170 {
2171 for (; arches != NULL; arches = arches->next)
2172 {
2173 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2174 continue;
2175 if (info->byte_order != arches->gdbarch->byte_order)
2176 continue;
2177 if (info->osabi != arches->gdbarch->osabi)
2178 continue;
2179 return arches;
2180 }
2181 return NULL;
2182 }
2183
2184
2185 /* Update the current architecture. Return ZERO if the update request
2186 failed. */
2187
2188 int
2189 gdbarch_update_p (struct gdbarch_info info)
2190 {
2191 struct gdbarch *new_gdbarch;
2192 struct gdbarch *old_gdbarch;
2193 struct gdbarch_registration *rego;
2194
2195 /* Fill in missing parts of the INFO struct using a number of
2196 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2197
2198 /* \`\`(gdb) set architecture ...'' */
2199 if (info.bfd_arch_info == NULL
2200 && !TARGET_ARCHITECTURE_AUTO)
2201 info.bfd_arch_info = TARGET_ARCHITECTURE;
2202 if (info.bfd_arch_info == NULL
2203 && info.abfd != NULL
2204 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2205 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2206 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2207 if (info.bfd_arch_info == NULL)
2208 info.bfd_arch_info = TARGET_ARCHITECTURE;
2209
2210 /* \`\`(gdb) set byte-order ...'' */
2211 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2212 && !TARGET_BYTE_ORDER_AUTO)
2213 info.byte_order = TARGET_BYTE_ORDER;
2214 /* From the INFO struct. */
2215 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2216 && info.abfd != NULL)
2217 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2218 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2219 : BFD_ENDIAN_UNKNOWN);
2220 /* From the current target. */
2221 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2222 info.byte_order = TARGET_BYTE_ORDER;
2223
2224 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2225 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2226 info.osabi = gdbarch_lookup_osabi (info.abfd);
2227 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2228 info.osabi = current_gdbarch->osabi;
2229
2230 /* Must have found some sort of architecture. */
2231 gdb_assert (info.bfd_arch_info != NULL);
2232
2233 if (gdbarch_debug)
2234 {
2235 fprintf_unfiltered (gdb_stdlog,
2236 "gdbarch_update: info.bfd_arch_info %s\n",
2237 (info.bfd_arch_info != NULL
2238 ? info.bfd_arch_info->printable_name
2239 : "(null)"));
2240 fprintf_unfiltered (gdb_stdlog,
2241 "gdbarch_update: info.byte_order %d (%s)\n",
2242 info.byte_order,
2243 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2244 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2245 : "default"));
2246 fprintf_unfiltered (gdb_stdlog,
2247 "gdbarch_update: info.osabi %d (%s)\n",
2248 info.osabi, gdbarch_osabi_name (info.osabi));
2249 fprintf_unfiltered (gdb_stdlog,
2250 "gdbarch_update: info.abfd 0x%lx\n",
2251 (long) info.abfd);
2252 fprintf_unfiltered (gdb_stdlog,
2253 "gdbarch_update: info.tdep_info 0x%lx\n",
2254 (long) info.tdep_info);
2255 }
2256
2257 /* Find the target that knows about this architecture. */
2258 for (rego = gdbarch_registry;
2259 rego != NULL;
2260 rego = rego->next)
2261 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2262 break;
2263 if (rego == NULL)
2264 {
2265 if (gdbarch_debug)
2266 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2267 return 0;
2268 }
2269
2270 /* Swap the data belonging to the old target out setting the
2271 installed data to zero. This stops the ->init() function trying
2272 to refer to the previous architecture's global data structures. */
2273 swapout_gdbarch_swap (current_gdbarch);
2274 clear_gdbarch_swap (current_gdbarch);
2275
2276 /* Save the previously selected architecture, setting the global to
2277 NULL. This stops ->init() trying to use the previous
2278 architecture's configuration. The previous architecture may not
2279 even be of the same architecture family. The most recent
2280 architecture of the same family is found at the head of the
2281 rego->arches list. */
2282 old_gdbarch = current_gdbarch;
2283 current_gdbarch = NULL;
2284
2285 /* Ask the target for a replacement architecture. */
2286 new_gdbarch = rego->init (info, rego->arches);
2287
2288 /* Did the target like it? No. Reject the change and revert to the
2289 old architecture. */
2290 if (new_gdbarch == NULL)
2291 {
2292 if (gdbarch_debug)
2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2294 swapin_gdbarch_swap (old_gdbarch);
2295 current_gdbarch = old_gdbarch;
2296 return 0;
2297 }
2298
2299 /* Did the architecture change? No. Oops, put the old architecture
2300 back. */
2301 if (old_gdbarch == new_gdbarch)
2302 {
2303 if (gdbarch_debug)
2304 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2305 (long) new_gdbarch,
2306 new_gdbarch->bfd_arch_info->printable_name);
2307 swapin_gdbarch_swap (old_gdbarch);
2308 current_gdbarch = old_gdbarch;
2309 return 1;
2310 }
2311
2312 /* Is this a pre-existing architecture? Yes. Move it to the front
2313 of the list of architectures (keeping the list sorted Most
2314 Recently Used) and then copy it in. */
2315 {
2316 struct gdbarch_list **list;
2317 for (list = &rego->arches;
2318 (*list) != NULL;
2319 list = &(*list)->next)
2320 {
2321 if ((*list)->gdbarch == new_gdbarch)
2322 {
2323 struct gdbarch_list *this;
2324 if (gdbarch_debug)
2325 fprintf_unfiltered (gdb_stdlog,
2326 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2327 (long) new_gdbarch,
2328 new_gdbarch->bfd_arch_info->printable_name);
2329 /* Unlink this. */
2330 this = (*list);
2331 (*list) = this->next;
2332 /* Insert in the front. */
2333 this->next = rego->arches;
2334 rego->arches = this;
2335 /* Copy the new architecture in. */
2336 current_gdbarch = new_gdbarch;
2337 swapin_gdbarch_swap (new_gdbarch);
2338 architecture_changed_event ();
2339 return 1;
2340 }
2341 }
2342 }
2343
2344 /* Prepend this new architecture to the architecture list (keep the
2345 list sorted Most Recently Used). */
2346 {
2347 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2348 this->next = rego->arches;
2349 this->gdbarch = new_gdbarch;
2350 rego->arches = this;
2351 }
2352
2353 /* Switch to this new architecture marking it initialized. */
2354 current_gdbarch = new_gdbarch;
2355 current_gdbarch->initialized_p = 1;
2356 if (gdbarch_debug)
2357 {
2358 fprintf_unfiltered (gdb_stdlog,
2359 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2360 (long) new_gdbarch,
2361 new_gdbarch->bfd_arch_info->printable_name);
2362 }
2363
2364 /* Check that the newly installed architecture is valid. Plug in
2365 any post init values. */
2366 new_gdbarch->dump_tdep = rego->dump_tdep;
2367 verify_gdbarch (new_gdbarch);
2368
2369 /* Initialize the per-architecture memory (swap) areas.
2370 CURRENT_GDBARCH must be update before these modules are
2371 called. */
2372 init_gdbarch_swap (new_gdbarch);
2373
2374 /* Initialize the per-architecture data. CURRENT_GDBARCH
2375 must be updated before these modules are called. */
2376 architecture_changed_event ();
2377
2378 if (gdbarch_debug)
2379 gdbarch_dump (current_gdbarch, gdb_stdlog);
2380
2381 return 1;
2382 }
2383
2384
2385 /* Disassembler */
2386
2387 /* Pointer to the target-dependent disassembly function. */
2388 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2389 disassemble_info tm_print_insn_info;
2390
2391
2392 extern void _initialize_gdbarch (void);
2393
2394 void
2395 _initialize_gdbarch (void)
2396 {
2397 struct cmd_list_element *c;
2398
2399 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2400 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2401 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2402 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2403 tm_print_insn_info.print_address_func = dis_asm_print_address;
2404
2405 add_show_from_set (add_set_cmd ("arch",
2406 class_maintenance,
2407 var_zinteger,
2408 (char *)&gdbarch_debug,
2409 "Set architecture debugging.\\n\\
2410 When non-zero, architecture debugging is enabled.", &setdebuglist),
2411 &showdebuglist);
2412 c = add_set_cmd ("archdebug",
2413 class_maintenance,
2414 var_zinteger,
2415 (char *)&gdbarch_debug,
2416 "Set architecture debugging.\\n\\
2417 When non-zero, architecture debugging is enabled.", &setlist);
2418
2419 deprecate_cmd (c, "set debug arch");
2420 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2421 }
2422 EOF
2423
2424 # close things off
2425 exec 1>&2
2426 #../move-if-change new-gdbarch.c gdbarch.c
2427 compare_new gdbarch.c
This page took 0.084759 seconds and 4 git commands to generate.