gdb: Add guess_tracepoint_registers hook to gdbarch.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
465 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
466 m:const char *:register_name:int regnr:regnr::0
467
468 # Return the type of a register specified by the architecture. Only
469 # the register cache should call this function directly; others should
470 # use "register_type".
471 M:struct type *:register_type:int reg_nr:reg_nr
472
473 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
475 # deprecated_fp_regnum.
476 v:int:deprecated_fp_regnum:::-1:-1::0
477
478 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
479 v:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
481
482 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
484 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
489 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
490
491 # Determine the address where a longjmp will land and save this address
492 # in PC. Return nonzero on success.
493 #
494 # FRAME corresponds to the longjmp frame.
495 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
496
497 #
498 v:int:believe_pcc_promotion:::::::
499 #
500 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
501 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
502 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
503 # Construct a value representing the contents of register REGNUM in
504 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
505 # allocate and return a struct value with all value attributes
506 # (but not the value contents) filled in.
507 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
508 #
509 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
510 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
511 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
512
513 # Return the return-value convention that will be used by FUNCTION
514 # to return a value of type VALTYPE. FUNCTION may be NULL in which
515 # case the return convention is computed based only on VALTYPE.
516 #
517 # If READBUF is not NULL, extract the return value and save it in this buffer.
518 #
519 # If WRITEBUF is not NULL, it contains a return value which will be
520 # stored into the appropriate register. This can be used when we want
521 # to force the value returned by a function (see the "return" command
522 # for instance).
523 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
524
525 # Return true if the return value of function is stored in the first hidden
526 # parameter. In theory, this feature should be language-dependent, specified
527 # by language and its ABI, such as C++. Unfortunately, compiler may
528 # implement it to a target-dependent feature. So that we need such hook here
529 # to be aware of this in GDB.
530 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
531
532 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
533 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
534 # On some platforms, a single function may provide multiple entry points,
535 # e.g. one that is used for function-pointer calls and a different one
536 # that is used for direct function calls.
537 # In order to ensure that breakpoints set on the function will trigger
538 # no matter via which entry point the function is entered, a platform
539 # may provide the skip_entrypoint callback. It is called with IP set
540 # to the main entry point of a function (as determined by the symbol table),
541 # and should return the address of the innermost entry point, where the
542 # actual breakpoint needs to be set. Note that skip_entrypoint is used
543 # by GDB common code even when debugging optimized code, where skip_prologue
544 # is not used.
545 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
546
547 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
548 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
549 # Return the adjusted address and kind to use for Z0/Z1 packets.
550 # KIND is usually the memory length of the breakpoint, but may have a
551 # different target-specific meaning.
552 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
553 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
555 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
556 v:CORE_ADDR:decr_pc_after_break:::0:::0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. gdbarch_deprecated_function_start_offset is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
567
568 # Return the remote protocol register number associated with this
569 # register. Normally the identity mapping.
570 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
571
572 # Fetch the target specific address used to represent a load module.
573 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
574 #
575 v:CORE_ADDR:frame_args_skip:::0:::0
576 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
577 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
578 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
579 # frame-base. Enable frame-base before frame-unwind.
580 F:int:frame_num_args:struct frame_info *frame:frame
581 #
582 M:CORE_ADDR:frame_align:CORE_ADDR address:address
583 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
584 v:int:frame_red_zone_size
585 #
586 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
587 # On some machines there are bits in addresses which are not really
588 # part of the address, but are used by the kernel, the hardware, etc.
589 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
590 # we get a "real" address such as one would find in a symbol table.
591 # This is used only for addresses of instructions, and even then I'm
592 # not sure it's used in all contexts. It exists to deal with there
593 # being a few stray bits in the PC which would mislead us, not as some
594 # sort of generic thing to handle alignment or segmentation (it's
595 # possible it should be in TARGET_READ_PC instead).
596 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
597
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
599 # indicates if the target needs software single step. An ISA method to
600 # implement it.
601 #
602 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
603 # breakpoints using the breakpoint system instead of blatting memory directly
604 # (as with rs6000).
605 #
606 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
607 # target can single step. If not, then implement single step using breakpoints.
608 #
609 # A return value of 1 means that the software_single_step breakpoints
610 # were inserted; 0 means they were not.
611 F:int:software_single_step:struct frame_info *frame:frame
612
613 # Return non-zero if the processor is executing a delay slot and a
614 # further single-step is needed before the instruction finishes.
615 M:int:single_step_through_delay:struct frame_info *frame:frame
616 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
617 # disassembler. Perhaps objdump can handle it?
618 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
619 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
620
621
622 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
623 # evaluates non-zero, this is the address where the debugger will place
624 # a step-resume breakpoint to get us past the dynamic linker.
625 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
626 # Some systems also have trampoline code for returning from shared libs.
627 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
628
629 # A target might have problems with watchpoints as soon as the stack
630 # frame of the current function has been destroyed. This mostly happens
631 # as the first action in a function's epilogue. stack_frame_destroyed_p()
632 # is defined to return a non-zero value if either the given addr is one
633 # instruction after the stack destroying instruction up to the trailing
634 # return instruction or if we can figure out that the stack frame has
635 # already been invalidated regardless of the value of addr. Targets
636 # which don't suffer from that problem could just let this functionality
637 # untouched.
638 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
639 # Process an ELF symbol in the minimal symbol table in a backend-specific
640 # way. Normally this hook is supposed to do nothing, however if required,
641 # then this hook can be used to apply tranformations to symbols that are
642 # considered special in some way. For example the MIPS backend uses it
643 # to interpret \`st_other' information to mark compressed code symbols so
644 # that they can be treated in the appropriate manner in the processing of
645 # the main symbol table and DWARF-2 records.
646 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
647 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
648 # Process a symbol in the main symbol table in a backend-specific way.
649 # Normally this hook is supposed to do nothing, however if required,
650 # then this hook can be used to apply tranformations to symbols that
651 # are considered special in some way. This is currently used by the
652 # MIPS backend to make sure compressed code symbols have the ISA bit
653 # set. This in turn is needed for symbol values seen in GDB to match
654 # the values used at the runtime by the program itself, for function
655 # and label references.
656 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
657 # Adjust the address retrieved from a DWARF-2 record other than a line
658 # entry in a backend-specific way. Normally this hook is supposed to
659 # return the address passed unchanged, however if that is incorrect for
660 # any reason, then this hook can be used to fix the address up in the
661 # required manner. This is currently used by the MIPS backend to make
662 # sure addresses in FDE, range records, etc. referring to compressed
663 # code have the ISA bit set, matching line information and the symbol
664 # table.
665 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
666 # Adjust the address updated by a line entry in a backend-specific way.
667 # Normally this hook is supposed to return the address passed unchanged,
668 # however in the case of inconsistencies in these records, this hook can
669 # be used to fix them up in the required manner. This is currently used
670 # by the MIPS backend to make sure all line addresses in compressed code
671 # are presented with the ISA bit set, which is not always the case. This
672 # in turn ensures breakpoint addresses are correctly matched against the
673 # stop PC.
674 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
675 v:int:cannot_step_breakpoint:::0:0::0
676 v:int:have_nonsteppable_watchpoint:::0:0::0
677 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
678 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
679
680 # Return the appropriate type_flags for the supplied address class.
681 # This function should return 1 if the address class was recognized and
682 # type_flags was set, zero otherwise.
683 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
684 # Is a register in a group
685 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
686 # Fetch the pointer to the ith function argument.
687 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
688
689 # Iterate over all supported register notes in a core file. For each
690 # supported register note section, the iterator must call CB and pass
691 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
692 # the supported register note sections based on the current register
693 # values. Otherwise it should enumerate all supported register note
694 # sections.
695 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
696
697 # Create core file notes
698 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
699
700 # The elfcore writer hook to use to write Linux prpsinfo notes to core
701 # files. Most Linux architectures use the same prpsinfo32 or
702 # prpsinfo64 layouts, and so won't need to provide this hook, as we
703 # call the Linux generic routines in bfd to write prpsinfo notes by
704 # default.
705 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
706
707 # Find core file memory regions
708 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
709
710 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
711 # core file into buffer READBUF with length LEN. Return the number of bytes read
712 # (zero indicates failure).
713 # failed, otherwise, return the red length of READBUF.
714 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
715
716 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
717 # libraries list from core file into buffer READBUF with length LEN.
718 # Return the number of bytes read (zero indicates failure).
719 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
720
721 # How the core target converts a PTID from a core file to a string.
722 M:char *:core_pid_to_str:ptid_t ptid:ptid
723
724 # How the core target extracts the name of a thread from a core file.
725 M:const char *:core_thread_name:struct thread_info *thr:thr
726
727 # BFD target to use when generating a core file.
728 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
729
730 # If the elements of C++ vtables are in-place function descriptors rather
731 # than normal function pointers (which may point to code or a descriptor),
732 # set this to one.
733 v:int:vtable_function_descriptors:::0:0::0
734
735 # Set if the least significant bit of the delta is used instead of the least
736 # significant bit of the pfn for pointers to virtual member functions.
737 v:int:vbit_in_delta:::0:0::0
738
739 # Advance PC to next instruction in order to skip a permanent breakpoint.
740 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
741
742 # The maximum length of an instruction on this architecture in bytes.
743 V:ULONGEST:max_insn_length:::0:0
744
745 # Copy the instruction at FROM to TO, and make any adjustments
746 # necessary to single-step it at that address.
747 #
748 # REGS holds the state the thread's registers will have before
749 # executing the copied instruction; the PC in REGS will refer to FROM,
750 # not the copy at TO. The caller should update it to point at TO later.
751 #
752 # Return a pointer to data of the architecture's choice to be passed
753 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
754 # the instruction's effects have been completely simulated, with the
755 # resulting state written back to REGS.
756 #
757 # For a general explanation of displaced stepping and how GDB uses it,
758 # see the comments in infrun.c.
759 #
760 # The TO area is only guaranteed to have space for
761 # gdbarch_max_insn_length (arch) bytes, so this function must not
762 # write more bytes than that to that area.
763 #
764 # If you do not provide this function, GDB assumes that the
765 # architecture does not support displaced stepping.
766 #
767 # If your architecture doesn't need to adjust instructions before
768 # single-stepping them, consider using simple_displaced_step_copy_insn
769 # here.
770 #
771 # If the instruction cannot execute out of line, return NULL. The
772 # core falls back to stepping past the instruction in-line instead in
773 # that case.
774 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
775
776 # Return true if GDB should use hardware single-stepping to execute
777 # the displaced instruction identified by CLOSURE. If false,
778 # GDB will simply restart execution at the displaced instruction
779 # location, and it is up to the target to ensure GDB will receive
780 # control again (e.g. by placing a software breakpoint instruction
781 # into the displaced instruction buffer).
782 #
783 # The default implementation returns false on all targets that
784 # provide a gdbarch_software_single_step routine, and true otherwise.
785 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
786
787 # Fix up the state resulting from successfully single-stepping a
788 # displaced instruction, to give the result we would have gotten from
789 # stepping the instruction in its original location.
790 #
791 # REGS is the register state resulting from single-stepping the
792 # displaced instruction.
793 #
794 # CLOSURE is the result from the matching call to
795 # gdbarch_displaced_step_copy_insn.
796 #
797 # If you provide gdbarch_displaced_step_copy_insn.but not this
798 # function, then GDB assumes that no fixup is needed after
799 # single-stepping the instruction.
800 #
801 # For a general explanation of displaced stepping and how GDB uses it,
802 # see the comments in infrun.c.
803 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
804
805 # Free a closure returned by gdbarch_displaced_step_copy_insn.
806 #
807 # If you provide gdbarch_displaced_step_copy_insn, you must provide
808 # this function as well.
809 #
810 # If your architecture uses closures that don't need to be freed, then
811 # you can use simple_displaced_step_free_closure here.
812 #
813 # For a general explanation of displaced stepping and how GDB uses it,
814 # see the comments in infrun.c.
815 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
816
817 # Return the address of an appropriate place to put displaced
818 # instructions while we step over them. There need only be one such
819 # place, since we're only stepping one thread over a breakpoint at a
820 # time.
821 #
822 # For a general explanation of displaced stepping and how GDB uses it,
823 # see the comments in infrun.c.
824 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
825
826 # Relocate an instruction to execute at a different address. OLDLOC
827 # is the address in the inferior memory where the instruction to
828 # relocate is currently at. On input, TO points to the destination
829 # where we want the instruction to be copied (and possibly adjusted)
830 # to. On output, it points to one past the end of the resulting
831 # instruction(s). The effect of executing the instruction at TO shall
832 # be the same as if executing it at FROM. For example, call
833 # instructions that implicitly push the return address on the stack
834 # should be adjusted to return to the instruction after OLDLOC;
835 # relative branches, and other PC-relative instructions need the
836 # offset adjusted; etc.
837 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
838
839 # Refresh overlay mapped state for section OSECT.
840 F:void:overlay_update:struct obj_section *osect:osect
841
842 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
843
844 # Handle special encoding of static variables in stabs debug info.
845 F:const char *:static_transform_name:const char *name:name
846 # Set if the address in N_SO or N_FUN stabs may be zero.
847 v:int:sofun_address_maybe_missing:::0:0::0
848
849 # Parse the instruction at ADDR storing in the record execution log
850 # the registers REGCACHE and memory ranges that will be affected when
851 # the instruction executes, along with their current values.
852 # Return -1 if something goes wrong, 0 otherwise.
853 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
854
855 # Save process state after a signal.
856 # Return -1 if something goes wrong, 0 otherwise.
857 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
858
859 # Signal translation: translate inferior's signal (target's) number
860 # into GDB's representation. The implementation of this method must
861 # be host independent. IOW, don't rely on symbols of the NAT_FILE
862 # header (the nm-*.h files), the host <signal.h> header, or similar
863 # headers. This is mainly used when cross-debugging core files ---
864 # "Live" targets hide the translation behind the target interface
865 # (target_wait, target_resume, etc.).
866 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
867
868 # Signal translation: translate the GDB's internal signal number into
869 # the inferior's signal (target's) representation. The implementation
870 # of this method must be host independent. IOW, don't rely on symbols
871 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
872 # header, or similar headers.
873 # Return the target signal number if found, or -1 if the GDB internal
874 # signal number is invalid.
875 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
876
877 # Extra signal info inspection.
878 #
879 # Return a type suitable to inspect extra signal information.
880 M:struct type *:get_siginfo_type:void:
881
882 # Record architecture-specific information from the symbol table.
883 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
884
885 # Function for the 'catch syscall' feature.
886
887 # Get architecture-specific system calls information from registers.
888 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
889
890 # The filename of the XML syscall for this architecture.
891 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
892
893 # Information about system calls from this architecture
894 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
895
896 # SystemTap related fields and functions.
897
898 # A NULL-terminated array of prefixes used to mark an integer constant
899 # on the architecture's assembly.
900 # For example, on x86 integer constants are written as:
901 #
902 # \$10 ;; integer constant 10
903 #
904 # in this case, this prefix would be the character \`\$\'.
905 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
906
907 # A NULL-terminated array of suffixes used to mark an integer constant
908 # on the architecture's assembly.
909 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
910
911 # A NULL-terminated array of prefixes used to mark a register name on
912 # the architecture's assembly.
913 # For example, on x86 the register name is written as:
914 #
915 # \%eax ;; register eax
916 #
917 # in this case, this prefix would be the character \`\%\'.
918 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
919
920 # A NULL-terminated array of suffixes used to mark a register name on
921 # the architecture's assembly.
922 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
923
924 # A NULL-terminated array of prefixes used to mark a register
925 # indirection on the architecture's assembly.
926 # For example, on x86 the register indirection is written as:
927 #
928 # \(\%eax\) ;; indirecting eax
929 #
930 # in this case, this prefix would be the charater \`\(\'.
931 #
932 # Please note that we use the indirection prefix also for register
933 # displacement, e.g., \`4\(\%eax\)\' on x86.
934 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
935
936 # A NULL-terminated array of suffixes used to mark a register
937 # indirection on the architecture's assembly.
938 # For example, on x86 the register indirection is written as:
939 #
940 # \(\%eax\) ;; indirecting eax
941 #
942 # in this case, this prefix would be the charater \`\)\'.
943 #
944 # Please note that we use the indirection suffix also for register
945 # displacement, e.g., \`4\(\%eax\)\' on x86.
946 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
947
948 # Prefix(es) used to name a register using GDB's nomenclature.
949 #
950 # For example, on PPC a register is represented by a number in the assembly
951 # language (e.g., \`10\' is the 10th general-purpose register). However,
952 # inside GDB this same register has an \`r\' appended to its name, so the 10th
953 # register would be represented as \`r10\' internally.
954 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
955
956 # Suffix used to name a register using GDB's nomenclature.
957 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
958
959 # Check if S is a single operand.
960 #
961 # Single operands can be:
962 # \- Literal integers, e.g. \`\$10\' on x86
963 # \- Register access, e.g. \`\%eax\' on x86
964 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
965 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
966 #
967 # This function should check for these patterns on the string
968 # and return 1 if some were found, or zero otherwise. Please try to match
969 # as much info as you can from the string, i.e., if you have to match
970 # something like \`\(\%\', do not match just the \`\(\'.
971 M:int:stap_is_single_operand:const char *s:s
972
973 # Function used to handle a "special case" in the parser.
974 #
975 # A "special case" is considered to be an unknown token, i.e., a token
976 # that the parser does not know how to parse. A good example of special
977 # case would be ARM's register displacement syntax:
978 #
979 # [R0, #4] ;; displacing R0 by 4
980 #
981 # Since the parser assumes that a register displacement is of the form:
982 #
983 # <number> <indirection_prefix> <register_name> <indirection_suffix>
984 #
985 # it means that it will not be able to recognize and parse this odd syntax.
986 # Therefore, we should add a special case function that will handle this token.
987 #
988 # This function should generate the proper expression form of the expression
989 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
990 # and so on). It should also return 1 if the parsing was successful, or zero
991 # if the token was not recognized as a special token (in this case, returning
992 # zero means that the special parser is deferring the parsing to the generic
993 # parser), and should advance the buffer pointer (p->arg).
994 M:int:stap_parse_special_token:struct stap_parse_info *p:p
995
996 # DTrace related functions.
997
998 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
999 # NARG must be >= 0.
1000 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1001
1002 # True if the given ADDR does not contain the instruction sequence
1003 # corresponding to a disabled DTrace is-enabled probe.
1004 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1005
1006 # Enable a DTrace is-enabled probe at ADDR.
1007 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1008
1009 # Disable a DTrace is-enabled probe at ADDR.
1010 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1011
1012 # True if the list of shared libraries is one and only for all
1013 # processes, as opposed to a list of shared libraries per inferior.
1014 # This usually means that all processes, although may or may not share
1015 # an address space, will see the same set of symbols at the same
1016 # addresses.
1017 v:int:has_global_solist:::0:0::0
1018
1019 # On some targets, even though each inferior has its own private
1020 # address space, the debug interface takes care of making breakpoints
1021 # visible to all address spaces automatically. For such cases,
1022 # this property should be set to true.
1023 v:int:has_global_breakpoints:::0:0::0
1024
1025 # True if inferiors share an address space (e.g., uClinux).
1026 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1027
1028 # True if a fast tracepoint can be set at an address.
1029 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1030
1031 # Guess register state based on tracepoint location. Used for tracepoints
1032 # where no registers have been collected, but there's only one location,
1033 # allowing us to guess the PC value, and perhaps some other registers.
1034 # On entry, regcache has all registers marked as unavailable.
1035 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1036
1037 # Return the "auto" target charset.
1038 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1039 # Return the "auto" target wide charset.
1040 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1041
1042 # If non-empty, this is a file extension that will be opened in place
1043 # of the file extension reported by the shared library list.
1044 #
1045 # This is most useful for toolchains that use a post-linker tool,
1046 # where the names of the files run on the target differ in extension
1047 # compared to the names of the files GDB should load for debug info.
1048 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1049
1050 # If true, the target OS has DOS-based file system semantics. That
1051 # is, absolute paths include a drive name, and the backslash is
1052 # considered a directory separator.
1053 v:int:has_dos_based_file_system:::0:0::0
1054
1055 # Generate bytecodes to collect the return address in a frame.
1056 # Since the bytecodes run on the target, possibly with GDB not even
1057 # connected, the full unwinding machinery is not available, and
1058 # typically this function will issue bytecodes for one or more likely
1059 # places that the return address may be found.
1060 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1061
1062 # Implement the "info proc" command.
1063 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1064
1065 # Implement the "info proc" command for core files. Noe that there
1066 # are two "info_proc"-like methods on gdbarch -- one for core files,
1067 # one for live targets.
1068 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1069
1070 # Iterate over all objfiles in the order that makes the most sense
1071 # for the architecture to make global symbol searches.
1072 #
1073 # CB is a callback function where OBJFILE is the objfile to be searched,
1074 # and CB_DATA a pointer to user-defined data (the same data that is passed
1075 # when calling this gdbarch method). The iteration stops if this function
1076 # returns nonzero.
1077 #
1078 # CB_DATA is a pointer to some user-defined data to be passed to
1079 # the callback.
1080 #
1081 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1082 # inspected when the symbol search was requested.
1083 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1084
1085 # Ravenscar arch-dependent ops.
1086 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1087
1088 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1089 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1090
1091 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1092 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1093
1094 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1095 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1096
1097 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1098 # Return 0 if *READPTR is already at the end of the buffer.
1099 # Return -1 if there is insufficient buffer for a whole entry.
1100 # Return 1 if an entry was read into *TYPEP and *VALP.
1101 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1102
1103 # Find the address range of the current inferior's vsyscall/vDSO, and
1104 # write it to *RANGE. If the vsyscall's length can't be determined, a
1105 # range with zero length is returned. Returns true if the vsyscall is
1106 # found, false otherwise.
1107 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1108
1109 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1110 # PROT has GDB_MMAP_PROT_* bitmask format.
1111 # Throw an error if it is not possible. Returned address is always valid.
1112 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1113
1114 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1115 # Print a warning if it is not possible.
1116 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1117
1118 # Return string (caller has to use xfree for it) with options for GCC
1119 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1120 # These options are put before CU's DW_AT_producer compilation options so that
1121 # they can override it. Method may also return NULL.
1122 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1123
1124 # Return a regular expression that matches names used by this
1125 # architecture in GNU configury triplets. The result is statically
1126 # allocated and must not be freed. The default implementation simply
1127 # returns the BFD architecture name, which is correct in nearly every
1128 # case.
1129 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1130
1131 # Return the size in 8-bit bytes of an addressable memory unit on this
1132 # architecture. This corresponds to the number of 8-bit bytes associated to
1133 # each address in memory.
1134 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1135
1136 EOF
1137 }
1138
1139 #
1140 # The .log file
1141 #
1142 exec > new-gdbarch.log
1143 function_list | while do_read
1144 do
1145 cat <<EOF
1146 ${class} ${returntype} ${function} ($formal)
1147 EOF
1148 for r in ${read}
1149 do
1150 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1151 done
1152 if class_is_predicate_p && fallback_default_p
1153 then
1154 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1155 kill $$
1156 exit 1
1157 fi
1158 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1159 then
1160 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1161 kill $$
1162 exit 1
1163 fi
1164 if class_is_multiarch_p
1165 then
1166 if class_is_predicate_p ; then :
1167 elif test "x${predefault}" = "x"
1168 then
1169 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1170 kill $$
1171 exit 1
1172 fi
1173 fi
1174 echo ""
1175 done
1176
1177 exec 1>&2
1178 compare_new gdbarch.log
1179
1180
1181 copyright ()
1182 {
1183 cat <<EOF
1184 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1185 /* vi:set ro: */
1186
1187 /* Dynamic architecture support for GDB, the GNU debugger.
1188
1189 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1190
1191 This file is part of GDB.
1192
1193 This program is free software; you can redistribute it and/or modify
1194 it under the terms of the GNU General Public License as published by
1195 the Free Software Foundation; either version 3 of the License, or
1196 (at your option) any later version.
1197
1198 This program is distributed in the hope that it will be useful,
1199 but WITHOUT ANY WARRANTY; without even the implied warranty of
1200 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1201 GNU General Public License for more details.
1202
1203 You should have received a copy of the GNU General Public License
1204 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1205
1206 /* This file was created with the aid of \`\`gdbarch.sh''.
1207
1208 The Bourne shell script \`\`gdbarch.sh'' creates the files
1209 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1210 against the existing \`\`gdbarch.[hc]''. Any differences found
1211 being reported.
1212
1213 If editing this file, please also run gdbarch.sh and merge any
1214 changes into that script. Conversely, when making sweeping changes
1215 to this file, modifying gdbarch.sh and using its output may prove
1216 easier. */
1217
1218 EOF
1219 }
1220
1221 #
1222 # The .h file
1223 #
1224
1225 exec > new-gdbarch.h
1226 copyright
1227 cat <<EOF
1228 #ifndef GDBARCH_H
1229 #define GDBARCH_H
1230
1231 #include "frame.h"
1232
1233 struct floatformat;
1234 struct ui_file;
1235 struct value;
1236 struct objfile;
1237 struct obj_section;
1238 struct minimal_symbol;
1239 struct regcache;
1240 struct reggroup;
1241 struct regset;
1242 struct disassemble_info;
1243 struct target_ops;
1244 struct obstack;
1245 struct bp_target_info;
1246 struct target_desc;
1247 struct objfile;
1248 struct symbol;
1249 struct displaced_step_closure;
1250 struct syscall;
1251 struct agent_expr;
1252 struct axs_value;
1253 struct stap_parse_info;
1254 struct parser_state;
1255 struct ravenscar_arch_ops;
1256 struct elf_internal_linux_prpsinfo;
1257 struct mem_range;
1258 struct syscalls_info;
1259 struct thread_info;
1260
1261 #include "regcache.h"
1262
1263 /* The architecture associated with the inferior through the
1264 connection to the target.
1265
1266 The architecture vector provides some information that is really a
1267 property of the inferior, accessed through a particular target:
1268 ptrace operations; the layout of certain RSP packets; the solib_ops
1269 vector; etc. To differentiate architecture accesses to
1270 per-inferior/target properties from
1271 per-thread/per-frame/per-objfile properties, accesses to
1272 per-inferior/target properties should be made through this
1273 gdbarch. */
1274
1275 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1276 extern struct gdbarch *target_gdbarch (void);
1277
1278 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1279 gdbarch method. */
1280
1281 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1282 (struct objfile *objfile, void *cb_data);
1283
1284 /* Callback type for regset section iterators. The callback usually
1285 invokes the REGSET's supply or collect method, to which it must
1286 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1287 section name, and HUMAN_NAME is used for diagnostic messages.
1288 CB_DATA should have been passed unchanged through the iterator. */
1289
1290 typedef void (iterate_over_regset_sections_cb)
1291 (const char *sect_name, int size, const struct regset *regset,
1292 const char *human_name, void *cb_data);
1293 EOF
1294
1295 # function typedef's
1296 printf "\n"
1297 printf "\n"
1298 printf "/* The following are pre-initialized by GDBARCH. */\n"
1299 function_list | while do_read
1300 do
1301 if class_is_info_p
1302 then
1303 printf "\n"
1304 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1305 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1306 fi
1307 done
1308
1309 # function typedef's
1310 printf "\n"
1311 printf "\n"
1312 printf "/* The following are initialized by the target dependent code. */\n"
1313 function_list | while do_read
1314 do
1315 if [ -n "${comment}" ]
1316 then
1317 echo "${comment}" | sed \
1318 -e '2 s,#,/*,' \
1319 -e '3,$ s,#, ,' \
1320 -e '$ s,$, */,'
1321 fi
1322
1323 if class_is_predicate_p
1324 then
1325 printf "\n"
1326 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1327 fi
1328 if class_is_variable_p
1329 then
1330 printf "\n"
1331 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1332 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1333 fi
1334 if class_is_function_p
1335 then
1336 printf "\n"
1337 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1338 then
1339 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1340 elif class_is_multiarch_p
1341 then
1342 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1343 else
1344 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1345 fi
1346 if [ "x${formal}" = "xvoid" ]
1347 then
1348 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1349 else
1350 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1351 fi
1352 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1353 fi
1354 done
1355
1356 # close it off
1357 cat <<EOF
1358
1359 /* Definition for an unknown syscall, used basically in error-cases. */
1360 #define UNKNOWN_SYSCALL (-1)
1361
1362 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1363
1364
1365 /* Mechanism for co-ordinating the selection of a specific
1366 architecture.
1367
1368 GDB targets (*-tdep.c) can register an interest in a specific
1369 architecture. Other GDB components can register a need to maintain
1370 per-architecture data.
1371
1372 The mechanisms below ensures that there is only a loose connection
1373 between the set-architecture command and the various GDB
1374 components. Each component can independently register their need
1375 to maintain architecture specific data with gdbarch.
1376
1377 Pragmatics:
1378
1379 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1380 didn't scale.
1381
1382 The more traditional mega-struct containing architecture specific
1383 data for all the various GDB components was also considered. Since
1384 GDB is built from a variable number of (fairly independent)
1385 components it was determined that the global aproach was not
1386 applicable. */
1387
1388
1389 /* Register a new architectural family with GDB.
1390
1391 Register support for the specified ARCHITECTURE with GDB. When
1392 gdbarch determines that the specified architecture has been
1393 selected, the corresponding INIT function is called.
1394
1395 --
1396
1397 The INIT function takes two parameters: INFO which contains the
1398 information available to gdbarch about the (possibly new)
1399 architecture; ARCHES which is a list of the previously created
1400 \`\`struct gdbarch'' for this architecture.
1401
1402 The INFO parameter is, as far as possible, be pre-initialized with
1403 information obtained from INFO.ABFD or the global defaults.
1404
1405 The ARCHES parameter is a linked list (sorted most recently used)
1406 of all the previously created architures for this architecture
1407 family. The (possibly NULL) ARCHES->gdbarch can used to access
1408 values from the previously selected architecture for this
1409 architecture family.
1410
1411 The INIT function shall return any of: NULL - indicating that it
1412 doesn't recognize the selected architecture; an existing \`\`struct
1413 gdbarch'' from the ARCHES list - indicating that the new
1414 architecture is just a synonym for an earlier architecture (see
1415 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1416 - that describes the selected architecture (see gdbarch_alloc()).
1417
1418 The DUMP_TDEP function shall print out all target specific values.
1419 Care should be taken to ensure that the function works in both the
1420 multi-arch and non- multi-arch cases. */
1421
1422 struct gdbarch_list
1423 {
1424 struct gdbarch *gdbarch;
1425 struct gdbarch_list *next;
1426 };
1427
1428 struct gdbarch_info
1429 {
1430 /* Use default: NULL (ZERO). */
1431 const struct bfd_arch_info *bfd_arch_info;
1432
1433 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1434 enum bfd_endian byte_order;
1435
1436 enum bfd_endian byte_order_for_code;
1437
1438 /* Use default: NULL (ZERO). */
1439 bfd *abfd;
1440
1441 /* Use default: NULL (ZERO). */
1442 void *tdep_info;
1443
1444 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1445 enum gdb_osabi osabi;
1446
1447 /* Use default: NULL (ZERO). */
1448 const struct target_desc *target_desc;
1449 };
1450
1451 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1452 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1453
1454 /* DEPRECATED - use gdbarch_register() */
1455 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1456
1457 extern void gdbarch_register (enum bfd_architecture architecture,
1458 gdbarch_init_ftype *,
1459 gdbarch_dump_tdep_ftype *);
1460
1461
1462 /* Return a freshly allocated, NULL terminated, array of the valid
1463 architecture names. Since architectures are registered during the
1464 _initialize phase this function only returns useful information
1465 once initialization has been completed. */
1466
1467 extern const char **gdbarch_printable_names (void);
1468
1469
1470 /* Helper function. Search the list of ARCHES for a GDBARCH that
1471 matches the information provided by INFO. */
1472
1473 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1474
1475
1476 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1477 basic initialization using values obtained from the INFO and TDEP
1478 parameters. set_gdbarch_*() functions are called to complete the
1479 initialization of the object. */
1480
1481 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1482
1483
1484 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1485 It is assumed that the caller freeds the \`\`struct
1486 gdbarch_tdep''. */
1487
1488 extern void gdbarch_free (struct gdbarch *);
1489
1490
1491 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1492 obstack. The memory is freed when the corresponding architecture
1493 is also freed. */
1494
1495 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1496 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1497 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1498
1499 /* Duplicate STRING, returning an equivalent string that's allocated on the
1500 obstack associated with GDBARCH. The string is freed when the corresponding
1501 architecture is also freed. */
1502
1503 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1504
1505 /* Helper function. Force an update of the current architecture.
1506
1507 The actual architecture selected is determined by INFO, \`\`(gdb) set
1508 architecture'' et.al., the existing architecture and BFD's default
1509 architecture. INFO should be initialized to zero and then selected
1510 fields should be updated.
1511
1512 Returns non-zero if the update succeeds. */
1513
1514 extern int gdbarch_update_p (struct gdbarch_info info);
1515
1516
1517 /* Helper function. Find an architecture matching info.
1518
1519 INFO should be initialized using gdbarch_info_init, relevant fields
1520 set, and then finished using gdbarch_info_fill.
1521
1522 Returns the corresponding architecture, or NULL if no matching
1523 architecture was found. */
1524
1525 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1526
1527
1528 /* Helper function. Set the target gdbarch to "gdbarch". */
1529
1530 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1531
1532
1533 /* Register per-architecture data-pointer.
1534
1535 Reserve space for a per-architecture data-pointer. An identifier
1536 for the reserved data-pointer is returned. That identifer should
1537 be saved in a local static variable.
1538
1539 Memory for the per-architecture data shall be allocated using
1540 gdbarch_obstack_zalloc. That memory will be deleted when the
1541 corresponding architecture object is deleted.
1542
1543 When a previously created architecture is re-selected, the
1544 per-architecture data-pointer for that previous architecture is
1545 restored. INIT() is not re-called.
1546
1547 Multiple registrarants for any architecture are allowed (and
1548 strongly encouraged). */
1549
1550 struct gdbarch_data;
1551
1552 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1553 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1554 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1555 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1556 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1557 struct gdbarch_data *data,
1558 void *pointer);
1559
1560 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1561
1562
1563 /* Set the dynamic target-system-dependent parameters (architecture,
1564 byte-order, ...) using information found in the BFD. */
1565
1566 extern void set_gdbarch_from_file (bfd *);
1567
1568
1569 /* Initialize the current architecture to the "first" one we find on
1570 our list. */
1571
1572 extern void initialize_current_architecture (void);
1573
1574 /* gdbarch trace variable */
1575 extern unsigned int gdbarch_debug;
1576
1577 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1578
1579 #endif
1580 EOF
1581 exec 1>&2
1582 #../move-if-change new-gdbarch.h gdbarch.h
1583 compare_new gdbarch.h
1584
1585
1586 #
1587 # C file
1588 #
1589
1590 exec > new-gdbarch.c
1591 copyright
1592 cat <<EOF
1593
1594 #include "defs.h"
1595 #include "arch-utils.h"
1596
1597 #include "gdbcmd.h"
1598 #include "inferior.h"
1599 #include "symcat.h"
1600
1601 #include "floatformat.h"
1602 #include "reggroups.h"
1603 #include "osabi.h"
1604 #include "gdb_obstack.h"
1605 #include "observer.h"
1606 #include "regcache.h"
1607 #include "objfiles.h"
1608
1609 /* Static function declarations */
1610
1611 static void alloc_gdbarch_data (struct gdbarch *);
1612
1613 /* Non-zero if we want to trace architecture code. */
1614
1615 #ifndef GDBARCH_DEBUG
1616 #define GDBARCH_DEBUG 0
1617 #endif
1618 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1619 static void
1620 show_gdbarch_debug (struct ui_file *file, int from_tty,
1621 struct cmd_list_element *c, const char *value)
1622 {
1623 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1624 }
1625
1626 static const char *
1627 pformat (const struct floatformat **format)
1628 {
1629 if (format == NULL)
1630 return "(null)";
1631 else
1632 /* Just print out one of them - this is only for diagnostics. */
1633 return format[0]->name;
1634 }
1635
1636 static const char *
1637 pstring (const char *string)
1638 {
1639 if (string == NULL)
1640 return "(null)";
1641 return string;
1642 }
1643
1644 /* Helper function to print a list of strings, represented as "const
1645 char *const *". The list is printed comma-separated. */
1646
1647 static char *
1648 pstring_list (const char *const *list)
1649 {
1650 static char ret[100];
1651 const char *const *p;
1652 size_t offset = 0;
1653
1654 if (list == NULL)
1655 return "(null)";
1656
1657 ret[0] = '\0';
1658 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1659 {
1660 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1661 offset += 2 + s;
1662 }
1663
1664 if (offset > 0)
1665 {
1666 gdb_assert (offset - 2 < sizeof (ret));
1667 ret[offset - 2] = '\0';
1668 }
1669
1670 return ret;
1671 }
1672
1673 EOF
1674
1675 # gdbarch open the gdbarch object
1676 printf "\n"
1677 printf "/* Maintain the struct gdbarch object. */\n"
1678 printf "\n"
1679 printf "struct gdbarch\n"
1680 printf "{\n"
1681 printf " /* Has this architecture been fully initialized? */\n"
1682 printf " int initialized_p;\n"
1683 printf "\n"
1684 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1685 printf " struct obstack *obstack;\n"
1686 printf "\n"
1687 printf " /* basic architectural information. */\n"
1688 function_list | while do_read
1689 do
1690 if class_is_info_p
1691 then
1692 printf " ${returntype} ${function};\n"
1693 fi
1694 done
1695 printf "\n"
1696 printf " /* target specific vector. */\n"
1697 printf " struct gdbarch_tdep *tdep;\n"
1698 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1699 printf "\n"
1700 printf " /* per-architecture data-pointers. */\n"
1701 printf " unsigned nr_data;\n"
1702 printf " void **data;\n"
1703 printf "\n"
1704 cat <<EOF
1705 /* Multi-arch values.
1706
1707 When extending this structure you must:
1708
1709 Add the field below.
1710
1711 Declare set/get functions and define the corresponding
1712 macro in gdbarch.h.
1713
1714 gdbarch_alloc(): If zero/NULL is not a suitable default,
1715 initialize the new field.
1716
1717 verify_gdbarch(): Confirm that the target updated the field
1718 correctly.
1719
1720 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1721 field is dumped out
1722
1723 get_gdbarch(): Implement the set/get functions (probably using
1724 the macro's as shortcuts).
1725
1726 */
1727
1728 EOF
1729 function_list | while do_read
1730 do
1731 if class_is_variable_p
1732 then
1733 printf " ${returntype} ${function};\n"
1734 elif class_is_function_p
1735 then
1736 printf " gdbarch_${function}_ftype *${function};\n"
1737 fi
1738 done
1739 printf "};\n"
1740
1741 # Create a new gdbarch struct
1742 cat <<EOF
1743
1744 /* Create a new \`\`struct gdbarch'' based on information provided by
1745 \`\`struct gdbarch_info''. */
1746 EOF
1747 printf "\n"
1748 cat <<EOF
1749 struct gdbarch *
1750 gdbarch_alloc (const struct gdbarch_info *info,
1751 struct gdbarch_tdep *tdep)
1752 {
1753 struct gdbarch *gdbarch;
1754
1755 /* Create an obstack for allocating all the per-architecture memory,
1756 then use that to allocate the architecture vector. */
1757 struct obstack *obstack = XNEW (struct obstack);
1758 obstack_init (obstack);
1759 gdbarch = XOBNEW (obstack, struct gdbarch);
1760 memset (gdbarch, 0, sizeof (*gdbarch));
1761 gdbarch->obstack = obstack;
1762
1763 alloc_gdbarch_data (gdbarch);
1764
1765 gdbarch->tdep = tdep;
1766 EOF
1767 printf "\n"
1768 function_list | while do_read
1769 do
1770 if class_is_info_p
1771 then
1772 printf " gdbarch->${function} = info->${function};\n"
1773 fi
1774 done
1775 printf "\n"
1776 printf " /* Force the explicit initialization of these. */\n"
1777 function_list | while do_read
1778 do
1779 if class_is_function_p || class_is_variable_p
1780 then
1781 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1782 then
1783 printf " gdbarch->${function} = ${predefault};\n"
1784 fi
1785 fi
1786 done
1787 cat <<EOF
1788 /* gdbarch_alloc() */
1789
1790 return gdbarch;
1791 }
1792 EOF
1793
1794 # Free a gdbarch struct.
1795 printf "\n"
1796 printf "\n"
1797 cat <<EOF
1798 /* Allocate extra space using the per-architecture obstack. */
1799
1800 void *
1801 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1802 {
1803 void *data = obstack_alloc (arch->obstack, size);
1804
1805 memset (data, 0, size);
1806 return data;
1807 }
1808
1809 /* See gdbarch.h. */
1810
1811 char *
1812 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1813 {
1814 return obstack_strdup (arch->obstack, string);
1815 }
1816
1817
1818 /* Free a gdbarch struct. This should never happen in normal
1819 operation --- once you've created a gdbarch, you keep it around.
1820 However, if an architecture's init function encounters an error
1821 building the structure, it may need to clean up a partially
1822 constructed gdbarch. */
1823
1824 void
1825 gdbarch_free (struct gdbarch *arch)
1826 {
1827 struct obstack *obstack;
1828
1829 gdb_assert (arch != NULL);
1830 gdb_assert (!arch->initialized_p);
1831 obstack = arch->obstack;
1832 obstack_free (obstack, 0); /* Includes the ARCH. */
1833 xfree (obstack);
1834 }
1835 EOF
1836
1837 # verify a new architecture
1838 cat <<EOF
1839
1840
1841 /* Ensure that all values in a GDBARCH are reasonable. */
1842
1843 static void
1844 verify_gdbarch (struct gdbarch *gdbarch)
1845 {
1846 struct ui_file *log;
1847 struct cleanup *cleanups;
1848 long length;
1849 char *buf;
1850
1851 log = mem_fileopen ();
1852 cleanups = make_cleanup_ui_file_delete (log);
1853 /* fundamental */
1854 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1855 fprintf_unfiltered (log, "\n\tbyte-order");
1856 if (gdbarch->bfd_arch_info == NULL)
1857 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1858 /* Check those that need to be defined for the given multi-arch level. */
1859 EOF
1860 function_list | while do_read
1861 do
1862 if class_is_function_p || class_is_variable_p
1863 then
1864 if [ "x${invalid_p}" = "x0" ]
1865 then
1866 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1867 elif class_is_predicate_p
1868 then
1869 printf " /* Skip verify of ${function}, has predicate. */\n"
1870 # FIXME: See do_read for potential simplification
1871 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1872 then
1873 printf " if (${invalid_p})\n"
1874 printf " gdbarch->${function} = ${postdefault};\n"
1875 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1876 then
1877 printf " if (gdbarch->${function} == ${predefault})\n"
1878 printf " gdbarch->${function} = ${postdefault};\n"
1879 elif [ -n "${postdefault}" ]
1880 then
1881 printf " if (gdbarch->${function} == 0)\n"
1882 printf " gdbarch->${function} = ${postdefault};\n"
1883 elif [ -n "${invalid_p}" ]
1884 then
1885 printf " if (${invalid_p})\n"
1886 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1887 elif [ -n "${predefault}" ]
1888 then
1889 printf " if (gdbarch->${function} == ${predefault})\n"
1890 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1891 fi
1892 fi
1893 done
1894 cat <<EOF
1895 buf = ui_file_xstrdup (log, &length);
1896 make_cleanup (xfree, buf);
1897 if (length > 0)
1898 internal_error (__FILE__, __LINE__,
1899 _("verify_gdbarch: the following are invalid ...%s"),
1900 buf);
1901 do_cleanups (cleanups);
1902 }
1903 EOF
1904
1905 # dump the structure
1906 printf "\n"
1907 printf "\n"
1908 cat <<EOF
1909 /* Print out the details of the current architecture. */
1910
1911 void
1912 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1913 {
1914 const char *gdb_nm_file = "<not-defined>";
1915
1916 #if defined (GDB_NM_FILE)
1917 gdb_nm_file = GDB_NM_FILE;
1918 #endif
1919 fprintf_unfiltered (file,
1920 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1921 gdb_nm_file);
1922 EOF
1923 function_list | sort -t: -k 3 | while do_read
1924 do
1925 # First the predicate
1926 if class_is_predicate_p
1927 then
1928 printf " fprintf_unfiltered (file,\n"
1929 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1930 printf " gdbarch_${function}_p (gdbarch));\n"
1931 fi
1932 # Print the corresponding value.
1933 if class_is_function_p
1934 then
1935 printf " fprintf_unfiltered (file,\n"
1936 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1937 printf " host_address_to_string (gdbarch->${function}));\n"
1938 else
1939 # It is a variable
1940 case "${print}:${returntype}" in
1941 :CORE_ADDR )
1942 fmt="%s"
1943 print="core_addr_to_string_nz (gdbarch->${function})"
1944 ;;
1945 :* )
1946 fmt="%s"
1947 print="plongest (gdbarch->${function})"
1948 ;;
1949 * )
1950 fmt="%s"
1951 ;;
1952 esac
1953 printf " fprintf_unfiltered (file,\n"
1954 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1955 printf " ${print});\n"
1956 fi
1957 done
1958 cat <<EOF
1959 if (gdbarch->dump_tdep != NULL)
1960 gdbarch->dump_tdep (gdbarch, file);
1961 }
1962 EOF
1963
1964
1965 # GET/SET
1966 printf "\n"
1967 cat <<EOF
1968 struct gdbarch_tdep *
1969 gdbarch_tdep (struct gdbarch *gdbarch)
1970 {
1971 if (gdbarch_debug >= 2)
1972 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1973 return gdbarch->tdep;
1974 }
1975 EOF
1976 printf "\n"
1977 function_list | while do_read
1978 do
1979 if class_is_predicate_p
1980 then
1981 printf "\n"
1982 printf "int\n"
1983 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1984 printf "{\n"
1985 printf " gdb_assert (gdbarch != NULL);\n"
1986 printf " return ${predicate};\n"
1987 printf "}\n"
1988 fi
1989 if class_is_function_p
1990 then
1991 printf "\n"
1992 printf "${returntype}\n"
1993 if [ "x${formal}" = "xvoid" ]
1994 then
1995 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1996 else
1997 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1998 fi
1999 printf "{\n"
2000 printf " gdb_assert (gdbarch != NULL);\n"
2001 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2002 if class_is_predicate_p && test -n "${predefault}"
2003 then
2004 # Allow a call to a function with a predicate.
2005 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2006 fi
2007 printf " if (gdbarch_debug >= 2)\n"
2008 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2009 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2010 then
2011 if class_is_multiarch_p
2012 then
2013 params="gdbarch"
2014 else
2015 params=""
2016 fi
2017 else
2018 if class_is_multiarch_p
2019 then
2020 params="gdbarch, ${actual}"
2021 else
2022 params="${actual}"
2023 fi
2024 fi
2025 if [ "x${returntype}" = "xvoid" ]
2026 then
2027 printf " gdbarch->${function} (${params});\n"
2028 else
2029 printf " return gdbarch->${function} (${params});\n"
2030 fi
2031 printf "}\n"
2032 printf "\n"
2033 printf "void\n"
2034 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2035 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2036 printf "{\n"
2037 printf " gdbarch->${function} = ${function};\n"
2038 printf "}\n"
2039 elif class_is_variable_p
2040 then
2041 printf "\n"
2042 printf "${returntype}\n"
2043 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2044 printf "{\n"
2045 printf " gdb_assert (gdbarch != NULL);\n"
2046 if [ "x${invalid_p}" = "x0" ]
2047 then
2048 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2049 elif [ -n "${invalid_p}" ]
2050 then
2051 printf " /* Check variable is valid. */\n"
2052 printf " gdb_assert (!(${invalid_p}));\n"
2053 elif [ -n "${predefault}" ]
2054 then
2055 printf " /* Check variable changed from pre-default. */\n"
2056 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2057 fi
2058 printf " if (gdbarch_debug >= 2)\n"
2059 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2060 printf " return gdbarch->${function};\n"
2061 printf "}\n"
2062 printf "\n"
2063 printf "void\n"
2064 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2065 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2066 printf "{\n"
2067 printf " gdbarch->${function} = ${function};\n"
2068 printf "}\n"
2069 elif class_is_info_p
2070 then
2071 printf "\n"
2072 printf "${returntype}\n"
2073 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2074 printf "{\n"
2075 printf " gdb_assert (gdbarch != NULL);\n"
2076 printf " if (gdbarch_debug >= 2)\n"
2077 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2078 printf " return gdbarch->${function};\n"
2079 printf "}\n"
2080 fi
2081 done
2082
2083 # All the trailing guff
2084 cat <<EOF
2085
2086
2087 /* Keep a registry of per-architecture data-pointers required by GDB
2088 modules. */
2089
2090 struct gdbarch_data
2091 {
2092 unsigned index;
2093 int init_p;
2094 gdbarch_data_pre_init_ftype *pre_init;
2095 gdbarch_data_post_init_ftype *post_init;
2096 };
2097
2098 struct gdbarch_data_registration
2099 {
2100 struct gdbarch_data *data;
2101 struct gdbarch_data_registration *next;
2102 };
2103
2104 struct gdbarch_data_registry
2105 {
2106 unsigned nr;
2107 struct gdbarch_data_registration *registrations;
2108 };
2109
2110 struct gdbarch_data_registry gdbarch_data_registry =
2111 {
2112 0, NULL,
2113 };
2114
2115 static struct gdbarch_data *
2116 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2117 gdbarch_data_post_init_ftype *post_init)
2118 {
2119 struct gdbarch_data_registration **curr;
2120
2121 /* Append the new registration. */
2122 for (curr = &gdbarch_data_registry.registrations;
2123 (*curr) != NULL;
2124 curr = &(*curr)->next);
2125 (*curr) = XNEW (struct gdbarch_data_registration);
2126 (*curr)->next = NULL;
2127 (*curr)->data = XNEW (struct gdbarch_data);
2128 (*curr)->data->index = gdbarch_data_registry.nr++;
2129 (*curr)->data->pre_init = pre_init;
2130 (*curr)->data->post_init = post_init;
2131 (*curr)->data->init_p = 1;
2132 return (*curr)->data;
2133 }
2134
2135 struct gdbarch_data *
2136 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2137 {
2138 return gdbarch_data_register (pre_init, NULL);
2139 }
2140
2141 struct gdbarch_data *
2142 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2143 {
2144 return gdbarch_data_register (NULL, post_init);
2145 }
2146
2147 /* Create/delete the gdbarch data vector. */
2148
2149 static void
2150 alloc_gdbarch_data (struct gdbarch *gdbarch)
2151 {
2152 gdb_assert (gdbarch->data == NULL);
2153 gdbarch->nr_data = gdbarch_data_registry.nr;
2154 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2155 }
2156
2157 /* Initialize the current value of the specified per-architecture
2158 data-pointer. */
2159
2160 void
2161 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2162 struct gdbarch_data *data,
2163 void *pointer)
2164 {
2165 gdb_assert (data->index < gdbarch->nr_data);
2166 gdb_assert (gdbarch->data[data->index] == NULL);
2167 gdb_assert (data->pre_init == NULL);
2168 gdbarch->data[data->index] = pointer;
2169 }
2170
2171 /* Return the current value of the specified per-architecture
2172 data-pointer. */
2173
2174 void *
2175 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2176 {
2177 gdb_assert (data->index < gdbarch->nr_data);
2178 if (gdbarch->data[data->index] == NULL)
2179 {
2180 /* The data-pointer isn't initialized, call init() to get a
2181 value. */
2182 if (data->pre_init != NULL)
2183 /* Mid architecture creation: pass just the obstack, and not
2184 the entire architecture, as that way it isn't possible for
2185 pre-init code to refer to undefined architecture
2186 fields. */
2187 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2188 else if (gdbarch->initialized_p
2189 && data->post_init != NULL)
2190 /* Post architecture creation: pass the entire architecture
2191 (as all fields are valid), but be careful to also detect
2192 recursive references. */
2193 {
2194 gdb_assert (data->init_p);
2195 data->init_p = 0;
2196 gdbarch->data[data->index] = data->post_init (gdbarch);
2197 data->init_p = 1;
2198 }
2199 else
2200 /* The architecture initialization hasn't completed - punt -
2201 hope that the caller knows what they are doing. Once
2202 deprecated_set_gdbarch_data has been initialized, this can be
2203 changed to an internal error. */
2204 return NULL;
2205 gdb_assert (gdbarch->data[data->index] != NULL);
2206 }
2207 return gdbarch->data[data->index];
2208 }
2209
2210
2211 /* Keep a registry of the architectures known by GDB. */
2212
2213 struct gdbarch_registration
2214 {
2215 enum bfd_architecture bfd_architecture;
2216 gdbarch_init_ftype *init;
2217 gdbarch_dump_tdep_ftype *dump_tdep;
2218 struct gdbarch_list *arches;
2219 struct gdbarch_registration *next;
2220 };
2221
2222 static struct gdbarch_registration *gdbarch_registry = NULL;
2223
2224 static void
2225 append_name (const char ***buf, int *nr, const char *name)
2226 {
2227 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2228 (*buf)[*nr] = name;
2229 *nr += 1;
2230 }
2231
2232 const char **
2233 gdbarch_printable_names (void)
2234 {
2235 /* Accumulate a list of names based on the registed list of
2236 architectures. */
2237 int nr_arches = 0;
2238 const char **arches = NULL;
2239 struct gdbarch_registration *rego;
2240
2241 for (rego = gdbarch_registry;
2242 rego != NULL;
2243 rego = rego->next)
2244 {
2245 const struct bfd_arch_info *ap;
2246 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2247 if (ap == NULL)
2248 internal_error (__FILE__, __LINE__,
2249 _("gdbarch_architecture_names: multi-arch unknown"));
2250 do
2251 {
2252 append_name (&arches, &nr_arches, ap->printable_name);
2253 ap = ap->next;
2254 }
2255 while (ap != NULL);
2256 }
2257 append_name (&arches, &nr_arches, NULL);
2258 return arches;
2259 }
2260
2261
2262 void
2263 gdbarch_register (enum bfd_architecture bfd_architecture,
2264 gdbarch_init_ftype *init,
2265 gdbarch_dump_tdep_ftype *dump_tdep)
2266 {
2267 struct gdbarch_registration **curr;
2268 const struct bfd_arch_info *bfd_arch_info;
2269
2270 /* Check that BFD recognizes this architecture */
2271 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2272 if (bfd_arch_info == NULL)
2273 {
2274 internal_error (__FILE__, __LINE__,
2275 _("gdbarch: Attempt to register "
2276 "unknown architecture (%d)"),
2277 bfd_architecture);
2278 }
2279 /* Check that we haven't seen this architecture before. */
2280 for (curr = &gdbarch_registry;
2281 (*curr) != NULL;
2282 curr = &(*curr)->next)
2283 {
2284 if (bfd_architecture == (*curr)->bfd_architecture)
2285 internal_error (__FILE__, __LINE__,
2286 _("gdbarch: Duplicate registration "
2287 "of architecture (%s)"),
2288 bfd_arch_info->printable_name);
2289 }
2290 /* log it */
2291 if (gdbarch_debug)
2292 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2293 bfd_arch_info->printable_name,
2294 host_address_to_string (init));
2295 /* Append it */
2296 (*curr) = XNEW (struct gdbarch_registration);
2297 (*curr)->bfd_architecture = bfd_architecture;
2298 (*curr)->init = init;
2299 (*curr)->dump_tdep = dump_tdep;
2300 (*curr)->arches = NULL;
2301 (*curr)->next = NULL;
2302 }
2303
2304 void
2305 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2306 gdbarch_init_ftype *init)
2307 {
2308 gdbarch_register (bfd_architecture, init, NULL);
2309 }
2310
2311
2312 /* Look for an architecture using gdbarch_info. */
2313
2314 struct gdbarch_list *
2315 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2316 const struct gdbarch_info *info)
2317 {
2318 for (; arches != NULL; arches = arches->next)
2319 {
2320 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2321 continue;
2322 if (info->byte_order != arches->gdbarch->byte_order)
2323 continue;
2324 if (info->osabi != arches->gdbarch->osabi)
2325 continue;
2326 if (info->target_desc != arches->gdbarch->target_desc)
2327 continue;
2328 return arches;
2329 }
2330 return NULL;
2331 }
2332
2333
2334 /* Find an architecture that matches the specified INFO. Create a new
2335 architecture if needed. Return that new architecture. */
2336
2337 struct gdbarch *
2338 gdbarch_find_by_info (struct gdbarch_info info)
2339 {
2340 struct gdbarch *new_gdbarch;
2341 struct gdbarch_registration *rego;
2342
2343 /* Fill in missing parts of the INFO struct using a number of
2344 sources: "set ..."; INFOabfd supplied; and the global
2345 defaults. */
2346 gdbarch_info_fill (&info);
2347
2348 /* Must have found some sort of architecture. */
2349 gdb_assert (info.bfd_arch_info != NULL);
2350
2351 if (gdbarch_debug)
2352 {
2353 fprintf_unfiltered (gdb_stdlog,
2354 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2355 (info.bfd_arch_info != NULL
2356 ? info.bfd_arch_info->printable_name
2357 : "(null)"));
2358 fprintf_unfiltered (gdb_stdlog,
2359 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2360 info.byte_order,
2361 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2362 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2363 : "default"));
2364 fprintf_unfiltered (gdb_stdlog,
2365 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2366 info.osabi, gdbarch_osabi_name (info.osabi));
2367 fprintf_unfiltered (gdb_stdlog,
2368 "gdbarch_find_by_info: info.abfd %s\n",
2369 host_address_to_string (info.abfd));
2370 fprintf_unfiltered (gdb_stdlog,
2371 "gdbarch_find_by_info: info.tdep_info %s\n",
2372 host_address_to_string (info.tdep_info));
2373 }
2374
2375 /* Find the tdep code that knows about this architecture. */
2376 for (rego = gdbarch_registry;
2377 rego != NULL;
2378 rego = rego->next)
2379 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2380 break;
2381 if (rego == NULL)
2382 {
2383 if (gdbarch_debug)
2384 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2385 "No matching architecture\n");
2386 return 0;
2387 }
2388
2389 /* Ask the tdep code for an architecture that matches "info". */
2390 new_gdbarch = rego->init (info, rego->arches);
2391
2392 /* Did the tdep code like it? No. Reject the change and revert to
2393 the old architecture. */
2394 if (new_gdbarch == NULL)
2395 {
2396 if (gdbarch_debug)
2397 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2398 "Target rejected architecture\n");
2399 return NULL;
2400 }
2401
2402 /* Is this a pre-existing architecture (as determined by already
2403 being initialized)? Move it to the front of the architecture
2404 list (keeping the list sorted Most Recently Used). */
2405 if (new_gdbarch->initialized_p)
2406 {
2407 struct gdbarch_list **list;
2408 struct gdbarch_list *self;
2409 if (gdbarch_debug)
2410 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2411 "Previous architecture %s (%s) selected\n",
2412 host_address_to_string (new_gdbarch),
2413 new_gdbarch->bfd_arch_info->printable_name);
2414 /* Find the existing arch in the list. */
2415 for (list = &rego->arches;
2416 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2417 list = &(*list)->next);
2418 /* It had better be in the list of architectures. */
2419 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2420 /* Unlink SELF. */
2421 self = (*list);
2422 (*list) = self->next;
2423 /* Insert SELF at the front. */
2424 self->next = rego->arches;
2425 rego->arches = self;
2426 /* Return it. */
2427 return new_gdbarch;
2428 }
2429
2430 /* It's a new architecture. */
2431 if (gdbarch_debug)
2432 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2433 "New architecture %s (%s) selected\n",
2434 host_address_to_string (new_gdbarch),
2435 new_gdbarch->bfd_arch_info->printable_name);
2436
2437 /* Insert the new architecture into the front of the architecture
2438 list (keep the list sorted Most Recently Used). */
2439 {
2440 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2441 self->next = rego->arches;
2442 self->gdbarch = new_gdbarch;
2443 rego->arches = self;
2444 }
2445
2446 /* Check that the newly installed architecture is valid. Plug in
2447 any post init values. */
2448 new_gdbarch->dump_tdep = rego->dump_tdep;
2449 verify_gdbarch (new_gdbarch);
2450 new_gdbarch->initialized_p = 1;
2451
2452 if (gdbarch_debug)
2453 gdbarch_dump (new_gdbarch, gdb_stdlog);
2454
2455 return new_gdbarch;
2456 }
2457
2458 /* Make the specified architecture current. */
2459
2460 void
2461 set_target_gdbarch (struct gdbarch *new_gdbarch)
2462 {
2463 gdb_assert (new_gdbarch != NULL);
2464 gdb_assert (new_gdbarch->initialized_p);
2465 current_inferior ()->gdbarch = new_gdbarch;
2466 observer_notify_architecture_changed (new_gdbarch);
2467 registers_changed ();
2468 }
2469
2470 /* Return the current inferior's arch. */
2471
2472 struct gdbarch *
2473 target_gdbarch (void)
2474 {
2475 return current_inferior ()->gdbarch;
2476 }
2477
2478 extern void _initialize_gdbarch (void);
2479
2480 void
2481 _initialize_gdbarch (void)
2482 {
2483 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2484 Set architecture debugging."), _("\\
2485 Show architecture debugging."), _("\\
2486 When non-zero, architecture debugging is enabled."),
2487 NULL,
2488 show_gdbarch_debug,
2489 &setdebuglist, &showdebuglist);
2490 }
2491 EOF
2492
2493 # close things off
2494 exec 1>&2
2495 #../move-if-change new-gdbarch.c gdbarch.c
2496 compare_new gdbarch.c
This page took 0.095932 seconds and 4 git commands to generate.