61d07816216f7617a4a365063a357c0375a60198
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Return the appropriate register set for a core file section with
655 # name SECT_NAME and size SECT_SIZE.
656 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
657
658 # Supported register notes in a core file.
659 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
661 # Create core file notes
662 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
664 # The elfcore writer hook to use to write Linux prpsinfo notes to core
665 # files. Most Linux architectures use the same prpsinfo32 or
666 # prpsinfo64 layouts, and so won't need to provide this hook, as we
667 # call the Linux generic routines in bfd to write prpsinfo notes by
668 # default.
669 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
671 # Find core file memory regions
672 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
674 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675 # core file into buffer READBUF with length LEN. Return the number of bytes read
676 # (zero indicates failure).
677 # failed, otherwise, return the red length of READBUF.
678 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
679
680 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681 # libraries list from core file into buffer READBUF with length LEN.
682 # Return the number of bytes read (zero indicates failure).
683 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
684
685 # How the core target converts a PTID from a core file to a string.
686 M:char *:core_pid_to_str:ptid_t ptid:ptid
687
688 # BFD target to use when generating a core file.
689 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
690
691 # If the elements of C++ vtables are in-place function descriptors rather
692 # than normal function pointers (which may point to code or a descriptor),
693 # set this to one.
694 v:int:vtable_function_descriptors:::0:0::0
695
696 # Set if the least significant bit of the delta is used instead of the least
697 # significant bit of the pfn for pointers to virtual member functions.
698 v:int:vbit_in_delta:::0:0::0
699
700 # Advance PC to next instruction in order to skip a permanent breakpoint.
701 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
702
703 # The maximum length of an instruction on this architecture in bytes.
704 V:ULONGEST:max_insn_length:::0:0
705
706 # Copy the instruction at FROM to TO, and make any adjustments
707 # necessary to single-step it at that address.
708 #
709 # REGS holds the state the thread's registers will have before
710 # executing the copied instruction; the PC in REGS will refer to FROM,
711 # not the copy at TO. The caller should update it to point at TO later.
712 #
713 # Return a pointer to data of the architecture's choice to be passed
714 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715 # the instruction's effects have been completely simulated, with the
716 # resulting state written back to REGS.
717 #
718 # For a general explanation of displaced stepping and how GDB uses it,
719 # see the comments in infrun.c.
720 #
721 # The TO area is only guaranteed to have space for
722 # gdbarch_max_insn_length (arch) bytes, so this function must not
723 # write more bytes than that to that area.
724 #
725 # If you do not provide this function, GDB assumes that the
726 # architecture does not support displaced stepping.
727 #
728 # If your architecture doesn't need to adjust instructions before
729 # single-stepping them, consider using simple_displaced_step_copy_insn
730 # here.
731 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
733 # Return true if GDB should use hardware single-stepping to execute
734 # the displaced instruction identified by CLOSURE. If false,
735 # GDB will simply restart execution at the displaced instruction
736 # location, and it is up to the target to ensure GDB will receive
737 # control again (e.g. by placing a software breakpoint instruction
738 # into the displaced instruction buffer).
739 #
740 # The default implementation returns false on all targets that
741 # provide a gdbarch_software_single_step routine, and true otherwise.
742 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
744 # Fix up the state resulting from successfully single-stepping a
745 # displaced instruction, to give the result we would have gotten from
746 # stepping the instruction in its original location.
747 #
748 # REGS is the register state resulting from single-stepping the
749 # displaced instruction.
750 #
751 # CLOSURE is the result from the matching call to
752 # gdbarch_displaced_step_copy_insn.
753 #
754 # If you provide gdbarch_displaced_step_copy_insn.but not this
755 # function, then GDB assumes that no fixup is needed after
756 # single-stepping the instruction.
757 #
758 # For a general explanation of displaced stepping and how GDB uses it,
759 # see the comments in infrun.c.
760 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762 # Free a closure returned by gdbarch_displaced_step_copy_insn.
763 #
764 # If you provide gdbarch_displaced_step_copy_insn, you must provide
765 # this function as well.
766 #
767 # If your architecture uses closures that don't need to be freed, then
768 # you can use simple_displaced_step_free_closure here.
769 #
770 # For a general explanation of displaced stepping and how GDB uses it,
771 # see the comments in infrun.c.
772 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774 # Return the address of an appropriate place to put displaced
775 # instructions while we step over them. There need only be one such
776 # place, since we're only stepping one thread over a breakpoint at a
777 # time.
778 #
779 # For a general explanation of displaced stepping and how GDB uses it,
780 # see the comments in infrun.c.
781 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
783 # Relocate an instruction to execute at a different address. OLDLOC
784 # is the address in the inferior memory where the instruction to
785 # relocate is currently at. On input, TO points to the destination
786 # where we want the instruction to be copied (and possibly adjusted)
787 # to. On output, it points to one past the end of the resulting
788 # instruction(s). The effect of executing the instruction at TO shall
789 # be the same as if executing it at FROM. For example, call
790 # instructions that implicitly push the return address on the stack
791 # should be adjusted to return to the instruction after OLDLOC;
792 # relative branches, and other PC-relative instructions need the
793 # offset adjusted; etc.
794 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
796 # Refresh overlay mapped state for section OSECT.
797 F:void:overlay_update:struct obj_section *osect:osect
798
799 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
800
801 # Handle special encoding of static variables in stabs debug info.
802 F:const char *:static_transform_name:const char *name:name
803 # Set if the address in N_SO or N_FUN stabs may be zero.
804 v:int:sofun_address_maybe_missing:::0:0::0
805
806 # Parse the instruction at ADDR storing in the record execution log
807 # the registers REGCACHE and memory ranges that will be affected when
808 # the instruction executes, along with their current values.
809 # Return -1 if something goes wrong, 0 otherwise.
810 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
812 # Save process state after a signal.
813 # Return -1 if something goes wrong, 0 otherwise.
814 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
815
816 # Signal translation: translate inferior's signal (target's) number
817 # into GDB's representation. The implementation of this method must
818 # be host independent. IOW, don't rely on symbols of the NAT_FILE
819 # header (the nm-*.h files), the host <signal.h> header, or similar
820 # headers. This is mainly used when cross-debugging core files ---
821 # "Live" targets hide the translation behind the target interface
822 # (target_wait, target_resume, etc.).
823 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
824
825 # Signal translation: translate the GDB's internal signal number into
826 # the inferior's signal (target's) representation. The implementation
827 # of this method must be host independent. IOW, don't rely on symbols
828 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829 # header, or similar headers.
830 # Return the target signal number if found, or -1 if the GDB internal
831 # signal number is invalid.
832 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
834 # Extra signal info inspection.
835 #
836 # Return a type suitable to inspect extra signal information.
837 M:struct type *:get_siginfo_type:void:
838
839 # Record architecture-specific information from the symbol table.
840 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
841
842 # Function for the 'catch syscall' feature.
843
844 # Get architecture-specific system calls information from registers.
845 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
847 # SystemTap related fields and functions.
848
849 # A NULL-terminated array of prefixes used to mark an integer constant
850 # on the architecture's assembly.
851 # For example, on x86 integer constants are written as:
852 #
853 # \$10 ;; integer constant 10
854 #
855 # in this case, this prefix would be the character \`\$\'.
856 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
857
858 # A NULL-terminated array of suffixes used to mark an integer constant
859 # on the architecture's assembly.
860 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
861
862 # A NULL-terminated array of prefixes used to mark a register name on
863 # the architecture's assembly.
864 # For example, on x86 the register name is written as:
865 #
866 # \%eax ;; register eax
867 #
868 # in this case, this prefix would be the character \`\%\'.
869 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
870
871 # A NULL-terminated array of suffixes used to mark a register name on
872 # the architecture's assembly.
873 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
874
875 # A NULL-terminated array of prefixes used to mark a register
876 # indirection on the architecture's assembly.
877 # For example, on x86 the register indirection is written as:
878 #
879 # \(\%eax\) ;; indirecting eax
880 #
881 # in this case, this prefix would be the charater \`\(\'.
882 #
883 # Please note that we use the indirection prefix also for register
884 # displacement, e.g., \`4\(\%eax\)\' on x86.
885 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
886
887 # A NULL-terminated array of suffixes used to mark a register
888 # indirection on the architecture's assembly.
889 # For example, on x86 the register indirection is written as:
890 #
891 # \(\%eax\) ;; indirecting eax
892 #
893 # in this case, this prefix would be the charater \`\)\'.
894 #
895 # Please note that we use the indirection suffix also for register
896 # displacement, e.g., \`4\(\%eax\)\' on x86.
897 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
898
899 # Prefix(es) used to name a register using GDB's nomenclature.
900 #
901 # For example, on PPC a register is represented by a number in the assembly
902 # language (e.g., \`10\' is the 10th general-purpose register). However,
903 # inside GDB this same register has an \`r\' appended to its name, so the 10th
904 # register would be represented as \`r10\' internally.
905 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
906
907 # Suffix used to name a register using GDB's nomenclature.
908 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
909
910 # Check if S is a single operand.
911 #
912 # Single operands can be:
913 # \- Literal integers, e.g. \`\$10\' on x86
914 # \- Register access, e.g. \`\%eax\' on x86
915 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
916 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917 #
918 # This function should check for these patterns on the string
919 # and return 1 if some were found, or zero otherwise. Please try to match
920 # as much info as you can from the string, i.e., if you have to match
921 # something like \`\(\%\', do not match just the \`\(\'.
922 M:int:stap_is_single_operand:const char *s:s
923
924 # Function used to handle a "special case" in the parser.
925 #
926 # A "special case" is considered to be an unknown token, i.e., a token
927 # that the parser does not know how to parse. A good example of special
928 # case would be ARM's register displacement syntax:
929 #
930 # [R0, #4] ;; displacing R0 by 4
931 #
932 # Since the parser assumes that a register displacement is of the form:
933 #
934 # <number> <indirection_prefix> <register_name> <indirection_suffix>
935 #
936 # it means that it will not be able to recognize and parse this odd syntax.
937 # Therefore, we should add a special case function that will handle this token.
938 #
939 # This function should generate the proper expression form of the expression
940 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941 # and so on). It should also return 1 if the parsing was successful, or zero
942 # if the token was not recognized as a special token (in this case, returning
943 # zero means that the special parser is deferring the parsing to the generic
944 # parser), and should advance the buffer pointer (p->arg).
945 M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
948 # True if the list of shared libraries is one and only for all
949 # processes, as opposed to a list of shared libraries per inferior.
950 # This usually means that all processes, although may or may not share
951 # an address space, will see the same set of symbols at the same
952 # addresses.
953 v:int:has_global_solist:::0:0::0
954
955 # On some targets, even though each inferior has its own private
956 # address space, the debug interface takes care of making breakpoints
957 # visible to all address spaces automatically. For such cases,
958 # this property should be set to true.
959 v:int:has_global_breakpoints:::0:0::0
960
961 # True if inferiors share an address space (e.g., uClinux).
962 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
963
964 # True if a fast tracepoint can be set at an address.
965 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
966
967 # Return the "auto" target charset.
968 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969 # Return the "auto" target wide charset.
970 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
971
972 # If non-empty, this is a file extension that will be opened in place
973 # of the file extension reported by the shared library list.
974 #
975 # This is most useful for toolchains that use a post-linker tool,
976 # where the names of the files run on the target differ in extension
977 # compared to the names of the files GDB should load for debug info.
978 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
979
980 # If true, the target OS has DOS-based file system semantics. That
981 # is, absolute paths include a drive name, and the backslash is
982 # considered a directory separator.
983 v:int:has_dos_based_file_system:::0:0::0
984
985 # Generate bytecodes to collect the return address in a frame.
986 # Since the bytecodes run on the target, possibly with GDB not even
987 # connected, the full unwinding machinery is not available, and
988 # typically this function will issue bytecodes for one or more likely
989 # places that the return address may be found.
990 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
992 # Implement the "info proc" command.
993 M:void:info_proc:const char *args, enum info_proc_what what:args, what
994
995 # Implement the "info proc" command for core files. Noe that there
996 # are two "info_proc"-like methods on gdbarch -- one for core files,
997 # one for live targets.
998 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
999
1000 # Iterate over all objfiles in the order that makes the most sense
1001 # for the architecture to make global symbol searches.
1002 #
1003 # CB is a callback function where OBJFILE is the objfile to be searched,
1004 # and CB_DATA a pointer to user-defined data (the same data that is passed
1005 # when calling this gdbarch method). The iteration stops if this function
1006 # returns nonzero.
1007 #
1008 # CB_DATA is a pointer to some user-defined data to be passed to
1009 # the callback.
1010 #
1011 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012 # inspected when the symbol search was requested.
1013 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
1015 # Ravenscar arch-dependent ops.
1016 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1017
1018 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1026
1027 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1028 # Return 0 if *READPTR is already at the end of the buffer.
1029 # Return -1 if there is insufficient buffer for a whole entry.
1030 # Return 1 if an entry was read into *TYPEP and *VALP.
1031 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1032 EOF
1033 }
1034
1035 #
1036 # The .log file
1037 #
1038 exec > new-gdbarch.log
1039 function_list | while do_read
1040 do
1041 cat <<EOF
1042 ${class} ${returntype} ${function} ($formal)
1043 EOF
1044 for r in ${read}
1045 do
1046 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1047 done
1048 if class_is_predicate_p && fallback_default_p
1049 then
1050 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1051 kill $$
1052 exit 1
1053 fi
1054 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1055 then
1056 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1057 kill $$
1058 exit 1
1059 fi
1060 if class_is_multiarch_p
1061 then
1062 if class_is_predicate_p ; then :
1063 elif test "x${predefault}" = "x"
1064 then
1065 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1066 kill $$
1067 exit 1
1068 fi
1069 fi
1070 echo ""
1071 done
1072
1073 exec 1>&2
1074 compare_new gdbarch.log
1075
1076
1077 copyright ()
1078 {
1079 cat <<EOF
1080 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1081 /* vi:set ro: */
1082
1083 /* Dynamic architecture support for GDB, the GNU debugger.
1084
1085 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1086
1087 This file is part of GDB.
1088
1089 This program is free software; you can redistribute it and/or modify
1090 it under the terms of the GNU General Public License as published by
1091 the Free Software Foundation; either version 3 of the License, or
1092 (at your option) any later version.
1093
1094 This program is distributed in the hope that it will be useful,
1095 but WITHOUT ANY WARRANTY; without even the implied warranty of
1096 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1097 GNU General Public License for more details.
1098
1099 You should have received a copy of the GNU General Public License
1100 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1101
1102 /* This file was created with the aid of \`\`gdbarch.sh''.
1103
1104 The Bourne shell script \`\`gdbarch.sh'' creates the files
1105 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1106 against the existing \`\`gdbarch.[hc]''. Any differences found
1107 being reported.
1108
1109 If editing this file, please also run gdbarch.sh and merge any
1110 changes into that script. Conversely, when making sweeping changes
1111 to this file, modifying gdbarch.sh and using its output may prove
1112 easier. */
1113
1114 EOF
1115 }
1116
1117 #
1118 # The .h file
1119 #
1120
1121 exec > new-gdbarch.h
1122 copyright
1123 cat <<EOF
1124 #ifndef GDBARCH_H
1125 #define GDBARCH_H
1126
1127 struct floatformat;
1128 struct ui_file;
1129 struct frame_info;
1130 struct value;
1131 struct objfile;
1132 struct obj_section;
1133 struct minimal_symbol;
1134 struct regcache;
1135 struct reggroup;
1136 struct regset;
1137 struct disassemble_info;
1138 struct target_ops;
1139 struct obstack;
1140 struct bp_target_info;
1141 struct target_desc;
1142 struct displaced_step_closure;
1143 struct core_regset_section;
1144 struct syscall;
1145 struct agent_expr;
1146 struct axs_value;
1147 struct stap_parse_info;
1148 struct ravenscar_arch_ops;
1149 struct elf_internal_linux_prpsinfo;
1150
1151 /* The architecture associated with the inferior through the
1152 connection to the target.
1153
1154 The architecture vector provides some information that is really a
1155 property of the inferior, accessed through a particular target:
1156 ptrace operations; the layout of certain RSP packets; the solib_ops
1157 vector; etc. To differentiate architecture accesses to
1158 per-inferior/target properties from
1159 per-thread/per-frame/per-objfile properties, accesses to
1160 per-inferior/target properties should be made through this
1161 gdbarch. */
1162
1163 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1164 extern struct gdbarch *target_gdbarch (void);
1165
1166 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1167 gdbarch method. */
1168
1169 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1170 (struct objfile *objfile, void *cb_data);
1171 EOF
1172
1173 # function typedef's
1174 printf "\n"
1175 printf "\n"
1176 printf "/* The following are pre-initialized by GDBARCH. */\n"
1177 function_list | while do_read
1178 do
1179 if class_is_info_p
1180 then
1181 printf "\n"
1182 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1183 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1184 fi
1185 done
1186
1187 # function typedef's
1188 printf "\n"
1189 printf "\n"
1190 printf "/* The following are initialized by the target dependent code. */\n"
1191 function_list | while do_read
1192 do
1193 if [ -n "${comment}" ]
1194 then
1195 echo "${comment}" | sed \
1196 -e '2 s,#,/*,' \
1197 -e '3,$ s,#, ,' \
1198 -e '$ s,$, */,'
1199 fi
1200
1201 if class_is_predicate_p
1202 then
1203 printf "\n"
1204 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1205 fi
1206 if class_is_variable_p
1207 then
1208 printf "\n"
1209 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1210 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1211 fi
1212 if class_is_function_p
1213 then
1214 printf "\n"
1215 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1216 then
1217 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1218 elif class_is_multiarch_p
1219 then
1220 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1221 else
1222 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1223 fi
1224 if [ "x${formal}" = "xvoid" ]
1225 then
1226 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1227 else
1228 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1229 fi
1230 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1231 fi
1232 done
1233
1234 # close it off
1235 cat <<EOF
1236
1237 /* Definition for an unknown syscall, used basically in error-cases. */
1238 #define UNKNOWN_SYSCALL (-1)
1239
1240 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1241
1242
1243 /* Mechanism for co-ordinating the selection of a specific
1244 architecture.
1245
1246 GDB targets (*-tdep.c) can register an interest in a specific
1247 architecture. Other GDB components can register a need to maintain
1248 per-architecture data.
1249
1250 The mechanisms below ensures that there is only a loose connection
1251 between the set-architecture command and the various GDB
1252 components. Each component can independently register their need
1253 to maintain architecture specific data with gdbarch.
1254
1255 Pragmatics:
1256
1257 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1258 didn't scale.
1259
1260 The more traditional mega-struct containing architecture specific
1261 data for all the various GDB components was also considered. Since
1262 GDB is built from a variable number of (fairly independent)
1263 components it was determined that the global aproach was not
1264 applicable. */
1265
1266
1267 /* Register a new architectural family with GDB.
1268
1269 Register support for the specified ARCHITECTURE with GDB. When
1270 gdbarch determines that the specified architecture has been
1271 selected, the corresponding INIT function is called.
1272
1273 --
1274
1275 The INIT function takes two parameters: INFO which contains the
1276 information available to gdbarch about the (possibly new)
1277 architecture; ARCHES which is a list of the previously created
1278 \`\`struct gdbarch'' for this architecture.
1279
1280 The INFO parameter is, as far as possible, be pre-initialized with
1281 information obtained from INFO.ABFD or the global defaults.
1282
1283 The ARCHES parameter is a linked list (sorted most recently used)
1284 of all the previously created architures for this architecture
1285 family. The (possibly NULL) ARCHES->gdbarch can used to access
1286 values from the previously selected architecture for this
1287 architecture family.
1288
1289 The INIT function shall return any of: NULL - indicating that it
1290 doesn't recognize the selected architecture; an existing \`\`struct
1291 gdbarch'' from the ARCHES list - indicating that the new
1292 architecture is just a synonym for an earlier architecture (see
1293 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1294 - that describes the selected architecture (see gdbarch_alloc()).
1295
1296 The DUMP_TDEP function shall print out all target specific values.
1297 Care should be taken to ensure that the function works in both the
1298 multi-arch and non- multi-arch cases. */
1299
1300 struct gdbarch_list
1301 {
1302 struct gdbarch *gdbarch;
1303 struct gdbarch_list *next;
1304 };
1305
1306 struct gdbarch_info
1307 {
1308 /* Use default: NULL (ZERO). */
1309 const struct bfd_arch_info *bfd_arch_info;
1310
1311 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1312 enum bfd_endian byte_order;
1313
1314 enum bfd_endian byte_order_for_code;
1315
1316 /* Use default: NULL (ZERO). */
1317 bfd *abfd;
1318
1319 /* Use default: NULL (ZERO). */
1320 struct gdbarch_tdep_info *tdep_info;
1321
1322 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1323 enum gdb_osabi osabi;
1324
1325 /* Use default: NULL (ZERO). */
1326 const struct target_desc *target_desc;
1327 };
1328
1329 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1330 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1331
1332 /* DEPRECATED - use gdbarch_register() */
1333 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1334
1335 extern void gdbarch_register (enum bfd_architecture architecture,
1336 gdbarch_init_ftype *,
1337 gdbarch_dump_tdep_ftype *);
1338
1339
1340 /* Return a freshly allocated, NULL terminated, array of the valid
1341 architecture names. Since architectures are registered during the
1342 _initialize phase this function only returns useful information
1343 once initialization has been completed. */
1344
1345 extern const char **gdbarch_printable_names (void);
1346
1347
1348 /* Helper function. Search the list of ARCHES for a GDBARCH that
1349 matches the information provided by INFO. */
1350
1351 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1352
1353
1354 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1355 basic initialization using values obtained from the INFO and TDEP
1356 parameters. set_gdbarch_*() functions are called to complete the
1357 initialization of the object. */
1358
1359 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1360
1361
1362 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1363 It is assumed that the caller freeds the \`\`struct
1364 gdbarch_tdep''. */
1365
1366 extern void gdbarch_free (struct gdbarch *);
1367
1368
1369 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1370 obstack. The memory is freed when the corresponding architecture
1371 is also freed. */
1372
1373 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1374 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1375 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1376
1377
1378 /* Helper function. Force an update of the current architecture.
1379
1380 The actual architecture selected is determined by INFO, \`\`(gdb) set
1381 architecture'' et.al., the existing architecture and BFD's default
1382 architecture. INFO should be initialized to zero and then selected
1383 fields should be updated.
1384
1385 Returns non-zero if the update succeeds. */
1386
1387 extern int gdbarch_update_p (struct gdbarch_info info);
1388
1389
1390 /* Helper function. Find an architecture matching info.
1391
1392 INFO should be initialized using gdbarch_info_init, relevant fields
1393 set, and then finished using gdbarch_info_fill.
1394
1395 Returns the corresponding architecture, or NULL if no matching
1396 architecture was found. */
1397
1398 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1399
1400
1401 /* Helper function. Set the target gdbarch to "gdbarch". */
1402
1403 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1404
1405
1406 /* Register per-architecture data-pointer.
1407
1408 Reserve space for a per-architecture data-pointer. An identifier
1409 for the reserved data-pointer is returned. That identifer should
1410 be saved in a local static variable.
1411
1412 Memory for the per-architecture data shall be allocated using
1413 gdbarch_obstack_zalloc. That memory will be deleted when the
1414 corresponding architecture object is deleted.
1415
1416 When a previously created architecture is re-selected, the
1417 per-architecture data-pointer for that previous architecture is
1418 restored. INIT() is not re-called.
1419
1420 Multiple registrarants for any architecture are allowed (and
1421 strongly encouraged). */
1422
1423 struct gdbarch_data;
1424
1425 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1426 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1427 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1428 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1429 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1430 struct gdbarch_data *data,
1431 void *pointer);
1432
1433 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1434
1435
1436 /* Set the dynamic target-system-dependent parameters (architecture,
1437 byte-order, ...) using information found in the BFD. */
1438
1439 extern void set_gdbarch_from_file (bfd *);
1440
1441
1442 /* Initialize the current architecture to the "first" one we find on
1443 our list. */
1444
1445 extern void initialize_current_architecture (void);
1446
1447 /* gdbarch trace variable */
1448 extern unsigned int gdbarch_debug;
1449
1450 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1451
1452 #endif
1453 EOF
1454 exec 1>&2
1455 #../move-if-change new-gdbarch.h gdbarch.h
1456 compare_new gdbarch.h
1457
1458
1459 #
1460 # C file
1461 #
1462
1463 exec > new-gdbarch.c
1464 copyright
1465 cat <<EOF
1466
1467 #include "defs.h"
1468 #include "arch-utils.h"
1469
1470 #include "gdbcmd.h"
1471 #include "inferior.h"
1472 #include "symcat.h"
1473
1474 #include "floatformat.h"
1475 #include "reggroups.h"
1476 #include "osabi.h"
1477 #include "gdb_obstack.h"
1478 #include "observer.h"
1479 #include "regcache.h"
1480 #include "objfiles.h"
1481
1482 /* Static function declarations */
1483
1484 static void alloc_gdbarch_data (struct gdbarch *);
1485
1486 /* Non-zero if we want to trace architecture code. */
1487
1488 #ifndef GDBARCH_DEBUG
1489 #define GDBARCH_DEBUG 0
1490 #endif
1491 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1492 static void
1493 show_gdbarch_debug (struct ui_file *file, int from_tty,
1494 struct cmd_list_element *c, const char *value)
1495 {
1496 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1497 }
1498
1499 static const char *
1500 pformat (const struct floatformat **format)
1501 {
1502 if (format == NULL)
1503 return "(null)";
1504 else
1505 /* Just print out one of them - this is only for diagnostics. */
1506 return format[0]->name;
1507 }
1508
1509 static const char *
1510 pstring (const char *string)
1511 {
1512 if (string == NULL)
1513 return "(null)";
1514 return string;
1515 }
1516
1517 /* Helper function to print a list of strings, represented as "const
1518 char *const *". The list is printed comma-separated. */
1519
1520 static char *
1521 pstring_list (const char *const *list)
1522 {
1523 static char ret[100];
1524 const char *const *p;
1525 size_t offset = 0;
1526
1527 if (list == NULL)
1528 return "(null)";
1529
1530 ret[0] = '\0';
1531 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1532 {
1533 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1534 offset += 2 + s;
1535 }
1536
1537 if (offset > 0)
1538 {
1539 gdb_assert (offset - 2 < sizeof (ret));
1540 ret[offset - 2] = '\0';
1541 }
1542
1543 return ret;
1544 }
1545
1546 EOF
1547
1548 # gdbarch open the gdbarch object
1549 printf "\n"
1550 printf "/* Maintain the struct gdbarch object. */\n"
1551 printf "\n"
1552 printf "struct gdbarch\n"
1553 printf "{\n"
1554 printf " /* Has this architecture been fully initialized? */\n"
1555 printf " int initialized_p;\n"
1556 printf "\n"
1557 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1558 printf " struct obstack *obstack;\n"
1559 printf "\n"
1560 printf " /* basic architectural information. */\n"
1561 function_list | while do_read
1562 do
1563 if class_is_info_p
1564 then
1565 printf " ${returntype} ${function};\n"
1566 fi
1567 done
1568 printf "\n"
1569 printf " /* target specific vector. */\n"
1570 printf " struct gdbarch_tdep *tdep;\n"
1571 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1572 printf "\n"
1573 printf " /* per-architecture data-pointers. */\n"
1574 printf " unsigned nr_data;\n"
1575 printf " void **data;\n"
1576 printf "\n"
1577 cat <<EOF
1578 /* Multi-arch values.
1579
1580 When extending this structure you must:
1581
1582 Add the field below.
1583
1584 Declare set/get functions and define the corresponding
1585 macro in gdbarch.h.
1586
1587 gdbarch_alloc(): If zero/NULL is not a suitable default,
1588 initialize the new field.
1589
1590 verify_gdbarch(): Confirm that the target updated the field
1591 correctly.
1592
1593 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1594 field is dumped out
1595
1596 get_gdbarch(): Implement the set/get functions (probably using
1597 the macro's as shortcuts).
1598
1599 */
1600
1601 EOF
1602 function_list | while do_read
1603 do
1604 if class_is_variable_p
1605 then
1606 printf " ${returntype} ${function};\n"
1607 elif class_is_function_p
1608 then
1609 printf " gdbarch_${function}_ftype *${function};\n"
1610 fi
1611 done
1612 printf "};\n"
1613
1614 # Create a new gdbarch struct
1615 cat <<EOF
1616
1617 /* Create a new \`\`struct gdbarch'' based on information provided by
1618 \`\`struct gdbarch_info''. */
1619 EOF
1620 printf "\n"
1621 cat <<EOF
1622 struct gdbarch *
1623 gdbarch_alloc (const struct gdbarch_info *info,
1624 struct gdbarch_tdep *tdep)
1625 {
1626 struct gdbarch *gdbarch;
1627
1628 /* Create an obstack for allocating all the per-architecture memory,
1629 then use that to allocate the architecture vector. */
1630 struct obstack *obstack = XNEW (struct obstack);
1631 obstack_init (obstack);
1632 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1633 memset (gdbarch, 0, sizeof (*gdbarch));
1634 gdbarch->obstack = obstack;
1635
1636 alloc_gdbarch_data (gdbarch);
1637
1638 gdbarch->tdep = tdep;
1639 EOF
1640 printf "\n"
1641 function_list | while do_read
1642 do
1643 if class_is_info_p
1644 then
1645 printf " gdbarch->${function} = info->${function};\n"
1646 fi
1647 done
1648 printf "\n"
1649 printf " /* Force the explicit initialization of these. */\n"
1650 function_list | while do_read
1651 do
1652 if class_is_function_p || class_is_variable_p
1653 then
1654 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1655 then
1656 printf " gdbarch->${function} = ${predefault};\n"
1657 fi
1658 fi
1659 done
1660 cat <<EOF
1661 /* gdbarch_alloc() */
1662
1663 return gdbarch;
1664 }
1665 EOF
1666
1667 # Free a gdbarch struct.
1668 printf "\n"
1669 printf "\n"
1670 cat <<EOF
1671 /* Allocate extra space using the per-architecture obstack. */
1672
1673 void *
1674 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1675 {
1676 void *data = obstack_alloc (arch->obstack, size);
1677
1678 memset (data, 0, size);
1679 return data;
1680 }
1681
1682
1683 /* Free a gdbarch struct. This should never happen in normal
1684 operation --- once you've created a gdbarch, you keep it around.
1685 However, if an architecture's init function encounters an error
1686 building the structure, it may need to clean up a partially
1687 constructed gdbarch. */
1688
1689 void
1690 gdbarch_free (struct gdbarch *arch)
1691 {
1692 struct obstack *obstack;
1693
1694 gdb_assert (arch != NULL);
1695 gdb_assert (!arch->initialized_p);
1696 obstack = arch->obstack;
1697 obstack_free (obstack, 0); /* Includes the ARCH. */
1698 xfree (obstack);
1699 }
1700 EOF
1701
1702 # verify a new architecture
1703 cat <<EOF
1704
1705
1706 /* Ensure that all values in a GDBARCH are reasonable. */
1707
1708 static void
1709 verify_gdbarch (struct gdbarch *gdbarch)
1710 {
1711 struct ui_file *log;
1712 struct cleanup *cleanups;
1713 long length;
1714 char *buf;
1715
1716 log = mem_fileopen ();
1717 cleanups = make_cleanup_ui_file_delete (log);
1718 /* fundamental */
1719 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1720 fprintf_unfiltered (log, "\n\tbyte-order");
1721 if (gdbarch->bfd_arch_info == NULL)
1722 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1723 /* Check those that need to be defined for the given multi-arch level. */
1724 EOF
1725 function_list | while do_read
1726 do
1727 if class_is_function_p || class_is_variable_p
1728 then
1729 if [ "x${invalid_p}" = "x0" ]
1730 then
1731 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1732 elif class_is_predicate_p
1733 then
1734 printf " /* Skip verify of ${function}, has predicate. */\n"
1735 # FIXME: See do_read for potential simplification
1736 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1737 then
1738 printf " if (${invalid_p})\n"
1739 printf " gdbarch->${function} = ${postdefault};\n"
1740 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1741 then
1742 printf " if (gdbarch->${function} == ${predefault})\n"
1743 printf " gdbarch->${function} = ${postdefault};\n"
1744 elif [ -n "${postdefault}" ]
1745 then
1746 printf " if (gdbarch->${function} == 0)\n"
1747 printf " gdbarch->${function} = ${postdefault};\n"
1748 elif [ -n "${invalid_p}" ]
1749 then
1750 printf " if (${invalid_p})\n"
1751 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1752 elif [ -n "${predefault}" ]
1753 then
1754 printf " if (gdbarch->${function} == ${predefault})\n"
1755 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1756 fi
1757 fi
1758 done
1759 cat <<EOF
1760 buf = ui_file_xstrdup (log, &length);
1761 make_cleanup (xfree, buf);
1762 if (length > 0)
1763 internal_error (__FILE__, __LINE__,
1764 _("verify_gdbarch: the following are invalid ...%s"),
1765 buf);
1766 do_cleanups (cleanups);
1767 }
1768 EOF
1769
1770 # dump the structure
1771 printf "\n"
1772 printf "\n"
1773 cat <<EOF
1774 /* Print out the details of the current architecture. */
1775
1776 void
1777 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1778 {
1779 const char *gdb_nm_file = "<not-defined>";
1780
1781 #if defined (GDB_NM_FILE)
1782 gdb_nm_file = GDB_NM_FILE;
1783 #endif
1784 fprintf_unfiltered (file,
1785 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1786 gdb_nm_file);
1787 EOF
1788 function_list | sort -t: -k 3 | while do_read
1789 do
1790 # First the predicate
1791 if class_is_predicate_p
1792 then
1793 printf " fprintf_unfiltered (file,\n"
1794 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1795 printf " gdbarch_${function}_p (gdbarch));\n"
1796 fi
1797 # Print the corresponding value.
1798 if class_is_function_p
1799 then
1800 printf " fprintf_unfiltered (file,\n"
1801 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1802 printf " host_address_to_string (gdbarch->${function}));\n"
1803 else
1804 # It is a variable
1805 case "${print}:${returntype}" in
1806 :CORE_ADDR )
1807 fmt="%s"
1808 print="core_addr_to_string_nz (gdbarch->${function})"
1809 ;;
1810 :* )
1811 fmt="%s"
1812 print="plongest (gdbarch->${function})"
1813 ;;
1814 * )
1815 fmt="%s"
1816 ;;
1817 esac
1818 printf " fprintf_unfiltered (file,\n"
1819 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1820 printf " ${print});\n"
1821 fi
1822 done
1823 cat <<EOF
1824 if (gdbarch->dump_tdep != NULL)
1825 gdbarch->dump_tdep (gdbarch, file);
1826 }
1827 EOF
1828
1829
1830 # GET/SET
1831 printf "\n"
1832 cat <<EOF
1833 struct gdbarch_tdep *
1834 gdbarch_tdep (struct gdbarch *gdbarch)
1835 {
1836 if (gdbarch_debug >= 2)
1837 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1838 return gdbarch->tdep;
1839 }
1840 EOF
1841 printf "\n"
1842 function_list | while do_read
1843 do
1844 if class_is_predicate_p
1845 then
1846 printf "\n"
1847 printf "int\n"
1848 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1849 printf "{\n"
1850 printf " gdb_assert (gdbarch != NULL);\n"
1851 printf " return ${predicate};\n"
1852 printf "}\n"
1853 fi
1854 if class_is_function_p
1855 then
1856 printf "\n"
1857 printf "${returntype}\n"
1858 if [ "x${formal}" = "xvoid" ]
1859 then
1860 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1861 else
1862 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1863 fi
1864 printf "{\n"
1865 printf " gdb_assert (gdbarch != NULL);\n"
1866 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1867 if class_is_predicate_p && test -n "${predefault}"
1868 then
1869 # Allow a call to a function with a predicate.
1870 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1871 fi
1872 printf " if (gdbarch_debug >= 2)\n"
1873 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1874 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1875 then
1876 if class_is_multiarch_p
1877 then
1878 params="gdbarch"
1879 else
1880 params=""
1881 fi
1882 else
1883 if class_is_multiarch_p
1884 then
1885 params="gdbarch, ${actual}"
1886 else
1887 params="${actual}"
1888 fi
1889 fi
1890 if [ "x${returntype}" = "xvoid" ]
1891 then
1892 printf " gdbarch->${function} (${params});\n"
1893 else
1894 printf " return gdbarch->${function} (${params});\n"
1895 fi
1896 printf "}\n"
1897 printf "\n"
1898 printf "void\n"
1899 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1900 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1901 printf "{\n"
1902 printf " gdbarch->${function} = ${function};\n"
1903 printf "}\n"
1904 elif class_is_variable_p
1905 then
1906 printf "\n"
1907 printf "${returntype}\n"
1908 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1909 printf "{\n"
1910 printf " gdb_assert (gdbarch != NULL);\n"
1911 if [ "x${invalid_p}" = "x0" ]
1912 then
1913 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1914 elif [ -n "${invalid_p}" ]
1915 then
1916 printf " /* Check variable is valid. */\n"
1917 printf " gdb_assert (!(${invalid_p}));\n"
1918 elif [ -n "${predefault}" ]
1919 then
1920 printf " /* Check variable changed from pre-default. */\n"
1921 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1922 fi
1923 printf " if (gdbarch_debug >= 2)\n"
1924 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1925 printf " return gdbarch->${function};\n"
1926 printf "}\n"
1927 printf "\n"
1928 printf "void\n"
1929 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1930 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1931 printf "{\n"
1932 printf " gdbarch->${function} = ${function};\n"
1933 printf "}\n"
1934 elif class_is_info_p
1935 then
1936 printf "\n"
1937 printf "${returntype}\n"
1938 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1939 printf "{\n"
1940 printf " gdb_assert (gdbarch != NULL);\n"
1941 printf " if (gdbarch_debug >= 2)\n"
1942 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1943 printf " return gdbarch->${function};\n"
1944 printf "}\n"
1945 fi
1946 done
1947
1948 # All the trailing guff
1949 cat <<EOF
1950
1951
1952 /* Keep a registry of per-architecture data-pointers required by GDB
1953 modules. */
1954
1955 struct gdbarch_data
1956 {
1957 unsigned index;
1958 int init_p;
1959 gdbarch_data_pre_init_ftype *pre_init;
1960 gdbarch_data_post_init_ftype *post_init;
1961 };
1962
1963 struct gdbarch_data_registration
1964 {
1965 struct gdbarch_data *data;
1966 struct gdbarch_data_registration *next;
1967 };
1968
1969 struct gdbarch_data_registry
1970 {
1971 unsigned nr;
1972 struct gdbarch_data_registration *registrations;
1973 };
1974
1975 struct gdbarch_data_registry gdbarch_data_registry =
1976 {
1977 0, NULL,
1978 };
1979
1980 static struct gdbarch_data *
1981 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1982 gdbarch_data_post_init_ftype *post_init)
1983 {
1984 struct gdbarch_data_registration **curr;
1985
1986 /* Append the new registration. */
1987 for (curr = &gdbarch_data_registry.registrations;
1988 (*curr) != NULL;
1989 curr = &(*curr)->next);
1990 (*curr) = XNEW (struct gdbarch_data_registration);
1991 (*curr)->next = NULL;
1992 (*curr)->data = XNEW (struct gdbarch_data);
1993 (*curr)->data->index = gdbarch_data_registry.nr++;
1994 (*curr)->data->pre_init = pre_init;
1995 (*curr)->data->post_init = post_init;
1996 (*curr)->data->init_p = 1;
1997 return (*curr)->data;
1998 }
1999
2000 struct gdbarch_data *
2001 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2002 {
2003 return gdbarch_data_register (pre_init, NULL);
2004 }
2005
2006 struct gdbarch_data *
2007 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2008 {
2009 return gdbarch_data_register (NULL, post_init);
2010 }
2011
2012 /* Create/delete the gdbarch data vector. */
2013
2014 static void
2015 alloc_gdbarch_data (struct gdbarch *gdbarch)
2016 {
2017 gdb_assert (gdbarch->data == NULL);
2018 gdbarch->nr_data = gdbarch_data_registry.nr;
2019 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2020 }
2021
2022 /* Initialize the current value of the specified per-architecture
2023 data-pointer. */
2024
2025 void
2026 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2027 struct gdbarch_data *data,
2028 void *pointer)
2029 {
2030 gdb_assert (data->index < gdbarch->nr_data);
2031 gdb_assert (gdbarch->data[data->index] == NULL);
2032 gdb_assert (data->pre_init == NULL);
2033 gdbarch->data[data->index] = pointer;
2034 }
2035
2036 /* Return the current value of the specified per-architecture
2037 data-pointer. */
2038
2039 void *
2040 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2041 {
2042 gdb_assert (data->index < gdbarch->nr_data);
2043 if (gdbarch->data[data->index] == NULL)
2044 {
2045 /* The data-pointer isn't initialized, call init() to get a
2046 value. */
2047 if (data->pre_init != NULL)
2048 /* Mid architecture creation: pass just the obstack, and not
2049 the entire architecture, as that way it isn't possible for
2050 pre-init code to refer to undefined architecture
2051 fields. */
2052 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2053 else if (gdbarch->initialized_p
2054 && data->post_init != NULL)
2055 /* Post architecture creation: pass the entire architecture
2056 (as all fields are valid), but be careful to also detect
2057 recursive references. */
2058 {
2059 gdb_assert (data->init_p);
2060 data->init_p = 0;
2061 gdbarch->data[data->index] = data->post_init (gdbarch);
2062 data->init_p = 1;
2063 }
2064 else
2065 /* The architecture initialization hasn't completed - punt -
2066 hope that the caller knows what they are doing. Once
2067 deprecated_set_gdbarch_data has been initialized, this can be
2068 changed to an internal error. */
2069 return NULL;
2070 gdb_assert (gdbarch->data[data->index] != NULL);
2071 }
2072 return gdbarch->data[data->index];
2073 }
2074
2075
2076 /* Keep a registry of the architectures known by GDB. */
2077
2078 struct gdbarch_registration
2079 {
2080 enum bfd_architecture bfd_architecture;
2081 gdbarch_init_ftype *init;
2082 gdbarch_dump_tdep_ftype *dump_tdep;
2083 struct gdbarch_list *arches;
2084 struct gdbarch_registration *next;
2085 };
2086
2087 static struct gdbarch_registration *gdbarch_registry = NULL;
2088
2089 static void
2090 append_name (const char ***buf, int *nr, const char *name)
2091 {
2092 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2093 (*buf)[*nr] = name;
2094 *nr += 1;
2095 }
2096
2097 const char **
2098 gdbarch_printable_names (void)
2099 {
2100 /* Accumulate a list of names based on the registed list of
2101 architectures. */
2102 int nr_arches = 0;
2103 const char **arches = NULL;
2104 struct gdbarch_registration *rego;
2105
2106 for (rego = gdbarch_registry;
2107 rego != NULL;
2108 rego = rego->next)
2109 {
2110 const struct bfd_arch_info *ap;
2111 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2112 if (ap == NULL)
2113 internal_error (__FILE__, __LINE__,
2114 _("gdbarch_architecture_names: multi-arch unknown"));
2115 do
2116 {
2117 append_name (&arches, &nr_arches, ap->printable_name);
2118 ap = ap->next;
2119 }
2120 while (ap != NULL);
2121 }
2122 append_name (&arches, &nr_arches, NULL);
2123 return arches;
2124 }
2125
2126
2127 void
2128 gdbarch_register (enum bfd_architecture bfd_architecture,
2129 gdbarch_init_ftype *init,
2130 gdbarch_dump_tdep_ftype *dump_tdep)
2131 {
2132 struct gdbarch_registration **curr;
2133 const struct bfd_arch_info *bfd_arch_info;
2134
2135 /* Check that BFD recognizes this architecture */
2136 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2137 if (bfd_arch_info == NULL)
2138 {
2139 internal_error (__FILE__, __LINE__,
2140 _("gdbarch: Attempt to register "
2141 "unknown architecture (%d)"),
2142 bfd_architecture);
2143 }
2144 /* Check that we haven't seen this architecture before. */
2145 for (curr = &gdbarch_registry;
2146 (*curr) != NULL;
2147 curr = &(*curr)->next)
2148 {
2149 if (bfd_architecture == (*curr)->bfd_architecture)
2150 internal_error (__FILE__, __LINE__,
2151 _("gdbarch: Duplicate registration "
2152 "of architecture (%s)"),
2153 bfd_arch_info->printable_name);
2154 }
2155 /* log it */
2156 if (gdbarch_debug)
2157 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2158 bfd_arch_info->printable_name,
2159 host_address_to_string (init));
2160 /* Append it */
2161 (*curr) = XNEW (struct gdbarch_registration);
2162 (*curr)->bfd_architecture = bfd_architecture;
2163 (*curr)->init = init;
2164 (*curr)->dump_tdep = dump_tdep;
2165 (*curr)->arches = NULL;
2166 (*curr)->next = NULL;
2167 }
2168
2169 void
2170 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2171 gdbarch_init_ftype *init)
2172 {
2173 gdbarch_register (bfd_architecture, init, NULL);
2174 }
2175
2176
2177 /* Look for an architecture using gdbarch_info. */
2178
2179 struct gdbarch_list *
2180 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2181 const struct gdbarch_info *info)
2182 {
2183 for (; arches != NULL; arches = arches->next)
2184 {
2185 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2186 continue;
2187 if (info->byte_order != arches->gdbarch->byte_order)
2188 continue;
2189 if (info->osabi != arches->gdbarch->osabi)
2190 continue;
2191 if (info->target_desc != arches->gdbarch->target_desc)
2192 continue;
2193 return arches;
2194 }
2195 return NULL;
2196 }
2197
2198
2199 /* Find an architecture that matches the specified INFO. Create a new
2200 architecture if needed. Return that new architecture. */
2201
2202 struct gdbarch *
2203 gdbarch_find_by_info (struct gdbarch_info info)
2204 {
2205 struct gdbarch *new_gdbarch;
2206 struct gdbarch_registration *rego;
2207
2208 /* Fill in missing parts of the INFO struct using a number of
2209 sources: "set ..."; INFOabfd supplied; and the global
2210 defaults. */
2211 gdbarch_info_fill (&info);
2212
2213 /* Must have found some sort of architecture. */
2214 gdb_assert (info.bfd_arch_info != NULL);
2215
2216 if (gdbarch_debug)
2217 {
2218 fprintf_unfiltered (gdb_stdlog,
2219 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2220 (info.bfd_arch_info != NULL
2221 ? info.bfd_arch_info->printable_name
2222 : "(null)"));
2223 fprintf_unfiltered (gdb_stdlog,
2224 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2225 info.byte_order,
2226 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2227 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2228 : "default"));
2229 fprintf_unfiltered (gdb_stdlog,
2230 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2231 info.osabi, gdbarch_osabi_name (info.osabi));
2232 fprintf_unfiltered (gdb_stdlog,
2233 "gdbarch_find_by_info: info.abfd %s\n",
2234 host_address_to_string (info.abfd));
2235 fprintf_unfiltered (gdb_stdlog,
2236 "gdbarch_find_by_info: info.tdep_info %s\n",
2237 host_address_to_string (info.tdep_info));
2238 }
2239
2240 /* Find the tdep code that knows about this architecture. */
2241 for (rego = gdbarch_registry;
2242 rego != NULL;
2243 rego = rego->next)
2244 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2245 break;
2246 if (rego == NULL)
2247 {
2248 if (gdbarch_debug)
2249 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2250 "No matching architecture\n");
2251 return 0;
2252 }
2253
2254 /* Ask the tdep code for an architecture that matches "info". */
2255 new_gdbarch = rego->init (info, rego->arches);
2256
2257 /* Did the tdep code like it? No. Reject the change and revert to
2258 the old architecture. */
2259 if (new_gdbarch == NULL)
2260 {
2261 if (gdbarch_debug)
2262 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2263 "Target rejected architecture\n");
2264 return NULL;
2265 }
2266
2267 /* Is this a pre-existing architecture (as determined by already
2268 being initialized)? Move it to the front of the architecture
2269 list (keeping the list sorted Most Recently Used). */
2270 if (new_gdbarch->initialized_p)
2271 {
2272 struct gdbarch_list **list;
2273 struct gdbarch_list *this;
2274 if (gdbarch_debug)
2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2276 "Previous architecture %s (%s) selected\n",
2277 host_address_to_string (new_gdbarch),
2278 new_gdbarch->bfd_arch_info->printable_name);
2279 /* Find the existing arch in the list. */
2280 for (list = &rego->arches;
2281 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2282 list = &(*list)->next);
2283 /* It had better be in the list of architectures. */
2284 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2285 /* Unlink THIS. */
2286 this = (*list);
2287 (*list) = this->next;
2288 /* Insert THIS at the front. */
2289 this->next = rego->arches;
2290 rego->arches = this;
2291 /* Return it. */
2292 return new_gdbarch;
2293 }
2294
2295 /* It's a new architecture. */
2296 if (gdbarch_debug)
2297 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2298 "New architecture %s (%s) selected\n",
2299 host_address_to_string (new_gdbarch),
2300 new_gdbarch->bfd_arch_info->printable_name);
2301
2302 /* Insert the new architecture into the front of the architecture
2303 list (keep the list sorted Most Recently Used). */
2304 {
2305 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2306 this->next = rego->arches;
2307 this->gdbarch = new_gdbarch;
2308 rego->arches = this;
2309 }
2310
2311 /* Check that the newly installed architecture is valid. Plug in
2312 any post init values. */
2313 new_gdbarch->dump_tdep = rego->dump_tdep;
2314 verify_gdbarch (new_gdbarch);
2315 new_gdbarch->initialized_p = 1;
2316
2317 if (gdbarch_debug)
2318 gdbarch_dump (new_gdbarch, gdb_stdlog);
2319
2320 return new_gdbarch;
2321 }
2322
2323 /* Make the specified architecture current. */
2324
2325 void
2326 set_target_gdbarch (struct gdbarch *new_gdbarch)
2327 {
2328 gdb_assert (new_gdbarch != NULL);
2329 gdb_assert (new_gdbarch->initialized_p);
2330 current_inferior ()->gdbarch = new_gdbarch;
2331 observer_notify_architecture_changed (new_gdbarch);
2332 registers_changed ();
2333 }
2334
2335 /* Return the current inferior's arch. */
2336
2337 struct gdbarch *
2338 target_gdbarch (void)
2339 {
2340 return current_inferior ()->gdbarch;
2341 }
2342
2343 extern void _initialize_gdbarch (void);
2344
2345 void
2346 _initialize_gdbarch (void)
2347 {
2348 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2349 Set architecture debugging."), _("\\
2350 Show architecture debugging."), _("\\
2351 When non-zero, architecture debugging is enabled."),
2352 NULL,
2353 show_gdbarch_debug,
2354 &setdebuglist, &showdebuglist);
2355 }
2356 EOF
2357
2358 # close things off
2359 exec 1>&2
2360 #../move-if-change new-gdbarch.c gdbarch.c
2361 compare_new gdbarch.c
This page took 0.084239 seconds and 4 git commands to generate.