Set default LANGUAGE to english/us.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -u ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 case "${level}" in
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
82 "" ) ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
84 esac
85
86 case "${class}" in
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
90 esac
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
94
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
97 :[vV]::: )
98 if [ "${returntype}" = int ]
99 then
100 fmt="%d"
101 print="${macro}"
102 elif [ "${returntype}" = long ]
103 then
104 fmt="%ld"
105 print="${macro}"
106 fi
107 ;;
108 esac
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
111
112 case "${invalid_p}" in
113 0 ) valid_p=1 ;;
114 "" )
115 if [ -n "${predefault}" ]
116 then
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
119 else
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
122 fi
123 ;;
124 * ) valid_p="!(${invalid_p})"
125 esac
126
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
133
134 if [ -n "${postdefault}" ]
135 then
136 fallbackdefault="${postdefault}"
137 elif [ -n "${predefault}" ]
138 then
139 fallbackdefault="${predefault}"
140 else
141 fallbackdefault="0"
142 fi
143
144 #NOT YET: See gdbarch.log for basic verification of
145 # database
146
147 break
148 fi
149 done
150 if [ -n "${class}" ]
151 then
152 true
153 else
154 false
155 fi
156 }
157
158
159 fallback_default_p ()
160 {
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
163 }
164
165 class_is_variable_p ()
166 {
167 case "${class}" in
168 *v* | *V* ) true ;;
169 * ) false ;;
170 esac
171 }
172
173 class_is_function_p ()
174 {
175 case "${class}" in
176 *f* | *F* | *m* | *M* ) true ;;
177 * ) false ;;
178 esac
179 }
180
181 class_is_multiarch_p ()
182 {
183 case "${class}" in
184 *m* | *M* ) true ;;
185 * ) false ;;
186 esac
187 }
188
189 class_is_predicate_p ()
190 {
191 case "${class}" in
192 *F* | *V* | *M* ) true ;;
193 * ) false ;;
194 esac
195 }
196
197 class_is_info_p ()
198 {
199 case "${class}" in
200 *i* ) true ;;
201 * ) false ;;
202 esac
203 }
204
205
206 # dump out/verify the doco
207 for field in ${read}
208 do
209 case ${field} in
210
211 class ) : ;;
212
213 # # -> line disable
214 # f -> function
215 # hiding a function
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
218 # v -> variable
219 # hiding a variable
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
222 # i -> set from info
223 # hiding something from the ``struct info'' object
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
228
229 level ) : ;;
230
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
234
235 macro ) : ;;
236
237 # The name of the MACRO that this method is to be accessed by.
238
239 returntype ) : ;;
240
241 # For functions, the return type; for variables, the data type
242
243 function ) : ;;
244
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
248
249 formal ) : ;;
250
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
255
256 actual ) : ;;
257
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
261
262 attrib ) : ;;
263
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
266
267 staticdefault ) : ;;
268
269 # To help with the GDB startup a static gdbarch object is
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
273
274 # If STATICDEFAULT is empty, zero is used.
275
276 predefault ) : ;;
277
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
282
283 # If PREDEFAULT is empty, zero is used.
284
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
288
289 # A zero PREDEFAULT function will force the fallback to call
290 # internal_error().
291
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
294
295 postdefault ) : ;;
296
297 # A value to assign to MEMBER of the new gdbarch object should
298 # the target architecture code fail to change the PREDEFAULT
299 # value.
300
301 # If POSTDEFAULT is empty, no post update is performed.
302
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
306
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
310 # PREDEFAULT).
311
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
313
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
316
317 invalid_p ) : ;;
318
319 # A predicate equation that validates MEMBER. Non-zero is
320 # returned if the code creating the new architecture failed to
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
324 # is called.
325
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
328
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
331
332 # See also PREDEFAULT and POSTDEFAULT.
333
334 fmt ) : ;;
335
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
339
340 # If FMT is empty, ``%ld'' is used.
341
342 print ) : ;;
343
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
346
347 # If PRINT is empty, ``(long)'' is used.
348
349 print_p ) : ;;
350
351 # An optional indicator for any predicte to wrap around the
352 # print member code.
353
354 # () -> Call a custom function to do the dump.
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
357
358 # If PRINT_P is empty, ``1'' is always used.
359
360 description ) : ;;
361
362 # Currently unused.
363
364 *)
365 echo "Bad field ${field}"
366 exit 1;;
367 esac
368 done
369
370
371 function_list ()
372 {
373 # See below (DOCO) for description of each field
374 cat <<EOF
375 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
376 #
377 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
378 # Number of bits in a char or unsigned char for the target machine.
379 # Just like CHAR_BIT in <limits.h> but describes the target machine.
380 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381 #
382 # Number of bits in a short or unsigned short for the target machine.
383 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384 # Number of bits in an int or unsigned int for the target machine.
385 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386 # Number of bits in a long or unsigned long for the target machine.
387 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388 # Number of bits in a long long or unsigned long long for the target
389 # machine.
390 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391 # Number of bits in a float for the target machine.
392 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393 # Number of bits in a double for the target machine.
394 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395 # Number of bits in a long double for the target machine.
396 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
397 # For most targets, a pointer on the target and its representation as an
398 # address in GDB have the same size and "look the same". For such a
399 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400 # / addr_bit will be set from it.
401 #
402 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
404 #
405 # ptr_bit is the size of a pointer on the target
406 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
407 # addr_bit is the size of a target address as represented in gdb
408 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
409 # Number of bits in a BFD_VMA for the target object file format.
410 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
414 #
415 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
417 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
419 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
424 #
425 M:::void:register_read:int regnum, char *buf:regnum, buf:
426 M:::void:register_write:int regnum, char *buf:regnum, buf:
427 #
428 v:2:NUM_REGS:int:num_regs::::0:-1
429 # This macro gives the number of pseudo-registers that live in the
430 # register namespace but do not get fetched or stored on the target.
431 # These pseudo-registers may be aliases for other registers,
432 # combinations of other registers, or they may be computed by GDB.
433 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
434
435 # GDB's standard (or well known) register numbers. These can map onto
436 # a real register or a pseudo (computed) register or not be defined at
437 # all (-1).
438 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
439 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
440 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
441 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
442 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
443 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
444 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 # This should be defined in tm.h, if REGISTER_NAMES is not set up
453 # to map one to one onto the sdb register numbers.
454 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
455 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
456 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
457 v:2:REGISTER_SIZE:int:register_size::::0:-1
458 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
459 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
460 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
461 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
462 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
463 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
464 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
465 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
466 f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
467 # MAP a GDB RAW register number onto a simulator register number. See
468 # also include/...-sim.h.
469 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
470 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
471 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
472 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
473 # setjmp/longjmp support.
474 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
475 #
476 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
477 # much better but at least they are vaguely consistent). The headers
478 # and body contain convoluted #if/#else sequences for determine how
479 # things should be compiled. Instead of trying to mimic that
480 # behaviour here (and hence entrench it further) gdbarch simply
481 # reqires that these methods be set up from the word go. This also
482 # avoids any potential problems with moving beyond multi-arch partial.
483 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
484 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
485 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
486 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
487 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
488 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
489 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
490 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
491 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
492 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
493 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
494 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
496 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
497 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
498 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
499 #
500 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
501 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
502 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
503 # GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
504 # old code has strange #ifdef interaction. So far no one has found
505 # that default_get_saved_register() is the default they are after.
506 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
507 #
508 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
509 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
510 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
511 # This function is called when the value of a pseudo-register needs to
512 # be updated. Typically it will be defined on a per-architecture
513 # basis.
514 F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
515 # This function is called when the value of a pseudo-register needs to
516 # be set or stored. Typically it will be defined on a
517 # per-architecture basis.
518 F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
519 #
520 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
521 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
522 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
523 #
524 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
525 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
533 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
534 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
535 #
536 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
537 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
538 #
539 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
540 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
541 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
542 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
543 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
544 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
545 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
546 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
547 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
548 #
549 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
550 #
551 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
552 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
553 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
554 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
555 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
556 # given frame is the outermost one and has no caller.
557 #
558 # XXXX - both default and alternate frame_chain_valid functions are
559 # deprecated. New code should use dummy frames and one of the generic
560 # functions.
561 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
562 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
563 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
564 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
565 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
566 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
567 #
568 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
569 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
570 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
571 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
572 v:2:PARM_BOUNDARY:int:parm_boundary
573 #
574 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
575 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
576 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
577 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
578 # On some machines there are bits in addresses which are not really
579 # part of the address, but are used by the kernel, the hardware, etc.
580 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
581 # we get a "real" address such as one would find in a symbol table.
582 # This is used only for addresses of instructions, and even then I'm
583 # not sure it's used in all contexts. It exists to deal with there
584 # being a few stray bits in the PC which would mislead us, not as some
585 # sort of generic thing to handle alignment or segmentation (it's
586 # possible it should be in TARGET_READ_PC instead).
587 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
588 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
589 # ADDR_BITS_REMOVE.
590 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
591 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
592 # the target needs software single step. An ISA method to implement it.
593 #
594 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
595 # using the breakpoint system instead of blatting memory directly (as with rs6000).
596 #
597 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
598 # single step. If not, then implement single step using breakpoints.
599 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
600 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
601 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
602 # For SVR4 shared libraries, each call goes through a small piece of
603 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
604 # to nonzero if we are current stopped in one of these.
605 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
606 # A target might have problems with watchpoints as soon as the stack
607 # frame of the current function has been destroyed. This mostly happens
608 # as the first action in a funtion's epilogue. in_function_epilogue_p()
609 # is defined to return a non-zero value if either the given addr is one
610 # instruction after the stack destroying instruction up to the trailing
611 # return instruction or if we can figure out that the stack frame has
612 # already been invalidated regardless of the value of addr. Targets
613 # which don't suffer from that problem could just let this functionality
614 # untouched.
615 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
616 # Given a vector of command-line arguments, return a newly allocated
617 # string which, when passed to the create_inferior function, will be
618 # parsed (on Unix systems, by the shell) to yield the same vector.
619 # This function should call error() if the argument vector is not
620 # representable for this target or if this target does not support
621 # command-line arguments.
622 # ARGC is the number of elements in the vector.
623 # ARGV is an array of strings, one per argument.
624 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
625 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
626 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
627 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
628 EOF
629 }
630
631 #
632 # The .log file
633 #
634 exec > new-gdbarch.log
635 function_list | while do_read
636 do
637 cat <<EOF
638 ${class} ${macro}(${actual})
639 ${returntype} ${function} ($formal)${attrib}
640 EOF
641 for r in ${read}
642 do
643 eval echo \"\ \ \ \ ${r}=\${${r}}\"
644 done
645 # #fallbackdefault=${fallbackdefault}
646 # #valid_p=${valid_p}
647 #EOF
648 if class_is_predicate_p && fallback_default_p
649 then
650 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
651 kill $$
652 exit 1
653 fi
654 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
655 then
656 echo "Error: postdefault is useless when invalid_p=0" 1>&2
657 kill $$
658 exit 1
659 fi
660 if class_is_multiarch_p
661 then
662 if class_is_predicate_p ; then :
663 elif test "x${predefault}" = "x"
664 then
665 echo "Error: pure multi-arch function must have a predefault" 1>&2
666 kill $$
667 exit 1
668 fi
669 fi
670 echo ""
671 done
672
673 exec 1>&2
674 compare_new gdbarch.log
675
676
677 copyright ()
678 {
679 cat <<EOF
680 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
681
682 /* Dynamic architecture support for GDB, the GNU debugger.
683 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
684
685 This file is part of GDB.
686
687 This program is free software; you can redistribute it and/or modify
688 it under the terms of the GNU General Public License as published by
689 the Free Software Foundation; either version 2 of the License, or
690 (at your option) any later version.
691
692 This program is distributed in the hope that it will be useful,
693 but WITHOUT ANY WARRANTY; without even the implied warranty of
694 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
695 GNU General Public License for more details.
696
697 You should have received a copy of the GNU General Public License
698 along with this program; if not, write to the Free Software
699 Foundation, Inc., 59 Temple Place - Suite 330,
700 Boston, MA 02111-1307, USA. */
701
702 /* This file was created with the aid of \`\`gdbarch.sh''.
703
704 The Bourne shell script \`\`gdbarch.sh'' creates the files
705 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
706 against the existing \`\`gdbarch.[hc]''. Any differences found
707 being reported.
708
709 If editing this file, please also run gdbarch.sh and merge any
710 changes into that script. Conversely, when making sweeping changes
711 to this file, modifying gdbarch.sh and using its output may prove
712 easier. */
713
714 EOF
715 }
716
717 #
718 # The .h file
719 #
720
721 exec > new-gdbarch.h
722 copyright
723 cat <<EOF
724 #ifndef GDBARCH_H
725 #define GDBARCH_H
726
727 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
728 #if !GDB_MULTI_ARCH
729 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
730 #endif
731
732 struct frame_info;
733 struct value;
734 struct objfile;
735 struct minimal_symbol;
736
737 extern struct gdbarch *current_gdbarch;
738
739
740 /* If any of the following are defined, the target wasn't correctly
741 converted. */
742
743 #if GDB_MULTI_ARCH
744 #if defined (EXTRA_FRAME_INFO)
745 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
746 #endif
747 #endif
748
749 #if GDB_MULTI_ARCH
750 #if defined (FRAME_FIND_SAVED_REGS)
751 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
752 #endif
753 #endif
754
755 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
756 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
757 #endif
758 EOF
759
760 # function typedef's
761 printf "\n"
762 printf "\n"
763 printf "/* The following are pre-initialized by GDBARCH. */\n"
764 function_list | while do_read
765 do
766 if class_is_info_p
767 then
768 printf "\n"
769 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
770 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
771 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
772 printf "#error \"Non multi-arch definition of ${macro}\"\n"
773 printf "#endif\n"
774 printf "#if GDB_MULTI_ARCH\n"
775 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
776 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
777 printf "#endif\n"
778 printf "#endif\n"
779 fi
780 done
781
782 # function typedef's
783 printf "\n"
784 printf "\n"
785 printf "/* The following are initialized by the target dependent code. */\n"
786 function_list | while do_read
787 do
788 if [ -n "${comment}" ]
789 then
790 echo "${comment}" | sed \
791 -e '2 s,#,/*,' \
792 -e '3,$ s,#, ,' \
793 -e '$ s,$, */,'
794 fi
795 if class_is_multiarch_p
796 then
797 if class_is_predicate_p
798 then
799 printf "\n"
800 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
801 fi
802 else
803 if class_is_predicate_p
804 then
805 printf "\n"
806 printf "#if defined (${macro})\n"
807 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
808 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
809 printf "#if !defined (${macro}_P)\n"
810 printf "#define ${macro}_P() (1)\n"
811 printf "#endif\n"
812 printf "#endif\n"
813 printf "\n"
814 printf "/* Default predicate for non- multi-arch targets. */\n"
815 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
816 printf "#define ${macro}_P() (0)\n"
817 printf "#endif\n"
818 printf "\n"
819 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
820 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
821 printf "#error \"Non multi-arch definition of ${macro}\"\n"
822 printf "#endif\n"
823 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
824 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
825 printf "#endif\n"
826 fi
827 fi
828 if class_is_variable_p
829 then
830 if fallback_default_p || class_is_predicate_p
831 then
832 printf "\n"
833 printf "/* Default (value) for non- multi-arch platforms. */\n"
834 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
835 echo "#define ${macro} (${fallbackdefault})" \
836 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
837 printf "#endif\n"
838 fi
839 printf "\n"
840 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
841 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
842 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
843 printf "#error \"Non multi-arch definition of ${macro}\"\n"
844 printf "#endif\n"
845 printf "#if GDB_MULTI_ARCH\n"
846 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
847 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
848 printf "#endif\n"
849 printf "#endif\n"
850 fi
851 if class_is_function_p
852 then
853 if class_is_multiarch_p ; then :
854 elif fallback_default_p || class_is_predicate_p
855 then
856 printf "\n"
857 printf "/* Default (function) for non- multi-arch platforms. */\n"
858 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
859 if [ "x${fallbackdefault}" = "x0" ]
860 then
861 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
862 else
863 # FIXME: Should be passing current_gdbarch through!
864 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
865 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
866 fi
867 printf "#endif\n"
868 fi
869 printf "\n"
870 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
871 then
872 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
873 elif class_is_multiarch_p
874 then
875 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
876 else
877 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
878 fi
879 if [ "x${formal}" = "xvoid" ]
880 then
881 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
882 else
883 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
884 fi
885 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
886 if class_is_multiarch_p ; then :
887 else
888 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
889 printf "#error \"Non multi-arch definition of ${macro}\"\n"
890 printf "#endif\n"
891 printf "#if GDB_MULTI_ARCH\n"
892 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
893 if [ "x${actual}" = "x" ]
894 then
895 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
896 elif [ "x${actual}" = "x-" ]
897 then
898 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
899 else
900 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
901 fi
902 printf "#endif\n"
903 printf "#endif\n"
904 fi
905 fi
906 done
907
908 # close it off
909 cat <<EOF
910
911 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
912
913
914 /* Mechanism for co-ordinating the selection of a specific
915 architecture.
916
917 GDB targets (*-tdep.c) can register an interest in a specific
918 architecture. Other GDB components can register a need to maintain
919 per-architecture data.
920
921 The mechanisms below ensures that there is only a loose connection
922 between the set-architecture command and the various GDB
923 components. Each component can independently register their need
924 to maintain architecture specific data with gdbarch.
925
926 Pragmatics:
927
928 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
929 didn't scale.
930
931 The more traditional mega-struct containing architecture specific
932 data for all the various GDB components was also considered. Since
933 GDB is built from a variable number of (fairly independent)
934 components it was determined that the global aproach was not
935 applicable. */
936
937
938 /* Register a new architectural family with GDB.
939
940 Register support for the specified ARCHITECTURE with GDB. When
941 gdbarch determines that the specified architecture has been
942 selected, the corresponding INIT function is called.
943
944 --
945
946 The INIT function takes two parameters: INFO which contains the
947 information available to gdbarch about the (possibly new)
948 architecture; ARCHES which is a list of the previously created
949 \`\`struct gdbarch'' for this architecture.
950
951 The INIT function parameter INFO shall, as far as possible, be
952 pre-initialized with information obtained from INFO.ABFD or
953 previously selected architecture (if similar).
954
955 The INIT function shall return any of: NULL - indicating that it
956 doesn't recognize the selected architecture; an existing \`\`struct
957 gdbarch'' from the ARCHES list - indicating that the new
958 architecture is just a synonym for an earlier architecture (see
959 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
960 - that describes the selected architecture (see gdbarch_alloc()).
961
962 The DUMP_TDEP function shall print out all target specific values.
963 Care should be taken to ensure that the function works in both the
964 multi-arch and non- multi-arch cases. */
965
966 struct gdbarch_list
967 {
968 struct gdbarch *gdbarch;
969 struct gdbarch_list *next;
970 };
971
972 struct gdbarch_info
973 {
974 /* Use default: NULL (ZERO). */
975 const struct bfd_arch_info *bfd_arch_info;
976
977 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
978 int byte_order;
979
980 /* Use default: NULL (ZERO). */
981 bfd *abfd;
982
983 /* Use default: NULL (ZERO). */
984 struct gdbarch_tdep_info *tdep_info;
985 };
986
987 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
988 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
989
990 /* DEPRECATED - use gdbarch_register() */
991 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
992
993 extern void gdbarch_register (enum bfd_architecture architecture,
994 gdbarch_init_ftype *,
995 gdbarch_dump_tdep_ftype *);
996
997
998 /* Return a freshly allocated, NULL terminated, array of the valid
999 architecture names. Since architectures are registered during the
1000 _initialize phase this function only returns useful information
1001 once initialization has been completed. */
1002
1003 extern const char **gdbarch_printable_names (void);
1004
1005
1006 /* Helper function. Search the list of ARCHES for a GDBARCH that
1007 matches the information provided by INFO. */
1008
1009 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1010
1011
1012 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1013 basic initialization using values obtained from the INFO andTDEP
1014 parameters. set_gdbarch_*() functions are called to complete the
1015 initialization of the object. */
1016
1017 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1018
1019
1020 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1021 It is assumed that the caller freeds the \`\`struct
1022 gdbarch_tdep''. */
1023
1024 extern void gdbarch_free (struct gdbarch *);
1025
1026
1027 /* Helper function. Force an update of the current architecture.
1028
1029 The actual architecture selected is determined by INFO, \`\`(gdb) set
1030 architecture'' et.al., the existing architecture and BFD's default
1031 architecture. INFO should be initialized to zero and then selected
1032 fields should be updated.
1033
1034 Returns non-zero if the update succeeds */
1035
1036 extern int gdbarch_update_p (struct gdbarch_info info);
1037
1038
1039
1040 /* Register per-architecture data-pointer.
1041
1042 Reserve space for a per-architecture data-pointer. An identifier
1043 for the reserved data-pointer is returned. That identifer should
1044 be saved in a local static variable.
1045
1046 The per-architecture data-pointer can be initialized in one of two
1047 ways: The value can be set explicitly using a call to
1048 set_gdbarch_data(); the value can be set implicitly using the value
1049 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1050 called after the basic architecture vector has been created.
1051
1052 When a previously created architecture is re-selected, the
1053 per-architecture data-pointer for that previous architecture is
1054 restored. INIT() is not called.
1055
1056 During initialization, multiple assignments of the data-pointer are
1057 allowed, non-NULL values are deleted by calling FREE(). If the
1058 architecture is deleted using gdbarch_free() all non-NULL data
1059 pointers are also deleted using FREE().
1060
1061 Multiple registrarants for any architecture are allowed (and
1062 strongly encouraged). */
1063
1064 struct gdbarch_data;
1065
1066 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1067 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1068 void *pointer);
1069 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1070 gdbarch_data_free_ftype *free);
1071 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1072 struct gdbarch_data *data,
1073 void *pointer);
1074
1075 extern void *gdbarch_data (struct gdbarch_data*);
1076
1077
1078 /* Register per-architecture memory region.
1079
1080 Provide a memory-region swap mechanism. Per-architecture memory
1081 region are created. These memory regions are swapped whenever the
1082 architecture is changed. For a new architecture, the memory region
1083 is initialized with zero (0) and the INIT function is called.
1084
1085 Memory regions are swapped / initialized in the order that they are
1086 registered. NULL DATA and/or INIT values can be specified.
1087
1088 New code should use register_gdbarch_data(). */
1089
1090 typedef void (gdbarch_swap_ftype) (void);
1091 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1092 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1093
1094
1095
1096 /* The target-system-dependent byte order is dynamic */
1097
1098 extern int target_byte_order;
1099 #ifndef TARGET_BYTE_ORDER
1100 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1101 #endif
1102
1103 extern int target_byte_order_auto;
1104 #ifndef TARGET_BYTE_ORDER_AUTO
1105 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1106 #endif
1107
1108
1109
1110 /* The target-system-dependent BFD architecture is dynamic */
1111
1112 extern int target_architecture_auto;
1113 #ifndef TARGET_ARCHITECTURE_AUTO
1114 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1115 #endif
1116
1117 extern const struct bfd_arch_info *target_architecture;
1118 #ifndef TARGET_ARCHITECTURE
1119 #define TARGET_ARCHITECTURE (target_architecture + 0)
1120 #endif
1121
1122
1123 /* The target-system-dependent disassembler is semi-dynamic */
1124
1125 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1126 unsigned int len, disassemble_info *info);
1127
1128 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1129 disassemble_info *info);
1130
1131 extern void dis_asm_print_address (bfd_vma addr,
1132 disassemble_info *info);
1133
1134 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1135 extern disassemble_info tm_print_insn_info;
1136 #ifndef TARGET_PRINT_INSN_INFO
1137 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1138 #endif
1139
1140
1141
1142 /* Set the dynamic target-system-dependent parameters (architecture,
1143 byte-order, ...) using information found in the BFD */
1144
1145 extern void set_gdbarch_from_file (bfd *);
1146
1147
1148 /* Initialize the current architecture to the "first" one we find on
1149 our list. */
1150
1151 extern void initialize_current_architecture (void);
1152
1153 /* For non-multiarched targets, do any initialization of the default
1154 gdbarch object necessary after the _initialize_MODULE functions
1155 have run. */
1156 extern void initialize_non_multiarch ();
1157
1158 /* gdbarch trace variable */
1159 extern int gdbarch_debug;
1160
1161 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1162
1163 #endif
1164 EOF
1165 exec 1>&2
1166 #../move-if-change new-gdbarch.h gdbarch.h
1167 compare_new gdbarch.h
1168
1169
1170 #
1171 # C file
1172 #
1173
1174 exec > new-gdbarch.c
1175 copyright
1176 cat <<EOF
1177
1178 #include "defs.h"
1179 #include "arch-utils.h"
1180
1181 #if GDB_MULTI_ARCH
1182 #include "gdbcmd.h"
1183 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1184 #else
1185 /* Just include everything in sight so that the every old definition
1186 of macro is visible. */
1187 #include "gdb_string.h"
1188 #include <ctype.h>
1189 #include "symtab.h"
1190 #include "frame.h"
1191 #include "inferior.h"
1192 #include "breakpoint.h"
1193 #include "gdb_wait.h"
1194 #include "gdbcore.h"
1195 #include "gdbcmd.h"
1196 #include "target.h"
1197 #include "gdbthread.h"
1198 #include "annotate.h"
1199 #include "symfile.h" /* for overlay functions */
1200 #include "value.h" /* For old tm.h/nm.h macros. */
1201 #endif
1202 #include "symcat.h"
1203
1204 #include "floatformat.h"
1205
1206 #include "gdb_assert.h"
1207 #include "gdb-events.h"
1208
1209 /* Static function declarations */
1210
1211 static void verify_gdbarch (struct gdbarch *gdbarch);
1212 static void alloc_gdbarch_data (struct gdbarch *);
1213 static void init_gdbarch_data (struct gdbarch *);
1214 static void free_gdbarch_data (struct gdbarch *);
1215 static void init_gdbarch_swap (struct gdbarch *);
1216 static void swapout_gdbarch_swap (struct gdbarch *);
1217 static void swapin_gdbarch_swap (struct gdbarch *);
1218
1219 /* Non-zero if we want to trace architecture code. */
1220
1221 #ifndef GDBARCH_DEBUG
1222 #define GDBARCH_DEBUG 0
1223 #endif
1224 int gdbarch_debug = GDBARCH_DEBUG;
1225
1226 EOF
1227
1228 # gdbarch open the gdbarch object
1229 printf "\n"
1230 printf "/* Maintain the struct gdbarch object */\n"
1231 printf "\n"
1232 printf "struct gdbarch\n"
1233 printf "{\n"
1234 printf " /* basic architectural information */\n"
1235 function_list | while do_read
1236 do
1237 if class_is_info_p
1238 then
1239 printf " ${returntype} ${function};\n"
1240 fi
1241 done
1242 printf "\n"
1243 printf " /* target specific vector. */\n"
1244 printf " struct gdbarch_tdep *tdep;\n"
1245 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1246 printf "\n"
1247 printf " /* per-architecture data-pointers */\n"
1248 printf " unsigned nr_data;\n"
1249 printf " void **data;\n"
1250 printf "\n"
1251 printf " /* per-architecture swap-regions */\n"
1252 printf " struct gdbarch_swap *swap;\n"
1253 printf "\n"
1254 cat <<EOF
1255 /* Multi-arch values.
1256
1257 When extending this structure you must:
1258
1259 Add the field below.
1260
1261 Declare set/get functions and define the corresponding
1262 macro in gdbarch.h.
1263
1264 gdbarch_alloc(): If zero/NULL is not a suitable default,
1265 initialize the new field.
1266
1267 verify_gdbarch(): Confirm that the target updated the field
1268 correctly.
1269
1270 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1271 field is dumped out
1272
1273 \`\`startup_gdbarch()'': Append an initial value to the static
1274 variable (base values on the host's c-type system).
1275
1276 get_gdbarch(): Implement the set/get functions (probably using
1277 the macro's as shortcuts).
1278
1279 */
1280
1281 EOF
1282 function_list | while do_read
1283 do
1284 if class_is_variable_p
1285 then
1286 printf " ${returntype} ${function};\n"
1287 elif class_is_function_p
1288 then
1289 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1290 fi
1291 done
1292 printf "};\n"
1293
1294 # A pre-initialized vector
1295 printf "\n"
1296 printf "\n"
1297 cat <<EOF
1298 /* The default architecture uses host values (for want of a better
1299 choice). */
1300 EOF
1301 printf "\n"
1302 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1303 printf "\n"
1304 printf "struct gdbarch startup_gdbarch =\n"
1305 printf "{\n"
1306 printf " /* basic architecture information */\n"
1307 function_list | while do_read
1308 do
1309 if class_is_info_p
1310 then
1311 printf " ${staticdefault},\n"
1312 fi
1313 done
1314 cat <<EOF
1315 /* target specific vector and its dump routine */
1316 NULL, NULL,
1317 /*per-architecture data-pointers and swap regions */
1318 0, NULL, NULL,
1319 /* Multi-arch values */
1320 EOF
1321 function_list | while do_read
1322 do
1323 if class_is_function_p || class_is_variable_p
1324 then
1325 printf " ${staticdefault},\n"
1326 fi
1327 done
1328 cat <<EOF
1329 /* startup_gdbarch() */
1330 };
1331
1332 struct gdbarch *current_gdbarch = &startup_gdbarch;
1333
1334 /* Do any initialization needed for a non-multiarch configuration
1335 after the _initialize_MODULE functions have been run. */
1336 void
1337 initialize_non_multiarch ()
1338 {
1339 alloc_gdbarch_data (&startup_gdbarch);
1340 init_gdbarch_swap (&startup_gdbarch);
1341 init_gdbarch_data (&startup_gdbarch);
1342 }
1343 EOF
1344
1345 # Create a new gdbarch struct
1346 printf "\n"
1347 printf "\n"
1348 cat <<EOF
1349 /* Create a new \`\`struct gdbarch'' based on information provided by
1350 \`\`struct gdbarch_info''. */
1351 EOF
1352 printf "\n"
1353 cat <<EOF
1354 struct gdbarch *
1355 gdbarch_alloc (const struct gdbarch_info *info,
1356 struct gdbarch_tdep *tdep)
1357 {
1358 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1359 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1360 the current local architecture and not the previous global
1361 architecture. This ensures that the new architectures initial
1362 values are not influenced by the previous architecture. Once
1363 everything is parameterised with gdbarch, this will go away. */
1364 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1365 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1366
1367 alloc_gdbarch_data (current_gdbarch);
1368
1369 current_gdbarch->tdep = tdep;
1370 EOF
1371 printf "\n"
1372 function_list | while do_read
1373 do
1374 if class_is_info_p
1375 then
1376 printf " current_gdbarch->${function} = info->${function};\n"
1377 fi
1378 done
1379 printf "\n"
1380 printf " /* Force the explicit initialization of these. */\n"
1381 function_list | while do_read
1382 do
1383 if class_is_function_p || class_is_variable_p
1384 then
1385 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1386 then
1387 printf " current_gdbarch->${function} = ${predefault};\n"
1388 fi
1389 fi
1390 done
1391 cat <<EOF
1392 /* gdbarch_alloc() */
1393
1394 return current_gdbarch;
1395 }
1396 EOF
1397
1398 # Free a gdbarch struct.
1399 printf "\n"
1400 printf "\n"
1401 cat <<EOF
1402 /* Free a gdbarch struct. This should never happen in normal
1403 operation --- once you've created a gdbarch, you keep it around.
1404 However, if an architecture's init function encounters an error
1405 building the structure, it may need to clean up a partially
1406 constructed gdbarch. */
1407
1408 void
1409 gdbarch_free (struct gdbarch *arch)
1410 {
1411 gdb_assert (arch != NULL);
1412 free_gdbarch_data (arch);
1413 xfree (arch);
1414 }
1415 EOF
1416
1417 # verify a new architecture
1418 printf "\n"
1419 printf "\n"
1420 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1421 printf "\n"
1422 cat <<EOF
1423 static void
1424 verify_gdbarch (struct gdbarch *gdbarch)
1425 {
1426 struct ui_file *log;
1427 struct cleanup *cleanups;
1428 long dummy;
1429 char *buf;
1430 /* Only perform sanity checks on a multi-arch target. */
1431 if (!GDB_MULTI_ARCH)
1432 return;
1433 log = mem_fileopen ();
1434 cleanups = make_cleanup_ui_file_delete (log);
1435 /* fundamental */
1436 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1437 fprintf_unfiltered (log, "\n\tbyte-order");
1438 if (gdbarch->bfd_arch_info == NULL)
1439 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1440 /* Check those that need to be defined for the given multi-arch level. */
1441 EOF
1442 function_list | while do_read
1443 do
1444 if class_is_function_p || class_is_variable_p
1445 then
1446 if [ "x${invalid_p}" = "x0" ]
1447 then
1448 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1449 elif class_is_predicate_p
1450 then
1451 printf " /* Skip verify of ${function}, has predicate */\n"
1452 # FIXME: See do_read for potential simplification
1453 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1454 then
1455 printf " if (${invalid_p})\n"
1456 printf " gdbarch->${function} = ${postdefault};\n"
1457 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1458 then
1459 printf " if (gdbarch->${function} == ${predefault})\n"
1460 printf " gdbarch->${function} = ${postdefault};\n"
1461 elif [ -n "${postdefault}" ]
1462 then
1463 printf " if (gdbarch->${function} == 0)\n"
1464 printf " gdbarch->${function} = ${postdefault};\n"
1465 elif [ -n "${invalid_p}" ]
1466 then
1467 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1468 printf " && (${invalid_p}))\n"
1469 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1470 elif [ -n "${predefault}" ]
1471 then
1472 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1473 printf " && (gdbarch->${function} == ${predefault}))\n"
1474 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1475 fi
1476 fi
1477 done
1478 cat <<EOF
1479 buf = ui_file_xstrdup (log, &dummy);
1480 make_cleanup (xfree, buf);
1481 if (strlen (buf) > 0)
1482 internal_error (__FILE__, __LINE__,
1483 "verify_gdbarch: the following are invalid ...%s",
1484 buf);
1485 do_cleanups (cleanups);
1486 }
1487 EOF
1488
1489 # dump the structure
1490 printf "\n"
1491 printf "\n"
1492 cat <<EOF
1493 /* Print out the details of the current architecture. */
1494
1495 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1496 just happens to match the global variable \`\`current_gdbarch''. That
1497 way macros refering to that variable get the local and not the global
1498 version - ulgh. Once everything is parameterised with gdbarch, this
1499 will go away. */
1500
1501 void
1502 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1503 {
1504 fprintf_unfiltered (file,
1505 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1506 GDB_MULTI_ARCH);
1507 EOF
1508 function_list | sort -t: +2 | while do_read
1509 do
1510 # multiarch functions don't have macros.
1511 if class_is_multiarch_p
1512 then
1513 printf " if (GDB_MULTI_ARCH)\n"
1514 printf " fprintf_unfiltered (file,\n"
1515 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1516 printf " (long) current_gdbarch->${function});\n"
1517 continue
1518 fi
1519 # Print the macro definition.
1520 printf "#ifdef ${macro}\n"
1521 if [ "x${returntype}" = "xvoid" ]
1522 then
1523 printf "#if GDB_MULTI_ARCH\n"
1524 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1525 fi
1526 if class_is_function_p
1527 then
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1530 printf " \"${macro}(${actual})\",\n"
1531 printf " XSTRING (${macro} (${actual})));\n"
1532 else
1533 printf " fprintf_unfiltered (file,\n"
1534 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1535 printf " XSTRING (${macro}));\n"
1536 fi
1537 # Print the architecture vector value
1538 if [ "x${returntype}" = "xvoid" ]
1539 then
1540 printf "#endif\n"
1541 fi
1542 if [ "x${print_p}" = "x()" ]
1543 then
1544 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1545 elif [ "x${print_p}" = "x0" ]
1546 then
1547 printf " /* skip print of ${macro}, print_p == 0. */\n"
1548 elif [ -n "${print_p}" ]
1549 then
1550 printf " if (${print_p})\n"
1551 printf " fprintf_unfiltered (file,\n"
1552 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1553 printf " ${print});\n"
1554 elif class_is_function_p
1555 then
1556 printf " if (GDB_MULTI_ARCH)\n"
1557 printf " fprintf_unfiltered (file,\n"
1558 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1559 printf " (long) current_gdbarch->${function}\n"
1560 printf " /*${macro} ()*/);\n"
1561 else
1562 printf " fprintf_unfiltered (file,\n"
1563 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1564 printf " ${print});\n"
1565 fi
1566 printf "#endif\n"
1567 done
1568 cat <<EOF
1569 if (current_gdbarch->dump_tdep != NULL)
1570 current_gdbarch->dump_tdep (current_gdbarch, file);
1571 }
1572 EOF
1573
1574
1575 # GET/SET
1576 printf "\n"
1577 cat <<EOF
1578 struct gdbarch_tdep *
1579 gdbarch_tdep (struct gdbarch *gdbarch)
1580 {
1581 if (gdbarch_debug >= 2)
1582 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1583 return gdbarch->tdep;
1584 }
1585 EOF
1586 printf "\n"
1587 function_list | while do_read
1588 do
1589 if class_is_predicate_p
1590 then
1591 printf "\n"
1592 printf "int\n"
1593 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1594 printf "{\n"
1595 if [ -n "${valid_p}" ]
1596 then
1597 printf " return ${valid_p};\n"
1598 else
1599 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1600 fi
1601 printf "}\n"
1602 fi
1603 if class_is_function_p
1604 then
1605 printf "\n"
1606 printf "${returntype}\n"
1607 if [ "x${formal}" = "xvoid" ]
1608 then
1609 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1610 else
1611 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1612 fi
1613 printf "{\n"
1614 printf " if (gdbarch->${function} == 0)\n"
1615 printf " internal_error (__FILE__, __LINE__,\n"
1616 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1617 printf " if (gdbarch_debug >= 2)\n"
1618 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1619 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1620 then
1621 if class_is_multiarch_p
1622 then
1623 params="gdbarch"
1624 else
1625 params=""
1626 fi
1627 else
1628 if class_is_multiarch_p
1629 then
1630 params="gdbarch, ${actual}"
1631 else
1632 params="${actual}"
1633 fi
1634 fi
1635 if [ "x${returntype}" = "xvoid" ]
1636 then
1637 printf " gdbarch->${function} (${params});\n"
1638 else
1639 printf " return gdbarch->${function} (${params});\n"
1640 fi
1641 printf "}\n"
1642 printf "\n"
1643 printf "void\n"
1644 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1645 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1646 printf "{\n"
1647 printf " gdbarch->${function} = ${function};\n"
1648 printf "}\n"
1649 elif class_is_variable_p
1650 then
1651 printf "\n"
1652 printf "${returntype}\n"
1653 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1654 printf "{\n"
1655 if [ "x${invalid_p}" = "x0" ]
1656 then
1657 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1658 elif [ -n "${invalid_p}" ]
1659 then
1660 printf " if (${invalid_p})\n"
1661 printf " internal_error (__FILE__, __LINE__,\n"
1662 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1663 elif [ -n "${predefault}" ]
1664 then
1665 printf " if (gdbarch->${function} == ${predefault})\n"
1666 printf " internal_error (__FILE__, __LINE__,\n"
1667 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1668 fi
1669 printf " if (gdbarch_debug >= 2)\n"
1670 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1671 printf " return gdbarch->${function};\n"
1672 printf "}\n"
1673 printf "\n"
1674 printf "void\n"
1675 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1676 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1677 printf "{\n"
1678 printf " gdbarch->${function} = ${function};\n"
1679 printf "}\n"
1680 elif class_is_info_p
1681 then
1682 printf "\n"
1683 printf "${returntype}\n"
1684 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1685 printf "{\n"
1686 printf " if (gdbarch_debug >= 2)\n"
1687 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1688 printf " return gdbarch->${function};\n"
1689 printf "}\n"
1690 fi
1691 done
1692
1693 # All the trailing guff
1694 cat <<EOF
1695
1696
1697 /* Keep a registry of per-architecture data-pointers required by GDB
1698 modules. */
1699
1700 struct gdbarch_data
1701 {
1702 unsigned index;
1703 gdbarch_data_init_ftype *init;
1704 gdbarch_data_free_ftype *free;
1705 };
1706
1707 struct gdbarch_data_registration
1708 {
1709 struct gdbarch_data *data;
1710 struct gdbarch_data_registration *next;
1711 };
1712
1713 struct gdbarch_data_registry
1714 {
1715 unsigned nr;
1716 struct gdbarch_data_registration *registrations;
1717 };
1718
1719 struct gdbarch_data_registry gdbarch_data_registry =
1720 {
1721 0, NULL,
1722 };
1723
1724 struct gdbarch_data *
1725 register_gdbarch_data (gdbarch_data_init_ftype *init,
1726 gdbarch_data_free_ftype *free)
1727 {
1728 struct gdbarch_data_registration **curr;
1729 for (curr = &gdbarch_data_registry.registrations;
1730 (*curr) != NULL;
1731 curr = &(*curr)->next);
1732 (*curr) = XMALLOC (struct gdbarch_data_registration);
1733 (*curr)->next = NULL;
1734 (*curr)->data = XMALLOC (struct gdbarch_data);
1735 (*curr)->data->index = gdbarch_data_registry.nr++;
1736 (*curr)->data->init = init;
1737 (*curr)->data->free = free;
1738 return (*curr)->data;
1739 }
1740
1741
1742 /* Walk through all the registered users initializing each in turn. */
1743
1744 static void
1745 init_gdbarch_data (struct gdbarch *gdbarch)
1746 {
1747 struct gdbarch_data_registration *rego;
1748 for (rego = gdbarch_data_registry.registrations;
1749 rego != NULL;
1750 rego = rego->next)
1751 {
1752 struct gdbarch_data *data = rego->data;
1753 gdb_assert (data->index < gdbarch->nr_data);
1754 if (data->init != NULL)
1755 {
1756 void *pointer = data->init (gdbarch);
1757 set_gdbarch_data (gdbarch, data, pointer);
1758 }
1759 }
1760 }
1761
1762 /* Create/delete the gdbarch data vector. */
1763
1764 static void
1765 alloc_gdbarch_data (struct gdbarch *gdbarch)
1766 {
1767 gdb_assert (gdbarch->data == NULL);
1768 gdbarch->nr_data = gdbarch_data_registry.nr;
1769 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1770 }
1771
1772 static void
1773 free_gdbarch_data (struct gdbarch *gdbarch)
1774 {
1775 struct gdbarch_data_registration *rego;
1776 gdb_assert (gdbarch->data != NULL);
1777 for (rego = gdbarch_data_registry.registrations;
1778 rego != NULL;
1779 rego = rego->next)
1780 {
1781 struct gdbarch_data *data = rego->data;
1782 gdb_assert (data->index < gdbarch->nr_data);
1783 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1784 {
1785 data->free (gdbarch, gdbarch->data[data->index]);
1786 gdbarch->data[data->index] = NULL;
1787 }
1788 }
1789 xfree (gdbarch->data);
1790 gdbarch->data = NULL;
1791 }
1792
1793
1794 /* Initialize the current value of thee specified per-architecture
1795 data-pointer. */
1796
1797 void
1798 set_gdbarch_data (struct gdbarch *gdbarch,
1799 struct gdbarch_data *data,
1800 void *pointer)
1801 {
1802 gdb_assert (data->index < gdbarch->nr_data);
1803 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1804 data->free (gdbarch, gdbarch->data[data->index]);
1805 gdbarch->data[data->index] = pointer;
1806 }
1807
1808 /* Return the current value of the specified per-architecture
1809 data-pointer. */
1810
1811 void *
1812 gdbarch_data (struct gdbarch_data *data)
1813 {
1814 gdb_assert (data->index < current_gdbarch->nr_data);
1815 return current_gdbarch->data[data->index];
1816 }
1817
1818
1819
1820 /* Keep a registry of swapped data required by GDB modules. */
1821
1822 struct gdbarch_swap
1823 {
1824 void *swap;
1825 struct gdbarch_swap_registration *source;
1826 struct gdbarch_swap *next;
1827 };
1828
1829 struct gdbarch_swap_registration
1830 {
1831 void *data;
1832 unsigned long sizeof_data;
1833 gdbarch_swap_ftype *init;
1834 struct gdbarch_swap_registration *next;
1835 };
1836
1837 struct gdbarch_swap_registry
1838 {
1839 int nr;
1840 struct gdbarch_swap_registration *registrations;
1841 };
1842
1843 struct gdbarch_swap_registry gdbarch_swap_registry =
1844 {
1845 0, NULL,
1846 };
1847
1848 void
1849 register_gdbarch_swap (void *data,
1850 unsigned long sizeof_data,
1851 gdbarch_swap_ftype *init)
1852 {
1853 struct gdbarch_swap_registration **rego;
1854 for (rego = &gdbarch_swap_registry.registrations;
1855 (*rego) != NULL;
1856 rego = &(*rego)->next);
1857 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1858 (*rego)->next = NULL;
1859 (*rego)->init = init;
1860 (*rego)->data = data;
1861 (*rego)->sizeof_data = sizeof_data;
1862 }
1863
1864
1865 static void
1866 init_gdbarch_swap (struct gdbarch *gdbarch)
1867 {
1868 struct gdbarch_swap_registration *rego;
1869 struct gdbarch_swap **curr = &gdbarch->swap;
1870 for (rego = gdbarch_swap_registry.registrations;
1871 rego != NULL;
1872 rego = rego->next)
1873 {
1874 if (rego->data != NULL)
1875 {
1876 (*curr) = XMALLOC (struct gdbarch_swap);
1877 (*curr)->source = rego;
1878 (*curr)->swap = xmalloc (rego->sizeof_data);
1879 (*curr)->next = NULL;
1880 memset (rego->data, 0, rego->sizeof_data);
1881 curr = &(*curr)->next;
1882 }
1883 if (rego->init != NULL)
1884 rego->init ();
1885 }
1886 }
1887
1888 static void
1889 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1890 {
1891 struct gdbarch_swap *curr;
1892 for (curr = gdbarch->swap;
1893 curr != NULL;
1894 curr = curr->next)
1895 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1896 }
1897
1898 static void
1899 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1900 {
1901 struct gdbarch_swap *curr;
1902 for (curr = gdbarch->swap;
1903 curr != NULL;
1904 curr = curr->next)
1905 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1906 }
1907
1908
1909 /* Keep a registry of the architectures known by GDB. */
1910
1911 struct gdbarch_registration
1912 {
1913 enum bfd_architecture bfd_architecture;
1914 gdbarch_init_ftype *init;
1915 gdbarch_dump_tdep_ftype *dump_tdep;
1916 struct gdbarch_list *arches;
1917 struct gdbarch_registration *next;
1918 };
1919
1920 static struct gdbarch_registration *gdbarch_registry = NULL;
1921
1922 static void
1923 append_name (const char ***buf, int *nr, const char *name)
1924 {
1925 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1926 (*buf)[*nr] = name;
1927 *nr += 1;
1928 }
1929
1930 const char **
1931 gdbarch_printable_names (void)
1932 {
1933 if (GDB_MULTI_ARCH)
1934 {
1935 /* Accumulate a list of names based on the registed list of
1936 architectures. */
1937 enum bfd_architecture a;
1938 int nr_arches = 0;
1939 const char **arches = NULL;
1940 struct gdbarch_registration *rego;
1941 for (rego = gdbarch_registry;
1942 rego != NULL;
1943 rego = rego->next)
1944 {
1945 const struct bfd_arch_info *ap;
1946 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1947 if (ap == NULL)
1948 internal_error (__FILE__, __LINE__,
1949 "gdbarch_architecture_names: multi-arch unknown");
1950 do
1951 {
1952 append_name (&arches, &nr_arches, ap->printable_name);
1953 ap = ap->next;
1954 }
1955 while (ap != NULL);
1956 }
1957 append_name (&arches, &nr_arches, NULL);
1958 return arches;
1959 }
1960 else
1961 /* Just return all the architectures that BFD knows. Assume that
1962 the legacy architecture framework supports them. */
1963 return bfd_arch_list ();
1964 }
1965
1966
1967 void
1968 gdbarch_register (enum bfd_architecture bfd_architecture,
1969 gdbarch_init_ftype *init,
1970 gdbarch_dump_tdep_ftype *dump_tdep)
1971 {
1972 struct gdbarch_registration **curr;
1973 const struct bfd_arch_info *bfd_arch_info;
1974 /* Check that BFD recognizes this architecture */
1975 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1976 if (bfd_arch_info == NULL)
1977 {
1978 internal_error (__FILE__, __LINE__,
1979 "gdbarch: Attempt to register unknown architecture (%d)",
1980 bfd_architecture);
1981 }
1982 /* Check that we haven't seen this architecture before */
1983 for (curr = &gdbarch_registry;
1984 (*curr) != NULL;
1985 curr = &(*curr)->next)
1986 {
1987 if (bfd_architecture == (*curr)->bfd_architecture)
1988 internal_error (__FILE__, __LINE__,
1989 "gdbarch: Duplicate registraration of architecture (%s)",
1990 bfd_arch_info->printable_name);
1991 }
1992 /* log it */
1993 if (gdbarch_debug)
1994 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1995 bfd_arch_info->printable_name,
1996 (long) init);
1997 /* Append it */
1998 (*curr) = XMALLOC (struct gdbarch_registration);
1999 (*curr)->bfd_architecture = bfd_architecture;
2000 (*curr)->init = init;
2001 (*curr)->dump_tdep = dump_tdep;
2002 (*curr)->arches = NULL;
2003 (*curr)->next = NULL;
2004 /* When non- multi-arch, install whatever target dump routine we've
2005 been provided - hopefully that routine has been written correctly
2006 and works regardless of multi-arch. */
2007 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2008 && startup_gdbarch.dump_tdep == NULL)
2009 startup_gdbarch.dump_tdep = dump_tdep;
2010 }
2011
2012 void
2013 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2014 gdbarch_init_ftype *init)
2015 {
2016 gdbarch_register (bfd_architecture, init, NULL);
2017 }
2018
2019
2020 /* Look for an architecture using gdbarch_info. Base search on only
2021 BFD_ARCH_INFO and BYTE_ORDER. */
2022
2023 struct gdbarch_list *
2024 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2025 const struct gdbarch_info *info)
2026 {
2027 for (; arches != NULL; arches = arches->next)
2028 {
2029 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2030 continue;
2031 if (info->byte_order != arches->gdbarch->byte_order)
2032 continue;
2033 return arches;
2034 }
2035 return NULL;
2036 }
2037
2038
2039 /* Update the current architecture. Return ZERO if the update request
2040 failed. */
2041
2042 int
2043 gdbarch_update_p (struct gdbarch_info info)
2044 {
2045 struct gdbarch *new_gdbarch;
2046 struct gdbarch_list **list;
2047 struct gdbarch_registration *rego;
2048
2049 /* Fill in missing parts of the INFO struct using a number of
2050 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2051
2052 /* \`\`(gdb) set architecture ...'' */
2053 if (info.bfd_arch_info == NULL
2054 && !TARGET_ARCHITECTURE_AUTO)
2055 info.bfd_arch_info = TARGET_ARCHITECTURE;
2056 if (info.bfd_arch_info == NULL
2057 && info.abfd != NULL
2058 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2059 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2060 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2061 if (info.bfd_arch_info == NULL)
2062 info.bfd_arch_info = TARGET_ARCHITECTURE;
2063
2064 /* \`\`(gdb) set byte-order ...'' */
2065 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2066 && !TARGET_BYTE_ORDER_AUTO)
2067 info.byte_order = TARGET_BYTE_ORDER;
2068 /* From the INFO struct. */
2069 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2070 && info.abfd != NULL)
2071 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2072 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2073 : BFD_ENDIAN_UNKNOWN);
2074 /* From the current target. */
2075 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2076 info.byte_order = TARGET_BYTE_ORDER;
2077
2078 /* Must have found some sort of architecture. */
2079 gdb_assert (info.bfd_arch_info != NULL);
2080
2081 if (gdbarch_debug)
2082 {
2083 fprintf_unfiltered (gdb_stdlog,
2084 "gdbarch_update: info.bfd_arch_info %s\n",
2085 (info.bfd_arch_info != NULL
2086 ? info.bfd_arch_info->printable_name
2087 : "(null)"));
2088 fprintf_unfiltered (gdb_stdlog,
2089 "gdbarch_update: info.byte_order %d (%s)\n",
2090 info.byte_order,
2091 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2092 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2093 : "default"));
2094 fprintf_unfiltered (gdb_stdlog,
2095 "gdbarch_update: info.abfd 0x%lx\n",
2096 (long) info.abfd);
2097 fprintf_unfiltered (gdb_stdlog,
2098 "gdbarch_update: info.tdep_info 0x%lx\n",
2099 (long) info.tdep_info);
2100 }
2101
2102 /* Find the target that knows about this architecture. */
2103 for (rego = gdbarch_registry;
2104 rego != NULL;
2105 rego = rego->next)
2106 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2107 break;
2108 if (rego == NULL)
2109 {
2110 if (gdbarch_debug)
2111 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2112 return 0;
2113 }
2114
2115 /* Ask the target for a replacement architecture. */
2116 new_gdbarch = rego->init (info, rego->arches);
2117
2118 /* Did the target like it? No. Reject the change. */
2119 if (new_gdbarch == NULL)
2120 {
2121 if (gdbarch_debug)
2122 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2123 return 0;
2124 }
2125
2126 /* Did the architecture change? No. Do nothing. */
2127 if (current_gdbarch == new_gdbarch)
2128 {
2129 if (gdbarch_debug)
2130 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2131 (long) new_gdbarch,
2132 new_gdbarch->bfd_arch_info->printable_name);
2133 return 1;
2134 }
2135
2136 /* Swap all data belonging to the old target out */
2137 swapout_gdbarch_swap (current_gdbarch);
2138
2139 /* Is this a pre-existing architecture? Yes. Swap it in. */
2140 for (list = &rego->arches;
2141 (*list) != NULL;
2142 list = &(*list)->next)
2143 {
2144 if ((*list)->gdbarch == new_gdbarch)
2145 {
2146 if (gdbarch_debug)
2147 fprintf_unfiltered (gdb_stdlog,
2148 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2149 (long) new_gdbarch,
2150 new_gdbarch->bfd_arch_info->printable_name);
2151 current_gdbarch = new_gdbarch;
2152 swapin_gdbarch_swap (new_gdbarch);
2153 architecture_changed_event ();
2154 return 1;
2155 }
2156 }
2157
2158 /* Append this new architecture to this targets list. */
2159 (*list) = XMALLOC (struct gdbarch_list);
2160 (*list)->next = NULL;
2161 (*list)->gdbarch = new_gdbarch;
2162
2163 /* Switch to this new architecture. Dump it out. */
2164 current_gdbarch = new_gdbarch;
2165 if (gdbarch_debug)
2166 {
2167 fprintf_unfiltered (gdb_stdlog,
2168 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2169 (long) new_gdbarch,
2170 new_gdbarch->bfd_arch_info->printable_name);
2171 }
2172
2173 /* Check that the newly installed architecture is valid. Plug in
2174 any post init values. */
2175 new_gdbarch->dump_tdep = rego->dump_tdep;
2176 verify_gdbarch (new_gdbarch);
2177
2178 /* Initialize the per-architecture memory (swap) areas.
2179 CURRENT_GDBARCH must be update before these modules are
2180 called. */
2181 init_gdbarch_swap (new_gdbarch);
2182
2183 /* Initialize the per-architecture data-pointer of all parties that
2184 registered an interest in this architecture. CURRENT_GDBARCH
2185 must be updated before these modules are called. */
2186 init_gdbarch_data (new_gdbarch);
2187 architecture_changed_event ();
2188
2189 if (gdbarch_debug)
2190 gdbarch_dump (current_gdbarch, gdb_stdlog);
2191
2192 return 1;
2193 }
2194
2195
2196 /* Disassembler */
2197
2198 /* Pointer to the target-dependent disassembly function. */
2199 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2200 disassemble_info tm_print_insn_info;
2201
2202
2203 extern void _initialize_gdbarch (void);
2204
2205 void
2206 _initialize_gdbarch (void)
2207 {
2208 struct cmd_list_element *c;
2209
2210 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2211 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2212 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2213 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2214 tm_print_insn_info.print_address_func = dis_asm_print_address;
2215
2216 add_show_from_set (add_set_cmd ("arch",
2217 class_maintenance,
2218 var_zinteger,
2219 (char *)&gdbarch_debug,
2220 "Set architecture debugging.\\n\\
2221 When non-zero, architecture debugging is enabled.", &setdebuglist),
2222 &showdebuglist);
2223 c = add_set_cmd ("archdebug",
2224 class_maintenance,
2225 var_zinteger,
2226 (char *)&gdbarch_debug,
2227 "Set architecture debugging.\\n\\
2228 When non-zero, architecture debugging is enabled.", &setlist);
2229
2230 deprecate_cmd (c, "set debug arch");
2231 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2232 }
2233 EOF
2234
2235 # close things off
2236 exec 1>&2
2237 #../move-if-change new-gdbarch.c gdbarch.c
2238 compare_new gdbarch.c
This page took 0.080657 seconds and 4 git commands to generate.