* infcmd.c (attach_command): Reread symbols if we already have
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
541 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
542 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
543 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
544 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
545 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
546 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
547
548 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
549 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
550 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
551 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
552 # MAP a GDB RAW register number onto a simulator register number. See
553 # also include/...-sim.h.
554 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
555 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
556 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
557 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
558 # setjmp/longjmp support.
559 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
560 # NOTE: cagney/2002-11-24: This function with predicate has a valid
561 # (callable) initial value. As a consequence, even when the predicate
562 # is false, the corresponding function works. This simplifies the
563 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
564 # doesn't need to be modified.
565 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::deprecated_pc_in_call_dummy:deprecated_pc_in_call_dummy
566 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
567 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
568 #
569 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
570 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
571 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
572 #
573 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
574 # For raw <-> cooked register conversions, replaced by pseudo registers.
575 F::DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr
576 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
577 # For raw <-> cooked register conversions, replaced by pseudo registers.
578 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
582 #
583 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
584 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
585 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
586 #
587 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
588 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
589 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
590 #
591 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
592 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
593 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
594
595 # It has been suggested that this, well actually its predecessor,
596 # should take the type/value of the function to be called and not the
597 # return type. This is left as an exercise for the reader.
598
599 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
600
601 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
602 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
603 # into RETURN_VALUE.
604
605 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
606 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
607 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
608 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
609 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
610 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
611
612 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
613 # ABI suitable for the implementation of a robust extract
614 # struct-convention return-value address method (the sparc saves the
615 # address in the callers frame). All the other cases so far examined,
616 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
617 # erreneous - the code was incorrectly assuming that the return-value
618 # address, stored in a register, was preserved across the entire
619 # function call.
620
621 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
622 # the ABIs that are still to be analyzed - perhaps this should simply
623 # be deleted. The commented out extract_returned_value_address method
624 # is provided as a starting point for the 32-bit SPARC. It, or
625 # something like it, along with changes to both infcmd.c and stack.c
626 # will be needed for that case to work. NB: It is passed the callers
627 # frame since it is only after the callee has returned that this
628 # function is used.
629
630 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
631 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
632
633 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
634 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
635 #
636 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
637 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
638 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
639 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
640 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
641 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
642 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
643 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
644 #
645 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
646 #
647 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
648 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
649 # frame code works regardless of the type of frame - frameless,
650 # stackless, or normal.
651 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
652 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
653 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
654 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
655 # note, per UNWIND_PC's doco, that while the two have similar
656 # interfaces they have very different underlying implementations.
657 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
658 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
659 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
660 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
661 # frame-base. Enable frame-base before frame-unwind.
662 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
663 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
664 # frame-base. Enable frame-base before frame-unwind.
665 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
666 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
667 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
668 #
669 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
670 # to frame_align and the requirement that methods such as
671 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
672 # alignment.
673 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
674 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
675 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
676 # stabs_argument_has_addr.
677 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
678 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
679 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
680 v:2:PARM_BOUNDARY:int:parm_boundary
681 #
682 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
683 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
684 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
685 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
686 # On some machines there are bits in addresses which are not really
687 # part of the address, but are used by the kernel, the hardware, etc.
688 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
689 # we get a "real" address such as one would find in a symbol table.
690 # This is used only for addresses of instructions, and even then I'm
691 # not sure it's used in all contexts. It exists to deal with there
692 # being a few stray bits in the PC which would mislead us, not as some
693 # sort of generic thing to handle alignment or segmentation (it's
694 # possible it should be in TARGET_READ_PC instead).
695 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
696 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
697 # ADDR_BITS_REMOVE.
698 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
699 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
700 # the target needs software single step. An ISA method to implement it.
701 #
702 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
703 # using the breakpoint system instead of blatting memory directly (as with rs6000).
704 #
705 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
706 # single step. If not, then implement single step using breakpoints.
707 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
708 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
709 # disassembler. Perhaphs objdump can handle it?
710 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
711 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
712
713
714 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
715 # evaluates non-zero, this is the address where the debugger will place
716 # a step-resume breakpoint to get us past the dynamic linker.
717 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
718 # For SVR4 shared libraries, each call goes through a small piece of
719 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
720 # to nonzero if we are currently stopped in one of these.
721 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
722
723 # Some systems also have trampoline code for returning from shared libs.
724 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
725
726 # NOTE: cagney/2004-03-23: DEPRECATED_SIGTRAMP_START,
727 # DEPRECATED_SIGTRAMP_END, and DEPRECATED_PC_IN_SIGTRAMP have all been
728 # superseeded by signal trampoline frame sniffers.
729 F::DEPRECATED_PC_IN_SIGTRAMP:int:deprecated_pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp
730 F:2:DEPRECATED_SIGTRAMP_START:CORE_ADDR:deprecated_sigtramp_start:CORE_ADDR pc:pc
731 F:2:DEPRECATED_SIGTRAMP_END:CORE_ADDR:deprecated_sigtramp_end:CORE_ADDR pc:pc
732 # A target might have problems with watchpoints as soon as the stack
733 # frame of the current function has been destroyed. This mostly happens
734 # as the first action in a funtion's epilogue. in_function_epilogue_p()
735 # is defined to return a non-zero value if either the given addr is one
736 # instruction after the stack destroying instruction up to the trailing
737 # return instruction or if we can figure out that the stack frame has
738 # already been invalidated regardless of the value of addr. Targets
739 # which don't suffer from that problem could just let this functionality
740 # untouched.
741 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
742 # Given a vector of command-line arguments, return a newly allocated
743 # string which, when passed to the create_inferior function, will be
744 # parsed (on Unix systems, by the shell) to yield the same vector.
745 # This function should call error() if the argument vector is not
746 # representable for this target or if this target does not support
747 # command-line arguments.
748 # ARGC is the number of elements in the vector.
749 # ARGV is an array of strings, one per argument.
750 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
751 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
752 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
753 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
754 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
755 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
756 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
757 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
758 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
759 # Is a register in a group
760 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
761 # Fetch the pointer to the ith function argument.
762 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
763
764 # Return the appropriate register set for a core file section with
765 # name SECT_NAME and size SECT_SIZE.
766 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
767 EOF
768 }
769
770 #
771 # The .log file
772 #
773 exec > new-gdbarch.log
774 function_list | while do_read
775 do
776 cat <<EOF
777 ${class} ${macro}(${actual})
778 ${returntype} ${function} ($formal)${attrib}
779 EOF
780 for r in ${read}
781 do
782 eval echo \"\ \ \ \ ${r}=\${${r}}\"
783 done
784 if class_is_predicate_p && fallback_default_p
785 then
786 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
787 kill $$
788 exit 1
789 fi
790 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
791 then
792 echo "Error: postdefault is useless when invalid_p=0" 1>&2
793 kill $$
794 exit 1
795 fi
796 if class_is_multiarch_p
797 then
798 if class_is_predicate_p ; then :
799 elif test "x${predefault}" = "x"
800 then
801 echo "Error: pure multi-arch function must have a predefault" 1>&2
802 kill $$
803 exit 1
804 fi
805 fi
806 echo ""
807 done
808
809 exec 1>&2
810 compare_new gdbarch.log
811
812
813 copyright ()
814 {
815 cat <<EOF
816 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
817
818 /* Dynamic architecture support for GDB, the GNU debugger.
819
820 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
821 Software Foundation, Inc.
822
823 This file is part of GDB.
824
825 This program is free software; you can redistribute it and/or modify
826 it under the terms of the GNU General Public License as published by
827 the Free Software Foundation; either version 2 of the License, or
828 (at your option) any later version.
829
830 This program is distributed in the hope that it will be useful,
831 but WITHOUT ANY WARRANTY; without even the implied warranty of
832 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
833 GNU General Public License for more details.
834
835 You should have received a copy of the GNU General Public License
836 along with this program; if not, write to the Free Software
837 Foundation, Inc., 59 Temple Place - Suite 330,
838 Boston, MA 02111-1307, USA. */
839
840 /* This file was created with the aid of \`\`gdbarch.sh''.
841
842 The Bourne shell script \`\`gdbarch.sh'' creates the files
843 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
844 against the existing \`\`gdbarch.[hc]''. Any differences found
845 being reported.
846
847 If editing this file, please also run gdbarch.sh and merge any
848 changes into that script. Conversely, when making sweeping changes
849 to this file, modifying gdbarch.sh and using its output may prove
850 easier. */
851
852 EOF
853 }
854
855 #
856 # The .h file
857 #
858
859 exec > new-gdbarch.h
860 copyright
861 cat <<EOF
862 #ifndef GDBARCH_H
863 #define GDBARCH_H
864
865 struct floatformat;
866 struct ui_file;
867 struct frame_info;
868 struct value;
869 struct objfile;
870 struct minimal_symbol;
871 struct regcache;
872 struct reggroup;
873 struct regset;
874 struct disassemble_info;
875 struct target_ops;
876 struct obstack;
877
878 extern struct gdbarch *current_gdbarch;
879
880
881 /* If any of the following are defined, the target wasn't correctly
882 converted. */
883
884 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
885 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
886 #endif
887 EOF
888
889 # function typedef's
890 printf "\n"
891 printf "\n"
892 printf "/* The following are pre-initialized by GDBARCH. */\n"
893 function_list | while do_read
894 do
895 if class_is_info_p
896 then
897 printf "\n"
898 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
899 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
900 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
901 printf "#error \"Non multi-arch definition of ${macro}\"\n"
902 printf "#endif\n"
903 printf "#if !defined (${macro})\n"
904 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
905 printf "#endif\n"
906 fi
907 done
908
909 # function typedef's
910 printf "\n"
911 printf "\n"
912 printf "/* The following are initialized by the target dependent code. */\n"
913 function_list | while do_read
914 do
915 if [ -n "${comment}" ]
916 then
917 echo "${comment}" | sed \
918 -e '2 s,#,/*,' \
919 -e '3,$ s,#, ,' \
920 -e '$ s,$, */,'
921 fi
922 if class_is_multiarch_p
923 then
924 if class_is_predicate_p
925 then
926 printf "\n"
927 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
928 fi
929 else
930 if class_is_predicate_p
931 then
932 printf "\n"
933 printf "#if defined (${macro})\n"
934 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
935 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
936 printf "#if !defined (${macro}_P)\n"
937 printf "#define ${macro}_P() (1)\n"
938 printf "#endif\n"
939 printf "#endif\n"
940 printf "\n"
941 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
942 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
943 printf "#error \"Non multi-arch definition of ${macro}\"\n"
944 printf "#endif\n"
945 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
946 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
947 printf "#endif\n"
948 fi
949 fi
950 if class_is_variable_p
951 then
952 printf "\n"
953 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
954 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
955 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
956 printf "#error \"Non multi-arch definition of ${macro}\"\n"
957 printf "#endif\n"
958 printf "#if !defined (${macro})\n"
959 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
960 printf "#endif\n"
961 fi
962 if class_is_function_p
963 then
964 printf "\n"
965 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
966 then
967 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
968 elif class_is_multiarch_p
969 then
970 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
971 else
972 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
973 fi
974 if [ "x${formal}" = "xvoid" ]
975 then
976 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
977 else
978 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
979 fi
980 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
981 if class_is_multiarch_p ; then :
982 else
983 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
984 printf "#error \"Non multi-arch definition of ${macro}\"\n"
985 printf "#endif\n"
986 if [ "x${actual}" = "x" ]
987 then
988 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
989 elif [ "x${actual}" = "x-" ]
990 then
991 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
992 else
993 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
994 fi
995 printf "#if !defined (${macro})\n"
996 if [ "x${actual}" = "x" ]
997 then
998 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
999 elif [ "x${actual}" = "x-" ]
1000 then
1001 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1002 else
1003 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1004 fi
1005 printf "#endif\n"
1006 fi
1007 fi
1008 done
1009
1010 # close it off
1011 cat <<EOF
1012
1013 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1014
1015
1016 /* Mechanism for co-ordinating the selection of a specific
1017 architecture.
1018
1019 GDB targets (*-tdep.c) can register an interest in a specific
1020 architecture. Other GDB components can register a need to maintain
1021 per-architecture data.
1022
1023 The mechanisms below ensures that there is only a loose connection
1024 between the set-architecture command and the various GDB
1025 components. Each component can independently register their need
1026 to maintain architecture specific data with gdbarch.
1027
1028 Pragmatics:
1029
1030 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1031 didn't scale.
1032
1033 The more traditional mega-struct containing architecture specific
1034 data for all the various GDB components was also considered. Since
1035 GDB is built from a variable number of (fairly independent)
1036 components it was determined that the global aproach was not
1037 applicable. */
1038
1039
1040 /* Register a new architectural family with GDB.
1041
1042 Register support for the specified ARCHITECTURE with GDB. When
1043 gdbarch determines that the specified architecture has been
1044 selected, the corresponding INIT function is called.
1045
1046 --
1047
1048 The INIT function takes two parameters: INFO which contains the
1049 information available to gdbarch about the (possibly new)
1050 architecture; ARCHES which is a list of the previously created
1051 \`\`struct gdbarch'' for this architecture.
1052
1053 The INFO parameter is, as far as possible, be pre-initialized with
1054 information obtained from INFO.ABFD or the previously selected
1055 architecture.
1056
1057 The ARCHES parameter is a linked list (sorted most recently used)
1058 of all the previously created architures for this architecture
1059 family. The (possibly NULL) ARCHES->gdbarch can used to access
1060 values from the previously selected architecture for this
1061 architecture family. The global \`\`current_gdbarch'' shall not be
1062 used.
1063
1064 The INIT function shall return any of: NULL - indicating that it
1065 doesn't recognize the selected architecture; an existing \`\`struct
1066 gdbarch'' from the ARCHES list - indicating that the new
1067 architecture is just a synonym for an earlier architecture (see
1068 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1069 - that describes the selected architecture (see gdbarch_alloc()).
1070
1071 The DUMP_TDEP function shall print out all target specific values.
1072 Care should be taken to ensure that the function works in both the
1073 multi-arch and non- multi-arch cases. */
1074
1075 struct gdbarch_list
1076 {
1077 struct gdbarch *gdbarch;
1078 struct gdbarch_list *next;
1079 };
1080
1081 struct gdbarch_info
1082 {
1083 /* Use default: NULL (ZERO). */
1084 const struct bfd_arch_info *bfd_arch_info;
1085
1086 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1087 int byte_order;
1088
1089 /* Use default: NULL (ZERO). */
1090 bfd *abfd;
1091
1092 /* Use default: NULL (ZERO). */
1093 struct gdbarch_tdep_info *tdep_info;
1094
1095 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1096 enum gdb_osabi osabi;
1097 };
1098
1099 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1100 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1101
1102 /* DEPRECATED - use gdbarch_register() */
1103 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1104
1105 extern void gdbarch_register (enum bfd_architecture architecture,
1106 gdbarch_init_ftype *,
1107 gdbarch_dump_tdep_ftype *);
1108
1109
1110 /* Return a freshly allocated, NULL terminated, array of the valid
1111 architecture names. Since architectures are registered during the
1112 _initialize phase this function only returns useful information
1113 once initialization has been completed. */
1114
1115 extern const char **gdbarch_printable_names (void);
1116
1117
1118 /* Helper function. Search the list of ARCHES for a GDBARCH that
1119 matches the information provided by INFO. */
1120
1121 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1122
1123
1124 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1125 basic initialization using values obtained from the INFO andTDEP
1126 parameters. set_gdbarch_*() functions are called to complete the
1127 initialization of the object. */
1128
1129 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1130
1131
1132 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1133 It is assumed that the caller freeds the \`\`struct
1134 gdbarch_tdep''. */
1135
1136 extern void gdbarch_free (struct gdbarch *);
1137
1138
1139 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1140 obstack. The memory is freed when the corresponding architecture
1141 is also freed. */
1142
1143 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1144 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1145 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1146
1147
1148 /* Helper function. Force an update of the current architecture.
1149
1150 The actual architecture selected is determined by INFO, \`\`(gdb) set
1151 architecture'' et.al., the existing architecture and BFD's default
1152 architecture. INFO should be initialized to zero and then selected
1153 fields should be updated.
1154
1155 Returns non-zero if the update succeeds */
1156
1157 extern int gdbarch_update_p (struct gdbarch_info info);
1158
1159
1160 /* Helper function. Find an architecture matching info.
1161
1162 INFO should be initialized using gdbarch_info_init, relevant fields
1163 set, and then finished using gdbarch_info_fill.
1164
1165 Returns the corresponding architecture, or NULL if no matching
1166 architecture was found. "current_gdbarch" is not updated. */
1167
1168 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1169
1170
1171 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1172
1173 FIXME: kettenis/20031124: Of the functions that follow, only
1174 gdbarch_from_bfd is supposed to survive. The others will
1175 dissappear since in the future GDB will (hopefully) be truly
1176 multi-arch. However, for now we're still stuck with the concept of
1177 a single active architecture. */
1178
1179 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1180
1181
1182 /* Register per-architecture data-pointer.
1183
1184 Reserve space for a per-architecture data-pointer. An identifier
1185 for the reserved data-pointer is returned. That identifer should
1186 be saved in a local static variable.
1187
1188 Memory for the per-architecture data shall be allocated using
1189 gdbarch_obstack_zalloc. That memory will be deleted when the
1190 corresponding architecture object is deleted.
1191
1192 When a previously created architecture is re-selected, the
1193 per-architecture data-pointer for that previous architecture is
1194 restored. INIT() is not re-called.
1195
1196 Multiple registrarants for any architecture are allowed (and
1197 strongly encouraged). */
1198
1199 struct gdbarch_data;
1200
1201 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1202 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1203 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1204 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1205 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1206 struct gdbarch_data *data,
1207 void *pointer);
1208
1209 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1210
1211
1212
1213 /* Register per-architecture memory region.
1214
1215 Provide a memory-region swap mechanism. Per-architecture memory
1216 region are created. These memory regions are swapped whenever the
1217 architecture is changed. For a new architecture, the memory region
1218 is initialized with zero (0) and the INIT function is called.
1219
1220 Memory regions are swapped / initialized in the order that they are
1221 registered. NULL DATA and/or INIT values can be specified.
1222
1223 New code should use gdbarch_data_register_*(). */
1224
1225 typedef void (gdbarch_swap_ftype) (void);
1226 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1227 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1228
1229
1230
1231 /* Set the dynamic target-system-dependent parameters (architecture,
1232 byte-order, ...) using information found in the BFD */
1233
1234 extern void set_gdbarch_from_file (bfd *);
1235
1236
1237 /* Initialize the current architecture to the "first" one we find on
1238 our list. */
1239
1240 extern void initialize_current_architecture (void);
1241
1242 /* gdbarch trace variable */
1243 extern int gdbarch_debug;
1244
1245 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1246
1247 #endif
1248 EOF
1249 exec 1>&2
1250 #../move-if-change new-gdbarch.h gdbarch.h
1251 compare_new gdbarch.h
1252
1253
1254 #
1255 # C file
1256 #
1257
1258 exec > new-gdbarch.c
1259 copyright
1260 cat <<EOF
1261
1262 #include "defs.h"
1263 #include "arch-utils.h"
1264
1265 #include "gdbcmd.h"
1266 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1267 #include "symcat.h"
1268
1269 #include "floatformat.h"
1270
1271 #include "gdb_assert.h"
1272 #include "gdb_string.h"
1273 #include "gdb-events.h"
1274 #include "reggroups.h"
1275 #include "osabi.h"
1276 #include "gdb_obstack.h"
1277
1278 /* Static function declarations */
1279
1280 static void alloc_gdbarch_data (struct gdbarch *);
1281
1282 /* Non-zero if we want to trace architecture code. */
1283
1284 #ifndef GDBARCH_DEBUG
1285 #define GDBARCH_DEBUG 0
1286 #endif
1287 int gdbarch_debug = GDBARCH_DEBUG;
1288
1289 EOF
1290
1291 # gdbarch open the gdbarch object
1292 printf "\n"
1293 printf "/* Maintain the struct gdbarch object */\n"
1294 printf "\n"
1295 printf "struct gdbarch\n"
1296 printf "{\n"
1297 printf " /* Has this architecture been fully initialized? */\n"
1298 printf " int initialized_p;\n"
1299 printf "\n"
1300 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1301 printf " struct obstack *obstack;\n"
1302 printf "\n"
1303 printf " /* basic architectural information */\n"
1304 function_list | while do_read
1305 do
1306 if class_is_info_p
1307 then
1308 printf " ${returntype} ${function};\n"
1309 fi
1310 done
1311 printf "\n"
1312 printf " /* target specific vector. */\n"
1313 printf " struct gdbarch_tdep *tdep;\n"
1314 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1315 printf "\n"
1316 printf " /* per-architecture data-pointers */\n"
1317 printf " unsigned nr_data;\n"
1318 printf " void **data;\n"
1319 printf "\n"
1320 printf " /* per-architecture swap-regions */\n"
1321 printf " struct gdbarch_swap *swap;\n"
1322 printf "\n"
1323 cat <<EOF
1324 /* Multi-arch values.
1325
1326 When extending this structure you must:
1327
1328 Add the field below.
1329
1330 Declare set/get functions and define the corresponding
1331 macro in gdbarch.h.
1332
1333 gdbarch_alloc(): If zero/NULL is not a suitable default,
1334 initialize the new field.
1335
1336 verify_gdbarch(): Confirm that the target updated the field
1337 correctly.
1338
1339 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1340 field is dumped out
1341
1342 \`\`startup_gdbarch()'': Append an initial value to the static
1343 variable (base values on the host's c-type system).
1344
1345 get_gdbarch(): Implement the set/get functions (probably using
1346 the macro's as shortcuts).
1347
1348 */
1349
1350 EOF
1351 function_list | while do_read
1352 do
1353 if class_is_variable_p
1354 then
1355 printf " ${returntype} ${function};\n"
1356 elif class_is_function_p
1357 then
1358 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1359 fi
1360 done
1361 printf "};\n"
1362
1363 # A pre-initialized vector
1364 printf "\n"
1365 printf "\n"
1366 cat <<EOF
1367 /* The default architecture uses host values (for want of a better
1368 choice). */
1369 EOF
1370 printf "\n"
1371 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1372 printf "\n"
1373 printf "struct gdbarch startup_gdbarch =\n"
1374 printf "{\n"
1375 printf " 1, /* Always initialized. */\n"
1376 printf " NULL, /* The obstack. */\n"
1377 printf " /* basic architecture information */\n"
1378 function_list | while do_read
1379 do
1380 if class_is_info_p
1381 then
1382 printf " ${staticdefault}, /* ${function} */\n"
1383 fi
1384 done
1385 cat <<EOF
1386 /* target specific vector and its dump routine */
1387 NULL, NULL,
1388 /*per-architecture data-pointers and swap regions */
1389 0, NULL, NULL,
1390 /* Multi-arch values */
1391 EOF
1392 function_list | while do_read
1393 do
1394 if class_is_function_p || class_is_variable_p
1395 then
1396 printf " ${staticdefault}, /* ${function} */\n"
1397 fi
1398 done
1399 cat <<EOF
1400 /* startup_gdbarch() */
1401 };
1402
1403 struct gdbarch *current_gdbarch = &startup_gdbarch;
1404 EOF
1405
1406 # Create a new gdbarch struct
1407 cat <<EOF
1408
1409 /* Create a new \`\`struct gdbarch'' based on information provided by
1410 \`\`struct gdbarch_info''. */
1411 EOF
1412 printf "\n"
1413 cat <<EOF
1414 struct gdbarch *
1415 gdbarch_alloc (const struct gdbarch_info *info,
1416 struct gdbarch_tdep *tdep)
1417 {
1418 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1419 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1420 the current local architecture and not the previous global
1421 architecture. This ensures that the new architectures initial
1422 values are not influenced by the previous architecture. Once
1423 everything is parameterised with gdbarch, this will go away. */
1424 struct gdbarch *current_gdbarch;
1425
1426 /* Create an obstack for allocating all the per-architecture memory,
1427 then use that to allocate the architecture vector. */
1428 struct obstack *obstack = XMALLOC (struct obstack);
1429 obstack_init (obstack);
1430 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1431 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1432 current_gdbarch->obstack = obstack;
1433
1434 alloc_gdbarch_data (current_gdbarch);
1435
1436 current_gdbarch->tdep = tdep;
1437 EOF
1438 printf "\n"
1439 function_list | while do_read
1440 do
1441 if class_is_info_p
1442 then
1443 printf " current_gdbarch->${function} = info->${function};\n"
1444 fi
1445 done
1446 printf "\n"
1447 printf " /* Force the explicit initialization of these. */\n"
1448 function_list | while do_read
1449 do
1450 if class_is_function_p || class_is_variable_p
1451 then
1452 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1453 then
1454 printf " current_gdbarch->${function} = ${predefault};\n"
1455 fi
1456 fi
1457 done
1458 cat <<EOF
1459 /* gdbarch_alloc() */
1460
1461 return current_gdbarch;
1462 }
1463 EOF
1464
1465 # Free a gdbarch struct.
1466 printf "\n"
1467 printf "\n"
1468 cat <<EOF
1469 /* Allocate extra space using the per-architecture obstack. */
1470
1471 void *
1472 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1473 {
1474 void *data = obstack_alloc (arch->obstack, size);
1475 memset (data, 0, size);
1476 return data;
1477 }
1478
1479
1480 /* Free a gdbarch struct. This should never happen in normal
1481 operation --- once you've created a gdbarch, you keep it around.
1482 However, if an architecture's init function encounters an error
1483 building the structure, it may need to clean up a partially
1484 constructed gdbarch. */
1485
1486 void
1487 gdbarch_free (struct gdbarch *arch)
1488 {
1489 struct obstack *obstack;
1490 gdb_assert (arch != NULL);
1491 gdb_assert (!arch->initialized_p);
1492 obstack = arch->obstack;
1493 obstack_free (obstack, 0); /* Includes the ARCH. */
1494 xfree (obstack);
1495 }
1496 EOF
1497
1498 # verify a new architecture
1499 cat <<EOF
1500
1501
1502 /* Ensure that all values in a GDBARCH are reasonable. */
1503
1504 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1505 just happens to match the global variable \`\`current_gdbarch''. That
1506 way macros refering to that variable get the local and not the global
1507 version - ulgh. Once everything is parameterised with gdbarch, this
1508 will go away. */
1509
1510 static void
1511 verify_gdbarch (struct gdbarch *current_gdbarch)
1512 {
1513 struct ui_file *log;
1514 struct cleanup *cleanups;
1515 long dummy;
1516 char *buf;
1517 log = mem_fileopen ();
1518 cleanups = make_cleanup_ui_file_delete (log);
1519 /* fundamental */
1520 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1521 fprintf_unfiltered (log, "\n\tbyte-order");
1522 if (current_gdbarch->bfd_arch_info == NULL)
1523 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1524 /* Check those that need to be defined for the given multi-arch level. */
1525 EOF
1526 function_list | while do_read
1527 do
1528 if class_is_function_p || class_is_variable_p
1529 then
1530 if [ "x${invalid_p}" = "x0" ]
1531 then
1532 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1533 elif class_is_predicate_p
1534 then
1535 printf " /* Skip verify of ${function}, has predicate */\n"
1536 # FIXME: See do_read for potential simplification
1537 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1538 then
1539 printf " if (${invalid_p})\n"
1540 printf " current_gdbarch->${function} = ${postdefault};\n"
1541 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1542 then
1543 printf " if (current_gdbarch->${function} == ${predefault})\n"
1544 printf " current_gdbarch->${function} = ${postdefault};\n"
1545 elif [ -n "${postdefault}" ]
1546 then
1547 printf " if (current_gdbarch->${function} == 0)\n"
1548 printf " current_gdbarch->${function} = ${postdefault};\n"
1549 elif [ -n "${invalid_p}" ]
1550 then
1551 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1552 printf " && (${invalid_p}))\n"
1553 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1554 elif [ -n "${predefault}" ]
1555 then
1556 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1557 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1558 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1559 fi
1560 fi
1561 done
1562 cat <<EOF
1563 buf = ui_file_xstrdup (log, &dummy);
1564 make_cleanup (xfree, buf);
1565 if (strlen (buf) > 0)
1566 internal_error (__FILE__, __LINE__,
1567 "verify_gdbarch: the following are invalid ...%s",
1568 buf);
1569 do_cleanups (cleanups);
1570 }
1571 EOF
1572
1573 # dump the structure
1574 printf "\n"
1575 printf "\n"
1576 cat <<EOF
1577 /* Print out the details of the current architecture. */
1578
1579 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1580 just happens to match the global variable \`\`current_gdbarch''. That
1581 way macros refering to that variable get the local and not the global
1582 version - ulgh. Once everything is parameterised with gdbarch, this
1583 will go away. */
1584
1585 void
1586 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1587 {
1588 fprintf_unfiltered (file,
1589 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1590 GDB_MULTI_ARCH);
1591 EOF
1592 function_list | sort -t: -k 3 | while do_read
1593 do
1594 # First the predicate
1595 if class_is_predicate_p
1596 then
1597 if class_is_multiarch_p
1598 then
1599 printf " fprintf_unfiltered (file,\n"
1600 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1601 printf " gdbarch_${function}_p (current_gdbarch));\n"
1602 else
1603 printf "#ifdef ${macro}_P\n"
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1606 printf " \"${macro}_P()\",\n"
1607 printf " XSTRING (${macro}_P ()));\n"
1608 printf " fprintf_unfiltered (file,\n"
1609 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1610 printf " ${macro}_P ());\n"
1611 printf "#endif\n"
1612 fi
1613 fi
1614 # multiarch functions don't have macros.
1615 if class_is_multiarch_p
1616 then
1617 printf " fprintf_unfiltered (file,\n"
1618 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1619 printf " (long) current_gdbarch->${function});\n"
1620 continue
1621 fi
1622 # Print the macro definition.
1623 printf "#ifdef ${macro}\n"
1624 if class_is_function_p
1625 then
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1628 printf " \"${macro}(${actual})\",\n"
1629 printf " XSTRING (${macro} (${actual})));\n"
1630 else
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1633 printf " XSTRING (${macro}));\n"
1634 fi
1635 if [ "x${print_p}" = "x()" ]
1636 then
1637 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1638 elif [ "x${print_p}" = "x0" ]
1639 then
1640 printf " /* skip print of ${macro}, print_p == 0. */\n"
1641 elif [ -n "${print_p}" ]
1642 then
1643 printf " if (${print_p})\n"
1644 printf " fprintf_unfiltered (file,\n"
1645 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1646 printf " ${print});\n"
1647 elif class_is_function_p
1648 then
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1651 printf " (long) current_gdbarch->${function}\n"
1652 printf " /*${macro} ()*/);\n"
1653 else
1654 printf " fprintf_unfiltered (file,\n"
1655 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1656 printf " ${print});\n"
1657 fi
1658 printf "#endif\n"
1659 done
1660 cat <<EOF
1661 if (current_gdbarch->dump_tdep != NULL)
1662 current_gdbarch->dump_tdep (current_gdbarch, file);
1663 }
1664 EOF
1665
1666
1667 # GET/SET
1668 printf "\n"
1669 cat <<EOF
1670 struct gdbarch_tdep *
1671 gdbarch_tdep (struct gdbarch *gdbarch)
1672 {
1673 if (gdbarch_debug >= 2)
1674 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1675 return gdbarch->tdep;
1676 }
1677 EOF
1678 printf "\n"
1679 function_list | while do_read
1680 do
1681 if class_is_predicate_p
1682 then
1683 printf "\n"
1684 printf "int\n"
1685 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1686 printf "{\n"
1687 printf " gdb_assert (gdbarch != NULL);\n"
1688 printf " return ${predicate};\n"
1689 printf "}\n"
1690 fi
1691 if class_is_function_p
1692 then
1693 printf "\n"
1694 printf "${returntype}\n"
1695 if [ "x${formal}" = "xvoid" ]
1696 then
1697 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1698 else
1699 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1700 fi
1701 printf "{\n"
1702 printf " gdb_assert (gdbarch != NULL);\n"
1703 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1704 if class_is_predicate_p && test -n "${predefault}"
1705 then
1706 # Allow a call to a function with a predicate.
1707 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1708 fi
1709 printf " if (gdbarch_debug >= 2)\n"
1710 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1711 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1712 then
1713 if class_is_multiarch_p
1714 then
1715 params="gdbarch"
1716 else
1717 params=""
1718 fi
1719 else
1720 if class_is_multiarch_p
1721 then
1722 params="gdbarch, ${actual}"
1723 else
1724 params="${actual}"
1725 fi
1726 fi
1727 if [ "x${returntype}" = "xvoid" ]
1728 then
1729 printf " gdbarch->${function} (${params});\n"
1730 else
1731 printf " return gdbarch->${function} (${params});\n"
1732 fi
1733 printf "}\n"
1734 printf "\n"
1735 printf "void\n"
1736 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1737 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1738 printf "{\n"
1739 printf " gdbarch->${function} = ${function};\n"
1740 printf "}\n"
1741 elif class_is_variable_p
1742 then
1743 printf "\n"
1744 printf "${returntype}\n"
1745 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1746 printf "{\n"
1747 printf " gdb_assert (gdbarch != NULL);\n"
1748 if [ "x${invalid_p}" = "x0" ]
1749 then
1750 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1751 elif [ -n "${invalid_p}" ]
1752 then
1753 printf " /* Check variable is valid. */\n"
1754 printf " gdb_assert (!(${invalid_p}));\n"
1755 elif [ -n "${predefault}" ]
1756 then
1757 printf " /* Check variable changed from pre-default. */\n"
1758 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1759 fi
1760 printf " if (gdbarch_debug >= 2)\n"
1761 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1762 printf " return gdbarch->${function};\n"
1763 printf "}\n"
1764 printf "\n"
1765 printf "void\n"
1766 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1767 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1768 printf "{\n"
1769 printf " gdbarch->${function} = ${function};\n"
1770 printf "}\n"
1771 elif class_is_info_p
1772 then
1773 printf "\n"
1774 printf "${returntype}\n"
1775 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1776 printf "{\n"
1777 printf " gdb_assert (gdbarch != NULL);\n"
1778 printf " if (gdbarch_debug >= 2)\n"
1779 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1780 printf " return gdbarch->${function};\n"
1781 printf "}\n"
1782 fi
1783 done
1784
1785 # All the trailing guff
1786 cat <<EOF
1787
1788
1789 /* Keep a registry of per-architecture data-pointers required by GDB
1790 modules. */
1791
1792 struct gdbarch_data
1793 {
1794 unsigned index;
1795 int init_p;
1796 gdbarch_data_pre_init_ftype *pre_init;
1797 gdbarch_data_post_init_ftype *post_init;
1798 };
1799
1800 struct gdbarch_data_registration
1801 {
1802 struct gdbarch_data *data;
1803 struct gdbarch_data_registration *next;
1804 };
1805
1806 struct gdbarch_data_registry
1807 {
1808 unsigned nr;
1809 struct gdbarch_data_registration *registrations;
1810 };
1811
1812 struct gdbarch_data_registry gdbarch_data_registry =
1813 {
1814 0, NULL,
1815 };
1816
1817 static struct gdbarch_data *
1818 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1819 gdbarch_data_post_init_ftype *post_init)
1820 {
1821 struct gdbarch_data_registration **curr;
1822 /* Append the new registraration. */
1823 for (curr = &gdbarch_data_registry.registrations;
1824 (*curr) != NULL;
1825 curr = &(*curr)->next);
1826 (*curr) = XMALLOC (struct gdbarch_data_registration);
1827 (*curr)->next = NULL;
1828 (*curr)->data = XMALLOC (struct gdbarch_data);
1829 (*curr)->data->index = gdbarch_data_registry.nr++;
1830 (*curr)->data->pre_init = pre_init;
1831 (*curr)->data->post_init = post_init;
1832 (*curr)->data->init_p = 1;
1833 return (*curr)->data;
1834 }
1835
1836 struct gdbarch_data *
1837 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1838 {
1839 return gdbarch_data_register (pre_init, NULL);
1840 }
1841
1842 struct gdbarch_data *
1843 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1844 {
1845 return gdbarch_data_register (NULL, post_init);
1846 }
1847
1848 /* Create/delete the gdbarch data vector. */
1849
1850 static void
1851 alloc_gdbarch_data (struct gdbarch *gdbarch)
1852 {
1853 gdb_assert (gdbarch->data == NULL);
1854 gdbarch->nr_data = gdbarch_data_registry.nr;
1855 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1856 }
1857
1858 /* Initialize the current value of the specified per-architecture
1859 data-pointer. */
1860
1861 void
1862 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1863 struct gdbarch_data *data,
1864 void *pointer)
1865 {
1866 gdb_assert (data->index < gdbarch->nr_data);
1867 gdb_assert (gdbarch->data[data->index] == NULL);
1868 gdb_assert (data->pre_init == NULL);
1869 gdbarch->data[data->index] = pointer;
1870 }
1871
1872 /* Return the current value of the specified per-architecture
1873 data-pointer. */
1874
1875 void *
1876 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1877 {
1878 gdb_assert (data->index < gdbarch->nr_data);
1879 if (gdbarch->data[data->index] == NULL)
1880 {
1881 /* The data-pointer isn't initialized, call init() to get a
1882 value. */
1883 if (data->pre_init != NULL)
1884 /* Mid architecture creation: pass just the obstack, and not
1885 the entire architecture, as that way it isn't possible for
1886 pre-init code to refer to undefined architecture
1887 fields. */
1888 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1889 else if (gdbarch->initialized_p
1890 && data->post_init != NULL)
1891 /* Post architecture creation: pass the entire architecture
1892 (as all fields are valid), but be careful to also detect
1893 recursive references. */
1894 {
1895 gdb_assert (data->init_p);
1896 data->init_p = 0;
1897 gdbarch->data[data->index] = data->post_init (gdbarch);
1898 data->init_p = 1;
1899 }
1900 else
1901 /* The architecture initialization hasn't completed - punt -
1902 hope that the caller knows what they are doing. Once
1903 deprecated_set_gdbarch_data has been initialized, this can be
1904 changed to an internal error. */
1905 return NULL;
1906 gdb_assert (gdbarch->data[data->index] != NULL);
1907 }
1908 return gdbarch->data[data->index];
1909 }
1910
1911
1912
1913 /* Keep a registry of swapped data required by GDB modules. */
1914
1915 struct gdbarch_swap
1916 {
1917 void *swap;
1918 struct gdbarch_swap_registration *source;
1919 struct gdbarch_swap *next;
1920 };
1921
1922 struct gdbarch_swap_registration
1923 {
1924 void *data;
1925 unsigned long sizeof_data;
1926 gdbarch_swap_ftype *init;
1927 struct gdbarch_swap_registration *next;
1928 };
1929
1930 struct gdbarch_swap_registry
1931 {
1932 int nr;
1933 struct gdbarch_swap_registration *registrations;
1934 };
1935
1936 struct gdbarch_swap_registry gdbarch_swap_registry =
1937 {
1938 0, NULL,
1939 };
1940
1941 void
1942 deprecated_register_gdbarch_swap (void *data,
1943 unsigned long sizeof_data,
1944 gdbarch_swap_ftype *init)
1945 {
1946 struct gdbarch_swap_registration **rego;
1947 for (rego = &gdbarch_swap_registry.registrations;
1948 (*rego) != NULL;
1949 rego = &(*rego)->next);
1950 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1951 (*rego)->next = NULL;
1952 (*rego)->init = init;
1953 (*rego)->data = data;
1954 (*rego)->sizeof_data = sizeof_data;
1955 }
1956
1957 static void
1958 current_gdbarch_swap_init_hack (void)
1959 {
1960 struct gdbarch_swap_registration *rego;
1961 struct gdbarch_swap **curr = &current_gdbarch->swap;
1962 for (rego = gdbarch_swap_registry.registrations;
1963 rego != NULL;
1964 rego = rego->next)
1965 {
1966 if (rego->data != NULL)
1967 {
1968 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1969 struct gdbarch_swap);
1970 (*curr)->source = rego;
1971 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1972 rego->sizeof_data);
1973 (*curr)->next = NULL;
1974 curr = &(*curr)->next;
1975 }
1976 if (rego->init != NULL)
1977 rego->init ();
1978 }
1979 }
1980
1981 static struct gdbarch *
1982 current_gdbarch_swap_out_hack (void)
1983 {
1984 struct gdbarch *old_gdbarch = current_gdbarch;
1985 struct gdbarch_swap *curr;
1986
1987 gdb_assert (old_gdbarch != NULL);
1988 for (curr = old_gdbarch->swap;
1989 curr != NULL;
1990 curr = curr->next)
1991 {
1992 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1993 memset (curr->source->data, 0, curr->source->sizeof_data);
1994 }
1995 current_gdbarch = NULL;
1996 return old_gdbarch;
1997 }
1998
1999 static void
2000 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
2001 {
2002 struct gdbarch_swap *curr;
2003
2004 gdb_assert (current_gdbarch == NULL);
2005 for (curr = new_gdbarch->swap;
2006 curr != NULL;
2007 curr = curr->next)
2008 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2009 current_gdbarch = new_gdbarch;
2010 }
2011
2012
2013 /* Keep a registry of the architectures known by GDB. */
2014
2015 struct gdbarch_registration
2016 {
2017 enum bfd_architecture bfd_architecture;
2018 gdbarch_init_ftype *init;
2019 gdbarch_dump_tdep_ftype *dump_tdep;
2020 struct gdbarch_list *arches;
2021 struct gdbarch_registration *next;
2022 };
2023
2024 static struct gdbarch_registration *gdbarch_registry = NULL;
2025
2026 static void
2027 append_name (const char ***buf, int *nr, const char *name)
2028 {
2029 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2030 (*buf)[*nr] = name;
2031 *nr += 1;
2032 }
2033
2034 const char **
2035 gdbarch_printable_names (void)
2036 {
2037 /* Accumulate a list of names based on the registed list of
2038 architectures. */
2039 enum bfd_architecture a;
2040 int nr_arches = 0;
2041 const char **arches = NULL;
2042 struct gdbarch_registration *rego;
2043 for (rego = gdbarch_registry;
2044 rego != NULL;
2045 rego = rego->next)
2046 {
2047 const struct bfd_arch_info *ap;
2048 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2049 if (ap == NULL)
2050 internal_error (__FILE__, __LINE__,
2051 "gdbarch_architecture_names: multi-arch unknown");
2052 do
2053 {
2054 append_name (&arches, &nr_arches, ap->printable_name);
2055 ap = ap->next;
2056 }
2057 while (ap != NULL);
2058 }
2059 append_name (&arches, &nr_arches, NULL);
2060 return arches;
2061 }
2062
2063
2064 void
2065 gdbarch_register (enum bfd_architecture bfd_architecture,
2066 gdbarch_init_ftype *init,
2067 gdbarch_dump_tdep_ftype *dump_tdep)
2068 {
2069 struct gdbarch_registration **curr;
2070 const struct bfd_arch_info *bfd_arch_info;
2071 /* Check that BFD recognizes this architecture */
2072 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2073 if (bfd_arch_info == NULL)
2074 {
2075 internal_error (__FILE__, __LINE__,
2076 "gdbarch: Attempt to register unknown architecture (%d)",
2077 bfd_architecture);
2078 }
2079 /* Check that we haven't seen this architecture before */
2080 for (curr = &gdbarch_registry;
2081 (*curr) != NULL;
2082 curr = &(*curr)->next)
2083 {
2084 if (bfd_architecture == (*curr)->bfd_architecture)
2085 internal_error (__FILE__, __LINE__,
2086 "gdbarch: Duplicate registraration of architecture (%s)",
2087 bfd_arch_info->printable_name);
2088 }
2089 /* log it */
2090 if (gdbarch_debug)
2091 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2092 bfd_arch_info->printable_name,
2093 (long) init);
2094 /* Append it */
2095 (*curr) = XMALLOC (struct gdbarch_registration);
2096 (*curr)->bfd_architecture = bfd_architecture;
2097 (*curr)->init = init;
2098 (*curr)->dump_tdep = dump_tdep;
2099 (*curr)->arches = NULL;
2100 (*curr)->next = NULL;
2101 }
2102
2103 void
2104 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2105 gdbarch_init_ftype *init)
2106 {
2107 gdbarch_register (bfd_architecture, init, NULL);
2108 }
2109
2110
2111 /* Look for an architecture using gdbarch_info. Base search on only
2112 BFD_ARCH_INFO and BYTE_ORDER. */
2113
2114 struct gdbarch_list *
2115 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2116 const struct gdbarch_info *info)
2117 {
2118 for (; arches != NULL; arches = arches->next)
2119 {
2120 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2121 continue;
2122 if (info->byte_order != arches->gdbarch->byte_order)
2123 continue;
2124 if (info->osabi != arches->gdbarch->osabi)
2125 continue;
2126 return arches;
2127 }
2128 return NULL;
2129 }
2130
2131
2132 /* Find an architecture that matches the specified INFO. Create a new
2133 architecture if needed. Return that new architecture. Assumes
2134 that there is no current architecture. */
2135
2136 static struct gdbarch *
2137 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2138 {
2139 struct gdbarch *new_gdbarch;
2140 struct gdbarch_registration *rego;
2141
2142 /* The existing architecture has been swapped out - all this code
2143 works from a clean slate. */
2144 gdb_assert (current_gdbarch == NULL);
2145
2146 /* Fill in missing parts of the INFO struct using a number of
2147 sources: "set ..."; INFOabfd supplied; and the existing
2148 architecture. */
2149 gdbarch_info_fill (old_gdbarch, &info);
2150
2151 /* Must have found some sort of architecture. */
2152 gdb_assert (info.bfd_arch_info != NULL);
2153
2154 if (gdbarch_debug)
2155 {
2156 fprintf_unfiltered (gdb_stdlog,
2157 "find_arch_by_info: info.bfd_arch_info %s\n",
2158 (info.bfd_arch_info != NULL
2159 ? info.bfd_arch_info->printable_name
2160 : "(null)"));
2161 fprintf_unfiltered (gdb_stdlog,
2162 "find_arch_by_info: info.byte_order %d (%s)\n",
2163 info.byte_order,
2164 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2165 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2166 : "default"));
2167 fprintf_unfiltered (gdb_stdlog,
2168 "find_arch_by_info: info.osabi %d (%s)\n",
2169 info.osabi, gdbarch_osabi_name (info.osabi));
2170 fprintf_unfiltered (gdb_stdlog,
2171 "find_arch_by_info: info.abfd 0x%lx\n",
2172 (long) info.abfd);
2173 fprintf_unfiltered (gdb_stdlog,
2174 "find_arch_by_info: info.tdep_info 0x%lx\n",
2175 (long) info.tdep_info);
2176 }
2177
2178 /* Find the tdep code that knows about this architecture. */
2179 for (rego = gdbarch_registry;
2180 rego != NULL;
2181 rego = rego->next)
2182 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2183 break;
2184 if (rego == NULL)
2185 {
2186 if (gdbarch_debug)
2187 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2188 "No matching architecture\n");
2189 return 0;
2190 }
2191
2192 /* Ask the tdep code for an architecture that matches "info". */
2193 new_gdbarch = rego->init (info, rego->arches);
2194
2195 /* Did the tdep code like it? No. Reject the change and revert to
2196 the old architecture. */
2197 if (new_gdbarch == NULL)
2198 {
2199 if (gdbarch_debug)
2200 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2201 "Target rejected architecture\n");
2202 return NULL;
2203 }
2204
2205 /* Is this a pre-existing architecture (as determined by already
2206 being initialized)? Move it to the front of the architecture
2207 list (keeping the list sorted Most Recently Used). */
2208 if (new_gdbarch->initialized_p)
2209 {
2210 struct gdbarch_list **list;
2211 struct gdbarch_list *this;
2212 if (gdbarch_debug)
2213 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2214 "Previous architecture 0x%08lx (%s) selected\n",
2215 (long) new_gdbarch,
2216 new_gdbarch->bfd_arch_info->printable_name);
2217 /* Find the existing arch in the list. */
2218 for (list = &rego->arches;
2219 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2220 list = &(*list)->next);
2221 /* It had better be in the list of architectures. */
2222 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2223 /* Unlink THIS. */
2224 this = (*list);
2225 (*list) = this->next;
2226 /* Insert THIS at the front. */
2227 this->next = rego->arches;
2228 rego->arches = this;
2229 /* Return it. */
2230 return new_gdbarch;
2231 }
2232
2233 /* It's a new architecture. */
2234 if (gdbarch_debug)
2235 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2236 "New architecture 0x%08lx (%s) selected\n",
2237 (long) new_gdbarch,
2238 new_gdbarch->bfd_arch_info->printable_name);
2239
2240 /* Insert the new architecture into the front of the architecture
2241 list (keep the list sorted Most Recently Used). */
2242 {
2243 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2244 this->next = rego->arches;
2245 this->gdbarch = new_gdbarch;
2246 rego->arches = this;
2247 }
2248
2249 /* Check that the newly installed architecture is valid. Plug in
2250 any post init values. */
2251 new_gdbarch->dump_tdep = rego->dump_tdep;
2252 verify_gdbarch (new_gdbarch);
2253 new_gdbarch->initialized_p = 1;
2254
2255 /* Initialize any per-architecture swap areas. This phase requires
2256 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2257 swap the entire architecture out. */
2258 current_gdbarch = new_gdbarch;
2259 current_gdbarch_swap_init_hack ();
2260 current_gdbarch_swap_out_hack ();
2261
2262 if (gdbarch_debug)
2263 gdbarch_dump (new_gdbarch, gdb_stdlog);
2264
2265 return new_gdbarch;
2266 }
2267
2268 struct gdbarch *
2269 gdbarch_find_by_info (struct gdbarch_info info)
2270 {
2271 /* Save the previously selected architecture, setting the global to
2272 NULL. This stops things like gdbarch->init() trying to use the
2273 previous architecture's configuration. The previous architecture
2274 may not even be of the same architecture family. The most recent
2275 architecture of the same family is found at the head of the
2276 rego->arches list. */
2277 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2278
2279 /* Find the specified architecture. */
2280 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2281
2282 /* Restore the existing architecture. */
2283 gdb_assert (current_gdbarch == NULL);
2284 current_gdbarch_swap_in_hack (old_gdbarch);
2285
2286 return new_gdbarch;
2287 }
2288
2289 /* Make the specified architecture current, swapping the existing one
2290 out. */
2291
2292 void
2293 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2294 {
2295 gdb_assert (new_gdbarch != NULL);
2296 gdb_assert (current_gdbarch != NULL);
2297 gdb_assert (new_gdbarch->initialized_p);
2298 current_gdbarch_swap_out_hack ();
2299 current_gdbarch_swap_in_hack (new_gdbarch);
2300 architecture_changed_event ();
2301 }
2302
2303 extern void _initialize_gdbarch (void);
2304
2305 void
2306 _initialize_gdbarch (void)
2307 {
2308 struct cmd_list_element *c;
2309
2310 add_show_from_set (add_set_cmd ("arch",
2311 class_maintenance,
2312 var_zinteger,
2313 (char *)&gdbarch_debug,
2314 "Set architecture debugging.\\n\\
2315 When non-zero, architecture debugging is enabled.", &setdebuglist),
2316 &showdebuglist);
2317 c = add_set_cmd ("archdebug",
2318 class_maintenance,
2319 var_zinteger,
2320 (char *)&gdbarch_debug,
2321 "Set architecture debugging.\\n\\
2322 When non-zero, architecture debugging is enabled.", &setlist);
2323
2324 deprecate_cmd (c, "set debug arch");
2325 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2326 }
2327 EOF
2328
2329 # close things off
2330 exec 1>&2
2331 #../move-if-change new-gdbarch.c gdbarch.c
2332 compare_new gdbarch.c
This page took 0.081896 seconds and 4 git commands to generate.