77d2a69569482b3ad5b36439f66f8a554fa2bfde
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
474 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
475 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
476 # by REGISTER_TYPE.
477 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
481 # by REGISTER_TYPE.
482 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
486 # by REGISTER_TYPE.
487 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
491 # by REGISTER_TYPE.
492 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
496 # by REGISTER_TYPE.
497 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
498 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
499 #
500 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
501 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
502 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
503 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 # MAP a GDB RAW register number onto a simulator register number. See
505 # also include/...-sim.h.
506 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
507 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
508 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
509 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
510 # setjmp/longjmp support.
511 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
512 #
513 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
514 # much better but at least they are vaguely consistent). The headers
515 # and body contain convoluted #if/#else sequences for determine how
516 # things should be compiled. Instead of trying to mimic that
517 # behaviour here (and hence entrench it further) gdbarch simply
518 # reqires that these methods be set up from the word go. This also
519 # avoids any potential problems with moving beyond multi-arch partial.
520 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
522 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
523 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
524 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
525 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
526 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
534 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
535 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
536 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
537 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
538 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
539 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
540 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
541 #
542 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
543 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
544 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
545 #
546 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
547 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
548 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
549 #
550 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
551 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
552 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
553 #
554 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
555 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
556 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
557 #
558 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
559 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
560 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
561 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
562 F:2:POP_FRAME:void:pop_frame:void:-:::0
563 #
564 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
565 #
566 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
567 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
568 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
569 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
570 #
571 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
572 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
573 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
574 #
575 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
576 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
577 #
578 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
579 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
580 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
581 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
582 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
583 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
584 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
585 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
586 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
587 #
588 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
589 #
590 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
591 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
592 F:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
593 F:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
594 # NOTE: FRAME_SAVED_PC is replaced by UNWIND_PC
595 F:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
596 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
597 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
598 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
599 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
600 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
601 #
602 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
603 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
604 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
605 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
606 # FIXME: kettenis/2003-03-08: This should be replaced by a function
607 # parametrized with (at least) the regcache.
608 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
609 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
610 v:2:PARM_BOUNDARY:int:parm_boundary
611 #
612 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
613 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
614 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
615 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
616 # On some machines there are bits in addresses which are not really
617 # part of the address, but are used by the kernel, the hardware, etc.
618 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
619 # we get a "real" address such as one would find in a symbol table.
620 # This is used only for addresses of instructions, and even then I'm
621 # not sure it's used in all contexts. It exists to deal with there
622 # being a few stray bits in the PC which would mislead us, not as some
623 # sort of generic thing to handle alignment or segmentation (it's
624 # possible it should be in TARGET_READ_PC instead).
625 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
626 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
627 # ADDR_BITS_REMOVE.
628 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
629 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
630 # the target needs software single step. An ISA method to implement it.
631 #
632 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
633 # using the breakpoint system instead of blatting memory directly (as with rs6000).
634 #
635 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
636 # single step. If not, then implement single step using breakpoints.
637 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
638 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
639 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
640
641
642 # For SVR4 shared libraries, each call goes through a small piece of
643 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
644 # to nonzero if we are currently stopped in one of these.
645 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
646
647 # Some systems also have trampoline code for returning from shared libs.
648 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
649
650 # Sigtramp is a routine that the kernel calls (which then calls the
651 # signal handler). On most machines it is a library routine that is
652 # linked into the executable.
653 #
654 # This macro, given a program counter value and the name of the
655 # function in which that PC resides (which can be null if the name is
656 # not known), returns nonzero if the PC and name show that we are in
657 # sigtramp.
658 #
659 # On most machines just see if the name is sigtramp (and if we have
660 # no name, assume we are not in sigtramp).
661 #
662 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
663 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
664 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
665 # own local NAME lookup.
666 #
667 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
668 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
669 # does not.
670 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
671 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
672 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
673 # A target might have problems with watchpoints as soon as the stack
674 # frame of the current function has been destroyed. This mostly happens
675 # as the first action in a funtion's epilogue. in_function_epilogue_p()
676 # is defined to return a non-zero value if either the given addr is one
677 # instruction after the stack destroying instruction up to the trailing
678 # return instruction or if we can figure out that the stack frame has
679 # already been invalidated regardless of the value of addr. Targets
680 # which don't suffer from that problem could just let this functionality
681 # untouched.
682 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
683 # Given a vector of command-line arguments, return a newly allocated
684 # string which, when passed to the create_inferior function, will be
685 # parsed (on Unix systems, by the shell) to yield the same vector.
686 # This function should call error() if the argument vector is not
687 # representable for this target or if this target does not support
688 # command-line arguments.
689 # ARGC is the number of elements in the vector.
690 # ARGV is an array of strings, one per argument.
691 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
692 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
693 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
694 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
695 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
696 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
697 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
698 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
699 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
700 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
701 # Is a register in a group
702 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
703 EOF
704 }
705
706 #
707 # The .log file
708 #
709 exec > new-gdbarch.log
710 function_list | while do_read
711 do
712 cat <<EOF
713 ${class} ${macro}(${actual})
714 ${returntype} ${function} ($formal)${attrib}
715 EOF
716 for r in ${read}
717 do
718 eval echo \"\ \ \ \ ${r}=\${${r}}\"
719 done
720 if class_is_predicate_p && fallback_default_p
721 then
722 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
723 kill $$
724 exit 1
725 fi
726 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
727 then
728 echo "Error: postdefault is useless when invalid_p=0" 1>&2
729 kill $$
730 exit 1
731 fi
732 if class_is_multiarch_p
733 then
734 if class_is_predicate_p ; then :
735 elif test "x${predefault}" = "x"
736 then
737 echo "Error: pure multi-arch function must have a predefault" 1>&2
738 kill $$
739 exit 1
740 fi
741 fi
742 echo ""
743 done
744
745 exec 1>&2
746 compare_new gdbarch.log
747
748
749 copyright ()
750 {
751 cat <<EOF
752 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
753
754 /* Dynamic architecture support for GDB, the GNU debugger.
755 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
756
757 This file is part of GDB.
758
759 This program is free software; you can redistribute it and/or modify
760 it under the terms of the GNU General Public License as published by
761 the Free Software Foundation; either version 2 of the License, or
762 (at your option) any later version.
763
764 This program is distributed in the hope that it will be useful,
765 but WITHOUT ANY WARRANTY; without even the implied warranty of
766 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
767 GNU General Public License for more details.
768
769 You should have received a copy of the GNU General Public License
770 along with this program; if not, write to the Free Software
771 Foundation, Inc., 59 Temple Place - Suite 330,
772 Boston, MA 02111-1307, USA. */
773
774 /* This file was created with the aid of \`\`gdbarch.sh''.
775
776 The Bourne shell script \`\`gdbarch.sh'' creates the files
777 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
778 against the existing \`\`gdbarch.[hc]''. Any differences found
779 being reported.
780
781 If editing this file, please also run gdbarch.sh and merge any
782 changes into that script. Conversely, when making sweeping changes
783 to this file, modifying gdbarch.sh and using its output may prove
784 easier. */
785
786 EOF
787 }
788
789 #
790 # The .h file
791 #
792
793 exec > new-gdbarch.h
794 copyright
795 cat <<EOF
796 #ifndef GDBARCH_H
797 #define GDBARCH_H
798
799 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
800 #if !GDB_MULTI_ARCH
801 /* Pull in function declarations refered to, indirectly, via macros. */
802 #include "inferior.h" /* For unsigned_address_to_pointer(). */
803 #endif
804
805 struct frame_info;
806 struct value;
807 struct objfile;
808 struct minimal_symbol;
809 struct regcache;
810 struct reggroup;
811
812 extern struct gdbarch *current_gdbarch;
813
814
815 /* If any of the following are defined, the target wasn't correctly
816 converted. */
817
818 #if GDB_MULTI_ARCH
819 #if defined (EXTRA_FRAME_INFO)
820 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
821 #endif
822 #endif
823
824 #if GDB_MULTI_ARCH
825 #if defined (FRAME_FIND_SAVED_REGS)
826 #error "FRAME_FIND_SAVED_REGS: replaced by DEPRECATED_FRAME_INIT_SAVED_REGS"
827 #endif
828 #endif
829
830 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
831 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
832 #endif
833 EOF
834
835 # function typedef's
836 printf "\n"
837 printf "\n"
838 printf "/* The following are pre-initialized by GDBARCH. */\n"
839 function_list | while do_read
840 do
841 if class_is_info_p
842 then
843 printf "\n"
844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
845 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
846 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
847 printf "#error \"Non multi-arch definition of ${macro}\"\n"
848 printf "#endif\n"
849 printf "#if GDB_MULTI_ARCH\n"
850 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
851 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
852 printf "#endif\n"
853 printf "#endif\n"
854 fi
855 done
856
857 # function typedef's
858 printf "\n"
859 printf "\n"
860 printf "/* The following are initialized by the target dependent code. */\n"
861 function_list | while do_read
862 do
863 if [ -n "${comment}" ]
864 then
865 echo "${comment}" | sed \
866 -e '2 s,#,/*,' \
867 -e '3,$ s,#, ,' \
868 -e '$ s,$, */,'
869 fi
870 if class_is_multiarch_p
871 then
872 if class_is_predicate_p
873 then
874 printf "\n"
875 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
876 fi
877 else
878 if class_is_predicate_p
879 then
880 printf "\n"
881 printf "#if defined (${macro})\n"
882 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
883 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
884 printf "#if !defined (${macro}_P)\n"
885 printf "#define ${macro}_P() (1)\n"
886 printf "#endif\n"
887 printf "#endif\n"
888 printf "\n"
889 printf "/* Default predicate for non- multi-arch targets. */\n"
890 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
891 printf "#define ${macro}_P() (0)\n"
892 printf "#endif\n"
893 printf "\n"
894 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
895 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
896 printf "#error \"Non multi-arch definition of ${macro}\"\n"
897 printf "#endif\n"
898 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
899 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
900 printf "#endif\n"
901 fi
902 fi
903 if class_is_variable_p
904 then
905 if fallback_default_p || class_is_predicate_p
906 then
907 printf "\n"
908 printf "/* Default (value) for non- multi-arch platforms. */\n"
909 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
910 echo "#define ${macro} (${fallbackdefault})" \
911 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
912 printf "#endif\n"
913 fi
914 printf "\n"
915 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
916 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
919 printf "#endif\n"
920 if test "${level}" = ""
921 then
922 printf "#if !defined (${macro})\n"
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
924 printf "#endif\n"
925 else
926 printf "#if GDB_MULTI_ARCH\n"
927 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
928 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
929 printf "#endif\n"
930 printf "#endif\n"
931 fi
932 fi
933 if class_is_function_p
934 then
935 if class_is_multiarch_p ; then :
936 elif fallback_default_p || class_is_predicate_p
937 then
938 printf "\n"
939 printf "/* Default (function) for non- multi-arch platforms. */\n"
940 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
941 if [ "x${fallbackdefault}" = "x0" ]
942 then
943 if [ "x${actual}" = "x-" ]
944 then
945 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
946 else
947 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
948 fi
949 else
950 # FIXME: Should be passing current_gdbarch through!
951 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
952 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
953 fi
954 printf "#endif\n"
955 fi
956 printf "\n"
957 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
958 then
959 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
960 elif class_is_multiarch_p
961 then
962 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
963 else
964 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
965 fi
966 if [ "x${formal}" = "xvoid" ]
967 then
968 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
969 else
970 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
971 fi
972 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
973 if class_is_multiarch_p ; then :
974 else
975 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
976 printf "#error \"Non multi-arch definition of ${macro}\"\n"
977 printf "#endif\n"
978 printf "#if GDB_MULTI_ARCH\n"
979 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
980 if [ "x${actual}" = "x" ]
981 then
982 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
983 elif [ "x${actual}" = "x-" ]
984 then
985 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
986 else
987 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
988 fi
989 printf "#endif\n"
990 printf "#endif\n"
991 fi
992 fi
993 done
994
995 # close it off
996 cat <<EOF
997
998 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
999
1000
1001 /* Mechanism for co-ordinating the selection of a specific
1002 architecture.
1003
1004 GDB targets (*-tdep.c) can register an interest in a specific
1005 architecture. Other GDB components can register a need to maintain
1006 per-architecture data.
1007
1008 The mechanisms below ensures that there is only a loose connection
1009 between the set-architecture command and the various GDB
1010 components. Each component can independently register their need
1011 to maintain architecture specific data with gdbarch.
1012
1013 Pragmatics:
1014
1015 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1016 didn't scale.
1017
1018 The more traditional mega-struct containing architecture specific
1019 data for all the various GDB components was also considered. Since
1020 GDB is built from a variable number of (fairly independent)
1021 components it was determined that the global aproach was not
1022 applicable. */
1023
1024
1025 /* Register a new architectural family with GDB.
1026
1027 Register support for the specified ARCHITECTURE with GDB. When
1028 gdbarch determines that the specified architecture has been
1029 selected, the corresponding INIT function is called.
1030
1031 --
1032
1033 The INIT function takes two parameters: INFO which contains the
1034 information available to gdbarch about the (possibly new)
1035 architecture; ARCHES which is a list of the previously created
1036 \`\`struct gdbarch'' for this architecture.
1037
1038 The INFO parameter is, as far as possible, be pre-initialized with
1039 information obtained from INFO.ABFD or the previously selected
1040 architecture.
1041
1042 The ARCHES parameter is a linked list (sorted most recently used)
1043 of all the previously created architures for this architecture
1044 family. The (possibly NULL) ARCHES->gdbarch can used to access
1045 values from the previously selected architecture for this
1046 architecture family. The global \`\`current_gdbarch'' shall not be
1047 used.
1048
1049 The INIT function shall return any of: NULL - indicating that it
1050 doesn't recognize the selected architecture; an existing \`\`struct
1051 gdbarch'' from the ARCHES list - indicating that the new
1052 architecture is just a synonym for an earlier architecture (see
1053 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1054 - that describes the selected architecture (see gdbarch_alloc()).
1055
1056 The DUMP_TDEP function shall print out all target specific values.
1057 Care should be taken to ensure that the function works in both the
1058 multi-arch and non- multi-arch cases. */
1059
1060 struct gdbarch_list
1061 {
1062 struct gdbarch *gdbarch;
1063 struct gdbarch_list *next;
1064 };
1065
1066 struct gdbarch_info
1067 {
1068 /* Use default: NULL (ZERO). */
1069 const struct bfd_arch_info *bfd_arch_info;
1070
1071 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1072 int byte_order;
1073
1074 /* Use default: NULL (ZERO). */
1075 bfd *abfd;
1076
1077 /* Use default: NULL (ZERO). */
1078 struct gdbarch_tdep_info *tdep_info;
1079
1080 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1081 enum gdb_osabi osabi;
1082 };
1083
1084 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1085 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1086
1087 /* DEPRECATED - use gdbarch_register() */
1088 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1089
1090 extern void gdbarch_register (enum bfd_architecture architecture,
1091 gdbarch_init_ftype *,
1092 gdbarch_dump_tdep_ftype *);
1093
1094
1095 /* Return a freshly allocated, NULL terminated, array of the valid
1096 architecture names. Since architectures are registered during the
1097 _initialize phase this function only returns useful information
1098 once initialization has been completed. */
1099
1100 extern const char **gdbarch_printable_names (void);
1101
1102
1103 /* Helper function. Search the list of ARCHES for a GDBARCH that
1104 matches the information provided by INFO. */
1105
1106 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1107
1108
1109 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1110 basic initialization using values obtained from the INFO andTDEP
1111 parameters. set_gdbarch_*() functions are called to complete the
1112 initialization of the object. */
1113
1114 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1115
1116
1117 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1118 It is assumed that the caller freeds the \`\`struct
1119 gdbarch_tdep''. */
1120
1121 extern void gdbarch_free (struct gdbarch *);
1122
1123
1124 /* Helper function. Force an update of the current architecture.
1125
1126 The actual architecture selected is determined by INFO, \`\`(gdb) set
1127 architecture'' et.al., the existing architecture and BFD's default
1128 architecture. INFO should be initialized to zero and then selected
1129 fields should be updated.
1130
1131 Returns non-zero if the update succeeds */
1132
1133 extern int gdbarch_update_p (struct gdbarch_info info);
1134
1135
1136
1137 /* Register per-architecture data-pointer.
1138
1139 Reserve space for a per-architecture data-pointer. An identifier
1140 for the reserved data-pointer is returned. That identifer should
1141 be saved in a local static variable.
1142
1143 The per-architecture data-pointer is either initialized explicitly
1144 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1145 gdbarch_data()). FREE() is called to delete either an existing
1146 data-pointer overridden by set_gdbarch_data() or when the
1147 architecture object is being deleted.
1148
1149 When a previously created architecture is re-selected, the
1150 per-architecture data-pointer for that previous architecture is
1151 restored. INIT() is not re-called.
1152
1153 Multiple registrarants for any architecture are allowed (and
1154 strongly encouraged). */
1155
1156 struct gdbarch_data;
1157
1158 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1159 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1160 void *pointer);
1161 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1162 gdbarch_data_free_ftype *free);
1163 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1164 struct gdbarch_data *data,
1165 void *pointer);
1166
1167 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1168
1169
1170 /* Register per-architecture memory region.
1171
1172 Provide a memory-region swap mechanism. Per-architecture memory
1173 region are created. These memory regions are swapped whenever the
1174 architecture is changed. For a new architecture, the memory region
1175 is initialized with zero (0) and the INIT function is called.
1176
1177 Memory regions are swapped / initialized in the order that they are
1178 registered. NULL DATA and/or INIT values can be specified.
1179
1180 New code should use register_gdbarch_data(). */
1181
1182 typedef void (gdbarch_swap_ftype) (void);
1183 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1184 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1185
1186
1187
1188 /* The target-system-dependent byte order is dynamic */
1189
1190 extern int target_byte_order;
1191 #ifndef TARGET_BYTE_ORDER
1192 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1193 #endif
1194
1195 extern int target_byte_order_auto;
1196 #ifndef TARGET_BYTE_ORDER_AUTO
1197 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1198 #endif
1199
1200
1201
1202 /* The target-system-dependent BFD architecture is dynamic */
1203
1204 extern int target_architecture_auto;
1205 #ifndef TARGET_ARCHITECTURE_AUTO
1206 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1207 #endif
1208
1209 extern const struct bfd_arch_info *target_architecture;
1210 #ifndef TARGET_ARCHITECTURE
1211 #define TARGET_ARCHITECTURE (target_architecture + 0)
1212 #endif
1213
1214
1215 /* The target-system-dependent disassembler is semi-dynamic */
1216
1217 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1218 unsigned int len, disassemble_info *info);
1219
1220 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1221 disassemble_info *info);
1222
1223 extern void dis_asm_print_address (bfd_vma addr,
1224 disassemble_info *info);
1225
1226 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1227 extern disassemble_info tm_print_insn_info;
1228 #ifndef TARGET_PRINT_INSN_INFO
1229 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1230 #endif
1231
1232
1233
1234 /* Set the dynamic target-system-dependent parameters (architecture,
1235 byte-order, ...) using information found in the BFD */
1236
1237 extern void set_gdbarch_from_file (bfd *);
1238
1239
1240 /* Initialize the current architecture to the "first" one we find on
1241 our list. */
1242
1243 extern void initialize_current_architecture (void);
1244
1245 /* For non-multiarched targets, do any initialization of the default
1246 gdbarch object necessary after the _initialize_MODULE functions
1247 have run. */
1248 extern void initialize_non_multiarch (void);
1249
1250 /* gdbarch trace variable */
1251 extern int gdbarch_debug;
1252
1253 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1254
1255 #endif
1256 EOF
1257 exec 1>&2
1258 #../move-if-change new-gdbarch.h gdbarch.h
1259 compare_new gdbarch.h
1260
1261
1262 #
1263 # C file
1264 #
1265
1266 exec > new-gdbarch.c
1267 copyright
1268 cat <<EOF
1269
1270 #include "defs.h"
1271 #include "arch-utils.h"
1272
1273 #if GDB_MULTI_ARCH
1274 #include "gdbcmd.h"
1275 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1276 #else
1277 /* Just include everything in sight so that the every old definition
1278 of macro is visible. */
1279 #include "gdb_string.h"
1280 #include <ctype.h>
1281 #include "symtab.h"
1282 #include "frame.h"
1283 #include "inferior.h"
1284 #include "breakpoint.h"
1285 #include "gdb_wait.h"
1286 #include "gdbcore.h"
1287 #include "gdbcmd.h"
1288 #include "target.h"
1289 #include "gdbthread.h"
1290 #include "annotate.h"
1291 #include "symfile.h" /* for overlay functions */
1292 #include "value.h" /* For old tm.h/nm.h macros. */
1293 #endif
1294 #include "symcat.h"
1295
1296 #include "floatformat.h"
1297
1298 #include "gdb_assert.h"
1299 #include "gdb_string.h"
1300 #include "gdb-events.h"
1301 #include "reggroups.h"
1302 #include "osabi.h"
1303
1304 /* Static function declarations */
1305
1306 static void verify_gdbarch (struct gdbarch *gdbarch);
1307 static void alloc_gdbarch_data (struct gdbarch *);
1308 static void free_gdbarch_data (struct gdbarch *);
1309 static void init_gdbarch_swap (struct gdbarch *);
1310 static void clear_gdbarch_swap (struct gdbarch *);
1311 static void swapout_gdbarch_swap (struct gdbarch *);
1312 static void swapin_gdbarch_swap (struct gdbarch *);
1313
1314 /* Non-zero if we want to trace architecture code. */
1315
1316 #ifndef GDBARCH_DEBUG
1317 #define GDBARCH_DEBUG 0
1318 #endif
1319 int gdbarch_debug = GDBARCH_DEBUG;
1320
1321 EOF
1322
1323 # gdbarch open the gdbarch object
1324 printf "\n"
1325 printf "/* Maintain the struct gdbarch object */\n"
1326 printf "\n"
1327 printf "struct gdbarch\n"
1328 printf "{\n"
1329 printf " /* Has this architecture been fully initialized? */\n"
1330 printf " int initialized_p;\n"
1331 printf " /* basic architectural information */\n"
1332 function_list | while do_read
1333 do
1334 if class_is_info_p
1335 then
1336 printf " ${returntype} ${function};\n"
1337 fi
1338 done
1339 printf "\n"
1340 printf " /* target specific vector. */\n"
1341 printf " struct gdbarch_tdep *tdep;\n"
1342 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1343 printf "\n"
1344 printf " /* per-architecture data-pointers */\n"
1345 printf " unsigned nr_data;\n"
1346 printf " void **data;\n"
1347 printf "\n"
1348 printf " /* per-architecture swap-regions */\n"
1349 printf " struct gdbarch_swap *swap;\n"
1350 printf "\n"
1351 cat <<EOF
1352 /* Multi-arch values.
1353
1354 When extending this structure you must:
1355
1356 Add the field below.
1357
1358 Declare set/get functions and define the corresponding
1359 macro in gdbarch.h.
1360
1361 gdbarch_alloc(): If zero/NULL is not a suitable default,
1362 initialize the new field.
1363
1364 verify_gdbarch(): Confirm that the target updated the field
1365 correctly.
1366
1367 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1368 field is dumped out
1369
1370 \`\`startup_gdbarch()'': Append an initial value to the static
1371 variable (base values on the host's c-type system).
1372
1373 get_gdbarch(): Implement the set/get functions (probably using
1374 the macro's as shortcuts).
1375
1376 */
1377
1378 EOF
1379 function_list | while do_read
1380 do
1381 if class_is_variable_p
1382 then
1383 printf " ${returntype} ${function};\n"
1384 elif class_is_function_p
1385 then
1386 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1387 fi
1388 done
1389 printf "};\n"
1390
1391 # A pre-initialized vector
1392 printf "\n"
1393 printf "\n"
1394 cat <<EOF
1395 /* The default architecture uses host values (for want of a better
1396 choice). */
1397 EOF
1398 printf "\n"
1399 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1400 printf "\n"
1401 printf "struct gdbarch startup_gdbarch =\n"
1402 printf "{\n"
1403 printf " 1, /* Always initialized. */\n"
1404 printf " /* basic architecture information */\n"
1405 function_list | while do_read
1406 do
1407 if class_is_info_p
1408 then
1409 printf " ${staticdefault},\n"
1410 fi
1411 done
1412 cat <<EOF
1413 /* target specific vector and its dump routine */
1414 NULL, NULL,
1415 /*per-architecture data-pointers and swap regions */
1416 0, NULL, NULL,
1417 /* Multi-arch values */
1418 EOF
1419 function_list | while do_read
1420 do
1421 if class_is_function_p || class_is_variable_p
1422 then
1423 printf " ${staticdefault},\n"
1424 fi
1425 done
1426 cat <<EOF
1427 /* startup_gdbarch() */
1428 };
1429
1430 struct gdbarch *current_gdbarch = &startup_gdbarch;
1431
1432 /* Do any initialization needed for a non-multiarch configuration
1433 after the _initialize_MODULE functions have been run. */
1434 void
1435 initialize_non_multiarch (void)
1436 {
1437 alloc_gdbarch_data (&startup_gdbarch);
1438 /* Ensure that all swap areas are zeroed so that they again think
1439 they are starting from scratch. */
1440 clear_gdbarch_swap (&startup_gdbarch);
1441 init_gdbarch_swap (&startup_gdbarch);
1442 }
1443 EOF
1444
1445 # Create a new gdbarch struct
1446 printf "\n"
1447 printf "\n"
1448 cat <<EOF
1449 /* Create a new \`\`struct gdbarch'' based on information provided by
1450 \`\`struct gdbarch_info''. */
1451 EOF
1452 printf "\n"
1453 cat <<EOF
1454 struct gdbarch *
1455 gdbarch_alloc (const struct gdbarch_info *info,
1456 struct gdbarch_tdep *tdep)
1457 {
1458 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1459 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1460 the current local architecture and not the previous global
1461 architecture. This ensures that the new architectures initial
1462 values are not influenced by the previous architecture. Once
1463 everything is parameterised with gdbarch, this will go away. */
1464 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1465 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1466
1467 alloc_gdbarch_data (current_gdbarch);
1468
1469 current_gdbarch->tdep = tdep;
1470 EOF
1471 printf "\n"
1472 function_list | while do_read
1473 do
1474 if class_is_info_p
1475 then
1476 printf " current_gdbarch->${function} = info->${function};\n"
1477 fi
1478 done
1479 printf "\n"
1480 printf " /* Force the explicit initialization of these. */\n"
1481 function_list | while do_read
1482 do
1483 if class_is_function_p || class_is_variable_p
1484 then
1485 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1486 then
1487 printf " current_gdbarch->${function} = ${predefault};\n"
1488 fi
1489 fi
1490 done
1491 cat <<EOF
1492 /* gdbarch_alloc() */
1493
1494 return current_gdbarch;
1495 }
1496 EOF
1497
1498 # Free a gdbarch struct.
1499 printf "\n"
1500 printf "\n"
1501 cat <<EOF
1502 /* Free a gdbarch struct. This should never happen in normal
1503 operation --- once you've created a gdbarch, you keep it around.
1504 However, if an architecture's init function encounters an error
1505 building the structure, it may need to clean up a partially
1506 constructed gdbarch. */
1507
1508 void
1509 gdbarch_free (struct gdbarch *arch)
1510 {
1511 gdb_assert (arch != NULL);
1512 free_gdbarch_data (arch);
1513 xfree (arch);
1514 }
1515 EOF
1516
1517 # verify a new architecture
1518 printf "\n"
1519 printf "\n"
1520 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1521 printf "\n"
1522 cat <<EOF
1523 static void
1524 verify_gdbarch (struct gdbarch *gdbarch)
1525 {
1526 struct ui_file *log;
1527 struct cleanup *cleanups;
1528 long dummy;
1529 char *buf;
1530 /* Only perform sanity checks on a multi-arch target. */
1531 if (!GDB_MULTI_ARCH)
1532 return;
1533 log = mem_fileopen ();
1534 cleanups = make_cleanup_ui_file_delete (log);
1535 /* fundamental */
1536 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1537 fprintf_unfiltered (log, "\n\tbyte-order");
1538 if (gdbarch->bfd_arch_info == NULL)
1539 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1540 /* Check those that need to be defined for the given multi-arch level. */
1541 EOF
1542 function_list | while do_read
1543 do
1544 if class_is_function_p || class_is_variable_p
1545 then
1546 if [ "x${invalid_p}" = "x0" ]
1547 then
1548 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1549 elif class_is_predicate_p
1550 then
1551 printf " /* Skip verify of ${function}, has predicate */\n"
1552 # FIXME: See do_read for potential simplification
1553 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1554 then
1555 printf " if (${invalid_p})\n"
1556 printf " gdbarch->${function} = ${postdefault};\n"
1557 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1558 then
1559 printf " if (gdbarch->${function} == ${predefault})\n"
1560 printf " gdbarch->${function} = ${postdefault};\n"
1561 elif [ -n "${postdefault}" ]
1562 then
1563 printf " if (gdbarch->${function} == 0)\n"
1564 printf " gdbarch->${function} = ${postdefault};\n"
1565 elif [ -n "${invalid_p}" ]
1566 then
1567 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1568 printf " && (${invalid_p}))\n"
1569 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1570 elif [ -n "${predefault}" ]
1571 then
1572 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1573 printf " && (gdbarch->${function} == ${predefault}))\n"
1574 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1575 fi
1576 fi
1577 done
1578 cat <<EOF
1579 buf = ui_file_xstrdup (log, &dummy);
1580 make_cleanup (xfree, buf);
1581 if (strlen (buf) > 0)
1582 internal_error (__FILE__, __LINE__,
1583 "verify_gdbarch: the following are invalid ...%s",
1584 buf);
1585 do_cleanups (cleanups);
1586 }
1587 EOF
1588
1589 # dump the structure
1590 printf "\n"
1591 printf "\n"
1592 cat <<EOF
1593 /* Print out the details of the current architecture. */
1594
1595 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1596 just happens to match the global variable \`\`current_gdbarch''. That
1597 way macros refering to that variable get the local and not the global
1598 version - ulgh. Once everything is parameterised with gdbarch, this
1599 will go away. */
1600
1601 void
1602 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1603 {
1604 fprintf_unfiltered (file,
1605 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1606 GDB_MULTI_ARCH);
1607 EOF
1608 function_list | sort -t: -k 3 | while do_read
1609 do
1610 # First the predicate
1611 if class_is_predicate_p
1612 then
1613 if class_is_multiarch_p
1614 then
1615 printf " if (GDB_MULTI_ARCH)\n"
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1618 printf " gdbarch_${function}_p (current_gdbarch));\n"
1619 else
1620 printf "#ifdef ${macro}_P\n"
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1623 printf " \"${macro}_P()\",\n"
1624 printf " XSTRING (${macro}_P ()));\n"
1625 printf " fprintf_unfiltered (file,\n"
1626 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1627 printf " ${macro}_P ());\n"
1628 printf "#endif\n"
1629 fi
1630 fi
1631 # multiarch functions don't have macros.
1632 if class_is_multiarch_p
1633 then
1634 printf " if (GDB_MULTI_ARCH)\n"
1635 printf " fprintf_unfiltered (file,\n"
1636 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1637 printf " (long) current_gdbarch->${function});\n"
1638 continue
1639 fi
1640 # Print the macro definition.
1641 printf "#ifdef ${macro}\n"
1642 if [ "x${returntype}" = "xvoid" ]
1643 then
1644 printf "#if GDB_MULTI_ARCH\n"
1645 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1646 fi
1647 if class_is_function_p
1648 then
1649 printf " fprintf_unfiltered (file,\n"
1650 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1651 printf " \"${macro}(${actual})\",\n"
1652 printf " XSTRING (${macro} (${actual})));\n"
1653 else
1654 printf " fprintf_unfiltered (file,\n"
1655 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1656 printf " XSTRING (${macro}));\n"
1657 fi
1658 # Print the architecture vector value
1659 if [ "x${returntype}" = "xvoid" ]
1660 then
1661 printf "#endif\n"
1662 fi
1663 if [ "x${print_p}" = "x()" ]
1664 then
1665 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1666 elif [ "x${print_p}" = "x0" ]
1667 then
1668 printf " /* skip print of ${macro}, print_p == 0. */\n"
1669 elif [ -n "${print_p}" ]
1670 then
1671 printf " if (${print_p})\n"
1672 printf " fprintf_unfiltered (file,\n"
1673 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1674 printf " ${print});\n"
1675 elif class_is_function_p
1676 then
1677 printf " if (GDB_MULTI_ARCH)\n"
1678 printf " fprintf_unfiltered (file,\n"
1679 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1680 printf " (long) current_gdbarch->${function}\n"
1681 printf " /*${macro} ()*/);\n"
1682 else
1683 printf " fprintf_unfiltered (file,\n"
1684 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1685 printf " ${print});\n"
1686 fi
1687 printf "#endif\n"
1688 done
1689 cat <<EOF
1690 if (current_gdbarch->dump_tdep != NULL)
1691 current_gdbarch->dump_tdep (current_gdbarch, file);
1692 }
1693 EOF
1694
1695
1696 # GET/SET
1697 printf "\n"
1698 cat <<EOF
1699 struct gdbarch_tdep *
1700 gdbarch_tdep (struct gdbarch *gdbarch)
1701 {
1702 if (gdbarch_debug >= 2)
1703 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1704 return gdbarch->tdep;
1705 }
1706 EOF
1707 printf "\n"
1708 function_list | while do_read
1709 do
1710 if class_is_predicate_p
1711 then
1712 printf "\n"
1713 printf "int\n"
1714 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1715 printf "{\n"
1716 printf " gdb_assert (gdbarch != NULL);\n"
1717 if [ -n "${predicate}" ]
1718 then
1719 printf " return ${predicate};\n"
1720 else
1721 printf " return gdbarch->${function} != 0;\n"
1722 fi
1723 printf "}\n"
1724 fi
1725 if class_is_function_p
1726 then
1727 printf "\n"
1728 printf "${returntype}\n"
1729 if [ "x${formal}" = "xvoid" ]
1730 then
1731 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1732 else
1733 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1734 fi
1735 printf "{\n"
1736 printf " gdb_assert (gdbarch != NULL);\n"
1737 printf " if (gdbarch->${function} == 0)\n"
1738 printf " internal_error (__FILE__, __LINE__,\n"
1739 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1740 if class_is_predicate_p && test -n "${predicate}"
1741 then
1742 # Allow a call to a function with a predicate.
1743 printf " /* Ignore predicate (${predicate}). */\n"
1744 fi
1745 printf " if (gdbarch_debug >= 2)\n"
1746 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1747 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1748 then
1749 if class_is_multiarch_p
1750 then
1751 params="gdbarch"
1752 else
1753 params=""
1754 fi
1755 else
1756 if class_is_multiarch_p
1757 then
1758 params="gdbarch, ${actual}"
1759 else
1760 params="${actual}"
1761 fi
1762 fi
1763 if [ "x${returntype}" = "xvoid" ]
1764 then
1765 printf " gdbarch->${function} (${params});\n"
1766 else
1767 printf " return gdbarch->${function} (${params});\n"
1768 fi
1769 printf "}\n"
1770 printf "\n"
1771 printf "void\n"
1772 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1773 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1774 printf "{\n"
1775 printf " gdbarch->${function} = ${function};\n"
1776 printf "}\n"
1777 elif class_is_variable_p
1778 then
1779 printf "\n"
1780 printf "${returntype}\n"
1781 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1782 printf "{\n"
1783 printf " gdb_assert (gdbarch != NULL);\n"
1784 if [ "x${invalid_p}" = "x0" ]
1785 then
1786 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1787 elif [ -n "${invalid_p}" ]
1788 then
1789 printf " if (${invalid_p})\n"
1790 printf " internal_error (__FILE__, __LINE__,\n"
1791 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1792 elif [ -n "${predefault}" ]
1793 then
1794 printf " if (gdbarch->${function} == ${predefault})\n"
1795 printf " internal_error (__FILE__, __LINE__,\n"
1796 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1797 fi
1798 printf " if (gdbarch_debug >= 2)\n"
1799 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1800 printf " return gdbarch->${function};\n"
1801 printf "}\n"
1802 printf "\n"
1803 printf "void\n"
1804 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1805 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1806 printf "{\n"
1807 printf " gdbarch->${function} = ${function};\n"
1808 printf "}\n"
1809 elif class_is_info_p
1810 then
1811 printf "\n"
1812 printf "${returntype}\n"
1813 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1814 printf "{\n"
1815 printf " gdb_assert (gdbarch != NULL);\n"
1816 printf " if (gdbarch_debug >= 2)\n"
1817 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1818 printf " return gdbarch->${function};\n"
1819 printf "}\n"
1820 fi
1821 done
1822
1823 # All the trailing guff
1824 cat <<EOF
1825
1826
1827 /* Keep a registry of per-architecture data-pointers required by GDB
1828 modules. */
1829
1830 struct gdbarch_data
1831 {
1832 unsigned index;
1833 int init_p;
1834 gdbarch_data_init_ftype *init;
1835 gdbarch_data_free_ftype *free;
1836 };
1837
1838 struct gdbarch_data_registration
1839 {
1840 struct gdbarch_data *data;
1841 struct gdbarch_data_registration *next;
1842 };
1843
1844 struct gdbarch_data_registry
1845 {
1846 unsigned nr;
1847 struct gdbarch_data_registration *registrations;
1848 };
1849
1850 struct gdbarch_data_registry gdbarch_data_registry =
1851 {
1852 0, NULL,
1853 };
1854
1855 struct gdbarch_data *
1856 register_gdbarch_data (gdbarch_data_init_ftype *init,
1857 gdbarch_data_free_ftype *free)
1858 {
1859 struct gdbarch_data_registration **curr;
1860 /* Append the new registraration. */
1861 for (curr = &gdbarch_data_registry.registrations;
1862 (*curr) != NULL;
1863 curr = &(*curr)->next);
1864 (*curr) = XMALLOC (struct gdbarch_data_registration);
1865 (*curr)->next = NULL;
1866 (*curr)->data = XMALLOC (struct gdbarch_data);
1867 (*curr)->data->index = gdbarch_data_registry.nr++;
1868 (*curr)->data->init = init;
1869 (*curr)->data->init_p = 1;
1870 (*curr)->data->free = free;
1871 return (*curr)->data;
1872 }
1873
1874
1875 /* Create/delete the gdbarch data vector. */
1876
1877 static void
1878 alloc_gdbarch_data (struct gdbarch *gdbarch)
1879 {
1880 gdb_assert (gdbarch->data == NULL);
1881 gdbarch->nr_data = gdbarch_data_registry.nr;
1882 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1883 }
1884
1885 static void
1886 free_gdbarch_data (struct gdbarch *gdbarch)
1887 {
1888 struct gdbarch_data_registration *rego;
1889 gdb_assert (gdbarch->data != NULL);
1890 for (rego = gdbarch_data_registry.registrations;
1891 rego != NULL;
1892 rego = rego->next)
1893 {
1894 struct gdbarch_data *data = rego->data;
1895 gdb_assert (data->index < gdbarch->nr_data);
1896 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1897 {
1898 data->free (gdbarch, gdbarch->data[data->index]);
1899 gdbarch->data[data->index] = NULL;
1900 }
1901 }
1902 xfree (gdbarch->data);
1903 gdbarch->data = NULL;
1904 }
1905
1906
1907 /* Initialize the current value of the specified per-architecture
1908 data-pointer. */
1909
1910 void
1911 set_gdbarch_data (struct gdbarch *gdbarch,
1912 struct gdbarch_data *data,
1913 void *pointer)
1914 {
1915 gdb_assert (data->index < gdbarch->nr_data);
1916 if (gdbarch->data[data->index] != NULL)
1917 {
1918 gdb_assert (data->free != NULL);
1919 data->free (gdbarch, gdbarch->data[data->index]);
1920 }
1921 gdbarch->data[data->index] = pointer;
1922 }
1923
1924 /* Return the current value of the specified per-architecture
1925 data-pointer. */
1926
1927 void *
1928 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1929 {
1930 gdb_assert (data->index < gdbarch->nr_data);
1931 /* The data-pointer isn't initialized, call init() to get a value but
1932 only if the architecture initializaiton has completed. Otherwise
1933 punt - hope that the caller knows what they are doing. */
1934 if (gdbarch->data[data->index] == NULL
1935 && gdbarch->initialized_p)
1936 {
1937 /* Be careful to detect an initialization cycle. */
1938 gdb_assert (data->init_p);
1939 data->init_p = 0;
1940 gdb_assert (data->init != NULL);
1941 gdbarch->data[data->index] = data->init (gdbarch);
1942 data->init_p = 1;
1943 gdb_assert (gdbarch->data[data->index] != NULL);
1944 }
1945 return gdbarch->data[data->index];
1946 }
1947
1948
1949
1950 /* Keep a registry of swapped data required by GDB modules. */
1951
1952 struct gdbarch_swap
1953 {
1954 void *swap;
1955 struct gdbarch_swap_registration *source;
1956 struct gdbarch_swap *next;
1957 };
1958
1959 struct gdbarch_swap_registration
1960 {
1961 void *data;
1962 unsigned long sizeof_data;
1963 gdbarch_swap_ftype *init;
1964 struct gdbarch_swap_registration *next;
1965 };
1966
1967 struct gdbarch_swap_registry
1968 {
1969 int nr;
1970 struct gdbarch_swap_registration *registrations;
1971 };
1972
1973 struct gdbarch_swap_registry gdbarch_swap_registry =
1974 {
1975 0, NULL,
1976 };
1977
1978 void
1979 register_gdbarch_swap (void *data,
1980 unsigned long sizeof_data,
1981 gdbarch_swap_ftype *init)
1982 {
1983 struct gdbarch_swap_registration **rego;
1984 for (rego = &gdbarch_swap_registry.registrations;
1985 (*rego) != NULL;
1986 rego = &(*rego)->next);
1987 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1988 (*rego)->next = NULL;
1989 (*rego)->init = init;
1990 (*rego)->data = data;
1991 (*rego)->sizeof_data = sizeof_data;
1992 }
1993
1994 static void
1995 clear_gdbarch_swap (struct gdbarch *gdbarch)
1996 {
1997 struct gdbarch_swap *curr;
1998 for (curr = gdbarch->swap;
1999 curr != NULL;
2000 curr = curr->next)
2001 {
2002 memset (curr->source->data, 0, curr->source->sizeof_data);
2003 }
2004 }
2005
2006 static void
2007 init_gdbarch_swap (struct gdbarch *gdbarch)
2008 {
2009 struct gdbarch_swap_registration *rego;
2010 struct gdbarch_swap **curr = &gdbarch->swap;
2011 for (rego = gdbarch_swap_registry.registrations;
2012 rego != NULL;
2013 rego = rego->next)
2014 {
2015 if (rego->data != NULL)
2016 {
2017 (*curr) = XMALLOC (struct gdbarch_swap);
2018 (*curr)->source = rego;
2019 (*curr)->swap = xmalloc (rego->sizeof_data);
2020 (*curr)->next = NULL;
2021 curr = &(*curr)->next;
2022 }
2023 if (rego->init != NULL)
2024 rego->init ();
2025 }
2026 }
2027
2028 static void
2029 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2030 {
2031 struct gdbarch_swap *curr;
2032 for (curr = gdbarch->swap;
2033 curr != NULL;
2034 curr = curr->next)
2035 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2036 }
2037
2038 static void
2039 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2040 {
2041 struct gdbarch_swap *curr;
2042 for (curr = gdbarch->swap;
2043 curr != NULL;
2044 curr = curr->next)
2045 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2046 }
2047
2048
2049 /* Keep a registry of the architectures known by GDB. */
2050
2051 struct gdbarch_registration
2052 {
2053 enum bfd_architecture bfd_architecture;
2054 gdbarch_init_ftype *init;
2055 gdbarch_dump_tdep_ftype *dump_tdep;
2056 struct gdbarch_list *arches;
2057 struct gdbarch_registration *next;
2058 };
2059
2060 static struct gdbarch_registration *gdbarch_registry = NULL;
2061
2062 static void
2063 append_name (const char ***buf, int *nr, const char *name)
2064 {
2065 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2066 (*buf)[*nr] = name;
2067 *nr += 1;
2068 }
2069
2070 const char **
2071 gdbarch_printable_names (void)
2072 {
2073 if (GDB_MULTI_ARCH)
2074 {
2075 /* Accumulate a list of names based on the registed list of
2076 architectures. */
2077 enum bfd_architecture a;
2078 int nr_arches = 0;
2079 const char **arches = NULL;
2080 struct gdbarch_registration *rego;
2081 for (rego = gdbarch_registry;
2082 rego != NULL;
2083 rego = rego->next)
2084 {
2085 const struct bfd_arch_info *ap;
2086 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2087 if (ap == NULL)
2088 internal_error (__FILE__, __LINE__,
2089 "gdbarch_architecture_names: multi-arch unknown");
2090 do
2091 {
2092 append_name (&arches, &nr_arches, ap->printable_name);
2093 ap = ap->next;
2094 }
2095 while (ap != NULL);
2096 }
2097 append_name (&arches, &nr_arches, NULL);
2098 return arches;
2099 }
2100 else
2101 /* Just return all the architectures that BFD knows. Assume that
2102 the legacy architecture framework supports them. */
2103 return bfd_arch_list ();
2104 }
2105
2106
2107 void
2108 gdbarch_register (enum bfd_architecture bfd_architecture,
2109 gdbarch_init_ftype *init,
2110 gdbarch_dump_tdep_ftype *dump_tdep)
2111 {
2112 struct gdbarch_registration **curr;
2113 const struct bfd_arch_info *bfd_arch_info;
2114 /* Check that BFD recognizes this architecture */
2115 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2116 if (bfd_arch_info == NULL)
2117 {
2118 internal_error (__FILE__, __LINE__,
2119 "gdbarch: Attempt to register unknown architecture (%d)",
2120 bfd_architecture);
2121 }
2122 /* Check that we haven't seen this architecture before */
2123 for (curr = &gdbarch_registry;
2124 (*curr) != NULL;
2125 curr = &(*curr)->next)
2126 {
2127 if (bfd_architecture == (*curr)->bfd_architecture)
2128 internal_error (__FILE__, __LINE__,
2129 "gdbarch: Duplicate registraration of architecture (%s)",
2130 bfd_arch_info->printable_name);
2131 }
2132 /* log it */
2133 if (gdbarch_debug)
2134 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2135 bfd_arch_info->printable_name,
2136 (long) init);
2137 /* Append it */
2138 (*curr) = XMALLOC (struct gdbarch_registration);
2139 (*curr)->bfd_architecture = bfd_architecture;
2140 (*curr)->init = init;
2141 (*curr)->dump_tdep = dump_tdep;
2142 (*curr)->arches = NULL;
2143 (*curr)->next = NULL;
2144 /* When non- multi-arch, install whatever target dump routine we've
2145 been provided - hopefully that routine has been written correctly
2146 and works regardless of multi-arch. */
2147 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2148 && startup_gdbarch.dump_tdep == NULL)
2149 startup_gdbarch.dump_tdep = dump_tdep;
2150 }
2151
2152 void
2153 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2154 gdbarch_init_ftype *init)
2155 {
2156 gdbarch_register (bfd_architecture, init, NULL);
2157 }
2158
2159
2160 /* Look for an architecture using gdbarch_info. Base search on only
2161 BFD_ARCH_INFO and BYTE_ORDER. */
2162
2163 struct gdbarch_list *
2164 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2165 const struct gdbarch_info *info)
2166 {
2167 for (; arches != NULL; arches = arches->next)
2168 {
2169 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2170 continue;
2171 if (info->byte_order != arches->gdbarch->byte_order)
2172 continue;
2173 if (info->osabi != arches->gdbarch->osabi)
2174 continue;
2175 return arches;
2176 }
2177 return NULL;
2178 }
2179
2180
2181 /* Update the current architecture. Return ZERO if the update request
2182 failed. */
2183
2184 int
2185 gdbarch_update_p (struct gdbarch_info info)
2186 {
2187 struct gdbarch *new_gdbarch;
2188 struct gdbarch *old_gdbarch;
2189 struct gdbarch_registration *rego;
2190
2191 /* Fill in missing parts of the INFO struct using a number of
2192 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2193
2194 /* \`\`(gdb) set architecture ...'' */
2195 if (info.bfd_arch_info == NULL
2196 && !TARGET_ARCHITECTURE_AUTO)
2197 info.bfd_arch_info = TARGET_ARCHITECTURE;
2198 if (info.bfd_arch_info == NULL
2199 && info.abfd != NULL
2200 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2201 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2202 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2203 if (info.bfd_arch_info == NULL)
2204 info.bfd_arch_info = TARGET_ARCHITECTURE;
2205
2206 /* \`\`(gdb) set byte-order ...'' */
2207 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2208 && !TARGET_BYTE_ORDER_AUTO)
2209 info.byte_order = TARGET_BYTE_ORDER;
2210 /* From the INFO struct. */
2211 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2212 && info.abfd != NULL)
2213 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2214 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2215 : BFD_ENDIAN_UNKNOWN);
2216 /* From the current target. */
2217 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2218 info.byte_order = TARGET_BYTE_ORDER;
2219
2220 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2221 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2222 info.osabi = gdbarch_lookup_osabi (info.abfd);
2223 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2224 info.osabi = current_gdbarch->osabi;
2225
2226 /* Must have found some sort of architecture. */
2227 gdb_assert (info.bfd_arch_info != NULL);
2228
2229 if (gdbarch_debug)
2230 {
2231 fprintf_unfiltered (gdb_stdlog,
2232 "gdbarch_update: info.bfd_arch_info %s\n",
2233 (info.bfd_arch_info != NULL
2234 ? info.bfd_arch_info->printable_name
2235 : "(null)"));
2236 fprintf_unfiltered (gdb_stdlog,
2237 "gdbarch_update: info.byte_order %d (%s)\n",
2238 info.byte_order,
2239 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2240 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2241 : "default"));
2242 fprintf_unfiltered (gdb_stdlog,
2243 "gdbarch_update: info.osabi %d (%s)\n",
2244 info.osabi, gdbarch_osabi_name (info.osabi));
2245 fprintf_unfiltered (gdb_stdlog,
2246 "gdbarch_update: info.abfd 0x%lx\n",
2247 (long) info.abfd);
2248 fprintf_unfiltered (gdb_stdlog,
2249 "gdbarch_update: info.tdep_info 0x%lx\n",
2250 (long) info.tdep_info);
2251 }
2252
2253 /* Find the target that knows about this architecture. */
2254 for (rego = gdbarch_registry;
2255 rego != NULL;
2256 rego = rego->next)
2257 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2258 break;
2259 if (rego == NULL)
2260 {
2261 if (gdbarch_debug)
2262 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2263 return 0;
2264 }
2265
2266 /* Swap the data belonging to the old target out setting the
2267 installed data to zero. This stops the ->init() function trying
2268 to refer to the previous architecture's global data structures. */
2269 swapout_gdbarch_swap (current_gdbarch);
2270 clear_gdbarch_swap (current_gdbarch);
2271
2272 /* Save the previously selected architecture, setting the global to
2273 NULL. This stops ->init() trying to use the previous
2274 architecture's configuration. The previous architecture may not
2275 even be of the same architecture family. The most recent
2276 architecture of the same family is found at the head of the
2277 rego->arches list. */
2278 old_gdbarch = current_gdbarch;
2279 current_gdbarch = NULL;
2280
2281 /* Ask the target for a replacement architecture. */
2282 new_gdbarch = rego->init (info, rego->arches);
2283
2284 /* Did the target like it? No. Reject the change and revert to the
2285 old architecture. */
2286 if (new_gdbarch == NULL)
2287 {
2288 if (gdbarch_debug)
2289 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2290 swapin_gdbarch_swap (old_gdbarch);
2291 current_gdbarch = old_gdbarch;
2292 return 0;
2293 }
2294
2295 /* Did the architecture change? No. Oops, put the old architecture
2296 back. */
2297 if (old_gdbarch == new_gdbarch)
2298 {
2299 if (gdbarch_debug)
2300 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2301 (long) new_gdbarch,
2302 new_gdbarch->bfd_arch_info->printable_name);
2303 swapin_gdbarch_swap (old_gdbarch);
2304 current_gdbarch = old_gdbarch;
2305 return 1;
2306 }
2307
2308 /* Is this a pre-existing architecture? Yes. Move it to the front
2309 of the list of architectures (keeping the list sorted Most
2310 Recently Used) and then copy it in. */
2311 {
2312 struct gdbarch_list **list;
2313 for (list = &rego->arches;
2314 (*list) != NULL;
2315 list = &(*list)->next)
2316 {
2317 if ((*list)->gdbarch == new_gdbarch)
2318 {
2319 struct gdbarch_list *this;
2320 if (gdbarch_debug)
2321 fprintf_unfiltered (gdb_stdlog,
2322 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2323 (long) new_gdbarch,
2324 new_gdbarch->bfd_arch_info->printable_name);
2325 /* Unlink this. */
2326 this = (*list);
2327 (*list) = this->next;
2328 /* Insert in the front. */
2329 this->next = rego->arches;
2330 rego->arches = this;
2331 /* Copy the new architecture in. */
2332 current_gdbarch = new_gdbarch;
2333 swapin_gdbarch_swap (new_gdbarch);
2334 architecture_changed_event ();
2335 return 1;
2336 }
2337 }
2338 }
2339
2340 /* Prepend this new architecture to the architecture list (keep the
2341 list sorted Most Recently Used). */
2342 {
2343 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2344 this->next = rego->arches;
2345 this->gdbarch = new_gdbarch;
2346 rego->arches = this;
2347 }
2348
2349 /* Switch to this new architecture marking it initialized. */
2350 current_gdbarch = new_gdbarch;
2351 current_gdbarch->initialized_p = 1;
2352 if (gdbarch_debug)
2353 {
2354 fprintf_unfiltered (gdb_stdlog,
2355 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2356 (long) new_gdbarch,
2357 new_gdbarch->bfd_arch_info->printable_name);
2358 }
2359
2360 /* Check that the newly installed architecture is valid. Plug in
2361 any post init values. */
2362 new_gdbarch->dump_tdep = rego->dump_tdep;
2363 verify_gdbarch (new_gdbarch);
2364
2365 /* Initialize the per-architecture memory (swap) areas.
2366 CURRENT_GDBARCH must be update before these modules are
2367 called. */
2368 init_gdbarch_swap (new_gdbarch);
2369
2370 /* Initialize the per-architecture data. CURRENT_GDBARCH
2371 must be updated before these modules are called. */
2372 architecture_changed_event ();
2373
2374 if (gdbarch_debug)
2375 gdbarch_dump (current_gdbarch, gdb_stdlog);
2376
2377 return 1;
2378 }
2379
2380
2381 /* Disassembler */
2382
2383 /* Pointer to the target-dependent disassembly function. */
2384 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2385 disassemble_info tm_print_insn_info;
2386
2387
2388 extern void _initialize_gdbarch (void);
2389
2390 void
2391 _initialize_gdbarch (void)
2392 {
2393 struct cmd_list_element *c;
2394
2395 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2396 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2397 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2398 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2399 tm_print_insn_info.print_address_func = dis_asm_print_address;
2400
2401 add_show_from_set (add_set_cmd ("arch",
2402 class_maintenance,
2403 var_zinteger,
2404 (char *)&gdbarch_debug,
2405 "Set architecture debugging.\\n\\
2406 When non-zero, architecture debugging is enabled.", &setdebuglist),
2407 &showdebuglist);
2408 c = add_set_cmd ("archdebug",
2409 class_maintenance,
2410 var_zinteger,
2411 (char *)&gdbarch_debug,
2412 "Set architecture debugging.\\n\\
2413 When non-zero, architecture debugging is enabled.", &setlist);
2414
2415 deprecate_cmd (c, "set debug arch");
2416 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2417 }
2418 EOF
2419
2420 # close things off
2421 exec 1>&2
2422 #../move-if-change new-gdbarch.c gdbarch.c
2423 compare_new gdbarch.c
This page took 0.087785 seconds and 4 git commands to generate.