*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 #
471 F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483 #
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507 #
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 #
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520 #
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524 #
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 #
533 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537 #
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
576 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
577 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
578 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
579 v:2:PARM_BOUNDARY:int:parm_boundary
580 #
581 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
582 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
583 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
584 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
585 # On some machines there are bits in addresses which are not really
586 # part of the address, but are used by the kernel, the hardware, etc.
587 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
588 # we get a "real" address such as one would find in a symbol table.
589 # This is used only for addresses of instructions, and even then I'm
590 # not sure it's used in all contexts. It exists to deal with there
591 # being a few stray bits in the PC which would mislead us, not as some
592 # sort of generic thing to handle alignment or segmentation (it's
593 # possible it should be in TARGET_READ_PC instead).
594 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
595 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
596 # ADDR_BITS_REMOVE.
597 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
599 # the target needs software single step. An ISA method to implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
602 # using the breakpoint system instead of blatting memory directly (as with rs6000).
603 #
604 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
605 # single step. If not, then implement single step using breakpoints.
606 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
607 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
608 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
609
610
611 # For SVR4 shared libraries, each call goes through a small piece of
612 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
613 # to nonzero if we are currently stopped in one of these.
614 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
615
616 # Some systems also have trampoline code for returning from shared libs.
617 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
618
619 # Sigtramp is a routine that the kernel calls (which then calls the
620 # signal handler). On most machines it is a library routine that is
621 # linked into the executable.
622 #
623 # This macro, given a program counter value and the name of the
624 # function in which that PC resides (which can be null if the name is
625 # not known), returns nonzero if the PC and name show that we are in
626 # sigtramp.
627 #
628 # On most machines just see if the name is sigtramp (and if we have
629 # no name, assume we are not in sigtramp).
630 #
631 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
632 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
633 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
634 # own local NAME lookup.
635 #
636 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
637 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
638 # does not.
639 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
640 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
641 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
642 # A target might have problems with watchpoints as soon as the stack
643 # frame of the current function has been destroyed. This mostly happens
644 # as the first action in a funtion's epilogue. in_function_epilogue_p()
645 # is defined to return a non-zero value if either the given addr is one
646 # instruction after the stack destroying instruction up to the trailing
647 # return instruction or if we can figure out that the stack frame has
648 # already been invalidated regardless of the value of addr. Targets
649 # which don't suffer from that problem could just let this functionality
650 # untouched.
651 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
652 # Given a vector of command-line arguments, return a newly allocated
653 # string which, when passed to the create_inferior function, will be
654 # parsed (on Unix systems, by the shell) to yield the same vector.
655 # This function should call error() if the argument vector is not
656 # representable for this target or if this target does not support
657 # command-line arguments.
658 # ARGC is the number of elements in the vector.
659 # ARGV is an array of strings, one per argument.
660 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
661 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
662 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
663 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
664 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0
665 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
666 EOF
667 }
668
669 #
670 # The .log file
671 #
672 exec > new-gdbarch.log
673 function_list | while do_read
674 do
675 cat <<EOF
676 ${class} ${macro}(${actual})
677 ${returntype} ${function} ($formal)${attrib}
678 EOF
679 for r in ${read}
680 do
681 eval echo \"\ \ \ \ ${r}=\${${r}}\"
682 done
683 # #fallbackdefault=${fallbackdefault}
684 # #valid_p=${valid_p}
685 #EOF
686 if class_is_predicate_p && fallback_default_p
687 then
688 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
689 kill $$
690 exit 1
691 fi
692 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
693 then
694 echo "Error: postdefault is useless when invalid_p=0" 1>&2
695 kill $$
696 exit 1
697 fi
698 if class_is_multiarch_p
699 then
700 if class_is_predicate_p ; then :
701 elif test "x${predefault}" = "x"
702 then
703 echo "Error: pure multi-arch function must have a predefault" 1>&2
704 kill $$
705 exit 1
706 fi
707 fi
708 echo ""
709 done
710
711 exec 1>&2
712 compare_new gdbarch.log
713
714
715 copyright ()
716 {
717 cat <<EOF
718 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
719
720 /* Dynamic architecture support for GDB, the GNU debugger.
721 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
722
723 This file is part of GDB.
724
725 This program is free software; you can redistribute it and/or modify
726 it under the terms of the GNU General Public License as published by
727 the Free Software Foundation; either version 2 of the License, or
728 (at your option) any later version.
729
730 This program is distributed in the hope that it will be useful,
731 but WITHOUT ANY WARRANTY; without even the implied warranty of
732 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
733 GNU General Public License for more details.
734
735 You should have received a copy of the GNU General Public License
736 along with this program; if not, write to the Free Software
737 Foundation, Inc., 59 Temple Place - Suite 330,
738 Boston, MA 02111-1307, USA. */
739
740 /* This file was created with the aid of \`\`gdbarch.sh''.
741
742 The Bourne shell script \`\`gdbarch.sh'' creates the files
743 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
744 against the existing \`\`gdbarch.[hc]''. Any differences found
745 being reported.
746
747 If editing this file, please also run gdbarch.sh and merge any
748 changes into that script. Conversely, when making sweeping changes
749 to this file, modifying gdbarch.sh and using its output may prove
750 easier. */
751
752 EOF
753 }
754
755 #
756 # The .h file
757 #
758
759 exec > new-gdbarch.h
760 copyright
761 cat <<EOF
762 #ifndef GDBARCH_H
763 #define GDBARCH_H
764
765 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
766 #if !GDB_MULTI_ARCH
767 /* Pull in function declarations refered to, indirectly, via macros. */
768 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
769 #include "inferior.h" /* For unsigned_address_to_pointer(). */
770 #endif
771
772 struct frame_info;
773 struct value;
774 struct objfile;
775 struct minimal_symbol;
776 struct regcache;
777
778 extern struct gdbarch *current_gdbarch;
779
780
781 /* If any of the following are defined, the target wasn't correctly
782 converted. */
783
784 #if GDB_MULTI_ARCH
785 #if defined (EXTRA_FRAME_INFO)
786 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
787 #endif
788 #endif
789
790 #if GDB_MULTI_ARCH
791 #if defined (FRAME_FIND_SAVED_REGS)
792 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
793 #endif
794 #endif
795
796 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
797 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
798 #endif
799 EOF
800
801 # function typedef's
802 printf "\n"
803 printf "\n"
804 printf "/* The following are pre-initialized by GDBARCH. */\n"
805 function_list | while do_read
806 do
807 if class_is_info_p
808 then
809 printf "\n"
810 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
811 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
812 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
813 printf "#error \"Non multi-arch definition of ${macro}\"\n"
814 printf "#endif\n"
815 printf "#if GDB_MULTI_ARCH\n"
816 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
817 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
818 printf "#endif\n"
819 printf "#endif\n"
820 fi
821 done
822
823 # function typedef's
824 printf "\n"
825 printf "\n"
826 printf "/* The following are initialized by the target dependent code. */\n"
827 function_list | while do_read
828 do
829 if [ -n "${comment}" ]
830 then
831 echo "${comment}" | sed \
832 -e '2 s,#,/*,' \
833 -e '3,$ s,#, ,' \
834 -e '$ s,$, */,'
835 fi
836 if class_is_multiarch_p
837 then
838 if class_is_predicate_p
839 then
840 printf "\n"
841 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
842 fi
843 else
844 if class_is_predicate_p
845 then
846 printf "\n"
847 printf "#if defined (${macro})\n"
848 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
849 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
850 printf "#if !defined (${macro}_P)\n"
851 printf "#define ${macro}_P() (1)\n"
852 printf "#endif\n"
853 printf "#endif\n"
854 printf "\n"
855 printf "/* Default predicate for non- multi-arch targets. */\n"
856 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
857 printf "#define ${macro}_P() (0)\n"
858 printf "#endif\n"
859 printf "\n"
860 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
861 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
862 printf "#error \"Non multi-arch definition of ${macro}\"\n"
863 printf "#endif\n"
864 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
865 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
866 printf "#endif\n"
867 fi
868 fi
869 if class_is_variable_p
870 then
871 if fallback_default_p || class_is_predicate_p
872 then
873 printf "\n"
874 printf "/* Default (value) for non- multi-arch platforms. */\n"
875 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
876 echo "#define ${macro} (${fallbackdefault})" \
877 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
878 printf "#endif\n"
879 fi
880 printf "\n"
881 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
882 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
883 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
884 printf "#error \"Non multi-arch definition of ${macro}\"\n"
885 printf "#endif\n"
886 printf "#if GDB_MULTI_ARCH\n"
887 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
888 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
889 printf "#endif\n"
890 printf "#endif\n"
891 fi
892 if class_is_function_p
893 then
894 if class_is_multiarch_p ; then :
895 elif fallback_default_p || class_is_predicate_p
896 then
897 printf "\n"
898 printf "/* Default (function) for non- multi-arch platforms. */\n"
899 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
900 if [ "x${fallbackdefault}" = "x0" ]
901 then
902 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
903 else
904 # FIXME: Should be passing current_gdbarch through!
905 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
906 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
907 fi
908 printf "#endif\n"
909 fi
910 printf "\n"
911 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
912 then
913 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
914 elif class_is_multiarch_p
915 then
916 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
917 else
918 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
919 fi
920 if [ "x${formal}" = "xvoid" ]
921 then
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
923 else
924 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
925 fi
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
927 if class_is_multiarch_p ; then :
928 else
929 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
930 printf "#error \"Non multi-arch definition of ${macro}\"\n"
931 printf "#endif\n"
932 printf "#if GDB_MULTI_ARCH\n"
933 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
934 if [ "x${actual}" = "x" ]
935 then
936 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
937 elif [ "x${actual}" = "x-" ]
938 then
939 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
940 else
941 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
942 fi
943 printf "#endif\n"
944 printf "#endif\n"
945 fi
946 fi
947 done
948
949 # close it off
950 cat <<EOF
951
952 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
953
954
955 /* Mechanism for co-ordinating the selection of a specific
956 architecture.
957
958 GDB targets (*-tdep.c) can register an interest in a specific
959 architecture. Other GDB components can register a need to maintain
960 per-architecture data.
961
962 The mechanisms below ensures that there is only a loose connection
963 between the set-architecture command and the various GDB
964 components. Each component can independently register their need
965 to maintain architecture specific data with gdbarch.
966
967 Pragmatics:
968
969 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
970 didn't scale.
971
972 The more traditional mega-struct containing architecture specific
973 data for all the various GDB components was also considered. Since
974 GDB is built from a variable number of (fairly independent)
975 components it was determined that the global aproach was not
976 applicable. */
977
978
979 /* Register a new architectural family with GDB.
980
981 Register support for the specified ARCHITECTURE with GDB. When
982 gdbarch determines that the specified architecture has been
983 selected, the corresponding INIT function is called.
984
985 --
986
987 The INIT function takes two parameters: INFO which contains the
988 information available to gdbarch about the (possibly new)
989 architecture; ARCHES which is a list of the previously created
990 \`\`struct gdbarch'' for this architecture.
991
992 The INFO parameter is, as far as possible, be pre-initialized with
993 information obtained from INFO.ABFD or the previously selected
994 architecture.
995
996 The ARCHES parameter is a linked list (sorted most recently used)
997 of all the previously created architures for this architecture
998 family. The (possibly NULL) ARCHES->gdbarch can used to access
999 values from the previously selected architecture for this
1000 architecture family. The global \`\`current_gdbarch'' shall not be
1001 used.
1002
1003 The INIT function shall return any of: NULL - indicating that it
1004 doesn't recognize the selected architecture; an existing \`\`struct
1005 gdbarch'' from the ARCHES list - indicating that the new
1006 architecture is just a synonym for an earlier architecture (see
1007 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1008 - that describes the selected architecture (see gdbarch_alloc()).
1009
1010 The DUMP_TDEP function shall print out all target specific values.
1011 Care should be taken to ensure that the function works in both the
1012 multi-arch and non- multi-arch cases. */
1013
1014 struct gdbarch_list
1015 {
1016 struct gdbarch *gdbarch;
1017 struct gdbarch_list *next;
1018 };
1019
1020 struct gdbarch_info
1021 {
1022 /* Use default: NULL (ZERO). */
1023 const struct bfd_arch_info *bfd_arch_info;
1024
1025 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1026 int byte_order;
1027
1028 /* Use default: NULL (ZERO). */
1029 bfd *abfd;
1030
1031 /* Use default: NULL (ZERO). */
1032 struct gdbarch_tdep_info *tdep_info;
1033 };
1034
1035 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1036 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1037
1038 /* DEPRECATED - use gdbarch_register() */
1039 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1040
1041 extern void gdbarch_register (enum bfd_architecture architecture,
1042 gdbarch_init_ftype *,
1043 gdbarch_dump_tdep_ftype *);
1044
1045
1046 /* Return a freshly allocated, NULL terminated, array of the valid
1047 architecture names. Since architectures are registered during the
1048 _initialize phase this function only returns useful information
1049 once initialization has been completed. */
1050
1051 extern const char **gdbarch_printable_names (void);
1052
1053
1054 /* Helper function. Search the list of ARCHES for a GDBARCH that
1055 matches the information provided by INFO. */
1056
1057 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1058
1059
1060 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1061 basic initialization using values obtained from the INFO andTDEP
1062 parameters. set_gdbarch_*() functions are called to complete the
1063 initialization of the object. */
1064
1065 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1066
1067
1068 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1069 It is assumed that the caller freeds the \`\`struct
1070 gdbarch_tdep''. */
1071
1072 extern void gdbarch_free (struct gdbarch *);
1073
1074
1075 /* Helper function. Force an update of the current architecture.
1076
1077 The actual architecture selected is determined by INFO, \`\`(gdb) set
1078 architecture'' et.al., the existing architecture and BFD's default
1079 architecture. INFO should be initialized to zero and then selected
1080 fields should be updated.
1081
1082 Returns non-zero if the update succeeds */
1083
1084 extern int gdbarch_update_p (struct gdbarch_info info);
1085
1086
1087
1088 /* Register per-architecture data-pointer.
1089
1090 Reserve space for a per-architecture data-pointer. An identifier
1091 for the reserved data-pointer is returned. That identifer should
1092 be saved in a local static variable.
1093
1094 The per-architecture data-pointer is either initialized explicitly
1095 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1096 gdbarch_data()). FREE() is called to delete either an existing
1097 data-pointer overridden by set_gdbarch_data() or when the
1098 architecture object is being deleted.
1099
1100 When a previously created architecture is re-selected, the
1101 per-architecture data-pointer for that previous architecture is
1102 restored. INIT() is not re-called.
1103
1104 Multiple registrarants for any architecture are allowed (and
1105 strongly encouraged). */
1106
1107 struct gdbarch_data;
1108
1109 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1110 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1111 void *pointer);
1112 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1113 gdbarch_data_free_ftype *free);
1114 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1115 struct gdbarch_data *data,
1116 void *pointer);
1117
1118 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1119
1120
1121 /* Register per-architecture memory region.
1122
1123 Provide a memory-region swap mechanism. Per-architecture memory
1124 region are created. These memory regions are swapped whenever the
1125 architecture is changed. For a new architecture, the memory region
1126 is initialized with zero (0) and the INIT function is called.
1127
1128 Memory regions are swapped / initialized in the order that they are
1129 registered. NULL DATA and/or INIT values can be specified.
1130
1131 New code should use register_gdbarch_data(). */
1132
1133 typedef void (gdbarch_swap_ftype) (void);
1134 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1135 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1136
1137
1138
1139 /* The target-system-dependent byte order is dynamic */
1140
1141 extern int target_byte_order;
1142 #ifndef TARGET_BYTE_ORDER
1143 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1144 #endif
1145
1146 extern int target_byte_order_auto;
1147 #ifndef TARGET_BYTE_ORDER_AUTO
1148 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1149 #endif
1150
1151
1152
1153 /* The target-system-dependent BFD architecture is dynamic */
1154
1155 extern int target_architecture_auto;
1156 #ifndef TARGET_ARCHITECTURE_AUTO
1157 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1158 #endif
1159
1160 extern const struct bfd_arch_info *target_architecture;
1161 #ifndef TARGET_ARCHITECTURE
1162 #define TARGET_ARCHITECTURE (target_architecture + 0)
1163 #endif
1164
1165
1166 /* The target-system-dependent disassembler is semi-dynamic */
1167
1168 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1169 unsigned int len, disassemble_info *info);
1170
1171 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1172 disassemble_info *info);
1173
1174 extern void dis_asm_print_address (bfd_vma addr,
1175 disassemble_info *info);
1176
1177 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1178 extern disassemble_info tm_print_insn_info;
1179 #ifndef TARGET_PRINT_INSN_INFO
1180 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1181 #endif
1182
1183
1184
1185 /* Set the dynamic target-system-dependent parameters (architecture,
1186 byte-order, ...) using information found in the BFD */
1187
1188 extern void set_gdbarch_from_file (bfd *);
1189
1190
1191 /* Initialize the current architecture to the "first" one we find on
1192 our list. */
1193
1194 extern void initialize_current_architecture (void);
1195
1196 /* For non-multiarched targets, do any initialization of the default
1197 gdbarch object necessary after the _initialize_MODULE functions
1198 have run. */
1199 extern void initialize_non_multiarch (void);
1200
1201 /* gdbarch trace variable */
1202 extern int gdbarch_debug;
1203
1204 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1205
1206 #endif
1207 EOF
1208 exec 1>&2
1209 #../move-if-change new-gdbarch.h gdbarch.h
1210 compare_new gdbarch.h
1211
1212
1213 #
1214 # C file
1215 #
1216
1217 exec > new-gdbarch.c
1218 copyright
1219 cat <<EOF
1220
1221 #include "defs.h"
1222 #include "arch-utils.h"
1223
1224 #if GDB_MULTI_ARCH
1225 #include "gdbcmd.h"
1226 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1227 #else
1228 /* Just include everything in sight so that the every old definition
1229 of macro is visible. */
1230 #include "gdb_string.h"
1231 #include <ctype.h>
1232 #include "symtab.h"
1233 #include "frame.h"
1234 #include "inferior.h"
1235 #include "breakpoint.h"
1236 #include "gdb_wait.h"
1237 #include "gdbcore.h"
1238 #include "gdbcmd.h"
1239 #include "target.h"
1240 #include "gdbthread.h"
1241 #include "annotate.h"
1242 #include "symfile.h" /* for overlay functions */
1243 #include "value.h" /* For old tm.h/nm.h macros. */
1244 #endif
1245 #include "symcat.h"
1246
1247 #include "floatformat.h"
1248
1249 #include "gdb_assert.h"
1250 #include "gdb_string.h"
1251 #include "gdb-events.h"
1252
1253 /* Static function declarations */
1254
1255 static void verify_gdbarch (struct gdbarch *gdbarch);
1256 static void alloc_gdbarch_data (struct gdbarch *);
1257 static void free_gdbarch_data (struct gdbarch *);
1258 static void init_gdbarch_swap (struct gdbarch *);
1259 static void clear_gdbarch_swap (struct gdbarch *);
1260 static void swapout_gdbarch_swap (struct gdbarch *);
1261 static void swapin_gdbarch_swap (struct gdbarch *);
1262
1263 /* Non-zero if we want to trace architecture code. */
1264
1265 #ifndef GDBARCH_DEBUG
1266 #define GDBARCH_DEBUG 0
1267 #endif
1268 int gdbarch_debug = GDBARCH_DEBUG;
1269
1270 EOF
1271
1272 # gdbarch open the gdbarch object
1273 printf "\n"
1274 printf "/* Maintain the struct gdbarch object */\n"
1275 printf "\n"
1276 printf "struct gdbarch\n"
1277 printf "{\n"
1278 printf " /* Has this architecture been fully initialized? */\n"
1279 printf " int initialized_p;\n"
1280 printf " /* basic architectural information */\n"
1281 function_list | while do_read
1282 do
1283 if class_is_info_p
1284 then
1285 printf " ${returntype} ${function};\n"
1286 fi
1287 done
1288 printf "\n"
1289 printf " /* target specific vector. */\n"
1290 printf " struct gdbarch_tdep *tdep;\n"
1291 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1292 printf "\n"
1293 printf " /* per-architecture data-pointers */\n"
1294 printf " unsigned nr_data;\n"
1295 printf " void **data;\n"
1296 printf "\n"
1297 printf " /* per-architecture swap-regions */\n"
1298 printf " struct gdbarch_swap *swap;\n"
1299 printf "\n"
1300 cat <<EOF
1301 /* Multi-arch values.
1302
1303 When extending this structure you must:
1304
1305 Add the field below.
1306
1307 Declare set/get functions and define the corresponding
1308 macro in gdbarch.h.
1309
1310 gdbarch_alloc(): If zero/NULL is not a suitable default,
1311 initialize the new field.
1312
1313 verify_gdbarch(): Confirm that the target updated the field
1314 correctly.
1315
1316 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1317 field is dumped out
1318
1319 \`\`startup_gdbarch()'': Append an initial value to the static
1320 variable (base values on the host's c-type system).
1321
1322 get_gdbarch(): Implement the set/get functions (probably using
1323 the macro's as shortcuts).
1324
1325 */
1326
1327 EOF
1328 function_list | while do_read
1329 do
1330 if class_is_variable_p
1331 then
1332 printf " ${returntype} ${function};\n"
1333 elif class_is_function_p
1334 then
1335 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1336 fi
1337 done
1338 printf "};\n"
1339
1340 # A pre-initialized vector
1341 printf "\n"
1342 printf "\n"
1343 cat <<EOF
1344 /* The default architecture uses host values (for want of a better
1345 choice). */
1346 EOF
1347 printf "\n"
1348 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1349 printf "\n"
1350 printf "struct gdbarch startup_gdbarch =\n"
1351 printf "{\n"
1352 printf " 1, /* Always initialized. */\n"
1353 printf " /* basic architecture information */\n"
1354 function_list | while do_read
1355 do
1356 if class_is_info_p
1357 then
1358 printf " ${staticdefault},\n"
1359 fi
1360 done
1361 cat <<EOF
1362 /* target specific vector and its dump routine */
1363 NULL, NULL,
1364 /*per-architecture data-pointers and swap regions */
1365 0, NULL, NULL,
1366 /* Multi-arch values */
1367 EOF
1368 function_list | while do_read
1369 do
1370 if class_is_function_p || class_is_variable_p
1371 then
1372 printf " ${staticdefault},\n"
1373 fi
1374 done
1375 cat <<EOF
1376 /* startup_gdbarch() */
1377 };
1378
1379 struct gdbarch *current_gdbarch = &startup_gdbarch;
1380
1381 /* Do any initialization needed for a non-multiarch configuration
1382 after the _initialize_MODULE functions have been run. */
1383 void
1384 initialize_non_multiarch (void)
1385 {
1386 alloc_gdbarch_data (&startup_gdbarch);
1387 /* Ensure that all swap areas are zeroed so that they again think
1388 they are starting from scratch. */
1389 clear_gdbarch_swap (&startup_gdbarch);
1390 init_gdbarch_swap (&startup_gdbarch);
1391 }
1392 EOF
1393
1394 # Create a new gdbarch struct
1395 printf "\n"
1396 printf "\n"
1397 cat <<EOF
1398 /* Create a new \`\`struct gdbarch'' based on information provided by
1399 \`\`struct gdbarch_info''. */
1400 EOF
1401 printf "\n"
1402 cat <<EOF
1403 struct gdbarch *
1404 gdbarch_alloc (const struct gdbarch_info *info,
1405 struct gdbarch_tdep *tdep)
1406 {
1407 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1408 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1409 the current local architecture and not the previous global
1410 architecture. This ensures that the new architectures initial
1411 values are not influenced by the previous architecture. Once
1412 everything is parameterised with gdbarch, this will go away. */
1413 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1414 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1415
1416 alloc_gdbarch_data (current_gdbarch);
1417
1418 current_gdbarch->tdep = tdep;
1419 EOF
1420 printf "\n"
1421 function_list | while do_read
1422 do
1423 if class_is_info_p
1424 then
1425 printf " current_gdbarch->${function} = info->${function};\n"
1426 fi
1427 done
1428 printf "\n"
1429 printf " /* Force the explicit initialization of these. */\n"
1430 function_list | while do_read
1431 do
1432 if class_is_function_p || class_is_variable_p
1433 then
1434 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1435 then
1436 printf " current_gdbarch->${function} = ${predefault};\n"
1437 fi
1438 fi
1439 done
1440 cat <<EOF
1441 /* gdbarch_alloc() */
1442
1443 return current_gdbarch;
1444 }
1445 EOF
1446
1447 # Free a gdbarch struct.
1448 printf "\n"
1449 printf "\n"
1450 cat <<EOF
1451 /* Free a gdbarch struct. This should never happen in normal
1452 operation --- once you've created a gdbarch, you keep it around.
1453 However, if an architecture's init function encounters an error
1454 building the structure, it may need to clean up a partially
1455 constructed gdbarch. */
1456
1457 void
1458 gdbarch_free (struct gdbarch *arch)
1459 {
1460 gdb_assert (arch != NULL);
1461 free_gdbarch_data (arch);
1462 xfree (arch);
1463 }
1464 EOF
1465
1466 # verify a new architecture
1467 printf "\n"
1468 printf "\n"
1469 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1470 printf "\n"
1471 cat <<EOF
1472 static void
1473 verify_gdbarch (struct gdbarch *gdbarch)
1474 {
1475 struct ui_file *log;
1476 struct cleanup *cleanups;
1477 long dummy;
1478 char *buf;
1479 /* Only perform sanity checks on a multi-arch target. */
1480 if (!GDB_MULTI_ARCH)
1481 return;
1482 log = mem_fileopen ();
1483 cleanups = make_cleanup_ui_file_delete (log);
1484 /* fundamental */
1485 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1486 fprintf_unfiltered (log, "\n\tbyte-order");
1487 if (gdbarch->bfd_arch_info == NULL)
1488 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1489 /* Check those that need to be defined for the given multi-arch level. */
1490 EOF
1491 function_list | while do_read
1492 do
1493 if class_is_function_p || class_is_variable_p
1494 then
1495 if [ "x${invalid_p}" = "x0" ]
1496 then
1497 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1498 elif class_is_predicate_p
1499 then
1500 printf " /* Skip verify of ${function}, has predicate */\n"
1501 # FIXME: See do_read for potential simplification
1502 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1503 then
1504 printf " if (${invalid_p})\n"
1505 printf " gdbarch->${function} = ${postdefault};\n"
1506 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1507 then
1508 printf " if (gdbarch->${function} == ${predefault})\n"
1509 printf " gdbarch->${function} = ${postdefault};\n"
1510 elif [ -n "${postdefault}" ]
1511 then
1512 printf " if (gdbarch->${function} == 0)\n"
1513 printf " gdbarch->${function} = ${postdefault};\n"
1514 elif [ -n "${invalid_p}" ]
1515 then
1516 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1517 printf " && (${invalid_p}))\n"
1518 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1519 elif [ -n "${predefault}" ]
1520 then
1521 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1522 printf " && (gdbarch->${function} == ${predefault}))\n"
1523 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1524 fi
1525 fi
1526 done
1527 cat <<EOF
1528 buf = ui_file_xstrdup (log, &dummy);
1529 make_cleanup (xfree, buf);
1530 if (strlen (buf) > 0)
1531 internal_error (__FILE__, __LINE__,
1532 "verify_gdbarch: the following are invalid ...%s",
1533 buf);
1534 do_cleanups (cleanups);
1535 }
1536 EOF
1537
1538 # dump the structure
1539 printf "\n"
1540 printf "\n"
1541 cat <<EOF
1542 /* Print out the details of the current architecture. */
1543
1544 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1545 just happens to match the global variable \`\`current_gdbarch''. That
1546 way macros refering to that variable get the local and not the global
1547 version - ulgh. Once everything is parameterised with gdbarch, this
1548 will go away. */
1549
1550 void
1551 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1552 {
1553 fprintf_unfiltered (file,
1554 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1555 GDB_MULTI_ARCH);
1556 EOF
1557 function_list | sort -t: +2 | while do_read
1558 do
1559 # multiarch functions don't have macros.
1560 if class_is_multiarch_p
1561 then
1562 printf " if (GDB_MULTI_ARCH)\n"
1563 printf " fprintf_unfiltered (file,\n"
1564 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1565 printf " (long) current_gdbarch->${function});\n"
1566 continue
1567 fi
1568 # Print the macro definition.
1569 printf "#ifdef ${macro}\n"
1570 if [ "x${returntype}" = "xvoid" ]
1571 then
1572 printf "#if GDB_MULTI_ARCH\n"
1573 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1574 fi
1575 if class_is_function_p
1576 then
1577 printf " fprintf_unfiltered (file,\n"
1578 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1579 printf " \"${macro}(${actual})\",\n"
1580 printf " XSTRING (${macro} (${actual})));\n"
1581 else
1582 printf " fprintf_unfiltered (file,\n"
1583 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1584 printf " XSTRING (${macro}));\n"
1585 fi
1586 # Print the architecture vector value
1587 if [ "x${returntype}" = "xvoid" ]
1588 then
1589 printf "#endif\n"
1590 fi
1591 if [ "x${print_p}" = "x()" ]
1592 then
1593 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1594 elif [ "x${print_p}" = "x0" ]
1595 then
1596 printf " /* skip print of ${macro}, print_p == 0. */\n"
1597 elif [ -n "${print_p}" ]
1598 then
1599 printf " if (${print_p})\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1602 printf " ${print});\n"
1603 elif class_is_function_p
1604 then
1605 printf " if (GDB_MULTI_ARCH)\n"
1606 printf " fprintf_unfiltered (file,\n"
1607 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1608 printf " (long) current_gdbarch->${function}\n"
1609 printf " /*${macro} ()*/);\n"
1610 else
1611 printf " fprintf_unfiltered (file,\n"
1612 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1613 printf " ${print});\n"
1614 fi
1615 printf "#endif\n"
1616 done
1617 cat <<EOF
1618 if (current_gdbarch->dump_tdep != NULL)
1619 current_gdbarch->dump_tdep (current_gdbarch, file);
1620 }
1621 EOF
1622
1623
1624 # GET/SET
1625 printf "\n"
1626 cat <<EOF
1627 struct gdbarch_tdep *
1628 gdbarch_tdep (struct gdbarch *gdbarch)
1629 {
1630 if (gdbarch_debug >= 2)
1631 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1632 return gdbarch->tdep;
1633 }
1634 EOF
1635 printf "\n"
1636 function_list | while do_read
1637 do
1638 if class_is_predicate_p
1639 then
1640 printf "\n"
1641 printf "int\n"
1642 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1643 printf "{\n"
1644 printf " gdb_assert (gdbarch != NULL);\n"
1645 if [ -n "${valid_p}" ]
1646 then
1647 printf " return ${valid_p};\n"
1648 else
1649 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1650 fi
1651 printf "}\n"
1652 fi
1653 if class_is_function_p
1654 then
1655 printf "\n"
1656 printf "${returntype}\n"
1657 if [ "x${formal}" = "xvoid" ]
1658 then
1659 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1660 else
1661 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1662 fi
1663 printf "{\n"
1664 printf " gdb_assert (gdbarch != NULL);\n"
1665 printf " if (gdbarch->${function} == 0)\n"
1666 printf " internal_error (__FILE__, __LINE__,\n"
1667 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1668 printf " if (gdbarch_debug >= 2)\n"
1669 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1670 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1671 then
1672 if class_is_multiarch_p
1673 then
1674 params="gdbarch"
1675 else
1676 params=""
1677 fi
1678 else
1679 if class_is_multiarch_p
1680 then
1681 params="gdbarch, ${actual}"
1682 else
1683 params="${actual}"
1684 fi
1685 fi
1686 if [ "x${returntype}" = "xvoid" ]
1687 then
1688 printf " gdbarch->${function} (${params});\n"
1689 else
1690 printf " return gdbarch->${function} (${params});\n"
1691 fi
1692 printf "}\n"
1693 printf "\n"
1694 printf "void\n"
1695 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1696 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1697 printf "{\n"
1698 printf " gdbarch->${function} = ${function};\n"
1699 printf "}\n"
1700 elif class_is_variable_p
1701 then
1702 printf "\n"
1703 printf "${returntype}\n"
1704 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1705 printf "{\n"
1706 printf " gdb_assert (gdbarch != NULL);\n"
1707 if [ "x${invalid_p}" = "x0" ]
1708 then
1709 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1710 elif [ -n "${invalid_p}" ]
1711 then
1712 printf " if (${invalid_p})\n"
1713 printf " internal_error (__FILE__, __LINE__,\n"
1714 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1715 elif [ -n "${predefault}" ]
1716 then
1717 printf " if (gdbarch->${function} == ${predefault})\n"
1718 printf " internal_error (__FILE__, __LINE__,\n"
1719 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1720 fi
1721 printf " if (gdbarch_debug >= 2)\n"
1722 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1723 printf " return gdbarch->${function};\n"
1724 printf "}\n"
1725 printf "\n"
1726 printf "void\n"
1727 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1728 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1729 printf "{\n"
1730 printf " gdbarch->${function} = ${function};\n"
1731 printf "}\n"
1732 elif class_is_info_p
1733 then
1734 printf "\n"
1735 printf "${returntype}\n"
1736 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1737 printf "{\n"
1738 printf " gdb_assert (gdbarch != NULL);\n"
1739 printf " if (gdbarch_debug >= 2)\n"
1740 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1741 printf " return gdbarch->${function};\n"
1742 printf "}\n"
1743 fi
1744 done
1745
1746 # All the trailing guff
1747 cat <<EOF
1748
1749
1750 /* Keep a registry of per-architecture data-pointers required by GDB
1751 modules. */
1752
1753 struct gdbarch_data
1754 {
1755 unsigned index;
1756 int init_p;
1757 gdbarch_data_init_ftype *init;
1758 gdbarch_data_free_ftype *free;
1759 };
1760
1761 struct gdbarch_data_registration
1762 {
1763 struct gdbarch_data *data;
1764 struct gdbarch_data_registration *next;
1765 };
1766
1767 struct gdbarch_data_registry
1768 {
1769 unsigned nr;
1770 struct gdbarch_data_registration *registrations;
1771 };
1772
1773 struct gdbarch_data_registry gdbarch_data_registry =
1774 {
1775 0, NULL,
1776 };
1777
1778 struct gdbarch_data *
1779 register_gdbarch_data (gdbarch_data_init_ftype *init,
1780 gdbarch_data_free_ftype *free)
1781 {
1782 struct gdbarch_data_registration **curr;
1783 /* Append the new registraration. */
1784 for (curr = &gdbarch_data_registry.registrations;
1785 (*curr) != NULL;
1786 curr = &(*curr)->next);
1787 (*curr) = XMALLOC (struct gdbarch_data_registration);
1788 (*curr)->next = NULL;
1789 (*curr)->data = XMALLOC (struct gdbarch_data);
1790 (*curr)->data->index = gdbarch_data_registry.nr++;
1791 (*curr)->data->init = init;
1792 (*curr)->data->init_p = 1;
1793 (*curr)->data->free = free;
1794 return (*curr)->data;
1795 }
1796
1797
1798 /* Create/delete the gdbarch data vector. */
1799
1800 static void
1801 alloc_gdbarch_data (struct gdbarch *gdbarch)
1802 {
1803 gdb_assert (gdbarch->data == NULL);
1804 gdbarch->nr_data = gdbarch_data_registry.nr;
1805 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1806 }
1807
1808 static void
1809 free_gdbarch_data (struct gdbarch *gdbarch)
1810 {
1811 struct gdbarch_data_registration *rego;
1812 gdb_assert (gdbarch->data != NULL);
1813 for (rego = gdbarch_data_registry.registrations;
1814 rego != NULL;
1815 rego = rego->next)
1816 {
1817 struct gdbarch_data *data = rego->data;
1818 gdb_assert (data->index < gdbarch->nr_data);
1819 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1820 {
1821 data->free (gdbarch, gdbarch->data[data->index]);
1822 gdbarch->data[data->index] = NULL;
1823 }
1824 }
1825 xfree (gdbarch->data);
1826 gdbarch->data = NULL;
1827 }
1828
1829
1830 /* Initialize the current value of the specified per-architecture
1831 data-pointer. */
1832
1833 void
1834 set_gdbarch_data (struct gdbarch *gdbarch,
1835 struct gdbarch_data *data,
1836 void *pointer)
1837 {
1838 gdb_assert (data->index < gdbarch->nr_data);
1839 if (gdbarch->data[data->index] != NULL)
1840 {
1841 gdb_assert (data->free != NULL);
1842 data->free (gdbarch, gdbarch->data[data->index]);
1843 }
1844 gdbarch->data[data->index] = pointer;
1845 }
1846
1847 /* Return the current value of the specified per-architecture
1848 data-pointer. */
1849
1850 void *
1851 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1852 {
1853 gdb_assert (data->index < gdbarch->nr_data);
1854 /* The data-pointer isn't initialized, call init() to get a value but
1855 only if the architecture initializaiton has completed. Otherwise
1856 punt - hope that the caller knows what they are doing. */
1857 if (gdbarch->data[data->index] == NULL
1858 && gdbarch->initialized_p)
1859 {
1860 /* Be careful to detect an initialization cycle. */
1861 gdb_assert (data->init_p);
1862 data->init_p = 0;
1863 gdb_assert (data->init != NULL);
1864 gdbarch->data[data->index] = data->init (gdbarch);
1865 data->init_p = 1;
1866 gdb_assert (gdbarch->data[data->index] != NULL);
1867 }
1868 return gdbarch->data[data->index];
1869 }
1870
1871
1872
1873 /* Keep a registry of swapped data required by GDB modules. */
1874
1875 struct gdbarch_swap
1876 {
1877 void *swap;
1878 struct gdbarch_swap_registration *source;
1879 struct gdbarch_swap *next;
1880 };
1881
1882 struct gdbarch_swap_registration
1883 {
1884 void *data;
1885 unsigned long sizeof_data;
1886 gdbarch_swap_ftype *init;
1887 struct gdbarch_swap_registration *next;
1888 };
1889
1890 struct gdbarch_swap_registry
1891 {
1892 int nr;
1893 struct gdbarch_swap_registration *registrations;
1894 };
1895
1896 struct gdbarch_swap_registry gdbarch_swap_registry =
1897 {
1898 0, NULL,
1899 };
1900
1901 void
1902 register_gdbarch_swap (void *data,
1903 unsigned long sizeof_data,
1904 gdbarch_swap_ftype *init)
1905 {
1906 struct gdbarch_swap_registration **rego;
1907 for (rego = &gdbarch_swap_registry.registrations;
1908 (*rego) != NULL;
1909 rego = &(*rego)->next);
1910 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1911 (*rego)->next = NULL;
1912 (*rego)->init = init;
1913 (*rego)->data = data;
1914 (*rego)->sizeof_data = sizeof_data;
1915 }
1916
1917 static void
1918 clear_gdbarch_swap (struct gdbarch *gdbarch)
1919 {
1920 struct gdbarch_swap *curr;
1921 for (curr = gdbarch->swap;
1922 curr != NULL;
1923 curr = curr->next)
1924 {
1925 memset (curr->source->data, 0, curr->source->sizeof_data);
1926 }
1927 }
1928
1929 static void
1930 init_gdbarch_swap (struct gdbarch *gdbarch)
1931 {
1932 struct gdbarch_swap_registration *rego;
1933 struct gdbarch_swap **curr = &gdbarch->swap;
1934 for (rego = gdbarch_swap_registry.registrations;
1935 rego != NULL;
1936 rego = rego->next)
1937 {
1938 if (rego->data != NULL)
1939 {
1940 (*curr) = XMALLOC (struct gdbarch_swap);
1941 (*curr)->source = rego;
1942 (*curr)->swap = xmalloc (rego->sizeof_data);
1943 (*curr)->next = NULL;
1944 curr = &(*curr)->next;
1945 }
1946 if (rego->init != NULL)
1947 rego->init ();
1948 }
1949 }
1950
1951 static void
1952 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1953 {
1954 struct gdbarch_swap *curr;
1955 for (curr = gdbarch->swap;
1956 curr != NULL;
1957 curr = curr->next)
1958 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1959 }
1960
1961 static void
1962 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1963 {
1964 struct gdbarch_swap *curr;
1965 for (curr = gdbarch->swap;
1966 curr != NULL;
1967 curr = curr->next)
1968 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1969 }
1970
1971
1972 /* Keep a registry of the architectures known by GDB. */
1973
1974 struct gdbarch_registration
1975 {
1976 enum bfd_architecture bfd_architecture;
1977 gdbarch_init_ftype *init;
1978 gdbarch_dump_tdep_ftype *dump_tdep;
1979 struct gdbarch_list *arches;
1980 struct gdbarch_registration *next;
1981 };
1982
1983 static struct gdbarch_registration *gdbarch_registry = NULL;
1984
1985 static void
1986 append_name (const char ***buf, int *nr, const char *name)
1987 {
1988 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1989 (*buf)[*nr] = name;
1990 *nr += 1;
1991 }
1992
1993 const char **
1994 gdbarch_printable_names (void)
1995 {
1996 if (GDB_MULTI_ARCH)
1997 {
1998 /* Accumulate a list of names based on the registed list of
1999 architectures. */
2000 enum bfd_architecture a;
2001 int nr_arches = 0;
2002 const char **arches = NULL;
2003 struct gdbarch_registration *rego;
2004 for (rego = gdbarch_registry;
2005 rego != NULL;
2006 rego = rego->next)
2007 {
2008 const struct bfd_arch_info *ap;
2009 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2010 if (ap == NULL)
2011 internal_error (__FILE__, __LINE__,
2012 "gdbarch_architecture_names: multi-arch unknown");
2013 do
2014 {
2015 append_name (&arches, &nr_arches, ap->printable_name);
2016 ap = ap->next;
2017 }
2018 while (ap != NULL);
2019 }
2020 append_name (&arches, &nr_arches, NULL);
2021 return arches;
2022 }
2023 else
2024 /* Just return all the architectures that BFD knows. Assume that
2025 the legacy architecture framework supports them. */
2026 return bfd_arch_list ();
2027 }
2028
2029
2030 void
2031 gdbarch_register (enum bfd_architecture bfd_architecture,
2032 gdbarch_init_ftype *init,
2033 gdbarch_dump_tdep_ftype *dump_tdep)
2034 {
2035 struct gdbarch_registration **curr;
2036 const struct bfd_arch_info *bfd_arch_info;
2037 /* Check that BFD recognizes this architecture */
2038 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2039 if (bfd_arch_info == NULL)
2040 {
2041 internal_error (__FILE__, __LINE__,
2042 "gdbarch: Attempt to register unknown architecture (%d)",
2043 bfd_architecture);
2044 }
2045 /* Check that we haven't seen this architecture before */
2046 for (curr = &gdbarch_registry;
2047 (*curr) != NULL;
2048 curr = &(*curr)->next)
2049 {
2050 if (bfd_architecture == (*curr)->bfd_architecture)
2051 internal_error (__FILE__, __LINE__,
2052 "gdbarch: Duplicate registraration of architecture (%s)",
2053 bfd_arch_info->printable_name);
2054 }
2055 /* log it */
2056 if (gdbarch_debug)
2057 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2058 bfd_arch_info->printable_name,
2059 (long) init);
2060 /* Append it */
2061 (*curr) = XMALLOC (struct gdbarch_registration);
2062 (*curr)->bfd_architecture = bfd_architecture;
2063 (*curr)->init = init;
2064 (*curr)->dump_tdep = dump_tdep;
2065 (*curr)->arches = NULL;
2066 (*curr)->next = NULL;
2067 /* When non- multi-arch, install whatever target dump routine we've
2068 been provided - hopefully that routine has been written correctly
2069 and works regardless of multi-arch. */
2070 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2071 && startup_gdbarch.dump_tdep == NULL)
2072 startup_gdbarch.dump_tdep = dump_tdep;
2073 }
2074
2075 void
2076 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2077 gdbarch_init_ftype *init)
2078 {
2079 gdbarch_register (bfd_architecture, init, NULL);
2080 }
2081
2082
2083 /* Look for an architecture using gdbarch_info. Base search on only
2084 BFD_ARCH_INFO and BYTE_ORDER. */
2085
2086 struct gdbarch_list *
2087 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2088 const struct gdbarch_info *info)
2089 {
2090 for (; arches != NULL; arches = arches->next)
2091 {
2092 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2093 continue;
2094 if (info->byte_order != arches->gdbarch->byte_order)
2095 continue;
2096 return arches;
2097 }
2098 return NULL;
2099 }
2100
2101
2102 /* Update the current architecture. Return ZERO if the update request
2103 failed. */
2104
2105 int
2106 gdbarch_update_p (struct gdbarch_info info)
2107 {
2108 struct gdbarch *new_gdbarch;
2109 struct gdbarch *old_gdbarch;
2110 struct gdbarch_registration *rego;
2111
2112 /* Fill in missing parts of the INFO struct using a number of
2113 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2114
2115 /* \`\`(gdb) set architecture ...'' */
2116 if (info.bfd_arch_info == NULL
2117 && !TARGET_ARCHITECTURE_AUTO)
2118 info.bfd_arch_info = TARGET_ARCHITECTURE;
2119 if (info.bfd_arch_info == NULL
2120 && info.abfd != NULL
2121 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2122 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2123 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2124 if (info.bfd_arch_info == NULL)
2125 info.bfd_arch_info = TARGET_ARCHITECTURE;
2126
2127 /* \`\`(gdb) set byte-order ...'' */
2128 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2129 && !TARGET_BYTE_ORDER_AUTO)
2130 info.byte_order = TARGET_BYTE_ORDER;
2131 /* From the INFO struct. */
2132 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2133 && info.abfd != NULL)
2134 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2135 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2136 : BFD_ENDIAN_UNKNOWN);
2137 /* From the current target. */
2138 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2139 info.byte_order = TARGET_BYTE_ORDER;
2140
2141 /* Must have found some sort of architecture. */
2142 gdb_assert (info.bfd_arch_info != NULL);
2143
2144 if (gdbarch_debug)
2145 {
2146 fprintf_unfiltered (gdb_stdlog,
2147 "gdbarch_update: info.bfd_arch_info %s\n",
2148 (info.bfd_arch_info != NULL
2149 ? info.bfd_arch_info->printable_name
2150 : "(null)"));
2151 fprintf_unfiltered (gdb_stdlog,
2152 "gdbarch_update: info.byte_order %d (%s)\n",
2153 info.byte_order,
2154 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2155 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2156 : "default"));
2157 fprintf_unfiltered (gdb_stdlog,
2158 "gdbarch_update: info.abfd 0x%lx\n",
2159 (long) info.abfd);
2160 fprintf_unfiltered (gdb_stdlog,
2161 "gdbarch_update: info.tdep_info 0x%lx\n",
2162 (long) info.tdep_info);
2163 }
2164
2165 /* Find the target that knows about this architecture. */
2166 for (rego = gdbarch_registry;
2167 rego != NULL;
2168 rego = rego->next)
2169 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2170 break;
2171 if (rego == NULL)
2172 {
2173 if (gdbarch_debug)
2174 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2175 return 0;
2176 }
2177
2178 /* Swap the data belonging to the old target out setting the
2179 installed data to zero. This stops the ->init() function trying
2180 to refer to the previous architecture's global data structures. */
2181 swapout_gdbarch_swap (current_gdbarch);
2182 clear_gdbarch_swap (current_gdbarch);
2183
2184 /* Save the previously selected architecture, setting the global to
2185 NULL. This stops ->init() trying to use the previous
2186 architecture's configuration. The previous architecture may not
2187 even be of the same architecture family. The most recent
2188 architecture of the same family is found at the head of the
2189 rego->arches list. */
2190 old_gdbarch = current_gdbarch;
2191 current_gdbarch = NULL;
2192
2193 /* Ask the target for a replacement architecture. */
2194 new_gdbarch = rego->init (info, rego->arches);
2195
2196 /* Did the target like it? No. Reject the change and revert to the
2197 old architecture. */
2198 if (new_gdbarch == NULL)
2199 {
2200 if (gdbarch_debug)
2201 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2202 swapin_gdbarch_swap (old_gdbarch);
2203 current_gdbarch = old_gdbarch;
2204 return 0;
2205 }
2206
2207 /* Did the architecture change? No. Oops, put the old architecture
2208 back. */
2209 if (old_gdbarch == new_gdbarch)
2210 {
2211 if (gdbarch_debug)
2212 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2213 (long) new_gdbarch,
2214 new_gdbarch->bfd_arch_info->printable_name);
2215 swapin_gdbarch_swap (old_gdbarch);
2216 current_gdbarch = old_gdbarch;
2217 return 1;
2218 }
2219
2220 /* Is this a pre-existing architecture? Yes. Move it to the front
2221 of the list of architectures (keeping the list sorted Most
2222 Recently Used) and then copy it in. */
2223 {
2224 struct gdbarch_list **list;
2225 for (list = &rego->arches;
2226 (*list) != NULL;
2227 list = &(*list)->next)
2228 {
2229 if ((*list)->gdbarch == new_gdbarch)
2230 {
2231 struct gdbarch_list *this;
2232 if (gdbarch_debug)
2233 fprintf_unfiltered (gdb_stdlog,
2234 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2235 (long) new_gdbarch,
2236 new_gdbarch->bfd_arch_info->printable_name);
2237 /* Unlink this. */
2238 this = (*list);
2239 (*list) = this->next;
2240 /* Insert in the front. */
2241 this->next = rego->arches;
2242 rego->arches = this;
2243 /* Copy the new architecture in. */
2244 current_gdbarch = new_gdbarch;
2245 swapin_gdbarch_swap (new_gdbarch);
2246 architecture_changed_event ();
2247 return 1;
2248 }
2249 }
2250 }
2251
2252 /* Prepend this new architecture to the architecture list (keep the
2253 list sorted Most Recently Used). */
2254 {
2255 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2256 this->next = rego->arches;
2257 this->gdbarch = new_gdbarch;
2258 rego->arches = this;
2259 }
2260
2261 /* Switch to this new architecture marking it initialized. */
2262 current_gdbarch = new_gdbarch;
2263 current_gdbarch->initialized_p = 1;
2264 if (gdbarch_debug)
2265 {
2266 fprintf_unfiltered (gdb_stdlog,
2267 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2268 (long) new_gdbarch,
2269 new_gdbarch->bfd_arch_info->printable_name);
2270 }
2271
2272 /* Check that the newly installed architecture is valid. Plug in
2273 any post init values. */
2274 new_gdbarch->dump_tdep = rego->dump_tdep;
2275 verify_gdbarch (new_gdbarch);
2276
2277 /* Initialize the per-architecture memory (swap) areas.
2278 CURRENT_GDBARCH must be update before these modules are
2279 called. */
2280 init_gdbarch_swap (new_gdbarch);
2281
2282 /* Initialize the per-architecture data. CURRENT_GDBARCH
2283 must be updated before these modules are called. */
2284 architecture_changed_event ();
2285
2286 if (gdbarch_debug)
2287 gdbarch_dump (current_gdbarch, gdb_stdlog);
2288
2289 return 1;
2290 }
2291
2292
2293 /* Disassembler */
2294
2295 /* Pointer to the target-dependent disassembly function. */
2296 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2297 disassemble_info tm_print_insn_info;
2298
2299
2300 extern void _initialize_gdbarch (void);
2301
2302 void
2303 _initialize_gdbarch (void)
2304 {
2305 struct cmd_list_element *c;
2306
2307 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2308 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2309 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2310 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2311 tm_print_insn_info.print_address_func = dis_asm_print_address;
2312
2313 add_show_from_set (add_set_cmd ("arch",
2314 class_maintenance,
2315 var_zinteger,
2316 (char *)&gdbarch_debug,
2317 "Set architecture debugging.\\n\\
2318 When non-zero, architecture debugging is enabled.", &setdebuglist),
2319 &showdebuglist);
2320 c = add_set_cmd ("archdebug",
2321 class_maintenance,
2322 var_zinteger,
2323 (char *)&gdbarch_debug,
2324 "Set architecture debugging.\\n\\
2325 When non-zero, architecture debugging is enabled.", &setlist);
2326
2327 deprecate_cmd (c, "set debug arch");
2328 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2329 }
2330 EOF
2331
2332 # close things off
2333 exec 1>&2
2334 #../move-if-change new-gdbarch.c gdbarch.c
2335 compare_new gdbarch.c
This page took 0.107865 seconds and 4 git commands to generate.