2002-12-10 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 # Number of bits in a char or unsigned char for the target machine.
391 # Just like CHAR_BIT in <limits.h> but describes the target machine.
392 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
393 #
394 # Number of bits in a short or unsigned short for the target machine.
395 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
396 # Number of bits in an int or unsigned int for the target machine.
397 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
398 # Number of bits in a long or unsigned long for the target machine.
399 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long long or unsigned long long for the target
401 # machine.
402 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
403 # Number of bits in a float for the target machine.
404 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
405 # Number of bits in a double for the target machine.
406 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
407 # Number of bits in a long double for the target machine.
408 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
409 # For most targets, a pointer on the target and its representation as an
410 # address in GDB have the same size and "look the same". For such a
411 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
412 # / addr_bit will be set from it.
413 #
414 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
415 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
416 #
417 # ptr_bit is the size of a pointer on the target
418 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
419 # addr_bit is the size of a target address as represented in gdb
420 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
421 # Number of bits in a BFD_VMA for the target object file format.
422 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
423 #
424 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
425 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
426 #
427 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
428 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
429 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
430 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
431 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
432 # Function for getting target's idea of a frame pointer. FIXME: GDB's
433 # whole scheme for dealing with "frames" and "frame pointers" needs a
434 # serious shakedown.
435 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
436 #
437 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
438 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
439 #
440 v:2:NUM_REGS:int:num_regs::::0:-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
446
447 # GDB's standard (or well known) register numbers. These can map onto
448 # a real register or a pseudo (computed) register or not be defined at
449 # all (-1).
450 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
451 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
452 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
453 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
454 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
455 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
456 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
457 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
458 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
459 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
461 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
462 # Convert from an sdb register number to an internal gdb register number.
463 # This should be defined in tm.h, if REGISTER_NAMES is not set up
464 # to map one to one onto the sdb register numbers.
465 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
466 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
467 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
468 v:2:REGISTER_SIZE:int:register_size::::0:-1
469 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
470 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
471 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
472 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
473 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
474 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
475 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
476 #
477 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
478 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
479 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
481 # MAP a GDB RAW register number onto a simulator register number. See
482 # also include/...-sim.h.
483 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
484 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
485 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
486 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
487 # setjmp/longjmp support.
488 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
489 #
490 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
491 # much better but at least they are vaguely consistent). The headers
492 # and body contain convoluted #if/#else sequences for determine how
493 # things should be compiled. Instead of trying to mimic that
494 # behaviour here (and hence entrench it further) gdbarch simply
495 # reqires that these methods be set up from the word go. This also
496 # avoids any potential problems with moving beyond multi-arch partial.
497 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
498 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
499 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
500 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
501 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
502 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
503 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
504 # NOTE: cagney/2002-11-24: This function with predicate has a valid
505 # (callable) initial value. As a consequence, even when the predicate
506 # is false, the corresponding function works. This simplifies the
507 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
508 # doesn't need to be modified.
509 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
510 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
511 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
512 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
513 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
514 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
515 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
516 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
517 F::DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
518 #
519 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
520 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
521 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
522 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
523 #
524 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
525 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
526 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
527 #
528 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
529 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
530 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
531 #
532 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
533 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
534 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
535 #
536 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
537 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
538 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
539 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
540 f:2:POP_FRAME:void:pop_frame:void:-:::0
541 #
542 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
543 #
544 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
545 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
546 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
547 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
548 #
549 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
550 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
551 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
552 #
553 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
554 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
555 #
556 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
557 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
558 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
559 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
560 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
561 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
562 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
563 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
564 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
565 #
566 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
567 #
568 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
569 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
570 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
571 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
572 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
573 # given frame is the outermost one and has no caller.
574 #
575 # XXXX - both default and alternate frame_chain_valid functions are
576 # deprecated. New code should use dummy frames and one of the generic
577 # functions.
578 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
579 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
580 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
581 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
582 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
583 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
584 #
585 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
586 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
587 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
588 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
589 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
590 v:2:PARM_BOUNDARY:int:parm_boundary
591 #
592 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
593 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
594 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
595 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
596 # On some machines there are bits in addresses which are not really
597 # part of the address, but are used by the kernel, the hardware, etc.
598 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
599 # we get a "real" address such as one would find in a symbol table.
600 # This is used only for addresses of instructions, and even then I'm
601 # not sure it's used in all contexts. It exists to deal with there
602 # being a few stray bits in the PC which would mislead us, not as some
603 # sort of generic thing to handle alignment or segmentation (it's
604 # possible it should be in TARGET_READ_PC instead).
605 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
606 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
607 # ADDR_BITS_REMOVE.
608 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
609 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
610 # the target needs software single step. An ISA method to implement it.
611 #
612 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
613 # using the breakpoint system instead of blatting memory directly (as with rs6000).
614 #
615 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
616 # single step. If not, then implement single step using breakpoints.
617 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
618 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
619 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
620
621
622 # For SVR4 shared libraries, each call goes through a small piece of
623 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
624 # to nonzero if we are currently stopped in one of these.
625 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
626
627 # Some systems also have trampoline code for returning from shared libs.
628 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
629
630 # Sigtramp is a routine that the kernel calls (which then calls the
631 # signal handler). On most machines it is a library routine that is
632 # linked into the executable.
633 #
634 # This macro, given a program counter value and the name of the
635 # function in which that PC resides (which can be null if the name is
636 # not known), returns nonzero if the PC and name show that we are in
637 # sigtramp.
638 #
639 # On most machines just see if the name is sigtramp (and if we have
640 # no name, assume we are not in sigtramp).
641 #
642 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
643 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
644 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
645 # own local NAME lookup.
646 #
647 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
648 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
649 # does not.
650 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
651 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
652 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
653 # A target might have problems with watchpoints as soon as the stack
654 # frame of the current function has been destroyed. This mostly happens
655 # as the first action in a funtion's epilogue. in_function_epilogue_p()
656 # is defined to return a non-zero value if either the given addr is one
657 # instruction after the stack destroying instruction up to the trailing
658 # return instruction or if we can figure out that the stack frame has
659 # already been invalidated regardless of the value of addr. Targets
660 # which don't suffer from that problem could just let this functionality
661 # untouched.
662 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
663 # Given a vector of command-line arguments, return a newly allocated
664 # string which, when passed to the create_inferior function, will be
665 # parsed (on Unix systems, by the shell) to yield the same vector.
666 # This function should call error() if the argument vector is not
667 # representable for this target or if this target does not support
668 # command-line arguments.
669 # ARGC is the number of elements in the vector.
670 # ARGV is an array of strings, one per argument.
671 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
672 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
673 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
674 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
675 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
676 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
677 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
678 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
679 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:char *:address_class_type_flags_to_name:int type_flags:type_flags:
680 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:char *name, int *type_flags_ptr:name, type_flags_ptr
681 # Is a register in a group
682 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
683 EOF
684 }
685
686 #
687 # The .log file
688 #
689 exec > new-gdbarch.log
690 function_list | while do_read
691 do
692 cat <<EOF
693 ${class} ${macro}(${actual})
694 ${returntype} ${function} ($formal)${attrib}
695 EOF
696 for r in ${read}
697 do
698 eval echo \"\ \ \ \ ${r}=\${${r}}\"
699 done
700 if class_is_predicate_p && fallback_default_p
701 then
702 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
703 kill $$
704 exit 1
705 fi
706 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
707 then
708 echo "Error: postdefault is useless when invalid_p=0" 1>&2
709 kill $$
710 exit 1
711 fi
712 if class_is_multiarch_p
713 then
714 if class_is_predicate_p ; then :
715 elif test "x${predefault}" = "x"
716 then
717 echo "Error: pure multi-arch function must have a predefault" 1>&2
718 kill $$
719 exit 1
720 fi
721 fi
722 echo ""
723 done
724
725 exec 1>&2
726 compare_new gdbarch.log
727
728
729 copyright ()
730 {
731 cat <<EOF
732 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
733
734 /* Dynamic architecture support for GDB, the GNU debugger.
735 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
736
737 This file is part of GDB.
738
739 This program is free software; you can redistribute it and/or modify
740 it under the terms of the GNU General Public License as published by
741 the Free Software Foundation; either version 2 of the License, or
742 (at your option) any later version.
743
744 This program is distributed in the hope that it will be useful,
745 but WITHOUT ANY WARRANTY; without even the implied warranty of
746 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
747 GNU General Public License for more details.
748
749 You should have received a copy of the GNU General Public License
750 along with this program; if not, write to the Free Software
751 Foundation, Inc., 59 Temple Place - Suite 330,
752 Boston, MA 02111-1307, USA. */
753
754 /* This file was created with the aid of \`\`gdbarch.sh''.
755
756 The Bourne shell script \`\`gdbarch.sh'' creates the files
757 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
758 against the existing \`\`gdbarch.[hc]''. Any differences found
759 being reported.
760
761 If editing this file, please also run gdbarch.sh and merge any
762 changes into that script. Conversely, when making sweeping changes
763 to this file, modifying gdbarch.sh and using its output may prove
764 easier. */
765
766 EOF
767 }
768
769 #
770 # The .h file
771 #
772
773 exec > new-gdbarch.h
774 copyright
775 cat <<EOF
776 #ifndef GDBARCH_H
777 #define GDBARCH_H
778
779 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
780 #if !GDB_MULTI_ARCH
781 /* Pull in function declarations refered to, indirectly, via macros. */
782 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
783 #include "inferior.h" /* For unsigned_address_to_pointer(). */
784 #endif
785
786 struct frame_info;
787 struct value;
788 struct objfile;
789 struct minimal_symbol;
790 struct regcache;
791 struct reggroup;
792
793 extern struct gdbarch *current_gdbarch;
794
795
796 /* If any of the following are defined, the target wasn't correctly
797 converted. */
798
799 #if GDB_MULTI_ARCH
800 #if defined (EXTRA_FRAME_INFO)
801 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
802 #endif
803 #endif
804
805 #if GDB_MULTI_ARCH
806 #if defined (FRAME_FIND_SAVED_REGS)
807 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
808 #endif
809 #endif
810
811 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
812 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
813 #endif
814 EOF
815
816 # function typedef's
817 printf "\n"
818 printf "\n"
819 printf "/* The following are pre-initialized by GDBARCH. */\n"
820 function_list | while do_read
821 do
822 if class_is_info_p
823 then
824 printf "\n"
825 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
826 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
827 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
828 printf "#error \"Non multi-arch definition of ${macro}\"\n"
829 printf "#endif\n"
830 printf "#if GDB_MULTI_ARCH\n"
831 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
832 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
833 printf "#endif\n"
834 printf "#endif\n"
835 fi
836 done
837
838 # function typedef's
839 printf "\n"
840 printf "\n"
841 printf "/* The following are initialized by the target dependent code. */\n"
842 function_list | while do_read
843 do
844 if [ -n "${comment}" ]
845 then
846 echo "${comment}" | sed \
847 -e '2 s,#,/*,' \
848 -e '3,$ s,#, ,' \
849 -e '$ s,$, */,'
850 fi
851 if class_is_multiarch_p
852 then
853 if class_is_predicate_p
854 then
855 printf "\n"
856 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
857 fi
858 else
859 if class_is_predicate_p
860 then
861 printf "\n"
862 printf "#if defined (${macro})\n"
863 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
864 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
865 printf "#if !defined (${macro}_P)\n"
866 printf "#define ${macro}_P() (1)\n"
867 printf "#endif\n"
868 printf "#endif\n"
869 printf "\n"
870 printf "/* Default predicate for non- multi-arch targets. */\n"
871 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
872 printf "#define ${macro}_P() (0)\n"
873 printf "#endif\n"
874 printf "\n"
875 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
876 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 printf "#endif\n"
879 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
880 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
881 printf "#endif\n"
882 fi
883 fi
884 if class_is_variable_p
885 then
886 if fallback_default_p || class_is_predicate_p
887 then
888 printf "\n"
889 printf "/* Default (value) for non- multi-arch platforms. */\n"
890 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
891 echo "#define ${macro} (${fallbackdefault})" \
892 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
893 printf "#endif\n"
894 fi
895 printf "\n"
896 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
897 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
898 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
900 printf "#endif\n"
901 printf "#if GDB_MULTI_ARCH\n"
902 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
904 printf "#endif\n"
905 printf "#endif\n"
906 fi
907 if class_is_function_p
908 then
909 if class_is_multiarch_p ; then :
910 elif fallback_default_p || class_is_predicate_p
911 then
912 printf "\n"
913 printf "/* Default (function) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
915 if [ "x${fallbackdefault}" = "x0" ]
916 then
917 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
918 else
919 # FIXME: Should be passing current_gdbarch through!
920 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
921 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
922 fi
923 printf "#endif\n"
924 fi
925 printf "\n"
926 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
927 then
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
929 elif class_is_multiarch_p
930 then
931 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
932 else
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
934 fi
935 if [ "x${formal}" = "xvoid" ]
936 then
937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
938 else
939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
940 fi
941 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
942 if class_is_multiarch_p ; then :
943 else
944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
946 printf "#endif\n"
947 printf "#if GDB_MULTI_ARCH\n"
948 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
949 if [ "x${actual}" = "x" ]
950 then
951 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
952 elif [ "x${actual}" = "x-" ]
953 then
954 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
955 else
956 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
957 fi
958 printf "#endif\n"
959 printf "#endif\n"
960 fi
961 fi
962 done
963
964 # close it off
965 cat <<EOF
966
967 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
968
969
970 /* Mechanism for co-ordinating the selection of a specific
971 architecture.
972
973 GDB targets (*-tdep.c) can register an interest in a specific
974 architecture. Other GDB components can register a need to maintain
975 per-architecture data.
976
977 The mechanisms below ensures that there is only a loose connection
978 between the set-architecture command and the various GDB
979 components. Each component can independently register their need
980 to maintain architecture specific data with gdbarch.
981
982 Pragmatics:
983
984 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
985 didn't scale.
986
987 The more traditional mega-struct containing architecture specific
988 data for all the various GDB components was also considered. Since
989 GDB is built from a variable number of (fairly independent)
990 components it was determined that the global aproach was not
991 applicable. */
992
993
994 /* Register a new architectural family with GDB.
995
996 Register support for the specified ARCHITECTURE with GDB. When
997 gdbarch determines that the specified architecture has been
998 selected, the corresponding INIT function is called.
999
1000 --
1001
1002 The INIT function takes two parameters: INFO which contains the
1003 information available to gdbarch about the (possibly new)
1004 architecture; ARCHES which is a list of the previously created
1005 \`\`struct gdbarch'' for this architecture.
1006
1007 The INFO parameter is, as far as possible, be pre-initialized with
1008 information obtained from INFO.ABFD or the previously selected
1009 architecture.
1010
1011 The ARCHES parameter is a linked list (sorted most recently used)
1012 of all the previously created architures for this architecture
1013 family. The (possibly NULL) ARCHES->gdbarch can used to access
1014 values from the previously selected architecture for this
1015 architecture family. The global \`\`current_gdbarch'' shall not be
1016 used.
1017
1018 The INIT function shall return any of: NULL - indicating that it
1019 doesn't recognize the selected architecture; an existing \`\`struct
1020 gdbarch'' from the ARCHES list - indicating that the new
1021 architecture is just a synonym for an earlier architecture (see
1022 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1023 - that describes the selected architecture (see gdbarch_alloc()).
1024
1025 The DUMP_TDEP function shall print out all target specific values.
1026 Care should be taken to ensure that the function works in both the
1027 multi-arch and non- multi-arch cases. */
1028
1029 struct gdbarch_list
1030 {
1031 struct gdbarch *gdbarch;
1032 struct gdbarch_list *next;
1033 };
1034
1035 struct gdbarch_info
1036 {
1037 /* Use default: NULL (ZERO). */
1038 const struct bfd_arch_info *bfd_arch_info;
1039
1040 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1041 int byte_order;
1042
1043 /* Use default: NULL (ZERO). */
1044 bfd *abfd;
1045
1046 /* Use default: NULL (ZERO). */
1047 struct gdbarch_tdep_info *tdep_info;
1048 };
1049
1050 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1051 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1052
1053 /* DEPRECATED - use gdbarch_register() */
1054 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1055
1056 extern void gdbarch_register (enum bfd_architecture architecture,
1057 gdbarch_init_ftype *,
1058 gdbarch_dump_tdep_ftype *);
1059
1060
1061 /* Return a freshly allocated, NULL terminated, array of the valid
1062 architecture names. Since architectures are registered during the
1063 _initialize phase this function only returns useful information
1064 once initialization has been completed. */
1065
1066 extern const char **gdbarch_printable_names (void);
1067
1068
1069 /* Helper function. Search the list of ARCHES for a GDBARCH that
1070 matches the information provided by INFO. */
1071
1072 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1073
1074
1075 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1076 basic initialization using values obtained from the INFO andTDEP
1077 parameters. set_gdbarch_*() functions are called to complete the
1078 initialization of the object. */
1079
1080 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1081
1082
1083 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1084 It is assumed that the caller freeds the \`\`struct
1085 gdbarch_tdep''. */
1086
1087 extern void gdbarch_free (struct gdbarch *);
1088
1089
1090 /* Helper function. Force an update of the current architecture.
1091
1092 The actual architecture selected is determined by INFO, \`\`(gdb) set
1093 architecture'' et.al., the existing architecture and BFD's default
1094 architecture. INFO should be initialized to zero and then selected
1095 fields should be updated.
1096
1097 Returns non-zero if the update succeeds */
1098
1099 extern int gdbarch_update_p (struct gdbarch_info info);
1100
1101
1102
1103 /* Register per-architecture data-pointer.
1104
1105 Reserve space for a per-architecture data-pointer. An identifier
1106 for the reserved data-pointer is returned. That identifer should
1107 be saved in a local static variable.
1108
1109 The per-architecture data-pointer is either initialized explicitly
1110 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1111 gdbarch_data()). FREE() is called to delete either an existing
1112 data-pointer overridden by set_gdbarch_data() or when the
1113 architecture object is being deleted.
1114
1115 When a previously created architecture is re-selected, the
1116 per-architecture data-pointer for that previous architecture is
1117 restored. INIT() is not re-called.
1118
1119 Multiple registrarants for any architecture are allowed (and
1120 strongly encouraged). */
1121
1122 struct gdbarch_data;
1123
1124 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1125 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1126 void *pointer);
1127 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1128 gdbarch_data_free_ftype *free);
1129 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1130 struct gdbarch_data *data,
1131 void *pointer);
1132
1133 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1134
1135
1136 /* Register per-architecture memory region.
1137
1138 Provide a memory-region swap mechanism. Per-architecture memory
1139 region are created. These memory regions are swapped whenever the
1140 architecture is changed. For a new architecture, the memory region
1141 is initialized with zero (0) and the INIT function is called.
1142
1143 Memory regions are swapped / initialized in the order that they are
1144 registered. NULL DATA and/or INIT values can be specified.
1145
1146 New code should use register_gdbarch_data(). */
1147
1148 typedef void (gdbarch_swap_ftype) (void);
1149 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1150 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1151
1152
1153
1154 /* The target-system-dependent byte order is dynamic */
1155
1156 extern int target_byte_order;
1157 #ifndef TARGET_BYTE_ORDER
1158 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1159 #endif
1160
1161 extern int target_byte_order_auto;
1162 #ifndef TARGET_BYTE_ORDER_AUTO
1163 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1164 #endif
1165
1166
1167
1168 /* The target-system-dependent BFD architecture is dynamic */
1169
1170 extern int target_architecture_auto;
1171 #ifndef TARGET_ARCHITECTURE_AUTO
1172 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1173 #endif
1174
1175 extern const struct bfd_arch_info *target_architecture;
1176 #ifndef TARGET_ARCHITECTURE
1177 #define TARGET_ARCHITECTURE (target_architecture + 0)
1178 #endif
1179
1180
1181 /* The target-system-dependent disassembler is semi-dynamic */
1182
1183 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1184 unsigned int len, disassemble_info *info);
1185
1186 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1187 disassemble_info *info);
1188
1189 extern void dis_asm_print_address (bfd_vma addr,
1190 disassemble_info *info);
1191
1192 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1193 extern disassemble_info tm_print_insn_info;
1194 #ifndef TARGET_PRINT_INSN_INFO
1195 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1196 #endif
1197
1198
1199
1200 /* Set the dynamic target-system-dependent parameters (architecture,
1201 byte-order, ...) using information found in the BFD */
1202
1203 extern void set_gdbarch_from_file (bfd *);
1204
1205
1206 /* Initialize the current architecture to the "first" one we find on
1207 our list. */
1208
1209 extern void initialize_current_architecture (void);
1210
1211 /* For non-multiarched targets, do any initialization of the default
1212 gdbarch object necessary after the _initialize_MODULE functions
1213 have run. */
1214 extern void initialize_non_multiarch (void);
1215
1216 /* gdbarch trace variable */
1217 extern int gdbarch_debug;
1218
1219 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1220
1221 #endif
1222 EOF
1223 exec 1>&2
1224 #../move-if-change new-gdbarch.h gdbarch.h
1225 compare_new gdbarch.h
1226
1227
1228 #
1229 # C file
1230 #
1231
1232 exec > new-gdbarch.c
1233 copyright
1234 cat <<EOF
1235
1236 #include "defs.h"
1237 #include "arch-utils.h"
1238
1239 #if GDB_MULTI_ARCH
1240 #include "gdbcmd.h"
1241 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1242 #else
1243 /* Just include everything in sight so that the every old definition
1244 of macro is visible. */
1245 #include "gdb_string.h"
1246 #include <ctype.h>
1247 #include "symtab.h"
1248 #include "frame.h"
1249 #include "inferior.h"
1250 #include "breakpoint.h"
1251 #include "gdb_wait.h"
1252 #include "gdbcore.h"
1253 #include "gdbcmd.h"
1254 #include "target.h"
1255 #include "gdbthread.h"
1256 #include "annotate.h"
1257 #include "symfile.h" /* for overlay functions */
1258 #include "value.h" /* For old tm.h/nm.h macros. */
1259 #endif
1260 #include "symcat.h"
1261
1262 #include "floatformat.h"
1263
1264 #include "gdb_assert.h"
1265 #include "gdb_string.h"
1266 #include "gdb-events.h"
1267 #include "reggroups.h"
1268
1269 /* Static function declarations */
1270
1271 static void verify_gdbarch (struct gdbarch *gdbarch);
1272 static void alloc_gdbarch_data (struct gdbarch *);
1273 static void free_gdbarch_data (struct gdbarch *);
1274 static void init_gdbarch_swap (struct gdbarch *);
1275 static void clear_gdbarch_swap (struct gdbarch *);
1276 static void swapout_gdbarch_swap (struct gdbarch *);
1277 static void swapin_gdbarch_swap (struct gdbarch *);
1278
1279 /* Non-zero if we want to trace architecture code. */
1280
1281 #ifndef GDBARCH_DEBUG
1282 #define GDBARCH_DEBUG 0
1283 #endif
1284 int gdbarch_debug = GDBARCH_DEBUG;
1285
1286 EOF
1287
1288 # gdbarch open the gdbarch object
1289 printf "\n"
1290 printf "/* Maintain the struct gdbarch object */\n"
1291 printf "\n"
1292 printf "struct gdbarch\n"
1293 printf "{\n"
1294 printf " /* Has this architecture been fully initialized? */\n"
1295 printf " int initialized_p;\n"
1296 printf " /* basic architectural information */\n"
1297 function_list | while do_read
1298 do
1299 if class_is_info_p
1300 then
1301 printf " ${returntype} ${function};\n"
1302 fi
1303 done
1304 printf "\n"
1305 printf " /* target specific vector. */\n"
1306 printf " struct gdbarch_tdep *tdep;\n"
1307 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1308 printf "\n"
1309 printf " /* per-architecture data-pointers */\n"
1310 printf " unsigned nr_data;\n"
1311 printf " void **data;\n"
1312 printf "\n"
1313 printf " /* per-architecture swap-regions */\n"
1314 printf " struct gdbarch_swap *swap;\n"
1315 printf "\n"
1316 cat <<EOF
1317 /* Multi-arch values.
1318
1319 When extending this structure you must:
1320
1321 Add the field below.
1322
1323 Declare set/get functions and define the corresponding
1324 macro in gdbarch.h.
1325
1326 gdbarch_alloc(): If zero/NULL is not a suitable default,
1327 initialize the new field.
1328
1329 verify_gdbarch(): Confirm that the target updated the field
1330 correctly.
1331
1332 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1333 field is dumped out
1334
1335 \`\`startup_gdbarch()'': Append an initial value to the static
1336 variable (base values on the host's c-type system).
1337
1338 get_gdbarch(): Implement the set/get functions (probably using
1339 the macro's as shortcuts).
1340
1341 */
1342
1343 EOF
1344 function_list | while do_read
1345 do
1346 if class_is_variable_p
1347 then
1348 printf " ${returntype} ${function};\n"
1349 elif class_is_function_p
1350 then
1351 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1352 fi
1353 done
1354 printf "};\n"
1355
1356 # A pre-initialized vector
1357 printf "\n"
1358 printf "\n"
1359 cat <<EOF
1360 /* The default architecture uses host values (for want of a better
1361 choice). */
1362 EOF
1363 printf "\n"
1364 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1365 printf "\n"
1366 printf "struct gdbarch startup_gdbarch =\n"
1367 printf "{\n"
1368 printf " 1, /* Always initialized. */\n"
1369 printf " /* basic architecture information */\n"
1370 function_list | while do_read
1371 do
1372 if class_is_info_p
1373 then
1374 printf " ${staticdefault},\n"
1375 fi
1376 done
1377 cat <<EOF
1378 /* target specific vector and its dump routine */
1379 NULL, NULL,
1380 /*per-architecture data-pointers and swap regions */
1381 0, NULL, NULL,
1382 /* Multi-arch values */
1383 EOF
1384 function_list | while do_read
1385 do
1386 if class_is_function_p || class_is_variable_p
1387 then
1388 printf " ${staticdefault},\n"
1389 fi
1390 done
1391 cat <<EOF
1392 /* startup_gdbarch() */
1393 };
1394
1395 struct gdbarch *current_gdbarch = &startup_gdbarch;
1396
1397 /* Do any initialization needed for a non-multiarch configuration
1398 after the _initialize_MODULE functions have been run. */
1399 void
1400 initialize_non_multiarch (void)
1401 {
1402 alloc_gdbarch_data (&startup_gdbarch);
1403 /* Ensure that all swap areas are zeroed so that they again think
1404 they are starting from scratch. */
1405 clear_gdbarch_swap (&startup_gdbarch);
1406 init_gdbarch_swap (&startup_gdbarch);
1407 }
1408 EOF
1409
1410 # Create a new gdbarch struct
1411 printf "\n"
1412 printf "\n"
1413 cat <<EOF
1414 /* Create a new \`\`struct gdbarch'' based on information provided by
1415 \`\`struct gdbarch_info''. */
1416 EOF
1417 printf "\n"
1418 cat <<EOF
1419 struct gdbarch *
1420 gdbarch_alloc (const struct gdbarch_info *info,
1421 struct gdbarch_tdep *tdep)
1422 {
1423 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1424 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1425 the current local architecture and not the previous global
1426 architecture. This ensures that the new architectures initial
1427 values are not influenced by the previous architecture. Once
1428 everything is parameterised with gdbarch, this will go away. */
1429 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1430 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1431
1432 alloc_gdbarch_data (current_gdbarch);
1433
1434 current_gdbarch->tdep = tdep;
1435 EOF
1436 printf "\n"
1437 function_list | while do_read
1438 do
1439 if class_is_info_p
1440 then
1441 printf " current_gdbarch->${function} = info->${function};\n"
1442 fi
1443 done
1444 printf "\n"
1445 printf " /* Force the explicit initialization of these. */\n"
1446 function_list | while do_read
1447 do
1448 if class_is_function_p || class_is_variable_p
1449 then
1450 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1451 then
1452 printf " current_gdbarch->${function} = ${predefault};\n"
1453 fi
1454 fi
1455 done
1456 cat <<EOF
1457 /* gdbarch_alloc() */
1458
1459 return current_gdbarch;
1460 }
1461 EOF
1462
1463 # Free a gdbarch struct.
1464 printf "\n"
1465 printf "\n"
1466 cat <<EOF
1467 /* Free a gdbarch struct. This should never happen in normal
1468 operation --- once you've created a gdbarch, you keep it around.
1469 However, if an architecture's init function encounters an error
1470 building the structure, it may need to clean up a partially
1471 constructed gdbarch. */
1472
1473 void
1474 gdbarch_free (struct gdbarch *arch)
1475 {
1476 gdb_assert (arch != NULL);
1477 free_gdbarch_data (arch);
1478 xfree (arch);
1479 }
1480 EOF
1481
1482 # verify a new architecture
1483 printf "\n"
1484 printf "\n"
1485 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1486 printf "\n"
1487 cat <<EOF
1488 static void
1489 verify_gdbarch (struct gdbarch *gdbarch)
1490 {
1491 struct ui_file *log;
1492 struct cleanup *cleanups;
1493 long dummy;
1494 char *buf;
1495 /* Only perform sanity checks on a multi-arch target. */
1496 if (!GDB_MULTI_ARCH)
1497 return;
1498 log = mem_fileopen ();
1499 cleanups = make_cleanup_ui_file_delete (log);
1500 /* fundamental */
1501 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1502 fprintf_unfiltered (log, "\n\tbyte-order");
1503 if (gdbarch->bfd_arch_info == NULL)
1504 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1505 /* Check those that need to be defined for the given multi-arch level. */
1506 EOF
1507 function_list | while do_read
1508 do
1509 if class_is_function_p || class_is_variable_p
1510 then
1511 if [ "x${invalid_p}" = "x0" ]
1512 then
1513 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1514 elif class_is_predicate_p
1515 then
1516 printf " /* Skip verify of ${function}, has predicate */\n"
1517 # FIXME: See do_read for potential simplification
1518 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1519 then
1520 printf " if (${invalid_p})\n"
1521 printf " gdbarch->${function} = ${postdefault};\n"
1522 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1523 then
1524 printf " if (gdbarch->${function} == ${predefault})\n"
1525 printf " gdbarch->${function} = ${postdefault};\n"
1526 elif [ -n "${postdefault}" ]
1527 then
1528 printf " if (gdbarch->${function} == 0)\n"
1529 printf " gdbarch->${function} = ${postdefault};\n"
1530 elif [ -n "${invalid_p}" ]
1531 then
1532 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1533 printf " && (${invalid_p}))\n"
1534 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1535 elif [ -n "${predefault}" ]
1536 then
1537 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1538 printf " && (gdbarch->${function} == ${predefault}))\n"
1539 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1540 fi
1541 fi
1542 done
1543 cat <<EOF
1544 buf = ui_file_xstrdup (log, &dummy);
1545 make_cleanup (xfree, buf);
1546 if (strlen (buf) > 0)
1547 internal_error (__FILE__, __LINE__,
1548 "verify_gdbarch: the following are invalid ...%s",
1549 buf);
1550 do_cleanups (cleanups);
1551 }
1552 EOF
1553
1554 # dump the structure
1555 printf "\n"
1556 printf "\n"
1557 cat <<EOF
1558 /* Print out the details of the current architecture. */
1559
1560 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1561 just happens to match the global variable \`\`current_gdbarch''. That
1562 way macros refering to that variable get the local and not the global
1563 version - ulgh. Once everything is parameterised with gdbarch, this
1564 will go away. */
1565
1566 void
1567 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1568 {
1569 fprintf_unfiltered (file,
1570 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1571 GDB_MULTI_ARCH);
1572 EOF
1573 function_list | sort -t: -k 3 | while do_read
1574 do
1575 # First the predicate
1576 if class_is_predicate_p
1577 then
1578 if class_is_multiarch_p
1579 then
1580 printf " if (GDB_MULTI_ARCH)\n"
1581 printf " fprintf_unfiltered (file,\n"
1582 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1583 printf " gdbarch_${function}_p (current_gdbarch));\n"
1584 else
1585 printf "#ifdef ${macro}_P\n"
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1588 printf " \"${macro}_P()\",\n"
1589 printf " XSTRING (${macro}_P ()));\n"
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1592 printf " ${macro}_P ());\n"
1593 printf "#endif\n"
1594 fi
1595 fi
1596 # multiarch functions don't have macros.
1597 if class_is_multiarch_p
1598 then
1599 printf " if (GDB_MULTI_ARCH)\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1602 printf " (long) current_gdbarch->${function});\n"
1603 continue
1604 fi
1605 # Print the macro definition.
1606 printf "#ifdef ${macro}\n"
1607 if [ "x${returntype}" = "xvoid" ]
1608 then
1609 printf "#if GDB_MULTI_ARCH\n"
1610 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1611 fi
1612 if class_is_function_p
1613 then
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1616 printf " \"${macro}(${actual})\",\n"
1617 printf " XSTRING (${macro} (${actual})));\n"
1618 else
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1621 printf " XSTRING (${macro}));\n"
1622 fi
1623 # Print the architecture vector value
1624 if [ "x${returntype}" = "xvoid" ]
1625 then
1626 printf "#endif\n"
1627 fi
1628 if [ "x${print_p}" = "x()" ]
1629 then
1630 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1631 elif [ "x${print_p}" = "x0" ]
1632 then
1633 printf " /* skip print of ${macro}, print_p == 0. */\n"
1634 elif [ -n "${print_p}" ]
1635 then
1636 printf " if (${print_p})\n"
1637 printf " fprintf_unfiltered (file,\n"
1638 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1639 printf " ${print});\n"
1640 elif class_is_function_p
1641 then
1642 printf " if (GDB_MULTI_ARCH)\n"
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1645 printf " (long) current_gdbarch->${function}\n"
1646 printf " /*${macro} ()*/);\n"
1647 else
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1650 printf " ${print});\n"
1651 fi
1652 printf "#endif\n"
1653 done
1654 cat <<EOF
1655 if (current_gdbarch->dump_tdep != NULL)
1656 current_gdbarch->dump_tdep (current_gdbarch, file);
1657 }
1658 EOF
1659
1660
1661 # GET/SET
1662 printf "\n"
1663 cat <<EOF
1664 struct gdbarch_tdep *
1665 gdbarch_tdep (struct gdbarch *gdbarch)
1666 {
1667 if (gdbarch_debug >= 2)
1668 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1669 return gdbarch->tdep;
1670 }
1671 EOF
1672 printf "\n"
1673 function_list | while do_read
1674 do
1675 if class_is_predicate_p
1676 then
1677 printf "\n"
1678 printf "int\n"
1679 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1680 printf "{\n"
1681 printf " gdb_assert (gdbarch != NULL);\n"
1682 if [ -n "${predicate}" ]
1683 then
1684 printf " return ${predicate};\n"
1685 else
1686 printf " return gdbarch->${function} != 0;\n"
1687 fi
1688 printf "}\n"
1689 fi
1690 if class_is_function_p
1691 then
1692 printf "\n"
1693 printf "${returntype}\n"
1694 if [ "x${formal}" = "xvoid" ]
1695 then
1696 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1697 else
1698 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1699 fi
1700 printf "{\n"
1701 printf " gdb_assert (gdbarch != NULL);\n"
1702 printf " if (gdbarch->${function} == 0)\n"
1703 printf " internal_error (__FILE__, __LINE__,\n"
1704 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1705 if class_is_predicate_p && test -n "${predicate}"
1706 then
1707 # Allow a call to a function with a predicate.
1708 printf " /* Ignore predicate (${predicate}). */\n"
1709 fi
1710 printf " if (gdbarch_debug >= 2)\n"
1711 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1712 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1713 then
1714 if class_is_multiarch_p
1715 then
1716 params="gdbarch"
1717 else
1718 params=""
1719 fi
1720 else
1721 if class_is_multiarch_p
1722 then
1723 params="gdbarch, ${actual}"
1724 else
1725 params="${actual}"
1726 fi
1727 fi
1728 if [ "x${returntype}" = "xvoid" ]
1729 then
1730 printf " gdbarch->${function} (${params});\n"
1731 else
1732 printf " return gdbarch->${function} (${params});\n"
1733 fi
1734 printf "}\n"
1735 printf "\n"
1736 printf "void\n"
1737 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1738 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1739 printf "{\n"
1740 printf " gdbarch->${function} = ${function};\n"
1741 printf "}\n"
1742 elif class_is_variable_p
1743 then
1744 printf "\n"
1745 printf "${returntype}\n"
1746 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1747 printf "{\n"
1748 printf " gdb_assert (gdbarch != NULL);\n"
1749 if [ "x${invalid_p}" = "x0" ]
1750 then
1751 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1752 elif [ -n "${invalid_p}" ]
1753 then
1754 printf " if (${invalid_p})\n"
1755 printf " internal_error (__FILE__, __LINE__,\n"
1756 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1757 elif [ -n "${predefault}" ]
1758 then
1759 printf " if (gdbarch->${function} == ${predefault})\n"
1760 printf " internal_error (__FILE__, __LINE__,\n"
1761 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1762 fi
1763 printf " if (gdbarch_debug >= 2)\n"
1764 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1765 printf " return gdbarch->${function};\n"
1766 printf "}\n"
1767 printf "\n"
1768 printf "void\n"
1769 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1770 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1771 printf "{\n"
1772 printf " gdbarch->${function} = ${function};\n"
1773 printf "}\n"
1774 elif class_is_info_p
1775 then
1776 printf "\n"
1777 printf "${returntype}\n"
1778 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1779 printf "{\n"
1780 printf " gdb_assert (gdbarch != NULL);\n"
1781 printf " if (gdbarch_debug >= 2)\n"
1782 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1783 printf " return gdbarch->${function};\n"
1784 printf "}\n"
1785 fi
1786 done
1787
1788 # All the trailing guff
1789 cat <<EOF
1790
1791
1792 /* Keep a registry of per-architecture data-pointers required by GDB
1793 modules. */
1794
1795 struct gdbarch_data
1796 {
1797 unsigned index;
1798 int init_p;
1799 gdbarch_data_init_ftype *init;
1800 gdbarch_data_free_ftype *free;
1801 };
1802
1803 struct gdbarch_data_registration
1804 {
1805 struct gdbarch_data *data;
1806 struct gdbarch_data_registration *next;
1807 };
1808
1809 struct gdbarch_data_registry
1810 {
1811 unsigned nr;
1812 struct gdbarch_data_registration *registrations;
1813 };
1814
1815 struct gdbarch_data_registry gdbarch_data_registry =
1816 {
1817 0, NULL,
1818 };
1819
1820 struct gdbarch_data *
1821 register_gdbarch_data (gdbarch_data_init_ftype *init,
1822 gdbarch_data_free_ftype *free)
1823 {
1824 struct gdbarch_data_registration **curr;
1825 /* Append the new registraration. */
1826 for (curr = &gdbarch_data_registry.registrations;
1827 (*curr) != NULL;
1828 curr = &(*curr)->next);
1829 (*curr) = XMALLOC (struct gdbarch_data_registration);
1830 (*curr)->next = NULL;
1831 (*curr)->data = XMALLOC (struct gdbarch_data);
1832 (*curr)->data->index = gdbarch_data_registry.nr++;
1833 (*curr)->data->init = init;
1834 (*curr)->data->init_p = 1;
1835 (*curr)->data->free = free;
1836 return (*curr)->data;
1837 }
1838
1839
1840 /* Create/delete the gdbarch data vector. */
1841
1842 static void
1843 alloc_gdbarch_data (struct gdbarch *gdbarch)
1844 {
1845 gdb_assert (gdbarch->data == NULL);
1846 gdbarch->nr_data = gdbarch_data_registry.nr;
1847 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1848 }
1849
1850 static void
1851 free_gdbarch_data (struct gdbarch *gdbarch)
1852 {
1853 struct gdbarch_data_registration *rego;
1854 gdb_assert (gdbarch->data != NULL);
1855 for (rego = gdbarch_data_registry.registrations;
1856 rego != NULL;
1857 rego = rego->next)
1858 {
1859 struct gdbarch_data *data = rego->data;
1860 gdb_assert (data->index < gdbarch->nr_data);
1861 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1862 {
1863 data->free (gdbarch, gdbarch->data[data->index]);
1864 gdbarch->data[data->index] = NULL;
1865 }
1866 }
1867 xfree (gdbarch->data);
1868 gdbarch->data = NULL;
1869 }
1870
1871
1872 /* Initialize the current value of the specified per-architecture
1873 data-pointer. */
1874
1875 void
1876 set_gdbarch_data (struct gdbarch *gdbarch,
1877 struct gdbarch_data *data,
1878 void *pointer)
1879 {
1880 gdb_assert (data->index < gdbarch->nr_data);
1881 if (gdbarch->data[data->index] != NULL)
1882 {
1883 gdb_assert (data->free != NULL);
1884 data->free (gdbarch, gdbarch->data[data->index]);
1885 }
1886 gdbarch->data[data->index] = pointer;
1887 }
1888
1889 /* Return the current value of the specified per-architecture
1890 data-pointer. */
1891
1892 void *
1893 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1894 {
1895 gdb_assert (data->index < gdbarch->nr_data);
1896 /* The data-pointer isn't initialized, call init() to get a value but
1897 only if the architecture initializaiton has completed. Otherwise
1898 punt - hope that the caller knows what they are doing. */
1899 if (gdbarch->data[data->index] == NULL
1900 && gdbarch->initialized_p)
1901 {
1902 /* Be careful to detect an initialization cycle. */
1903 gdb_assert (data->init_p);
1904 data->init_p = 0;
1905 gdb_assert (data->init != NULL);
1906 gdbarch->data[data->index] = data->init (gdbarch);
1907 data->init_p = 1;
1908 gdb_assert (gdbarch->data[data->index] != NULL);
1909 }
1910 return gdbarch->data[data->index];
1911 }
1912
1913
1914
1915 /* Keep a registry of swapped data required by GDB modules. */
1916
1917 struct gdbarch_swap
1918 {
1919 void *swap;
1920 struct gdbarch_swap_registration *source;
1921 struct gdbarch_swap *next;
1922 };
1923
1924 struct gdbarch_swap_registration
1925 {
1926 void *data;
1927 unsigned long sizeof_data;
1928 gdbarch_swap_ftype *init;
1929 struct gdbarch_swap_registration *next;
1930 };
1931
1932 struct gdbarch_swap_registry
1933 {
1934 int nr;
1935 struct gdbarch_swap_registration *registrations;
1936 };
1937
1938 struct gdbarch_swap_registry gdbarch_swap_registry =
1939 {
1940 0, NULL,
1941 };
1942
1943 void
1944 register_gdbarch_swap (void *data,
1945 unsigned long sizeof_data,
1946 gdbarch_swap_ftype *init)
1947 {
1948 struct gdbarch_swap_registration **rego;
1949 for (rego = &gdbarch_swap_registry.registrations;
1950 (*rego) != NULL;
1951 rego = &(*rego)->next);
1952 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1953 (*rego)->next = NULL;
1954 (*rego)->init = init;
1955 (*rego)->data = data;
1956 (*rego)->sizeof_data = sizeof_data;
1957 }
1958
1959 static void
1960 clear_gdbarch_swap (struct gdbarch *gdbarch)
1961 {
1962 struct gdbarch_swap *curr;
1963 for (curr = gdbarch->swap;
1964 curr != NULL;
1965 curr = curr->next)
1966 {
1967 memset (curr->source->data, 0, curr->source->sizeof_data);
1968 }
1969 }
1970
1971 static void
1972 init_gdbarch_swap (struct gdbarch *gdbarch)
1973 {
1974 struct gdbarch_swap_registration *rego;
1975 struct gdbarch_swap **curr = &gdbarch->swap;
1976 for (rego = gdbarch_swap_registry.registrations;
1977 rego != NULL;
1978 rego = rego->next)
1979 {
1980 if (rego->data != NULL)
1981 {
1982 (*curr) = XMALLOC (struct gdbarch_swap);
1983 (*curr)->source = rego;
1984 (*curr)->swap = xmalloc (rego->sizeof_data);
1985 (*curr)->next = NULL;
1986 curr = &(*curr)->next;
1987 }
1988 if (rego->init != NULL)
1989 rego->init ();
1990 }
1991 }
1992
1993 static void
1994 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1995 {
1996 struct gdbarch_swap *curr;
1997 for (curr = gdbarch->swap;
1998 curr != NULL;
1999 curr = curr->next)
2000 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2001 }
2002
2003 static void
2004 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2005 {
2006 struct gdbarch_swap *curr;
2007 for (curr = gdbarch->swap;
2008 curr != NULL;
2009 curr = curr->next)
2010 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2011 }
2012
2013
2014 /* Keep a registry of the architectures known by GDB. */
2015
2016 struct gdbarch_registration
2017 {
2018 enum bfd_architecture bfd_architecture;
2019 gdbarch_init_ftype *init;
2020 gdbarch_dump_tdep_ftype *dump_tdep;
2021 struct gdbarch_list *arches;
2022 struct gdbarch_registration *next;
2023 };
2024
2025 static struct gdbarch_registration *gdbarch_registry = NULL;
2026
2027 static void
2028 append_name (const char ***buf, int *nr, const char *name)
2029 {
2030 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2031 (*buf)[*nr] = name;
2032 *nr += 1;
2033 }
2034
2035 const char **
2036 gdbarch_printable_names (void)
2037 {
2038 if (GDB_MULTI_ARCH)
2039 {
2040 /* Accumulate a list of names based on the registed list of
2041 architectures. */
2042 enum bfd_architecture a;
2043 int nr_arches = 0;
2044 const char **arches = NULL;
2045 struct gdbarch_registration *rego;
2046 for (rego = gdbarch_registry;
2047 rego != NULL;
2048 rego = rego->next)
2049 {
2050 const struct bfd_arch_info *ap;
2051 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2052 if (ap == NULL)
2053 internal_error (__FILE__, __LINE__,
2054 "gdbarch_architecture_names: multi-arch unknown");
2055 do
2056 {
2057 append_name (&arches, &nr_arches, ap->printable_name);
2058 ap = ap->next;
2059 }
2060 while (ap != NULL);
2061 }
2062 append_name (&arches, &nr_arches, NULL);
2063 return arches;
2064 }
2065 else
2066 /* Just return all the architectures that BFD knows. Assume that
2067 the legacy architecture framework supports them. */
2068 return bfd_arch_list ();
2069 }
2070
2071
2072 void
2073 gdbarch_register (enum bfd_architecture bfd_architecture,
2074 gdbarch_init_ftype *init,
2075 gdbarch_dump_tdep_ftype *dump_tdep)
2076 {
2077 struct gdbarch_registration **curr;
2078 const struct bfd_arch_info *bfd_arch_info;
2079 /* Check that BFD recognizes this architecture */
2080 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2081 if (bfd_arch_info == NULL)
2082 {
2083 internal_error (__FILE__, __LINE__,
2084 "gdbarch: Attempt to register unknown architecture (%d)",
2085 bfd_architecture);
2086 }
2087 /* Check that we haven't seen this architecture before */
2088 for (curr = &gdbarch_registry;
2089 (*curr) != NULL;
2090 curr = &(*curr)->next)
2091 {
2092 if (bfd_architecture == (*curr)->bfd_architecture)
2093 internal_error (__FILE__, __LINE__,
2094 "gdbarch: Duplicate registraration of architecture (%s)",
2095 bfd_arch_info->printable_name);
2096 }
2097 /* log it */
2098 if (gdbarch_debug)
2099 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2100 bfd_arch_info->printable_name,
2101 (long) init);
2102 /* Append it */
2103 (*curr) = XMALLOC (struct gdbarch_registration);
2104 (*curr)->bfd_architecture = bfd_architecture;
2105 (*curr)->init = init;
2106 (*curr)->dump_tdep = dump_tdep;
2107 (*curr)->arches = NULL;
2108 (*curr)->next = NULL;
2109 /* When non- multi-arch, install whatever target dump routine we've
2110 been provided - hopefully that routine has been written correctly
2111 and works regardless of multi-arch. */
2112 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2113 && startup_gdbarch.dump_tdep == NULL)
2114 startup_gdbarch.dump_tdep = dump_tdep;
2115 }
2116
2117 void
2118 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2119 gdbarch_init_ftype *init)
2120 {
2121 gdbarch_register (bfd_architecture, init, NULL);
2122 }
2123
2124
2125 /* Look for an architecture using gdbarch_info. Base search on only
2126 BFD_ARCH_INFO and BYTE_ORDER. */
2127
2128 struct gdbarch_list *
2129 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2130 const struct gdbarch_info *info)
2131 {
2132 for (; arches != NULL; arches = arches->next)
2133 {
2134 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2135 continue;
2136 if (info->byte_order != arches->gdbarch->byte_order)
2137 continue;
2138 return arches;
2139 }
2140 return NULL;
2141 }
2142
2143
2144 /* Update the current architecture. Return ZERO if the update request
2145 failed. */
2146
2147 int
2148 gdbarch_update_p (struct gdbarch_info info)
2149 {
2150 struct gdbarch *new_gdbarch;
2151 struct gdbarch *old_gdbarch;
2152 struct gdbarch_registration *rego;
2153
2154 /* Fill in missing parts of the INFO struct using a number of
2155 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2156
2157 /* \`\`(gdb) set architecture ...'' */
2158 if (info.bfd_arch_info == NULL
2159 && !TARGET_ARCHITECTURE_AUTO)
2160 info.bfd_arch_info = TARGET_ARCHITECTURE;
2161 if (info.bfd_arch_info == NULL
2162 && info.abfd != NULL
2163 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2164 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2165 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2166 if (info.bfd_arch_info == NULL)
2167 info.bfd_arch_info = TARGET_ARCHITECTURE;
2168
2169 /* \`\`(gdb) set byte-order ...'' */
2170 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2171 && !TARGET_BYTE_ORDER_AUTO)
2172 info.byte_order = TARGET_BYTE_ORDER;
2173 /* From the INFO struct. */
2174 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2175 && info.abfd != NULL)
2176 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2177 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2178 : BFD_ENDIAN_UNKNOWN);
2179 /* From the current target. */
2180 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2181 info.byte_order = TARGET_BYTE_ORDER;
2182
2183 /* Must have found some sort of architecture. */
2184 gdb_assert (info.bfd_arch_info != NULL);
2185
2186 if (gdbarch_debug)
2187 {
2188 fprintf_unfiltered (gdb_stdlog,
2189 "gdbarch_update: info.bfd_arch_info %s\n",
2190 (info.bfd_arch_info != NULL
2191 ? info.bfd_arch_info->printable_name
2192 : "(null)"));
2193 fprintf_unfiltered (gdb_stdlog,
2194 "gdbarch_update: info.byte_order %d (%s)\n",
2195 info.byte_order,
2196 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2197 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2198 : "default"));
2199 fprintf_unfiltered (gdb_stdlog,
2200 "gdbarch_update: info.abfd 0x%lx\n",
2201 (long) info.abfd);
2202 fprintf_unfiltered (gdb_stdlog,
2203 "gdbarch_update: info.tdep_info 0x%lx\n",
2204 (long) info.tdep_info);
2205 }
2206
2207 /* Find the target that knows about this architecture. */
2208 for (rego = gdbarch_registry;
2209 rego != NULL;
2210 rego = rego->next)
2211 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2212 break;
2213 if (rego == NULL)
2214 {
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2217 return 0;
2218 }
2219
2220 /* Swap the data belonging to the old target out setting the
2221 installed data to zero. This stops the ->init() function trying
2222 to refer to the previous architecture's global data structures. */
2223 swapout_gdbarch_swap (current_gdbarch);
2224 clear_gdbarch_swap (current_gdbarch);
2225
2226 /* Save the previously selected architecture, setting the global to
2227 NULL. This stops ->init() trying to use the previous
2228 architecture's configuration. The previous architecture may not
2229 even be of the same architecture family. The most recent
2230 architecture of the same family is found at the head of the
2231 rego->arches list. */
2232 old_gdbarch = current_gdbarch;
2233 current_gdbarch = NULL;
2234
2235 /* Ask the target for a replacement architecture. */
2236 new_gdbarch = rego->init (info, rego->arches);
2237
2238 /* Did the target like it? No. Reject the change and revert to the
2239 old architecture. */
2240 if (new_gdbarch == NULL)
2241 {
2242 if (gdbarch_debug)
2243 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2244 swapin_gdbarch_swap (old_gdbarch);
2245 current_gdbarch = old_gdbarch;
2246 return 0;
2247 }
2248
2249 /* Did the architecture change? No. Oops, put the old architecture
2250 back. */
2251 if (old_gdbarch == new_gdbarch)
2252 {
2253 if (gdbarch_debug)
2254 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2255 (long) new_gdbarch,
2256 new_gdbarch->bfd_arch_info->printable_name);
2257 swapin_gdbarch_swap (old_gdbarch);
2258 current_gdbarch = old_gdbarch;
2259 return 1;
2260 }
2261
2262 /* Is this a pre-existing architecture? Yes. Move it to the front
2263 of the list of architectures (keeping the list sorted Most
2264 Recently Used) and then copy it in. */
2265 {
2266 struct gdbarch_list **list;
2267 for (list = &rego->arches;
2268 (*list) != NULL;
2269 list = &(*list)->next)
2270 {
2271 if ((*list)->gdbarch == new_gdbarch)
2272 {
2273 struct gdbarch_list *this;
2274 if (gdbarch_debug)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2277 (long) new_gdbarch,
2278 new_gdbarch->bfd_arch_info->printable_name);
2279 /* Unlink this. */
2280 this = (*list);
2281 (*list) = this->next;
2282 /* Insert in the front. */
2283 this->next = rego->arches;
2284 rego->arches = this;
2285 /* Copy the new architecture in. */
2286 current_gdbarch = new_gdbarch;
2287 swapin_gdbarch_swap (new_gdbarch);
2288 architecture_changed_event ();
2289 return 1;
2290 }
2291 }
2292 }
2293
2294 /* Prepend this new architecture to the architecture list (keep the
2295 list sorted Most Recently Used). */
2296 {
2297 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2298 this->next = rego->arches;
2299 this->gdbarch = new_gdbarch;
2300 rego->arches = this;
2301 }
2302
2303 /* Switch to this new architecture marking it initialized. */
2304 current_gdbarch = new_gdbarch;
2305 current_gdbarch->initialized_p = 1;
2306 if (gdbarch_debug)
2307 {
2308 fprintf_unfiltered (gdb_stdlog,
2309 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2310 (long) new_gdbarch,
2311 new_gdbarch->bfd_arch_info->printable_name);
2312 }
2313
2314 /* Check that the newly installed architecture is valid. Plug in
2315 any post init values. */
2316 new_gdbarch->dump_tdep = rego->dump_tdep;
2317 verify_gdbarch (new_gdbarch);
2318
2319 /* Initialize the per-architecture memory (swap) areas.
2320 CURRENT_GDBARCH must be update before these modules are
2321 called. */
2322 init_gdbarch_swap (new_gdbarch);
2323
2324 /* Initialize the per-architecture data. CURRENT_GDBARCH
2325 must be updated before these modules are called. */
2326 architecture_changed_event ();
2327
2328 if (gdbarch_debug)
2329 gdbarch_dump (current_gdbarch, gdb_stdlog);
2330
2331 return 1;
2332 }
2333
2334
2335 /* Disassembler */
2336
2337 /* Pointer to the target-dependent disassembly function. */
2338 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2339 disassemble_info tm_print_insn_info;
2340
2341
2342 extern void _initialize_gdbarch (void);
2343
2344 void
2345 _initialize_gdbarch (void)
2346 {
2347 struct cmd_list_element *c;
2348
2349 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2350 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2351 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2352 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2353 tm_print_insn_info.print_address_func = dis_asm_print_address;
2354
2355 add_show_from_set (add_set_cmd ("arch",
2356 class_maintenance,
2357 var_zinteger,
2358 (char *)&gdbarch_debug,
2359 "Set architecture debugging.\\n\\
2360 When non-zero, architecture debugging is enabled.", &setdebuglist),
2361 &showdebuglist);
2362 c = add_set_cmd ("archdebug",
2363 class_maintenance,
2364 var_zinteger,
2365 (char *)&gdbarch_debug,
2366 "Set architecture debugging.\\n\\
2367 When non-zero, architecture debugging is enabled.", &setlist);
2368
2369 deprecate_cmd (c, "set debug arch");
2370 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2371 }
2372 EOF
2373
2374 # close things off
2375 exec 1>&2
2376 #../move-if-change new-gdbarch.c gdbarch.c
2377 compare_new gdbarch.c
This page took 0.088277 seconds and 4 git commands to generate.