8fa98dfc6bc848d59b05cbc78569d8bd11962eab
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # This is simply not needed. See value_of_builtin_frame_fp_reg and
432 # call_function_by_hand.
433 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
434 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
435 # The dummy call frame SP should be set by push_dummy_call.
436 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
456 # This is simply not needed. See value_of_builtin_frame_fp_reg and
457 # call_function_by_hand.
458 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
459 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
460 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
461 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
462 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
467 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
468 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
469 # Convert from an sdb register number to an internal gdb register number.
470 # This should be defined in tm.h, if REGISTER_NAMES is not set up
471 # to map one to one onto the sdb register numbers.
472 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
473 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
474 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
475 v::REGISTER_SIZE:int:register_size
476 v::REGISTER_BYTES:int:register_bytes
477 # NOTE: cagney/2002-05-02: This function with predicate has a valid
478 # (callable) initial value. As a consequence, even when the predicate
479 # is false, the corresponding function works. This simplifies the
480 # migration process - old code, calling REGISTER_BYTE, doesn't need to
481 # be modified.
482 F::REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
486 # by REGISTER_TYPE.
487 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
491 # by REGISTER_TYPE.
492 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
496 # by REGISTER_TYPE.
497 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
498 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
499 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
500 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
501 # by REGISTER_TYPE.
502 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
503 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
504 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
505 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
506 # by REGISTER_TYPE.
507 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
508 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
509 #
510 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
511 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
512 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
513 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
514 # MAP a GDB RAW register number onto a simulator register number. See
515 # also include/...-sim.h.
516 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
517 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
518 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
519 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
520 # setjmp/longjmp support.
521 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
522 #
523 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
524 # much better but at least they are vaguely consistent). The headers
525 # and body contain convoluted #if/#else sequences for determine how
526 # things should be compiled. Instead of trying to mimic that
527 # behaviour here (and hence entrench it further) gdbarch simply
528 # reqires that these methods be set up from the word go. This also
529 # avoids any potential problems with moving beyond multi-arch partial.
530 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
531 # Replaced by push_dummy_code.
532 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
533 # Replaced by push_dummy_code.
534 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
535 # Replaced by push_dummy_code.
536 v::CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset
537 # Replaced by push_dummy_code.
538 v::CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset
539 # Replaced by push_dummy_code.
540 v::CALL_DUMMY_LENGTH:int:call_dummy_length
541 # NOTE: cagney/2002-11-24: This function with predicate has a valid
542 # (callable) initial value. As a consequence, even when the predicate
543 # is false, the corresponding function works. This simplifies the
544 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
545 # doesn't need to be modified.
546 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
547 # Replaced by push_dummy_code.
548 v::CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
549 # Replaced by push_dummy_code.
550 v::SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
551 # Replaced by push_dummy_code.
552 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
553 # Replaced by push_dummy_code.
554 F::FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
555 # This is a replacement for FIX_CALL_DUMMY et.al.
556 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
557 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
558 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
559 #
560 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
561 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
562 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
563 #
564 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
565 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
566 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
567 #
568 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
569 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
570 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
571 #
572 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
573 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
574 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
575 #
576 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
577 # Replaced by PUSH_DUMMY_CALL
578 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
579 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct regcache *regcache, CORE_ADDR dummy_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:regcache, dummy_addr, nargs, args, sp, struct_return, struct_addr
580 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
581 # NOTE: This can be handled directly in push_dummy_call.
582 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
583 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
584 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
585 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
586 #
587 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
588 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
589 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
590 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
591 #
592 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
593 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
594 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
595 #
596 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
597 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
598 #
599 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
600 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
601 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
602 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
603 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
604 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
605 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
606 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
607 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
608 #
609 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
610 #
611 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
612 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
613 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
614 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
615 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
616 # note, per UNWIND_PC's doco, that while the two have similar
617 # interfaces they have very different underlying implementations.
618 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
619 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
620 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
621 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
622 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
623 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
624 #
625 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
626 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
627 # NOTE: cagney/2003-03-24: This is better handled by PUSH_ARGUMENTS.
628 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
629 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
630 # FIXME: kettenis/2003-03-08: This should be replaced by a function
631 # parametrized with (at least) the regcache.
632 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
633 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
634 v:2:PARM_BOUNDARY:int:parm_boundary
635 #
636 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
637 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
638 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
639 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
640 # On some machines there are bits in addresses which are not really
641 # part of the address, but are used by the kernel, the hardware, etc.
642 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
643 # we get a "real" address such as one would find in a symbol table.
644 # This is used only for addresses of instructions, and even then I'm
645 # not sure it's used in all contexts. It exists to deal with there
646 # being a few stray bits in the PC which would mislead us, not as some
647 # sort of generic thing to handle alignment or segmentation (it's
648 # possible it should be in TARGET_READ_PC instead).
649 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
650 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
651 # ADDR_BITS_REMOVE.
652 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
653 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
654 # the target needs software single step. An ISA method to implement it.
655 #
656 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
657 # using the breakpoint system instead of blatting memory directly (as with rs6000).
658 #
659 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
660 # single step. If not, then implement single step using breakpoints.
661 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
662 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
663 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
664
665
666 # For SVR4 shared libraries, each call goes through a small piece of
667 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
668 # to nonzero if we are currently stopped in one of these.
669 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
670
671 # Some systems also have trampoline code for returning from shared libs.
672 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
673
674 # Sigtramp is a routine that the kernel calls (which then calls the
675 # signal handler). On most machines it is a library routine that is
676 # linked into the executable.
677 #
678 # This macro, given a program counter value and the name of the
679 # function in which that PC resides (which can be null if the name is
680 # not known), returns nonzero if the PC and name show that we are in
681 # sigtramp.
682 #
683 # On most machines just see if the name is sigtramp (and if we have
684 # no name, assume we are not in sigtramp).
685 #
686 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
687 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
688 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
689 # own local NAME lookup.
690 #
691 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
692 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
693 # does not.
694 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
695 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
696 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
697 # A target might have problems with watchpoints as soon as the stack
698 # frame of the current function has been destroyed. This mostly happens
699 # as the first action in a funtion's epilogue. in_function_epilogue_p()
700 # is defined to return a non-zero value if either the given addr is one
701 # instruction after the stack destroying instruction up to the trailing
702 # return instruction or if we can figure out that the stack frame has
703 # already been invalidated regardless of the value of addr. Targets
704 # which don't suffer from that problem could just let this functionality
705 # untouched.
706 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
707 # Given a vector of command-line arguments, return a newly allocated
708 # string which, when passed to the create_inferior function, will be
709 # parsed (on Unix systems, by the shell) to yield the same vector.
710 # This function should call error() if the argument vector is not
711 # representable for this target or if this target does not support
712 # command-line arguments.
713 # ARGC is the number of elements in the vector.
714 # ARGV is an array of strings, one per argument.
715 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
716 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
717 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
718 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
719 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
720 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
721 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
722 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
723 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
724 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
725 # Is a register in a group
726 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
727 EOF
728 }
729
730 #
731 # The .log file
732 #
733 exec > new-gdbarch.log
734 function_list | while do_read
735 do
736 cat <<EOF
737 ${class} ${macro}(${actual})
738 ${returntype} ${function} ($formal)${attrib}
739 EOF
740 for r in ${read}
741 do
742 eval echo \"\ \ \ \ ${r}=\${${r}}\"
743 done
744 if class_is_predicate_p && fallback_default_p
745 then
746 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
747 kill $$
748 exit 1
749 fi
750 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
751 then
752 echo "Error: postdefault is useless when invalid_p=0" 1>&2
753 kill $$
754 exit 1
755 fi
756 if class_is_multiarch_p
757 then
758 if class_is_predicate_p ; then :
759 elif test "x${predefault}" = "x"
760 then
761 echo "Error: pure multi-arch function must have a predefault" 1>&2
762 kill $$
763 exit 1
764 fi
765 fi
766 echo ""
767 done
768
769 exec 1>&2
770 compare_new gdbarch.log
771
772
773 copyright ()
774 {
775 cat <<EOF
776 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
777
778 /* Dynamic architecture support for GDB, the GNU debugger.
779 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
780
781 This file is part of GDB.
782
783 This program is free software; you can redistribute it and/or modify
784 it under the terms of the GNU General Public License as published by
785 the Free Software Foundation; either version 2 of the License, or
786 (at your option) any later version.
787
788 This program is distributed in the hope that it will be useful,
789 but WITHOUT ANY WARRANTY; without even the implied warranty of
790 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
791 GNU General Public License for more details.
792
793 You should have received a copy of the GNU General Public License
794 along with this program; if not, write to the Free Software
795 Foundation, Inc., 59 Temple Place - Suite 330,
796 Boston, MA 02111-1307, USA. */
797
798 /* This file was created with the aid of \`\`gdbarch.sh''.
799
800 The Bourne shell script \`\`gdbarch.sh'' creates the files
801 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
802 against the existing \`\`gdbarch.[hc]''. Any differences found
803 being reported.
804
805 If editing this file, please also run gdbarch.sh and merge any
806 changes into that script. Conversely, when making sweeping changes
807 to this file, modifying gdbarch.sh and using its output may prove
808 easier. */
809
810 EOF
811 }
812
813 #
814 # The .h file
815 #
816
817 exec > new-gdbarch.h
818 copyright
819 cat <<EOF
820 #ifndef GDBARCH_H
821 #define GDBARCH_H
822
823 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
824 #if !GDB_MULTI_ARCH
825 /* Pull in function declarations refered to, indirectly, via macros. */
826 #include "inferior.h" /* For unsigned_address_to_pointer(). */
827 #include "symfile.h" /* For entry_point_address(). */
828 #endif
829
830 struct floatformat;
831 struct ui_file;
832 struct frame_info;
833 struct value;
834 struct objfile;
835 struct minimal_symbol;
836 struct regcache;
837 struct reggroup;
838
839 extern struct gdbarch *current_gdbarch;
840
841
842 /* If any of the following are defined, the target wasn't correctly
843 converted. */
844
845 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
846 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
847 #endif
848 EOF
849
850 # function typedef's
851 printf "\n"
852 printf "\n"
853 printf "/* The following are pre-initialized by GDBARCH. */\n"
854 function_list | while do_read
855 do
856 if class_is_info_p
857 then
858 printf "\n"
859 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
860 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
861 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
862 printf "#error \"Non multi-arch definition of ${macro}\"\n"
863 printf "#endif\n"
864 printf "#if GDB_MULTI_ARCH\n"
865 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
866 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
867 printf "#endif\n"
868 printf "#endif\n"
869 fi
870 done
871
872 # function typedef's
873 printf "\n"
874 printf "\n"
875 printf "/* The following are initialized by the target dependent code. */\n"
876 function_list | while do_read
877 do
878 if [ -n "${comment}" ]
879 then
880 echo "${comment}" | sed \
881 -e '2 s,#,/*,' \
882 -e '3,$ s,#, ,' \
883 -e '$ s,$, */,'
884 fi
885 if class_is_multiarch_p
886 then
887 if class_is_predicate_p
888 then
889 printf "\n"
890 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
891 fi
892 else
893 if class_is_predicate_p
894 then
895 printf "\n"
896 printf "#if defined (${macro})\n"
897 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
898 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
899 printf "#if !defined (${macro}_P)\n"
900 printf "#define ${macro}_P() (1)\n"
901 printf "#endif\n"
902 printf "#endif\n"
903 printf "\n"
904 printf "/* Default predicate for non- multi-arch targets. */\n"
905 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
906 printf "#define ${macro}_P() (0)\n"
907 printf "#endif\n"
908 printf "\n"
909 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
910 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
911 printf "#error \"Non multi-arch definition of ${macro}\"\n"
912 printf "#endif\n"
913 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
914 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
915 printf "#endif\n"
916 fi
917 fi
918 if class_is_variable_p
919 then
920 if fallback_default_p || class_is_predicate_p
921 then
922 printf "\n"
923 printf "/* Default (value) for non- multi-arch platforms. */\n"
924 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
925 echo "#define ${macro} (${fallbackdefault})" \
926 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
927 printf "#endif\n"
928 fi
929 printf "\n"
930 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
931 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
932 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
933 printf "#error \"Non multi-arch definition of ${macro}\"\n"
934 printf "#endif\n"
935 if test "${level}" = ""
936 then
937 printf "#if !defined (${macro})\n"
938 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
939 printf "#endif\n"
940 else
941 printf "#if GDB_MULTI_ARCH\n"
942 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
943 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
944 printf "#endif\n"
945 printf "#endif\n"
946 fi
947 fi
948 if class_is_function_p
949 then
950 if class_is_multiarch_p ; then :
951 elif fallback_default_p || class_is_predicate_p
952 then
953 printf "\n"
954 printf "/* Default (function) for non- multi-arch platforms. */\n"
955 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
956 if [ "x${fallbackdefault}" = "x0" ]
957 then
958 if [ "x${actual}" = "x-" ]
959 then
960 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
961 else
962 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
963 fi
964 else
965 # FIXME: Should be passing current_gdbarch through!
966 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
967 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
968 fi
969 printf "#endif\n"
970 fi
971 printf "\n"
972 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
973 then
974 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
975 elif class_is_multiarch_p
976 then
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
978 else
979 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
980 fi
981 if [ "x${formal}" = "xvoid" ]
982 then
983 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
984 else
985 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
986 fi
987 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
988 if class_is_multiarch_p ; then :
989 else
990 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
991 printf "#error \"Non multi-arch definition of ${macro}\"\n"
992 printf "#endif\n"
993 printf "#if GDB_MULTI_ARCH\n"
994 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
995 if [ "x${actual}" = "x" ]
996 then
997 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
998 elif [ "x${actual}" = "x-" ]
999 then
1000 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1001 else
1002 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1003 fi
1004 printf "#endif\n"
1005 printf "#endif\n"
1006 fi
1007 fi
1008 done
1009
1010 # close it off
1011 cat <<EOF
1012
1013 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1014
1015
1016 /* Mechanism for co-ordinating the selection of a specific
1017 architecture.
1018
1019 GDB targets (*-tdep.c) can register an interest in a specific
1020 architecture. Other GDB components can register a need to maintain
1021 per-architecture data.
1022
1023 The mechanisms below ensures that there is only a loose connection
1024 between the set-architecture command and the various GDB
1025 components. Each component can independently register their need
1026 to maintain architecture specific data with gdbarch.
1027
1028 Pragmatics:
1029
1030 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1031 didn't scale.
1032
1033 The more traditional mega-struct containing architecture specific
1034 data for all the various GDB components was also considered. Since
1035 GDB is built from a variable number of (fairly independent)
1036 components it was determined that the global aproach was not
1037 applicable. */
1038
1039
1040 /* Register a new architectural family with GDB.
1041
1042 Register support for the specified ARCHITECTURE with GDB. When
1043 gdbarch determines that the specified architecture has been
1044 selected, the corresponding INIT function is called.
1045
1046 --
1047
1048 The INIT function takes two parameters: INFO which contains the
1049 information available to gdbarch about the (possibly new)
1050 architecture; ARCHES which is a list of the previously created
1051 \`\`struct gdbarch'' for this architecture.
1052
1053 The INFO parameter is, as far as possible, be pre-initialized with
1054 information obtained from INFO.ABFD or the previously selected
1055 architecture.
1056
1057 The ARCHES parameter is a linked list (sorted most recently used)
1058 of all the previously created architures for this architecture
1059 family. The (possibly NULL) ARCHES->gdbarch can used to access
1060 values from the previously selected architecture for this
1061 architecture family. The global \`\`current_gdbarch'' shall not be
1062 used.
1063
1064 The INIT function shall return any of: NULL - indicating that it
1065 doesn't recognize the selected architecture; an existing \`\`struct
1066 gdbarch'' from the ARCHES list - indicating that the new
1067 architecture is just a synonym for an earlier architecture (see
1068 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1069 - that describes the selected architecture (see gdbarch_alloc()).
1070
1071 The DUMP_TDEP function shall print out all target specific values.
1072 Care should be taken to ensure that the function works in both the
1073 multi-arch and non- multi-arch cases. */
1074
1075 struct gdbarch_list
1076 {
1077 struct gdbarch *gdbarch;
1078 struct gdbarch_list *next;
1079 };
1080
1081 struct gdbarch_info
1082 {
1083 /* Use default: NULL (ZERO). */
1084 const struct bfd_arch_info *bfd_arch_info;
1085
1086 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1087 int byte_order;
1088
1089 /* Use default: NULL (ZERO). */
1090 bfd *abfd;
1091
1092 /* Use default: NULL (ZERO). */
1093 struct gdbarch_tdep_info *tdep_info;
1094
1095 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1096 enum gdb_osabi osabi;
1097 };
1098
1099 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1100 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1101
1102 /* DEPRECATED - use gdbarch_register() */
1103 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1104
1105 extern void gdbarch_register (enum bfd_architecture architecture,
1106 gdbarch_init_ftype *,
1107 gdbarch_dump_tdep_ftype *);
1108
1109
1110 /* Return a freshly allocated, NULL terminated, array of the valid
1111 architecture names. Since architectures are registered during the
1112 _initialize phase this function only returns useful information
1113 once initialization has been completed. */
1114
1115 extern const char **gdbarch_printable_names (void);
1116
1117
1118 /* Helper function. Search the list of ARCHES for a GDBARCH that
1119 matches the information provided by INFO. */
1120
1121 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1122
1123
1124 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1125 basic initialization using values obtained from the INFO andTDEP
1126 parameters. set_gdbarch_*() functions are called to complete the
1127 initialization of the object. */
1128
1129 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1130
1131
1132 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1133 It is assumed that the caller freeds the \`\`struct
1134 gdbarch_tdep''. */
1135
1136 extern void gdbarch_free (struct gdbarch *);
1137
1138
1139 /* Helper function. Force an update of the current architecture.
1140
1141 The actual architecture selected is determined by INFO, \`\`(gdb) set
1142 architecture'' et.al., the existing architecture and BFD's default
1143 architecture. INFO should be initialized to zero and then selected
1144 fields should be updated.
1145
1146 Returns non-zero if the update succeeds */
1147
1148 extern int gdbarch_update_p (struct gdbarch_info info);
1149
1150
1151
1152 /* Register per-architecture data-pointer.
1153
1154 Reserve space for a per-architecture data-pointer. An identifier
1155 for the reserved data-pointer is returned. That identifer should
1156 be saved in a local static variable.
1157
1158 The per-architecture data-pointer is either initialized explicitly
1159 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1160 gdbarch_data()). FREE() is called to delete either an existing
1161 data-pointer overridden by set_gdbarch_data() or when the
1162 architecture object is being deleted.
1163
1164 When a previously created architecture is re-selected, the
1165 per-architecture data-pointer for that previous architecture is
1166 restored. INIT() is not re-called.
1167
1168 Multiple registrarants for any architecture are allowed (and
1169 strongly encouraged). */
1170
1171 struct gdbarch_data;
1172
1173 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1174 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1175 void *pointer);
1176 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1177 gdbarch_data_free_ftype *free);
1178 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1179 struct gdbarch_data *data,
1180 void *pointer);
1181
1182 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1183
1184
1185 /* Register per-architecture memory region.
1186
1187 Provide a memory-region swap mechanism. Per-architecture memory
1188 region are created. These memory regions are swapped whenever the
1189 architecture is changed. For a new architecture, the memory region
1190 is initialized with zero (0) and the INIT function is called.
1191
1192 Memory regions are swapped / initialized in the order that they are
1193 registered. NULL DATA and/or INIT values can be specified.
1194
1195 New code should use register_gdbarch_data(). */
1196
1197 typedef void (gdbarch_swap_ftype) (void);
1198 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1199 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1200
1201
1202
1203 /* The target-system-dependent byte order is dynamic */
1204
1205 extern int target_byte_order;
1206 #ifndef TARGET_BYTE_ORDER
1207 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1208 #endif
1209
1210 extern int target_byte_order_auto;
1211 #ifndef TARGET_BYTE_ORDER_AUTO
1212 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1213 #endif
1214
1215
1216
1217 /* The target-system-dependent BFD architecture is dynamic */
1218
1219 extern int target_architecture_auto;
1220 #ifndef TARGET_ARCHITECTURE_AUTO
1221 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1222 #endif
1223
1224 extern const struct bfd_arch_info *target_architecture;
1225 #ifndef TARGET_ARCHITECTURE
1226 #define TARGET_ARCHITECTURE (target_architecture + 0)
1227 #endif
1228
1229
1230 /* The target-system-dependent disassembler is semi-dynamic */
1231
1232 /* Use gdb_disassemble, and gdbarch_print_insn instead. */
1233 extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
1234
1235 /* Use set_gdbarch_print_insn instead. */
1236 extern disassemble_info deprecated_tm_print_insn_info;
1237
1238 /* Set the dynamic target-system-dependent parameters (architecture,
1239 byte-order, ...) using information found in the BFD */
1240
1241 extern void set_gdbarch_from_file (bfd *);
1242
1243
1244 /* Initialize the current architecture to the "first" one we find on
1245 our list. */
1246
1247 extern void initialize_current_architecture (void);
1248
1249 /* For non-multiarched targets, do any initialization of the default
1250 gdbarch object necessary after the _initialize_MODULE functions
1251 have run. */
1252 extern void initialize_non_multiarch (void);
1253
1254 /* gdbarch trace variable */
1255 extern int gdbarch_debug;
1256
1257 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1258
1259 #endif
1260 EOF
1261 exec 1>&2
1262 #../move-if-change new-gdbarch.h gdbarch.h
1263 compare_new gdbarch.h
1264
1265
1266 #
1267 # C file
1268 #
1269
1270 exec > new-gdbarch.c
1271 copyright
1272 cat <<EOF
1273
1274 #include "defs.h"
1275 #include "arch-utils.h"
1276
1277 #if GDB_MULTI_ARCH
1278 #include "gdbcmd.h"
1279 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1280 #else
1281 /* Just include everything in sight so that the every old definition
1282 of macro is visible. */
1283 #include "gdb_string.h"
1284 #include <ctype.h>
1285 #include "symtab.h"
1286 #include "frame.h"
1287 #include "inferior.h"
1288 #include "breakpoint.h"
1289 #include "gdb_wait.h"
1290 #include "gdbcore.h"
1291 #include "gdbcmd.h"
1292 #include "target.h"
1293 #include "gdbthread.h"
1294 #include "annotate.h"
1295 #include "symfile.h" /* for overlay functions */
1296 #include "value.h" /* For old tm.h/nm.h macros. */
1297 #endif
1298 #include "symcat.h"
1299
1300 #include "floatformat.h"
1301
1302 #include "gdb_assert.h"
1303 #include "gdb_string.h"
1304 #include "gdb-events.h"
1305 #include "reggroups.h"
1306 #include "osabi.h"
1307 #include "symfile.h" /* For entry_point_address. */
1308
1309 /* Static function declarations */
1310
1311 static void verify_gdbarch (struct gdbarch *gdbarch);
1312 static void alloc_gdbarch_data (struct gdbarch *);
1313 static void free_gdbarch_data (struct gdbarch *);
1314 static void init_gdbarch_swap (struct gdbarch *);
1315 static void clear_gdbarch_swap (struct gdbarch *);
1316 static void swapout_gdbarch_swap (struct gdbarch *);
1317 static void swapin_gdbarch_swap (struct gdbarch *);
1318
1319 /* Non-zero if we want to trace architecture code. */
1320
1321 #ifndef GDBARCH_DEBUG
1322 #define GDBARCH_DEBUG 0
1323 #endif
1324 int gdbarch_debug = GDBARCH_DEBUG;
1325
1326 EOF
1327
1328 # gdbarch open the gdbarch object
1329 printf "\n"
1330 printf "/* Maintain the struct gdbarch object */\n"
1331 printf "\n"
1332 printf "struct gdbarch\n"
1333 printf "{\n"
1334 printf " /* Has this architecture been fully initialized? */\n"
1335 printf " int initialized_p;\n"
1336 printf " /* basic architectural information */\n"
1337 function_list | while do_read
1338 do
1339 if class_is_info_p
1340 then
1341 printf " ${returntype} ${function};\n"
1342 fi
1343 done
1344 printf "\n"
1345 printf " /* target specific vector. */\n"
1346 printf " struct gdbarch_tdep *tdep;\n"
1347 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1348 printf "\n"
1349 printf " /* per-architecture data-pointers */\n"
1350 printf " unsigned nr_data;\n"
1351 printf " void **data;\n"
1352 printf "\n"
1353 printf " /* per-architecture swap-regions */\n"
1354 printf " struct gdbarch_swap *swap;\n"
1355 printf "\n"
1356 cat <<EOF
1357 /* Multi-arch values.
1358
1359 When extending this structure you must:
1360
1361 Add the field below.
1362
1363 Declare set/get functions and define the corresponding
1364 macro in gdbarch.h.
1365
1366 gdbarch_alloc(): If zero/NULL is not a suitable default,
1367 initialize the new field.
1368
1369 verify_gdbarch(): Confirm that the target updated the field
1370 correctly.
1371
1372 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1373 field is dumped out
1374
1375 \`\`startup_gdbarch()'': Append an initial value to the static
1376 variable (base values on the host's c-type system).
1377
1378 get_gdbarch(): Implement the set/get functions (probably using
1379 the macro's as shortcuts).
1380
1381 */
1382
1383 EOF
1384 function_list | while do_read
1385 do
1386 if class_is_variable_p
1387 then
1388 printf " ${returntype} ${function};\n"
1389 elif class_is_function_p
1390 then
1391 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1392 fi
1393 done
1394 printf "};\n"
1395
1396 # A pre-initialized vector
1397 printf "\n"
1398 printf "\n"
1399 cat <<EOF
1400 /* The default architecture uses host values (for want of a better
1401 choice). */
1402 EOF
1403 printf "\n"
1404 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1405 printf "\n"
1406 printf "struct gdbarch startup_gdbarch =\n"
1407 printf "{\n"
1408 printf " 1, /* Always initialized. */\n"
1409 printf " /* basic architecture information */\n"
1410 function_list | while do_read
1411 do
1412 if class_is_info_p
1413 then
1414 printf " ${staticdefault},\n"
1415 fi
1416 done
1417 cat <<EOF
1418 /* target specific vector and its dump routine */
1419 NULL, NULL,
1420 /*per-architecture data-pointers and swap regions */
1421 0, NULL, NULL,
1422 /* Multi-arch values */
1423 EOF
1424 function_list | while do_read
1425 do
1426 if class_is_function_p || class_is_variable_p
1427 then
1428 printf " ${staticdefault},\n"
1429 fi
1430 done
1431 cat <<EOF
1432 /* startup_gdbarch() */
1433 };
1434
1435 struct gdbarch *current_gdbarch = &startup_gdbarch;
1436
1437 /* Do any initialization needed for a non-multiarch configuration
1438 after the _initialize_MODULE functions have been run. */
1439 void
1440 initialize_non_multiarch (void)
1441 {
1442 alloc_gdbarch_data (&startup_gdbarch);
1443 /* Ensure that all swap areas are zeroed so that they again think
1444 they are starting from scratch. */
1445 clear_gdbarch_swap (&startup_gdbarch);
1446 init_gdbarch_swap (&startup_gdbarch);
1447 }
1448 EOF
1449
1450 # Create a new gdbarch struct
1451 printf "\n"
1452 printf "\n"
1453 cat <<EOF
1454 /* Create a new \`\`struct gdbarch'' based on information provided by
1455 \`\`struct gdbarch_info''. */
1456 EOF
1457 printf "\n"
1458 cat <<EOF
1459 struct gdbarch *
1460 gdbarch_alloc (const struct gdbarch_info *info,
1461 struct gdbarch_tdep *tdep)
1462 {
1463 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1464 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1465 the current local architecture and not the previous global
1466 architecture. This ensures that the new architectures initial
1467 values are not influenced by the previous architecture. Once
1468 everything is parameterised with gdbarch, this will go away. */
1469 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1470 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1471
1472 alloc_gdbarch_data (current_gdbarch);
1473
1474 current_gdbarch->tdep = tdep;
1475 EOF
1476 printf "\n"
1477 function_list | while do_read
1478 do
1479 if class_is_info_p
1480 then
1481 printf " current_gdbarch->${function} = info->${function};\n"
1482 fi
1483 done
1484 printf "\n"
1485 printf " /* Force the explicit initialization of these. */\n"
1486 function_list | while do_read
1487 do
1488 if class_is_function_p || class_is_variable_p
1489 then
1490 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1491 then
1492 printf " current_gdbarch->${function} = ${predefault};\n"
1493 fi
1494 fi
1495 done
1496 cat <<EOF
1497 /* gdbarch_alloc() */
1498
1499 return current_gdbarch;
1500 }
1501 EOF
1502
1503 # Free a gdbarch struct.
1504 printf "\n"
1505 printf "\n"
1506 cat <<EOF
1507 /* Free a gdbarch struct. This should never happen in normal
1508 operation --- once you've created a gdbarch, you keep it around.
1509 However, if an architecture's init function encounters an error
1510 building the structure, it may need to clean up a partially
1511 constructed gdbarch. */
1512
1513 void
1514 gdbarch_free (struct gdbarch *arch)
1515 {
1516 gdb_assert (arch != NULL);
1517 free_gdbarch_data (arch);
1518 xfree (arch);
1519 }
1520 EOF
1521
1522 # verify a new architecture
1523 printf "\n"
1524 printf "\n"
1525 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1526 printf "\n"
1527 cat <<EOF
1528 static void
1529 verify_gdbarch (struct gdbarch *gdbarch)
1530 {
1531 struct ui_file *log;
1532 struct cleanup *cleanups;
1533 long dummy;
1534 char *buf;
1535 /* Only perform sanity checks on a multi-arch target. */
1536 if (!GDB_MULTI_ARCH)
1537 return;
1538 log = mem_fileopen ();
1539 cleanups = make_cleanup_ui_file_delete (log);
1540 /* fundamental */
1541 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1542 fprintf_unfiltered (log, "\n\tbyte-order");
1543 if (gdbarch->bfd_arch_info == NULL)
1544 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1545 /* Check those that need to be defined for the given multi-arch level. */
1546 EOF
1547 function_list | while do_read
1548 do
1549 if class_is_function_p || class_is_variable_p
1550 then
1551 if [ "x${invalid_p}" = "x0" ]
1552 then
1553 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1554 elif class_is_predicate_p
1555 then
1556 printf " /* Skip verify of ${function}, has predicate */\n"
1557 # FIXME: See do_read for potential simplification
1558 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1559 then
1560 printf " if (${invalid_p})\n"
1561 printf " gdbarch->${function} = ${postdefault};\n"
1562 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1563 then
1564 printf " if (gdbarch->${function} == ${predefault})\n"
1565 printf " gdbarch->${function} = ${postdefault};\n"
1566 elif [ -n "${postdefault}" ]
1567 then
1568 printf " if (gdbarch->${function} == 0)\n"
1569 printf " gdbarch->${function} = ${postdefault};\n"
1570 elif [ -n "${invalid_p}" ]
1571 then
1572 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1573 printf " && (${invalid_p}))\n"
1574 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1575 elif [ -n "${predefault}" ]
1576 then
1577 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1578 printf " && (gdbarch->${function} == ${predefault}))\n"
1579 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1580 fi
1581 fi
1582 done
1583 cat <<EOF
1584 buf = ui_file_xstrdup (log, &dummy);
1585 make_cleanup (xfree, buf);
1586 if (strlen (buf) > 0)
1587 internal_error (__FILE__, __LINE__,
1588 "verify_gdbarch: the following are invalid ...%s",
1589 buf);
1590 do_cleanups (cleanups);
1591 }
1592 EOF
1593
1594 # dump the structure
1595 printf "\n"
1596 printf "\n"
1597 cat <<EOF
1598 /* Print out the details of the current architecture. */
1599
1600 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1601 just happens to match the global variable \`\`current_gdbarch''. That
1602 way macros refering to that variable get the local and not the global
1603 version - ulgh. Once everything is parameterised with gdbarch, this
1604 will go away. */
1605
1606 void
1607 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1608 {
1609 fprintf_unfiltered (file,
1610 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1611 GDB_MULTI_ARCH);
1612 EOF
1613 function_list | sort -t: -k 3 | while do_read
1614 do
1615 # First the predicate
1616 if class_is_predicate_p
1617 then
1618 if class_is_multiarch_p
1619 then
1620 printf " if (GDB_MULTI_ARCH)\n"
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1623 printf " gdbarch_${function}_p (current_gdbarch));\n"
1624 else
1625 printf "#ifdef ${macro}_P\n"
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1628 printf " \"${macro}_P()\",\n"
1629 printf " XSTRING (${macro}_P ()));\n"
1630 printf " fprintf_unfiltered (file,\n"
1631 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1632 printf " ${macro}_P ());\n"
1633 printf "#endif\n"
1634 fi
1635 fi
1636 # multiarch functions don't have macros.
1637 if class_is_multiarch_p
1638 then
1639 printf " if (GDB_MULTI_ARCH)\n"
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1642 printf " (long) current_gdbarch->${function});\n"
1643 continue
1644 fi
1645 # Print the macro definition.
1646 printf "#ifdef ${macro}\n"
1647 if [ "x${returntype}" = "xvoid" ]
1648 then
1649 printf "#if GDB_MULTI_ARCH\n"
1650 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1651 fi
1652 if class_is_function_p
1653 then
1654 printf " fprintf_unfiltered (file,\n"
1655 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1656 printf " \"${macro}(${actual})\",\n"
1657 printf " XSTRING (${macro} (${actual})));\n"
1658 else
1659 printf " fprintf_unfiltered (file,\n"
1660 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1661 printf " XSTRING (${macro}));\n"
1662 fi
1663 # Print the architecture vector value
1664 if [ "x${returntype}" = "xvoid" ]
1665 then
1666 printf "#endif\n"
1667 fi
1668 if [ "x${print_p}" = "x()" ]
1669 then
1670 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1671 elif [ "x${print_p}" = "x0" ]
1672 then
1673 printf " /* skip print of ${macro}, print_p == 0. */\n"
1674 elif [ -n "${print_p}" ]
1675 then
1676 printf " if (${print_p})\n"
1677 printf " fprintf_unfiltered (file,\n"
1678 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1679 printf " ${print});\n"
1680 elif class_is_function_p
1681 then
1682 printf " if (GDB_MULTI_ARCH)\n"
1683 printf " fprintf_unfiltered (file,\n"
1684 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1685 printf " (long) current_gdbarch->${function}\n"
1686 printf " /*${macro} ()*/);\n"
1687 else
1688 printf " fprintf_unfiltered (file,\n"
1689 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1690 printf " ${print});\n"
1691 fi
1692 printf "#endif\n"
1693 done
1694 cat <<EOF
1695 if (current_gdbarch->dump_tdep != NULL)
1696 current_gdbarch->dump_tdep (current_gdbarch, file);
1697 }
1698 EOF
1699
1700
1701 # GET/SET
1702 printf "\n"
1703 cat <<EOF
1704 struct gdbarch_tdep *
1705 gdbarch_tdep (struct gdbarch *gdbarch)
1706 {
1707 if (gdbarch_debug >= 2)
1708 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1709 return gdbarch->tdep;
1710 }
1711 EOF
1712 printf "\n"
1713 function_list | while do_read
1714 do
1715 if class_is_predicate_p
1716 then
1717 printf "\n"
1718 printf "int\n"
1719 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1720 printf "{\n"
1721 printf " gdb_assert (gdbarch != NULL);\n"
1722 if [ -n "${predicate}" ]
1723 then
1724 printf " return ${predicate};\n"
1725 else
1726 printf " return gdbarch->${function} != 0;\n"
1727 fi
1728 printf "}\n"
1729 fi
1730 if class_is_function_p
1731 then
1732 printf "\n"
1733 printf "${returntype}\n"
1734 if [ "x${formal}" = "xvoid" ]
1735 then
1736 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1737 else
1738 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1739 fi
1740 printf "{\n"
1741 printf " gdb_assert (gdbarch != NULL);\n"
1742 printf " if (gdbarch->${function} == 0)\n"
1743 printf " internal_error (__FILE__, __LINE__,\n"
1744 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1745 if class_is_predicate_p && test -n "${predicate}"
1746 then
1747 # Allow a call to a function with a predicate.
1748 printf " /* Ignore predicate (${predicate}). */\n"
1749 fi
1750 printf " if (gdbarch_debug >= 2)\n"
1751 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1752 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1753 then
1754 if class_is_multiarch_p
1755 then
1756 params="gdbarch"
1757 else
1758 params=""
1759 fi
1760 else
1761 if class_is_multiarch_p
1762 then
1763 params="gdbarch, ${actual}"
1764 else
1765 params="${actual}"
1766 fi
1767 fi
1768 if [ "x${returntype}" = "xvoid" ]
1769 then
1770 printf " gdbarch->${function} (${params});\n"
1771 else
1772 printf " return gdbarch->${function} (${params});\n"
1773 fi
1774 printf "}\n"
1775 printf "\n"
1776 printf "void\n"
1777 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1778 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1779 printf "{\n"
1780 printf " gdbarch->${function} = ${function};\n"
1781 printf "}\n"
1782 elif class_is_variable_p
1783 then
1784 printf "\n"
1785 printf "${returntype}\n"
1786 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1787 printf "{\n"
1788 printf " gdb_assert (gdbarch != NULL);\n"
1789 if [ "x${invalid_p}" = "x0" ]
1790 then
1791 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1792 elif [ -n "${invalid_p}" ]
1793 then
1794 printf " if (${invalid_p})\n"
1795 printf " internal_error (__FILE__, __LINE__,\n"
1796 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1797 elif [ -n "${predefault}" ]
1798 then
1799 printf " if (gdbarch->${function} == ${predefault})\n"
1800 printf " internal_error (__FILE__, __LINE__,\n"
1801 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1802 fi
1803 printf " if (gdbarch_debug >= 2)\n"
1804 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1805 printf " return gdbarch->${function};\n"
1806 printf "}\n"
1807 printf "\n"
1808 printf "void\n"
1809 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1810 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1811 printf "{\n"
1812 printf " gdbarch->${function} = ${function};\n"
1813 printf "}\n"
1814 elif class_is_info_p
1815 then
1816 printf "\n"
1817 printf "${returntype}\n"
1818 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1819 printf "{\n"
1820 printf " gdb_assert (gdbarch != NULL);\n"
1821 printf " if (gdbarch_debug >= 2)\n"
1822 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1823 printf " return gdbarch->${function};\n"
1824 printf "}\n"
1825 fi
1826 done
1827
1828 # All the trailing guff
1829 cat <<EOF
1830
1831
1832 /* Keep a registry of per-architecture data-pointers required by GDB
1833 modules. */
1834
1835 struct gdbarch_data
1836 {
1837 unsigned index;
1838 int init_p;
1839 gdbarch_data_init_ftype *init;
1840 gdbarch_data_free_ftype *free;
1841 };
1842
1843 struct gdbarch_data_registration
1844 {
1845 struct gdbarch_data *data;
1846 struct gdbarch_data_registration *next;
1847 };
1848
1849 struct gdbarch_data_registry
1850 {
1851 unsigned nr;
1852 struct gdbarch_data_registration *registrations;
1853 };
1854
1855 struct gdbarch_data_registry gdbarch_data_registry =
1856 {
1857 0, NULL,
1858 };
1859
1860 struct gdbarch_data *
1861 register_gdbarch_data (gdbarch_data_init_ftype *init,
1862 gdbarch_data_free_ftype *free)
1863 {
1864 struct gdbarch_data_registration **curr;
1865 /* Append the new registraration. */
1866 for (curr = &gdbarch_data_registry.registrations;
1867 (*curr) != NULL;
1868 curr = &(*curr)->next);
1869 (*curr) = XMALLOC (struct gdbarch_data_registration);
1870 (*curr)->next = NULL;
1871 (*curr)->data = XMALLOC (struct gdbarch_data);
1872 (*curr)->data->index = gdbarch_data_registry.nr++;
1873 (*curr)->data->init = init;
1874 (*curr)->data->init_p = 1;
1875 (*curr)->data->free = free;
1876 return (*curr)->data;
1877 }
1878
1879
1880 /* Create/delete the gdbarch data vector. */
1881
1882 static void
1883 alloc_gdbarch_data (struct gdbarch *gdbarch)
1884 {
1885 gdb_assert (gdbarch->data == NULL);
1886 gdbarch->nr_data = gdbarch_data_registry.nr;
1887 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1888 }
1889
1890 static void
1891 free_gdbarch_data (struct gdbarch *gdbarch)
1892 {
1893 struct gdbarch_data_registration *rego;
1894 gdb_assert (gdbarch->data != NULL);
1895 for (rego = gdbarch_data_registry.registrations;
1896 rego != NULL;
1897 rego = rego->next)
1898 {
1899 struct gdbarch_data *data = rego->data;
1900 gdb_assert (data->index < gdbarch->nr_data);
1901 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1902 {
1903 data->free (gdbarch, gdbarch->data[data->index]);
1904 gdbarch->data[data->index] = NULL;
1905 }
1906 }
1907 xfree (gdbarch->data);
1908 gdbarch->data = NULL;
1909 }
1910
1911
1912 /* Initialize the current value of the specified per-architecture
1913 data-pointer. */
1914
1915 void
1916 set_gdbarch_data (struct gdbarch *gdbarch,
1917 struct gdbarch_data *data,
1918 void *pointer)
1919 {
1920 gdb_assert (data->index < gdbarch->nr_data);
1921 if (gdbarch->data[data->index] != NULL)
1922 {
1923 gdb_assert (data->free != NULL);
1924 data->free (gdbarch, gdbarch->data[data->index]);
1925 }
1926 gdbarch->data[data->index] = pointer;
1927 }
1928
1929 /* Return the current value of the specified per-architecture
1930 data-pointer. */
1931
1932 void *
1933 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1934 {
1935 gdb_assert (data->index < gdbarch->nr_data);
1936 /* The data-pointer isn't initialized, call init() to get a value but
1937 only if the architecture initializaiton has completed. Otherwise
1938 punt - hope that the caller knows what they are doing. */
1939 if (gdbarch->data[data->index] == NULL
1940 && gdbarch->initialized_p)
1941 {
1942 /* Be careful to detect an initialization cycle. */
1943 gdb_assert (data->init_p);
1944 data->init_p = 0;
1945 gdb_assert (data->init != NULL);
1946 gdbarch->data[data->index] = data->init (gdbarch);
1947 data->init_p = 1;
1948 gdb_assert (gdbarch->data[data->index] != NULL);
1949 }
1950 return gdbarch->data[data->index];
1951 }
1952
1953
1954
1955 /* Keep a registry of swapped data required by GDB modules. */
1956
1957 struct gdbarch_swap
1958 {
1959 void *swap;
1960 struct gdbarch_swap_registration *source;
1961 struct gdbarch_swap *next;
1962 };
1963
1964 struct gdbarch_swap_registration
1965 {
1966 void *data;
1967 unsigned long sizeof_data;
1968 gdbarch_swap_ftype *init;
1969 struct gdbarch_swap_registration *next;
1970 };
1971
1972 struct gdbarch_swap_registry
1973 {
1974 int nr;
1975 struct gdbarch_swap_registration *registrations;
1976 };
1977
1978 struct gdbarch_swap_registry gdbarch_swap_registry =
1979 {
1980 0, NULL,
1981 };
1982
1983 void
1984 register_gdbarch_swap (void *data,
1985 unsigned long sizeof_data,
1986 gdbarch_swap_ftype *init)
1987 {
1988 struct gdbarch_swap_registration **rego;
1989 for (rego = &gdbarch_swap_registry.registrations;
1990 (*rego) != NULL;
1991 rego = &(*rego)->next);
1992 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1993 (*rego)->next = NULL;
1994 (*rego)->init = init;
1995 (*rego)->data = data;
1996 (*rego)->sizeof_data = sizeof_data;
1997 }
1998
1999 static void
2000 clear_gdbarch_swap (struct gdbarch *gdbarch)
2001 {
2002 struct gdbarch_swap *curr;
2003 for (curr = gdbarch->swap;
2004 curr != NULL;
2005 curr = curr->next)
2006 {
2007 memset (curr->source->data, 0, curr->source->sizeof_data);
2008 }
2009 }
2010
2011 static void
2012 init_gdbarch_swap (struct gdbarch *gdbarch)
2013 {
2014 struct gdbarch_swap_registration *rego;
2015 struct gdbarch_swap **curr = &gdbarch->swap;
2016 for (rego = gdbarch_swap_registry.registrations;
2017 rego != NULL;
2018 rego = rego->next)
2019 {
2020 if (rego->data != NULL)
2021 {
2022 (*curr) = XMALLOC (struct gdbarch_swap);
2023 (*curr)->source = rego;
2024 (*curr)->swap = xmalloc (rego->sizeof_data);
2025 (*curr)->next = NULL;
2026 curr = &(*curr)->next;
2027 }
2028 if (rego->init != NULL)
2029 rego->init ();
2030 }
2031 }
2032
2033 static void
2034 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2035 {
2036 struct gdbarch_swap *curr;
2037 for (curr = gdbarch->swap;
2038 curr != NULL;
2039 curr = curr->next)
2040 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2041 }
2042
2043 static void
2044 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2045 {
2046 struct gdbarch_swap *curr;
2047 for (curr = gdbarch->swap;
2048 curr != NULL;
2049 curr = curr->next)
2050 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2051 }
2052
2053
2054 /* Keep a registry of the architectures known by GDB. */
2055
2056 struct gdbarch_registration
2057 {
2058 enum bfd_architecture bfd_architecture;
2059 gdbarch_init_ftype *init;
2060 gdbarch_dump_tdep_ftype *dump_tdep;
2061 struct gdbarch_list *arches;
2062 struct gdbarch_registration *next;
2063 };
2064
2065 static struct gdbarch_registration *gdbarch_registry = NULL;
2066
2067 static void
2068 append_name (const char ***buf, int *nr, const char *name)
2069 {
2070 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2071 (*buf)[*nr] = name;
2072 *nr += 1;
2073 }
2074
2075 const char **
2076 gdbarch_printable_names (void)
2077 {
2078 if (GDB_MULTI_ARCH)
2079 {
2080 /* Accumulate a list of names based on the registed list of
2081 architectures. */
2082 enum bfd_architecture a;
2083 int nr_arches = 0;
2084 const char **arches = NULL;
2085 struct gdbarch_registration *rego;
2086 for (rego = gdbarch_registry;
2087 rego != NULL;
2088 rego = rego->next)
2089 {
2090 const struct bfd_arch_info *ap;
2091 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2092 if (ap == NULL)
2093 internal_error (__FILE__, __LINE__,
2094 "gdbarch_architecture_names: multi-arch unknown");
2095 do
2096 {
2097 append_name (&arches, &nr_arches, ap->printable_name);
2098 ap = ap->next;
2099 }
2100 while (ap != NULL);
2101 }
2102 append_name (&arches, &nr_arches, NULL);
2103 return arches;
2104 }
2105 else
2106 /* Just return all the architectures that BFD knows. Assume that
2107 the legacy architecture framework supports them. */
2108 return bfd_arch_list ();
2109 }
2110
2111
2112 void
2113 gdbarch_register (enum bfd_architecture bfd_architecture,
2114 gdbarch_init_ftype *init,
2115 gdbarch_dump_tdep_ftype *dump_tdep)
2116 {
2117 struct gdbarch_registration **curr;
2118 const struct bfd_arch_info *bfd_arch_info;
2119 /* Check that BFD recognizes this architecture */
2120 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2121 if (bfd_arch_info == NULL)
2122 {
2123 internal_error (__FILE__, __LINE__,
2124 "gdbarch: Attempt to register unknown architecture (%d)",
2125 bfd_architecture);
2126 }
2127 /* Check that we haven't seen this architecture before */
2128 for (curr = &gdbarch_registry;
2129 (*curr) != NULL;
2130 curr = &(*curr)->next)
2131 {
2132 if (bfd_architecture == (*curr)->bfd_architecture)
2133 internal_error (__FILE__, __LINE__,
2134 "gdbarch: Duplicate registraration of architecture (%s)",
2135 bfd_arch_info->printable_name);
2136 }
2137 /* log it */
2138 if (gdbarch_debug)
2139 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2140 bfd_arch_info->printable_name,
2141 (long) init);
2142 /* Append it */
2143 (*curr) = XMALLOC (struct gdbarch_registration);
2144 (*curr)->bfd_architecture = bfd_architecture;
2145 (*curr)->init = init;
2146 (*curr)->dump_tdep = dump_tdep;
2147 (*curr)->arches = NULL;
2148 (*curr)->next = NULL;
2149 /* When non- multi-arch, install whatever target dump routine we've
2150 been provided - hopefully that routine has been written correctly
2151 and works regardless of multi-arch. */
2152 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2153 && startup_gdbarch.dump_tdep == NULL)
2154 startup_gdbarch.dump_tdep = dump_tdep;
2155 }
2156
2157 void
2158 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2159 gdbarch_init_ftype *init)
2160 {
2161 gdbarch_register (bfd_architecture, init, NULL);
2162 }
2163
2164
2165 /* Look for an architecture using gdbarch_info. Base search on only
2166 BFD_ARCH_INFO and BYTE_ORDER. */
2167
2168 struct gdbarch_list *
2169 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2170 const struct gdbarch_info *info)
2171 {
2172 for (; arches != NULL; arches = arches->next)
2173 {
2174 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2175 continue;
2176 if (info->byte_order != arches->gdbarch->byte_order)
2177 continue;
2178 if (info->osabi != arches->gdbarch->osabi)
2179 continue;
2180 return arches;
2181 }
2182 return NULL;
2183 }
2184
2185
2186 /* Update the current architecture. Return ZERO if the update request
2187 failed. */
2188
2189 int
2190 gdbarch_update_p (struct gdbarch_info info)
2191 {
2192 struct gdbarch *new_gdbarch;
2193 struct gdbarch *old_gdbarch;
2194 struct gdbarch_registration *rego;
2195
2196 /* Fill in missing parts of the INFO struct using a number of
2197 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2198
2199 /* \`\`(gdb) set architecture ...'' */
2200 if (info.bfd_arch_info == NULL
2201 && !TARGET_ARCHITECTURE_AUTO)
2202 info.bfd_arch_info = TARGET_ARCHITECTURE;
2203 if (info.bfd_arch_info == NULL
2204 && info.abfd != NULL
2205 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2206 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2207 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2208 if (info.bfd_arch_info == NULL)
2209 info.bfd_arch_info = TARGET_ARCHITECTURE;
2210
2211 /* \`\`(gdb) set byte-order ...'' */
2212 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2213 && !TARGET_BYTE_ORDER_AUTO)
2214 info.byte_order = TARGET_BYTE_ORDER;
2215 /* From the INFO struct. */
2216 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2217 && info.abfd != NULL)
2218 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2219 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2220 : BFD_ENDIAN_UNKNOWN);
2221 /* From the current target. */
2222 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2223 info.byte_order = TARGET_BYTE_ORDER;
2224
2225 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2226 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2227 info.osabi = gdbarch_lookup_osabi (info.abfd);
2228 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2229 info.osabi = current_gdbarch->osabi;
2230
2231 /* Must have found some sort of architecture. */
2232 gdb_assert (info.bfd_arch_info != NULL);
2233
2234 if (gdbarch_debug)
2235 {
2236 fprintf_unfiltered (gdb_stdlog,
2237 "gdbarch_update: info.bfd_arch_info %s\n",
2238 (info.bfd_arch_info != NULL
2239 ? info.bfd_arch_info->printable_name
2240 : "(null)"));
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_update: info.byte_order %d (%s)\n",
2243 info.byte_order,
2244 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2245 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2246 : "default"));
2247 fprintf_unfiltered (gdb_stdlog,
2248 "gdbarch_update: info.osabi %d (%s)\n",
2249 info.osabi, gdbarch_osabi_name (info.osabi));
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_update: info.abfd 0x%lx\n",
2252 (long) info.abfd);
2253 fprintf_unfiltered (gdb_stdlog,
2254 "gdbarch_update: info.tdep_info 0x%lx\n",
2255 (long) info.tdep_info);
2256 }
2257
2258 /* Find the target that knows about this architecture. */
2259 for (rego = gdbarch_registry;
2260 rego != NULL;
2261 rego = rego->next)
2262 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2263 break;
2264 if (rego == NULL)
2265 {
2266 if (gdbarch_debug)
2267 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2268 return 0;
2269 }
2270
2271 /* Swap the data belonging to the old target out setting the
2272 installed data to zero. This stops the ->init() function trying
2273 to refer to the previous architecture's global data structures. */
2274 swapout_gdbarch_swap (current_gdbarch);
2275 clear_gdbarch_swap (current_gdbarch);
2276
2277 /* Save the previously selected architecture, setting the global to
2278 NULL. This stops ->init() trying to use the previous
2279 architecture's configuration. The previous architecture may not
2280 even be of the same architecture family. The most recent
2281 architecture of the same family is found at the head of the
2282 rego->arches list. */
2283 old_gdbarch = current_gdbarch;
2284 current_gdbarch = NULL;
2285
2286 /* Ask the target for a replacement architecture. */
2287 new_gdbarch = rego->init (info, rego->arches);
2288
2289 /* Did the target like it? No. Reject the change and revert to the
2290 old architecture. */
2291 if (new_gdbarch == NULL)
2292 {
2293 if (gdbarch_debug)
2294 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2295 swapin_gdbarch_swap (old_gdbarch);
2296 current_gdbarch = old_gdbarch;
2297 return 0;
2298 }
2299
2300 /* Did the architecture change? No. Oops, put the old architecture
2301 back. */
2302 if (old_gdbarch == new_gdbarch)
2303 {
2304 if (gdbarch_debug)
2305 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2306 (long) new_gdbarch,
2307 new_gdbarch->bfd_arch_info->printable_name);
2308 swapin_gdbarch_swap (old_gdbarch);
2309 current_gdbarch = old_gdbarch;
2310 return 1;
2311 }
2312
2313 /* Is this a pre-existing architecture? Yes. Move it to the front
2314 of the list of architectures (keeping the list sorted Most
2315 Recently Used) and then copy it in. */
2316 {
2317 struct gdbarch_list **list;
2318 for (list = &rego->arches;
2319 (*list) != NULL;
2320 list = &(*list)->next)
2321 {
2322 if ((*list)->gdbarch == new_gdbarch)
2323 {
2324 struct gdbarch_list *this;
2325 if (gdbarch_debug)
2326 fprintf_unfiltered (gdb_stdlog,
2327 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2328 (long) new_gdbarch,
2329 new_gdbarch->bfd_arch_info->printable_name);
2330 /* Unlink this. */
2331 this = (*list);
2332 (*list) = this->next;
2333 /* Insert in the front. */
2334 this->next = rego->arches;
2335 rego->arches = this;
2336 /* Copy the new architecture in. */
2337 current_gdbarch = new_gdbarch;
2338 swapin_gdbarch_swap (new_gdbarch);
2339 architecture_changed_event ();
2340 return 1;
2341 }
2342 }
2343 }
2344
2345 /* Prepend this new architecture to the architecture list (keep the
2346 list sorted Most Recently Used). */
2347 {
2348 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2349 this->next = rego->arches;
2350 this->gdbarch = new_gdbarch;
2351 rego->arches = this;
2352 }
2353
2354 /* Switch to this new architecture marking it initialized. */
2355 current_gdbarch = new_gdbarch;
2356 current_gdbarch->initialized_p = 1;
2357 if (gdbarch_debug)
2358 {
2359 fprintf_unfiltered (gdb_stdlog,
2360 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2361 (long) new_gdbarch,
2362 new_gdbarch->bfd_arch_info->printable_name);
2363 }
2364
2365 /* Check that the newly installed architecture is valid. Plug in
2366 any post init values. */
2367 new_gdbarch->dump_tdep = rego->dump_tdep;
2368 verify_gdbarch (new_gdbarch);
2369
2370 /* Initialize the per-architecture memory (swap) areas.
2371 CURRENT_GDBARCH must be update before these modules are
2372 called. */
2373 init_gdbarch_swap (new_gdbarch);
2374
2375 /* Initialize the per-architecture data. CURRENT_GDBARCH
2376 must be updated before these modules are called. */
2377 architecture_changed_event ();
2378
2379 if (gdbarch_debug)
2380 gdbarch_dump (current_gdbarch, gdb_stdlog);
2381
2382 return 1;
2383 }
2384
2385
2386 /* Disassembler */
2387
2388 /* Pointer to the target-dependent disassembly function. */
2389 int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
2390
2391 extern void _initialize_gdbarch (void);
2392
2393 void
2394 _initialize_gdbarch (void)
2395 {
2396 struct cmd_list_element *c;
2397
2398 add_show_from_set (add_set_cmd ("arch",
2399 class_maintenance,
2400 var_zinteger,
2401 (char *)&gdbarch_debug,
2402 "Set architecture debugging.\\n\\
2403 When non-zero, architecture debugging is enabled.", &setdebuglist),
2404 &showdebuglist);
2405 c = add_set_cmd ("archdebug",
2406 class_maintenance,
2407 var_zinteger,
2408 (char *)&gdbarch_debug,
2409 "Set architecture debugging.\\n\\
2410 When non-zero, architecture debugging is enabled.", &setlist);
2411
2412 deprecate_cmd (c, "set debug arch");
2413 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2414 }
2415 EOF
2416
2417 # close things off
2418 exec 1>&2
2419 #../move-if-change new-gdbarch.c gdbarch.c
2420 compare_new gdbarch.c
This page took 0.103663 seconds and 3 git commands to generate.