common/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009, 2010 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
589
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
593
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
600
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
607
608 # How the core_stratum layer converts a PTID from a core file to a
609 # string.
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
611
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
617 # set this to one.
618 v:int:vtable_function_descriptors:::0:0::0
619
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
623
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
626
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
629
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
632 #
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
636 #
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
641 #
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
644 #
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
648 #
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
651 #
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
654 # here.
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657 # Return true if GDB should use hardware single-stepping to execute
658 # the displaced instruction identified by CLOSURE. If false,
659 # GDB will simply restart execution at the displaced instruction
660 # location, and it is up to the target to ensure GDB will receive
661 # control again (e.g. by placing a software breakpoint instruction
662 # into the displaced instruction buffer).
663 #
664 # The default implementation returns false on all targets that
665 # provide a gdbarch_software_single_step routine, and true otherwise.
666 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
667
668 # Fix up the state resulting from successfully single-stepping a
669 # displaced instruction, to give the result we would have gotten from
670 # stepping the instruction in its original location.
671 #
672 # REGS is the register state resulting from single-stepping the
673 # displaced instruction.
674 #
675 # CLOSURE is the result from the matching call to
676 # gdbarch_displaced_step_copy_insn.
677 #
678 # If you provide gdbarch_displaced_step_copy_insn.but not this
679 # function, then GDB assumes that no fixup is needed after
680 # single-stepping the instruction.
681 #
682 # For a general explanation of displaced stepping and how GDB uses it,
683 # see the comments in infrun.c.
684 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
685
686 # Free a closure returned by gdbarch_displaced_step_copy_insn.
687 #
688 # If you provide gdbarch_displaced_step_copy_insn, you must provide
689 # this function as well.
690 #
691 # If your architecture uses closures that don't need to be freed, then
692 # you can use simple_displaced_step_free_closure here.
693 #
694 # For a general explanation of displaced stepping and how GDB uses it,
695 # see the comments in infrun.c.
696 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
697
698 # Return the address of an appropriate place to put displaced
699 # instructions while we step over them. There need only be one such
700 # place, since we're only stepping one thread over a breakpoint at a
701 # time.
702 #
703 # For a general explanation of displaced stepping and how GDB uses it,
704 # see the comments in infrun.c.
705 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
706
707 # Refresh overlay mapped state for section OSECT.
708 F:void:overlay_update:struct obj_section *osect:osect
709
710 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
711
712 # Handle special encoding of static variables in stabs debug info.
713 F:char *:static_transform_name:char *name:name
714 # Set if the address in N_SO or N_FUN stabs may be zero.
715 v:int:sofun_address_maybe_missing:::0:0::0
716
717 # Parse the instruction at ADDR storing in the record execution log
718 # the registers REGCACHE and memory ranges that will be affected when
719 # the instruction executes, along with their current values.
720 # Return -1 if something goes wrong, 0 otherwise.
721 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
722
723 # Save process state after a signal.
724 # Return -1 if something goes wrong, 0 otherwise.
725 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
726
727 # Signal translation: translate inferior's signal (host's) number into
728 # GDB's representation.
729 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
730 # Signal translation: translate GDB's signal number into inferior's host
731 # signal number.
732 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
733
734 # Extra signal info inspection.
735 #
736 # Return a type suitable to inspect extra signal information.
737 M:struct type *:get_siginfo_type:void:
738
739 # Record architecture-specific information from the symbol table.
740 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
741
742 # Function for the 'catch syscall' feature.
743
744 # Get architecture-specific system calls information from registers.
745 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
746
747 # True if the list of shared libraries is one and only for all
748 # processes, as opposed to a list of shared libraries per inferior.
749 # This usually means that all processes, although may or may not share
750 # an address space, will see the same set of symbols at the same
751 # addresses.
752 v:int:has_global_solist:::0:0::0
753
754 # On some targets, even though each inferior has its own private
755 # address space, the debug interface takes care of making breakpoints
756 # visible to all address spaces automatically. For such cases,
757 # this property should be set to true.
758 v:int:has_global_breakpoints:::0:0::0
759
760 # True if inferiors share an address space (e.g., uClinux).
761 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
762
763 # True if a fast tracepoint can be set at an address.
764 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
765 EOF
766 }
767
768 #
769 # The .log file
770 #
771 exec > new-gdbarch.log
772 function_list | while do_read
773 do
774 cat <<EOF
775 ${class} ${returntype} ${function} ($formal)
776 EOF
777 for r in ${read}
778 do
779 eval echo \"\ \ \ \ ${r}=\${${r}}\"
780 done
781 if class_is_predicate_p && fallback_default_p
782 then
783 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
784 kill $$
785 exit 1
786 fi
787 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
788 then
789 echo "Error: postdefault is useless when invalid_p=0" 1>&2
790 kill $$
791 exit 1
792 fi
793 if class_is_multiarch_p
794 then
795 if class_is_predicate_p ; then :
796 elif test "x${predefault}" = "x"
797 then
798 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
799 kill $$
800 exit 1
801 fi
802 fi
803 echo ""
804 done
805
806 exec 1>&2
807 compare_new gdbarch.log
808
809
810 copyright ()
811 {
812 cat <<EOF
813 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
814
815 /* Dynamic architecture support for GDB, the GNU debugger.
816
817 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
818 2007, 2008, 2009 Free Software Foundation, Inc.
819
820 This file is part of GDB.
821
822 This program is free software; you can redistribute it and/or modify
823 it under the terms of the GNU General Public License as published by
824 the Free Software Foundation; either version 3 of the License, or
825 (at your option) any later version.
826
827 This program is distributed in the hope that it will be useful,
828 but WITHOUT ANY WARRANTY; without even the implied warranty of
829 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
830 GNU General Public License for more details.
831
832 You should have received a copy of the GNU General Public License
833 along with this program. If not, see <http://www.gnu.org/licenses/>. */
834
835 /* This file was created with the aid of \`\`gdbarch.sh''.
836
837 The Bourne shell script \`\`gdbarch.sh'' creates the files
838 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
839 against the existing \`\`gdbarch.[hc]''. Any differences found
840 being reported.
841
842 If editing this file, please also run gdbarch.sh and merge any
843 changes into that script. Conversely, when making sweeping changes
844 to this file, modifying gdbarch.sh and using its output may prove
845 easier. */
846
847 EOF
848 }
849
850 #
851 # The .h file
852 #
853
854 exec > new-gdbarch.h
855 copyright
856 cat <<EOF
857 #ifndef GDBARCH_H
858 #define GDBARCH_H
859
860 struct floatformat;
861 struct ui_file;
862 struct frame_info;
863 struct value;
864 struct objfile;
865 struct obj_section;
866 struct minimal_symbol;
867 struct regcache;
868 struct reggroup;
869 struct regset;
870 struct disassemble_info;
871 struct target_ops;
872 struct obstack;
873 struct bp_target_info;
874 struct target_desc;
875 struct displaced_step_closure;
876 struct core_regset_section;
877 struct syscall;
878
879 /* The architecture associated with the connection to the target.
880
881 The architecture vector provides some information that is really
882 a property of the target: The layout of certain packets, for instance;
883 or the solib_ops vector. Etc. To differentiate architecture accesses
884 to per-target properties from per-thread/per-frame/per-objfile properties,
885 accesses to per-target properties should be made through target_gdbarch.
886
887 Eventually, when support for multiple targets is implemented in
888 GDB, this global should be made target-specific. */
889 extern struct gdbarch *target_gdbarch;
890 EOF
891
892 # function typedef's
893 printf "\n"
894 printf "\n"
895 printf "/* The following are pre-initialized by GDBARCH. */\n"
896 function_list | while do_read
897 do
898 if class_is_info_p
899 then
900 printf "\n"
901 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
902 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
903 fi
904 done
905
906 # function typedef's
907 printf "\n"
908 printf "\n"
909 printf "/* The following are initialized by the target dependent code. */\n"
910 function_list | while do_read
911 do
912 if [ -n "${comment}" ]
913 then
914 echo "${comment}" | sed \
915 -e '2 s,#,/*,' \
916 -e '3,$ s,#, ,' \
917 -e '$ s,$, */,'
918 fi
919
920 if class_is_predicate_p
921 then
922 printf "\n"
923 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
924 fi
925 if class_is_variable_p
926 then
927 printf "\n"
928 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
929 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
930 fi
931 if class_is_function_p
932 then
933 printf "\n"
934 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
935 then
936 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
937 elif class_is_multiarch_p
938 then
939 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
940 else
941 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
942 fi
943 if [ "x${formal}" = "xvoid" ]
944 then
945 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
946 else
947 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
948 fi
949 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
950 fi
951 done
952
953 # close it off
954 cat <<EOF
955
956 /* Definition for an unknown syscall, used basically in error-cases. */
957 #define UNKNOWN_SYSCALL (-1)
958
959 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
960
961
962 /* Mechanism for co-ordinating the selection of a specific
963 architecture.
964
965 GDB targets (*-tdep.c) can register an interest in a specific
966 architecture. Other GDB components can register a need to maintain
967 per-architecture data.
968
969 The mechanisms below ensures that there is only a loose connection
970 between the set-architecture command and the various GDB
971 components. Each component can independently register their need
972 to maintain architecture specific data with gdbarch.
973
974 Pragmatics:
975
976 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
977 didn't scale.
978
979 The more traditional mega-struct containing architecture specific
980 data for all the various GDB components was also considered. Since
981 GDB is built from a variable number of (fairly independent)
982 components it was determined that the global aproach was not
983 applicable. */
984
985
986 /* Register a new architectural family with GDB.
987
988 Register support for the specified ARCHITECTURE with GDB. When
989 gdbarch determines that the specified architecture has been
990 selected, the corresponding INIT function is called.
991
992 --
993
994 The INIT function takes two parameters: INFO which contains the
995 information available to gdbarch about the (possibly new)
996 architecture; ARCHES which is a list of the previously created
997 \`\`struct gdbarch'' for this architecture.
998
999 The INFO parameter is, as far as possible, be pre-initialized with
1000 information obtained from INFO.ABFD or the global defaults.
1001
1002 The ARCHES parameter is a linked list (sorted most recently used)
1003 of all the previously created architures for this architecture
1004 family. The (possibly NULL) ARCHES->gdbarch can used to access
1005 values from the previously selected architecture for this
1006 architecture family.
1007
1008 The INIT function shall return any of: NULL - indicating that it
1009 doesn't recognize the selected architecture; an existing \`\`struct
1010 gdbarch'' from the ARCHES list - indicating that the new
1011 architecture is just a synonym for an earlier architecture (see
1012 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1013 - that describes the selected architecture (see gdbarch_alloc()).
1014
1015 The DUMP_TDEP function shall print out all target specific values.
1016 Care should be taken to ensure that the function works in both the
1017 multi-arch and non- multi-arch cases. */
1018
1019 struct gdbarch_list
1020 {
1021 struct gdbarch *gdbarch;
1022 struct gdbarch_list *next;
1023 };
1024
1025 struct gdbarch_info
1026 {
1027 /* Use default: NULL (ZERO). */
1028 const struct bfd_arch_info *bfd_arch_info;
1029
1030 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1031 int byte_order;
1032
1033 int byte_order_for_code;
1034
1035 /* Use default: NULL (ZERO). */
1036 bfd *abfd;
1037
1038 /* Use default: NULL (ZERO). */
1039 struct gdbarch_tdep_info *tdep_info;
1040
1041 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1042 enum gdb_osabi osabi;
1043
1044 /* Use default: NULL (ZERO). */
1045 const struct target_desc *target_desc;
1046 };
1047
1048 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1049 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1050
1051 /* DEPRECATED - use gdbarch_register() */
1052 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1053
1054 extern void gdbarch_register (enum bfd_architecture architecture,
1055 gdbarch_init_ftype *,
1056 gdbarch_dump_tdep_ftype *);
1057
1058
1059 /* Return a freshly allocated, NULL terminated, array of the valid
1060 architecture names. Since architectures are registered during the
1061 _initialize phase this function only returns useful information
1062 once initialization has been completed. */
1063
1064 extern const char **gdbarch_printable_names (void);
1065
1066
1067 /* Helper function. Search the list of ARCHES for a GDBARCH that
1068 matches the information provided by INFO. */
1069
1070 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1071
1072
1073 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1074 basic initialization using values obtained from the INFO and TDEP
1075 parameters. set_gdbarch_*() functions are called to complete the
1076 initialization of the object. */
1077
1078 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1079
1080
1081 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1082 It is assumed that the caller freeds the \`\`struct
1083 gdbarch_tdep''. */
1084
1085 extern void gdbarch_free (struct gdbarch *);
1086
1087
1088 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1089 obstack. The memory is freed when the corresponding architecture
1090 is also freed. */
1091
1092 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1093 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1094 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1095
1096
1097 /* Helper function. Force an update of the current architecture.
1098
1099 The actual architecture selected is determined by INFO, \`\`(gdb) set
1100 architecture'' et.al., the existing architecture and BFD's default
1101 architecture. INFO should be initialized to zero and then selected
1102 fields should be updated.
1103
1104 Returns non-zero if the update succeeds */
1105
1106 extern int gdbarch_update_p (struct gdbarch_info info);
1107
1108
1109 /* Helper function. Find an architecture matching info.
1110
1111 INFO should be initialized using gdbarch_info_init, relevant fields
1112 set, and then finished using gdbarch_info_fill.
1113
1114 Returns the corresponding architecture, or NULL if no matching
1115 architecture was found. */
1116
1117 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1118
1119
1120 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1121
1122 FIXME: kettenis/20031124: Of the functions that follow, only
1123 gdbarch_from_bfd is supposed to survive. The others will
1124 dissappear since in the future GDB will (hopefully) be truly
1125 multi-arch. However, for now we're still stuck with the concept of
1126 a single active architecture. */
1127
1128 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1129
1130
1131 /* Register per-architecture data-pointer.
1132
1133 Reserve space for a per-architecture data-pointer. An identifier
1134 for the reserved data-pointer is returned. That identifer should
1135 be saved in a local static variable.
1136
1137 Memory for the per-architecture data shall be allocated using
1138 gdbarch_obstack_zalloc. That memory will be deleted when the
1139 corresponding architecture object is deleted.
1140
1141 When a previously created architecture is re-selected, the
1142 per-architecture data-pointer for that previous architecture is
1143 restored. INIT() is not re-called.
1144
1145 Multiple registrarants for any architecture are allowed (and
1146 strongly encouraged). */
1147
1148 struct gdbarch_data;
1149
1150 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1151 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1152 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1153 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1154 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1155 struct gdbarch_data *data,
1156 void *pointer);
1157
1158 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1159
1160
1161 /* Set the dynamic target-system-dependent parameters (architecture,
1162 byte-order, ...) using information found in the BFD */
1163
1164 extern void set_gdbarch_from_file (bfd *);
1165
1166
1167 /* Initialize the current architecture to the "first" one we find on
1168 our list. */
1169
1170 extern void initialize_current_architecture (void);
1171
1172 /* gdbarch trace variable */
1173 extern int gdbarch_debug;
1174
1175 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1176
1177 #endif
1178 EOF
1179 exec 1>&2
1180 #../move-if-change new-gdbarch.h gdbarch.h
1181 compare_new gdbarch.h
1182
1183
1184 #
1185 # C file
1186 #
1187
1188 exec > new-gdbarch.c
1189 copyright
1190 cat <<EOF
1191
1192 #include "defs.h"
1193 #include "arch-utils.h"
1194
1195 #include "gdbcmd.h"
1196 #include "inferior.h"
1197 #include "symcat.h"
1198
1199 #include "floatformat.h"
1200
1201 #include "gdb_assert.h"
1202 #include "gdb_string.h"
1203 #include "reggroups.h"
1204 #include "osabi.h"
1205 #include "gdb_obstack.h"
1206 #include "observer.h"
1207 #include "regcache.h"
1208
1209 /* Static function declarations */
1210
1211 static void alloc_gdbarch_data (struct gdbarch *);
1212
1213 /* Non-zero if we want to trace architecture code. */
1214
1215 #ifndef GDBARCH_DEBUG
1216 #define GDBARCH_DEBUG 0
1217 #endif
1218 int gdbarch_debug = GDBARCH_DEBUG;
1219 static void
1220 show_gdbarch_debug (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222 {
1223 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1224 }
1225
1226 static const char *
1227 pformat (const struct floatformat **format)
1228 {
1229 if (format == NULL)
1230 return "(null)";
1231 else
1232 /* Just print out one of them - this is only for diagnostics. */
1233 return format[0]->name;
1234 }
1235
1236 EOF
1237
1238 # gdbarch open the gdbarch object
1239 printf "\n"
1240 printf "/* Maintain the struct gdbarch object */\n"
1241 printf "\n"
1242 printf "struct gdbarch\n"
1243 printf "{\n"
1244 printf " /* Has this architecture been fully initialized? */\n"
1245 printf " int initialized_p;\n"
1246 printf "\n"
1247 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1248 printf " struct obstack *obstack;\n"
1249 printf "\n"
1250 printf " /* basic architectural information */\n"
1251 function_list | while do_read
1252 do
1253 if class_is_info_p
1254 then
1255 printf " ${returntype} ${function};\n"
1256 fi
1257 done
1258 printf "\n"
1259 printf " /* target specific vector. */\n"
1260 printf " struct gdbarch_tdep *tdep;\n"
1261 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1262 printf "\n"
1263 printf " /* per-architecture data-pointers */\n"
1264 printf " unsigned nr_data;\n"
1265 printf " void **data;\n"
1266 printf "\n"
1267 printf " /* per-architecture swap-regions */\n"
1268 printf " struct gdbarch_swap *swap;\n"
1269 printf "\n"
1270 cat <<EOF
1271 /* Multi-arch values.
1272
1273 When extending this structure you must:
1274
1275 Add the field below.
1276
1277 Declare set/get functions and define the corresponding
1278 macro in gdbarch.h.
1279
1280 gdbarch_alloc(): If zero/NULL is not a suitable default,
1281 initialize the new field.
1282
1283 verify_gdbarch(): Confirm that the target updated the field
1284 correctly.
1285
1286 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1287 field is dumped out
1288
1289 \`\`startup_gdbarch()'': Append an initial value to the static
1290 variable (base values on the host's c-type system).
1291
1292 get_gdbarch(): Implement the set/get functions (probably using
1293 the macro's as shortcuts).
1294
1295 */
1296
1297 EOF
1298 function_list | while do_read
1299 do
1300 if class_is_variable_p
1301 then
1302 printf " ${returntype} ${function};\n"
1303 elif class_is_function_p
1304 then
1305 printf " gdbarch_${function}_ftype *${function};\n"
1306 fi
1307 done
1308 printf "};\n"
1309
1310 # A pre-initialized vector
1311 printf "\n"
1312 printf "\n"
1313 cat <<EOF
1314 /* The default architecture uses host values (for want of a better
1315 choice). */
1316 EOF
1317 printf "\n"
1318 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1319 printf "\n"
1320 printf "struct gdbarch startup_gdbarch =\n"
1321 printf "{\n"
1322 printf " 1, /* Always initialized. */\n"
1323 printf " NULL, /* The obstack. */\n"
1324 printf " /* basic architecture information */\n"
1325 function_list | while do_read
1326 do
1327 if class_is_info_p
1328 then
1329 printf " ${staticdefault}, /* ${function} */\n"
1330 fi
1331 done
1332 cat <<EOF
1333 /* target specific vector and its dump routine */
1334 NULL, NULL,
1335 /*per-architecture data-pointers and swap regions */
1336 0, NULL, NULL,
1337 /* Multi-arch values */
1338 EOF
1339 function_list | while do_read
1340 do
1341 if class_is_function_p || class_is_variable_p
1342 then
1343 printf " ${staticdefault}, /* ${function} */\n"
1344 fi
1345 done
1346 cat <<EOF
1347 /* startup_gdbarch() */
1348 };
1349
1350 struct gdbarch *target_gdbarch = &startup_gdbarch;
1351 EOF
1352
1353 # Create a new gdbarch struct
1354 cat <<EOF
1355
1356 /* Create a new \`\`struct gdbarch'' based on information provided by
1357 \`\`struct gdbarch_info''. */
1358 EOF
1359 printf "\n"
1360 cat <<EOF
1361 struct gdbarch *
1362 gdbarch_alloc (const struct gdbarch_info *info,
1363 struct gdbarch_tdep *tdep)
1364 {
1365 struct gdbarch *gdbarch;
1366
1367 /* Create an obstack for allocating all the per-architecture memory,
1368 then use that to allocate the architecture vector. */
1369 struct obstack *obstack = XMALLOC (struct obstack);
1370 obstack_init (obstack);
1371 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1372 memset (gdbarch, 0, sizeof (*gdbarch));
1373 gdbarch->obstack = obstack;
1374
1375 alloc_gdbarch_data (gdbarch);
1376
1377 gdbarch->tdep = tdep;
1378 EOF
1379 printf "\n"
1380 function_list | while do_read
1381 do
1382 if class_is_info_p
1383 then
1384 printf " gdbarch->${function} = info->${function};\n"
1385 fi
1386 done
1387 printf "\n"
1388 printf " /* Force the explicit initialization of these. */\n"
1389 function_list | while do_read
1390 do
1391 if class_is_function_p || class_is_variable_p
1392 then
1393 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1394 then
1395 printf " gdbarch->${function} = ${predefault};\n"
1396 fi
1397 fi
1398 done
1399 cat <<EOF
1400 /* gdbarch_alloc() */
1401
1402 return gdbarch;
1403 }
1404 EOF
1405
1406 # Free a gdbarch struct.
1407 printf "\n"
1408 printf "\n"
1409 cat <<EOF
1410 /* Allocate extra space using the per-architecture obstack. */
1411
1412 void *
1413 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1414 {
1415 void *data = obstack_alloc (arch->obstack, size);
1416 memset (data, 0, size);
1417 return data;
1418 }
1419
1420
1421 /* Free a gdbarch struct. This should never happen in normal
1422 operation --- once you've created a gdbarch, you keep it around.
1423 However, if an architecture's init function encounters an error
1424 building the structure, it may need to clean up a partially
1425 constructed gdbarch. */
1426
1427 void
1428 gdbarch_free (struct gdbarch *arch)
1429 {
1430 struct obstack *obstack;
1431 gdb_assert (arch != NULL);
1432 gdb_assert (!arch->initialized_p);
1433 obstack = arch->obstack;
1434 obstack_free (obstack, 0); /* Includes the ARCH. */
1435 xfree (obstack);
1436 }
1437 EOF
1438
1439 # verify a new architecture
1440 cat <<EOF
1441
1442
1443 /* Ensure that all values in a GDBARCH are reasonable. */
1444
1445 static void
1446 verify_gdbarch (struct gdbarch *gdbarch)
1447 {
1448 struct ui_file *log;
1449 struct cleanup *cleanups;
1450 long length;
1451 char *buf;
1452 log = mem_fileopen ();
1453 cleanups = make_cleanup_ui_file_delete (log);
1454 /* fundamental */
1455 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1456 fprintf_unfiltered (log, "\n\tbyte-order");
1457 if (gdbarch->bfd_arch_info == NULL)
1458 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1459 /* Check those that need to be defined for the given multi-arch level. */
1460 EOF
1461 function_list | while do_read
1462 do
1463 if class_is_function_p || class_is_variable_p
1464 then
1465 if [ "x${invalid_p}" = "x0" ]
1466 then
1467 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1468 elif class_is_predicate_p
1469 then
1470 printf " /* Skip verify of ${function}, has predicate */\n"
1471 # FIXME: See do_read for potential simplification
1472 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1473 then
1474 printf " if (${invalid_p})\n"
1475 printf " gdbarch->${function} = ${postdefault};\n"
1476 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1477 then
1478 printf " if (gdbarch->${function} == ${predefault})\n"
1479 printf " gdbarch->${function} = ${postdefault};\n"
1480 elif [ -n "${postdefault}" ]
1481 then
1482 printf " if (gdbarch->${function} == 0)\n"
1483 printf " gdbarch->${function} = ${postdefault};\n"
1484 elif [ -n "${invalid_p}" ]
1485 then
1486 printf " if (${invalid_p})\n"
1487 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1488 elif [ -n "${predefault}" ]
1489 then
1490 printf " if (gdbarch->${function} == ${predefault})\n"
1491 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1492 fi
1493 fi
1494 done
1495 cat <<EOF
1496 buf = ui_file_xstrdup (log, &length);
1497 make_cleanup (xfree, buf);
1498 if (length > 0)
1499 internal_error (__FILE__, __LINE__,
1500 _("verify_gdbarch: the following are invalid ...%s"),
1501 buf);
1502 do_cleanups (cleanups);
1503 }
1504 EOF
1505
1506 # dump the structure
1507 printf "\n"
1508 printf "\n"
1509 cat <<EOF
1510 /* Print out the details of the current architecture. */
1511
1512 void
1513 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1514 {
1515 const char *gdb_nm_file = "<not-defined>";
1516 #if defined (GDB_NM_FILE)
1517 gdb_nm_file = GDB_NM_FILE;
1518 #endif
1519 fprintf_unfiltered (file,
1520 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1521 gdb_nm_file);
1522 EOF
1523 function_list | sort -t: -k 3 | while do_read
1524 do
1525 # First the predicate
1526 if class_is_predicate_p
1527 then
1528 printf " fprintf_unfiltered (file,\n"
1529 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1530 printf " gdbarch_${function}_p (gdbarch));\n"
1531 fi
1532 # Print the corresponding value.
1533 if class_is_function_p
1534 then
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1537 printf " host_address_to_string (gdbarch->${function}));\n"
1538 else
1539 # It is a variable
1540 case "${print}:${returntype}" in
1541 :CORE_ADDR )
1542 fmt="%s"
1543 print="core_addr_to_string_nz (gdbarch->${function})"
1544 ;;
1545 :* )
1546 fmt="%s"
1547 print="plongest (gdbarch->${function})"
1548 ;;
1549 * )
1550 fmt="%s"
1551 ;;
1552 esac
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1555 printf " ${print});\n"
1556 fi
1557 done
1558 cat <<EOF
1559 if (gdbarch->dump_tdep != NULL)
1560 gdbarch->dump_tdep (gdbarch, file);
1561 }
1562 EOF
1563
1564
1565 # GET/SET
1566 printf "\n"
1567 cat <<EOF
1568 struct gdbarch_tdep *
1569 gdbarch_tdep (struct gdbarch *gdbarch)
1570 {
1571 if (gdbarch_debug >= 2)
1572 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1573 return gdbarch->tdep;
1574 }
1575 EOF
1576 printf "\n"
1577 function_list | while do_read
1578 do
1579 if class_is_predicate_p
1580 then
1581 printf "\n"
1582 printf "int\n"
1583 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1584 printf "{\n"
1585 printf " gdb_assert (gdbarch != NULL);\n"
1586 printf " return ${predicate};\n"
1587 printf "}\n"
1588 fi
1589 if class_is_function_p
1590 then
1591 printf "\n"
1592 printf "${returntype}\n"
1593 if [ "x${formal}" = "xvoid" ]
1594 then
1595 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1596 else
1597 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1598 fi
1599 printf "{\n"
1600 printf " gdb_assert (gdbarch != NULL);\n"
1601 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1602 if class_is_predicate_p && test -n "${predefault}"
1603 then
1604 # Allow a call to a function with a predicate.
1605 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1606 fi
1607 printf " if (gdbarch_debug >= 2)\n"
1608 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1609 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1610 then
1611 if class_is_multiarch_p
1612 then
1613 params="gdbarch"
1614 else
1615 params=""
1616 fi
1617 else
1618 if class_is_multiarch_p
1619 then
1620 params="gdbarch, ${actual}"
1621 else
1622 params="${actual}"
1623 fi
1624 fi
1625 if [ "x${returntype}" = "xvoid" ]
1626 then
1627 printf " gdbarch->${function} (${params});\n"
1628 else
1629 printf " return gdbarch->${function} (${params});\n"
1630 fi
1631 printf "}\n"
1632 printf "\n"
1633 printf "void\n"
1634 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1635 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1636 printf "{\n"
1637 printf " gdbarch->${function} = ${function};\n"
1638 printf "}\n"
1639 elif class_is_variable_p
1640 then
1641 printf "\n"
1642 printf "${returntype}\n"
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1644 printf "{\n"
1645 printf " gdb_assert (gdbarch != NULL);\n"
1646 if [ "x${invalid_p}" = "x0" ]
1647 then
1648 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1649 elif [ -n "${invalid_p}" ]
1650 then
1651 printf " /* Check variable is valid. */\n"
1652 printf " gdb_assert (!(${invalid_p}));\n"
1653 elif [ -n "${predefault}" ]
1654 then
1655 printf " /* Check variable changed from pre-default. */\n"
1656 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1657 fi
1658 printf " if (gdbarch_debug >= 2)\n"
1659 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1660 printf " return gdbarch->${function};\n"
1661 printf "}\n"
1662 printf "\n"
1663 printf "void\n"
1664 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1665 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1666 printf "{\n"
1667 printf " gdbarch->${function} = ${function};\n"
1668 printf "}\n"
1669 elif class_is_info_p
1670 then
1671 printf "\n"
1672 printf "${returntype}\n"
1673 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1674 printf "{\n"
1675 printf " gdb_assert (gdbarch != NULL);\n"
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 printf " return gdbarch->${function};\n"
1679 printf "}\n"
1680 fi
1681 done
1682
1683 # All the trailing guff
1684 cat <<EOF
1685
1686
1687 /* Keep a registry of per-architecture data-pointers required by GDB
1688 modules. */
1689
1690 struct gdbarch_data
1691 {
1692 unsigned index;
1693 int init_p;
1694 gdbarch_data_pre_init_ftype *pre_init;
1695 gdbarch_data_post_init_ftype *post_init;
1696 };
1697
1698 struct gdbarch_data_registration
1699 {
1700 struct gdbarch_data *data;
1701 struct gdbarch_data_registration *next;
1702 };
1703
1704 struct gdbarch_data_registry
1705 {
1706 unsigned nr;
1707 struct gdbarch_data_registration *registrations;
1708 };
1709
1710 struct gdbarch_data_registry gdbarch_data_registry =
1711 {
1712 0, NULL,
1713 };
1714
1715 static struct gdbarch_data *
1716 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1717 gdbarch_data_post_init_ftype *post_init)
1718 {
1719 struct gdbarch_data_registration **curr;
1720 /* Append the new registraration. */
1721 for (curr = &gdbarch_data_registry.registrations;
1722 (*curr) != NULL;
1723 curr = &(*curr)->next);
1724 (*curr) = XMALLOC (struct gdbarch_data_registration);
1725 (*curr)->next = NULL;
1726 (*curr)->data = XMALLOC (struct gdbarch_data);
1727 (*curr)->data->index = gdbarch_data_registry.nr++;
1728 (*curr)->data->pre_init = pre_init;
1729 (*curr)->data->post_init = post_init;
1730 (*curr)->data->init_p = 1;
1731 return (*curr)->data;
1732 }
1733
1734 struct gdbarch_data *
1735 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1736 {
1737 return gdbarch_data_register (pre_init, NULL);
1738 }
1739
1740 struct gdbarch_data *
1741 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1742 {
1743 return gdbarch_data_register (NULL, post_init);
1744 }
1745
1746 /* Create/delete the gdbarch data vector. */
1747
1748 static void
1749 alloc_gdbarch_data (struct gdbarch *gdbarch)
1750 {
1751 gdb_assert (gdbarch->data == NULL);
1752 gdbarch->nr_data = gdbarch_data_registry.nr;
1753 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1754 }
1755
1756 /* Initialize the current value of the specified per-architecture
1757 data-pointer. */
1758
1759 void
1760 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1761 struct gdbarch_data *data,
1762 void *pointer)
1763 {
1764 gdb_assert (data->index < gdbarch->nr_data);
1765 gdb_assert (gdbarch->data[data->index] == NULL);
1766 gdb_assert (data->pre_init == NULL);
1767 gdbarch->data[data->index] = pointer;
1768 }
1769
1770 /* Return the current value of the specified per-architecture
1771 data-pointer. */
1772
1773 void *
1774 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1775 {
1776 gdb_assert (data->index < gdbarch->nr_data);
1777 if (gdbarch->data[data->index] == NULL)
1778 {
1779 /* The data-pointer isn't initialized, call init() to get a
1780 value. */
1781 if (data->pre_init != NULL)
1782 /* Mid architecture creation: pass just the obstack, and not
1783 the entire architecture, as that way it isn't possible for
1784 pre-init code to refer to undefined architecture
1785 fields. */
1786 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1787 else if (gdbarch->initialized_p
1788 && data->post_init != NULL)
1789 /* Post architecture creation: pass the entire architecture
1790 (as all fields are valid), but be careful to also detect
1791 recursive references. */
1792 {
1793 gdb_assert (data->init_p);
1794 data->init_p = 0;
1795 gdbarch->data[data->index] = data->post_init (gdbarch);
1796 data->init_p = 1;
1797 }
1798 else
1799 /* The architecture initialization hasn't completed - punt -
1800 hope that the caller knows what they are doing. Once
1801 deprecated_set_gdbarch_data has been initialized, this can be
1802 changed to an internal error. */
1803 return NULL;
1804 gdb_assert (gdbarch->data[data->index] != NULL);
1805 }
1806 return gdbarch->data[data->index];
1807 }
1808
1809
1810 /* Keep a registry of the architectures known by GDB. */
1811
1812 struct gdbarch_registration
1813 {
1814 enum bfd_architecture bfd_architecture;
1815 gdbarch_init_ftype *init;
1816 gdbarch_dump_tdep_ftype *dump_tdep;
1817 struct gdbarch_list *arches;
1818 struct gdbarch_registration *next;
1819 };
1820
1821 static struct gdbarch_registration *gdbarch_registry = NULL;
1822
1823 static void
1824 append_name (const char ***buf, int *nr, const char *name)
1825 {
1826 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1827 (*buf)[*nr] = name;
1828 *nr += 1;
1829 }
1830
1831 const char **
1832 gdbarch_printable_names (void)
1833 {
1834 /* Accumulate a list of names based on the registed list of
1835 architectures. */
1836 enum bfd_architecture a;
1837 int nr_arches = 0;
1838 const char **arches = NULL;
1839 struct gdbarch_registration *rego;
1840 for (rego = gdbarch_registry;
1841 rego != NULL;
1842 rego = rego->next)
1843 {
1844 const struct bfd_arch_info *ap;
1845 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1846 if (ap == NULL)
1847 internal_error (__FILE__, __LINE__,
1848 _("gdbarch_architecture_names: multi-arch unknown"));
1849 do
1850 {
1851 append_name (&arches, &nr_arches, ap->printable_name);
1852 ap = ap->next;
1853 }
1854 while (ap != NULL);
1855 }
1856 append_name (&arches, &nr_arches, NULL);
1857 return arches;
1858 }
1859
1860
1861 void
1862 gdbarch_register (enum bfd_architecture bfd_architecture,
1863 gdbarch_init_ftype *init,
1864 gdbarch_dump_tdep_ftype *dump_tdep)
1865 {
1866 struct gdbarch_registration **curr;
1867 const struct bfd_arch_info *bfd_arch_info;
1868 /* Check that BFD recognizes this architecture */
1869 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1870 if (bfd_arch_info == NULL)
1871 {
1872 internal_error (__FILE__, __LINE__,
1873 _("gdbarch: Attempt to register unknown architecture (%d)"),
1874 bfd_architecture);
1875 }
1876 /* Check that we haven't seen this architecture before */
1877 for (curr = &gdbarch_registry;
1878 (*curr) != NULL;
1879 curr = &(*curr)->next)
1880 {
1881 if (bfd_architecture == (*curr)->bfd_architecture)
1882 internal_error (__FILE__, __LINE__,
1883 _("gdbarch: Duplicate registraration of architecture (%s)"),
1884 bfd_arch_info->printable_name);
1885 }
1886 /* log it */
1887 if (gdbarch_debug)
1888 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1889 bfd_arch_info->printable_name,
1890 host_address_to_string (init));
1891 /* Append it */
1892 (*curr) = XMALLOC (struct gdbarch_registration);
1893 (*curr)->bfd_architecture = bfd_architecture;
1894 (*curr)->init = init;
1895 (*curr)->dump_tdep = dump_tdep;
1896 (*curr)->arches = NULL;
1897 (*curr)->next = NULL;
1898 }
1899
1900 void
1901 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1902 gdbarch_init_ftype *init)
1903 {
1904 gdbarch_register (bfd_architecture, init, NULL);
1905 }
1906
1907
1908 /* Look for an architecture using gdbarch_info. */
1909
1910 struct gdbarch_list *
1911 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1912 const struct gdbarch_info *info)
1913 {
1914 for (; arches != NULL; arches = arches->next)
1915 {
1916 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1917 continue;
1918 if (info->byte_order != arches->gdbarch->byte_order)
1919 continue;
1920 if (info->osabi != arches->gdbarch->osabi)
1921 continue;
1922 if (info->target_desc != arches->gdbarch->target_desc)
1923 continue;
1924 return arches;
1925 }
1926 return NULL;
1927 }
1928
1929
1930 /* Find an architecture that matches the specified INFO. Create a new
1931 architecture if needed. Return that new architecture. */
1932
1933 struct gdbarch *
1934 gdbarch_find_by_info (struct gdbarch_info info)
1935 {
1936 struct gdbarch *new_gdbarch;
1937 struct gdbarch_registration *rego;
1938
1939 /* Fill in missing parts of the INFO struct using a number of
1940 sources: "set ..."; INFOabfd supplied; and the global
1941 defaults. */
1942 gdbarch_info_fill (&info);
1943
1944 /* Must have found some sort of architecture. */
1945 gdb_assert (info.bfd_arch_info != NULL);
1946
1947 if (gdbarch_debug)
1948 {
1949 fprintf_unfiltered (gdb_stdlog,
1950 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
1951 (info.bfd_arch_info != NULL
1952 ? info.bfd_arch_info->printable_name
1953 : "(null)"));
1954 fprintf_unfiltered (gdb_stdlog,
1955 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
1956 info.byte_order,
1957 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1958 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1959 : "default"));
1960 fprintf_unfiltered (gdb_stdlog,
1961 "gdbarch_find_by_info: info.osabi %d (%s)\n",
1962 info.osabi, gdbarch_osabi_name (info.osabi));
1963 fprintf_unfiltered (gdb_stdlog,
1964 "gdbarch_find_by_info: info.abfd %s\n",
1965 host_address_to_string (info.abfd));
1966 fprintf_unfiltered (gdb_stdlog,
1967 "gdbarch_find_by_info: info.tdep_info %s\n",
1968 host_address_to_string (info.tdep_info));
1969 }
1970
1971 /* Find the tdep code that knows about this architecture. */
1972 for (rego = gdbarch_registry;
1973 rego != NULL;
1974 rego = rego->next)
1975 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1976 break;
1977 if (rego == NULL)
1978 {
1979 if (gdbarch_debug)
1980 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1981 "No matching architecture\n");
1982 return 0;
1983 }
1984
1985 /* Ask the tdep code for an architecture that matches "info". */
1986 new_gdbarch = rego->init (info, rego->arches);
1987
1988 /* Did the tdep code like it? No. Reject the change and revert to
1989 the old architecture. */
1990 if (new_gdbarch == NULL)
1991 {
1992 if (gdbarch_debug)
1993 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
1994 "Target rejected architecture\n");
1995 return NULL;
1996 }
1997
1998 /* Is this a pre-existing architecture (as determined by already
1999 being initialized)? Move it to the front of the architecture
2000 list (keeping the list sorted Most Recently Used). */
2001 if (new_gdbarch->initialized_p)
2002 {
2003 struct gdbarch_list **list;
2004 struct gdbarch_list *this;
2005 if (gdbarch_debug)
2006 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2007 "Previous architecture %s (%s) selected\n",
2008 host_address_to_string (new_gdbarch),
2009 new_gdbarch->bfd_arch_info->printable_name);
2010 /* Find the existing arch in the list. */
2011 for (list = &rego->arches;
2012 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2013 list = &(*list)->next);
2014 /* It had better be in the list of architectures. */
2015 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2016 /* Unlink THIS. */
2017 this = (*list);
2018 (*list) = this->next;
2019 /* Insert THIS at the front. */
2020 this->next = rego->arches;
2021 rego->arches = this;
2022 /* Return it. */
2023 return new_gdbarch;
2024 }
2025
2026 /* It's a new architecture. */
2027 if (gdbarch_debug)
2028 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2029 "New architecture %s (%s) selected\n",
2030 host_address_to_string (new_gdbarch),
2031 new_gdbarch->bfd_arch_info->printable_name);
2032
2033 /* Insert the new architecture into the front of the architecture
2034 list (keep the list sorted Most Recently Used). */
2035 {
2036 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2037 this->next = rego->arches;
2038 this->gdbarch = new_gdbarch;
2039 rego->arches = this;
2040 }
2041
2042 /* Check that the newly installed architecture is valid. Plug in
2043 any post init values. */
2044 new_gdbarch->dump_tdep = rego->dump_tdep;
2045 verify_gdbarch (new_gdbarch);
2046 new_gdbarch->initialized_p = 1;
2047
2048 if (gdbarch_debug)
2049 gdbarch_dump (new_gdbarch, gdb_stdlog);
2050
2051 return new_gdbarch;
2052 }
2053
2054 /* Make the specified architecture current. */
2055
2056 void
2057 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2058 {
2059 gdb_assert (new_gdbarch != NULL);
2060 gdb_assert (new_gdbarch->initialized_p);
2061 target_gdbarch = new_gdbarch;
2062 observer_notify_architecture_changed (new_gdbarch);
2063 registers_changed ();
2064 }
2065
2066 extern void _initialize_gdbarch (void);
2067
2068 void
2069 _initialize_gdbarch (void)
2070 {
2071 struct cmd_list_element *c;
2072
2073 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2074 Set architecture debugging."), _("\\
2075 Show architecture debugging."), _("\\
2076 When non-zero, architecture debugging is enabled."),
2077 NULL,
2078 show_gdbarch_debug,
2079 &setdebuglist, &showdebuglist);
2080 }
2081 EOF
2082
2083 # close things off
2084 exec 1>&2
2085 #../move-if-change new-gdbarch.c gdbarch.c
2086 compare_new gdbarch.c
This page took 0.075818 seconds and 4 git commands to generate.