2003-11-11 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 fmt ) : ;;
348
349 # printf style format string that can be used to print out the
350 # MEMBER. Sometimes "%s" is useful. For functions, this is
351 # ignored and the function address is printed.
352
353 # If FMT is empty, ``%ld'' is used.
354
355 print ) : ;;
356
357 # An optional equation that casts MEMBER to a value suitable
358 # for formatting by FMT.
359
360 # If PRINT is empty, ``(long)'' is used.
361
362 print_p ) : ;;
363
364 # An optional indicator for any predicte to wrap around the
365 # print member code.
366
367 # () -> Call a custom function to do the dump.
368 # exp -> Wrap print up in ``if (${print_p}) ...
369 # ``'' -> No predicate
370
371 # If PRINT_P is empty, ``1'' is always used.
372
373 description ) : ;;
374
375 # Currently unused.
376
377 *)
378 echo "Bad field ${field}"
379 exit 1;;
380 esac
381 done
382
383
384 function_list ()
385 {
386 # See below (DOCO) for description of each field
387 cat <<EOF
388 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
389 #
390 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
391 #
392 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
393 # Number of bits in a char or unsigned char for the target machine.
394 # Just like CHAR_BIT in <limits.h> but describes the target machine.
395 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
396 #
397 # Number of bits in a short or unsigned short for the target machine.
398 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
399 # Number of bits in an int or unsigned int for the target machine.
400 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
401 # Number of bits in a long or unsigned long for the target machine.
402 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
403 # Number of bits in a long long or unsigned long long for the target
404 # machine.
405 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
406 # Number of bits in a float for the target machine.
407 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
408 # Number of bits in a double for the target machine.
409 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
410 # Number of bits in a long double for the target machine.
411 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
412 # For most targets, a pointer on the target and its representation as an
413 # address in GDB have the same size and "look the same". For such a
414 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
415 # / addr_bit will be set from it.
416 #
417 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
418 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
419 #
420 # ptr_bit is the size of a pointer on the target
421 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
422 # addr_bit is the size of a target address as represented in gdb
423 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
424 # Number of bits in a BFD_VMA for the target object file format.
425 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
426 #
427 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
428 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
429 #
430 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
431 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
432 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
433 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
453 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 # Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
458 # that updates PC, NPC and even NNPC.
459 v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497 # replaced by the constant MAX_REGISTER_SIZE.
498 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
499 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500 # replaced by the constant MAX_REGISTER_SIZE.
501 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502
503 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
504 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # SAVE_DUMMY_FRAME_TOS.
507 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
508 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509 # DEPRECATED_FP_REGNUM.
510 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512 # DEPRECATED_TARGET_READ_FP.
513 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
515 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516 # replacement for DEPRECATED_PUSH_ARGUMENTS.
517 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522 # Implement PUSH_RETURN_ADDRESS, and then merge in
523 # DEPRECATED_PUSH_RETURN_ADDRESS.
524 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
525 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527 # DEPRECATED_REGISTER_SIZE can be deleted.
528 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
530 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
531 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
532 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
533 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
534 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
535 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
536 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
537 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
538 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
539 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
540 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
541 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
542 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
543 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
544 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
545 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
546 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
547 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
548 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
549 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
550 # Implement PUSH_DUMMY_CALL, then delete
551 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
552 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
553
554 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
555 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
556 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
558 # MAP a GDB RAW register number onto a simulator register number. See
559 # also include/...-sim.h.
560 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
561 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
562 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
563 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
564 # setjmp/longjmp support.
565 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
566 # NOTE: cagney/2002-11-24: This function with predicate has a valid
567 # (callable) initial value. As a consequence, even when the predicate
568 # is false, the corresponding function works. This simplifies the
569 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
570 # doesn't need to be modified.
571 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
572 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
573 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
574 #
575 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
576 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
577 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
578 #
579 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580 # For raw <-> cooked register conversions, replaced by pseudo registers.
581 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
582 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
583 # For raw <-> cooked register conversions, replaced by pseudo registers.
584 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
585 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
586 # For raw <-> cooked register conversions, replaced by pseudo registers.
587 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
588 #
589 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
590 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
591 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
592 #
593 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
594 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
595 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
596 #
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600
601 # It has been suggested that this, well actually its predecessor,
602 # should take the type/value of the function to be called and not the
603 # return type. This is left as an exercise for the reader.
604
605 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
606
607 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
608 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
609 # into RETURN_VALUE. For the moment do not try to fold in
610 # EXTRACT_STRUCT_VALUE_ADDRESS as, dependant on the ABI, the debug
611 # info, and the level of effort, it may well be possible to find the
612 # address of a structure being return on the stack. Someone else can
613 # make that change.
614
615 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
616 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
617 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
618 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
619 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
620 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
621
622 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
623 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
624 #
625 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
626 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
627 #
628 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
629 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
630 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
631 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
632 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
633 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
634 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
635 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
636 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
637 #
638 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
639 #
640 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
641 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
642 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
643 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
644 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
645 # note, per UNWIND_PC's doco, that while the two have similar
646 # interfaces they have very different underlying implementations.
647 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
648 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
649 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
650 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
651 # frame-base. Enable frame-base before frame-unwind.
652 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
653 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
654 # frame-base. Enable frame-base before frame-unwind.
655 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
656 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
657 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
658 #
659 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
660 # to frame_align and the requirement that methods such as
661 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
662 # alignment.
663 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
664 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
665 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
666 # stabs_argument_has_addr.
667 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
668 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
669 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
670 v:2:PARM_BOUNDARY:int:parm_boundary
671 #
672 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
673 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
674 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
675 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
676 # On some machines there are bits in addresses which are not really
677 # part of the address, but are used by the kernel, the hardware, etc.
678 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
679 # we get a "real" address such as one would find in a symbol table.
680 # This is used only for addresses of instructions, and even then I'm
681 # not sure it's used in all contexts. It exists to deal with there
682 # being a few stray bits in the PC which would mislead us, not as some
683 # sort of generic thing to handle alignment or segmentation (it's
684 # possible it should be in TARGET_READ_PC instead).
685 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
686 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
687 # ADDR_BITS_REMOVE.
688 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
689 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
690 # the target needs software single step. An ISA method to implement it.
691 #
692 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
693 # using the breakpoint system instead of blatting memory directly (as with rs6000).
694 #
695 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
696 # single step. If not, then implement single step using breakpoints.
697 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
698 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
699 # disassembler. Perhaphs objdump can handle it?
700 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
701 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
702
703
704 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
705 # evaluates non-zero, this is the address where the debugger will place
706 # a step-resume breakpoint to get us past the dynamic linker.
707 f:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
708 # For SVR4 shared libraries, each call goes through a small piece of
709 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
710 # to nonzero if we are currently stopped in one of these.
711 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
712
713 # Some systems also have trampoline code for returning from shared libs.
714 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
715
716 # Sigtramp is a routine that the kernel calls (which then calls the
717 # signal handler). On most machines it is a library routine that is
718 # linked into the executable.
719 #
720 # This macro, given a program counter value and the name of the
721 # function in which that PC resides (which can be null if the name is
722 # not known), returns nonzero if the PC and name show that we are in
723 # sigtramp.
724 #
725 # On most machines just see if the name is sigtramp (and if we have
726 # no name, assume we are not in sigtramp).
727 #
728 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
729 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
730 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
731 # own local NAME lookup.
732 #
733 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
734 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
735 # does not.
736 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
737 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
738 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
739 # A target might have problems with watchpoints as soon as the stack
740 # frame of the current function has been destroyed. This mostly happens
741 # as the first action in a funtion's epilogue. in_function_epilogue_p()
742 # is defined to return a non-zero value if either the given addr is one
743 # instruction after the stack destroying instruction up to the trailing
744 # return instruction or if we can figure out that the stack frame has
745 # already been invalidated regardless of the value of addr. Targets
746 # which don't suffer from that problem could just let this functionality
747 # untouched.
748 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
749 # Given a vector of command-line arguments, return a newly allocated
750 # string which, when passed to the create_inferior function, will be
751 # parsed (on Unix systems, by the shell) to yield the same vector.
752 # This function should call error() if the argument vector is not
753 # representable for this target or if this target does not support
754 # command-line arguments.
755 # ARGC is the number of elements in the vector.
756 # ARGV is an array of strings, one per argument.
757 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
758 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
759 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
760 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
761 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
762 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
763 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
764 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
765 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
766 # Is a register in a group
767 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
768 # Fetch the pointer to the ith function argument.
769 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
770
771 # Return the appropriate register set for a core file section with
772 # name SECT_NAME and size SECT_SIZE.
773 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
774 EOF
775 }
776
777 #
778 # The .log file
779 #
780 exec > new-gdbarch.log
781 function_list | while do_read
782 do
783 cat <<EOF
784 ${class} ${macro}(${actual})
785 ${returntype} ${function} ($formal)${attrib}
786 EOF
787 for r in ${read}
788 do
789 eval echo \"\ \ \ \ ${r}=\${${r}}\"
790 done
791 if class_is_predicate_p && fallback_default_p
792 then
793 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
794 kill $$
795 exit 1
796 fi
797 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
798 then
799 echo "Error: postdefault is useless when invalid_p=0" 1>&2
800 kill $$
801 exit 1
802 fi
803 if class_is_multiarch_p
804 then
805 if class_is_predicate_p ; then :
806 elif test "x${predefault}" = "x"
807 then
808 echo "Error: pure multi-arch function must have a predefault" 1>&2
809 kill $$
810 exit 1
811 fi
812 fi
813 echo ""
814 done
815
816 exec 1>&2
817 compare_new gdbarch.log
818
819
820 copyright ()
821 {
822 cat <<EOF
823 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
824
825 /* Dynamic architecture support for GDB, the GNU debugger.
826 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
827
828 This file is part of GDB.
829
830 This program is free software; you can redistribute it and/or modify
831 it under the terms of the GNU General Public License as published by
832 the Free Software Foundation; either version 2 of the License, or
833 (at your option) any later version.
834
835 This program is distributed in the hope that it will be useful,
836 but WITHOUT ANY WARRANTY; without even the implied warranty of
837 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
838 GNU General Public License for more details.
839
840 You should have received a copy of the GNU General Public License
841 along with this program; if not, write to the Free Software
842 Foundation, Inc., 59 Temple Place - Suite 330,
843 Boston, MA 02111-1307, USA. */
844
845 /* This file was created with the aid of \`\`gdbarch.sh''.
846
847 The Bourne shell script \`\`gdbarch.sh'' creates the files
848 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
849 against the existing \`\`gdbarch.[hc]''. Any differences found
850 being reported.
851
852 If editing this file, please also run gdbarch.sh and merge any
853 changes into that script. Conversely, when making sweeping changes
854 to this file, modifying gdbarch.sh and using its output may prove
855 easier. */
856
857 EOF
858 }
859
860 #
861 # The .h file
862 #
863
864 exec > new-gdbarch.h
865 copyright
866 cat <<EOF
867 #ifndef GDBARCH_H
868 #define GDBARCH_H
869
870 struct floatformat;
871 struct ui_file;
872 struct frame_info;
873 struct value;
874 struct objfile;
875 struct minimal_symbol;
876 struct regcache;
877 struct reggroup;
878 struct regset;
879 struct disassemble_info;
880 struct target_ops;
881
882 extern struct gdbarch *current_gdbarch;
883
884
885 /* If any of the following are defined, the target wasn't correctly
886 converted. */
887
888 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
889 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
890 #endif
891 EOF
892
893 # function typedef's
894 printf "\n"
895 printf "\n"
896 printf "/* The following are pre-initialized by GDBARCH. */\n"
897 function_list | while do_read
898 do
899 if class_is_info_p
900 then
901 printf "\n"
902 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
903 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
904 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
905 printf "#error \"Non multi-arch definition of ${macro}\"\n"
906 printf "#endif\n"
907 printf "#if !defined (${macro})\n"
908 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
909 printf "#endif\n"
910 fi
911 done
912
913 # function typedef's
914 printf "\n"
915 printf "\n"
916 printf "/* The following are initialized by the target dependent code. */\n"
917 function_list | while do_read
918 do
919 if [ -n "${comment}" ]
920 then
921 echo "${comment}" | sed \
922 -e '2 s,#,/*,' \
923 -e '3,$ s,#, ,' \
924 -e '$ s,$, */,'
925 fi
926 if class_is_multiarch_p
927 then
928 if class_is_predicate_p
929 then
930 printf "\n"
931 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
932 fi
933 else
934 if class_is_predicate_p
935 then
936 printf "\n"
937 printf "#if defined (${macro})\n"
938 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
939 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
940 printf "#if !defined (${macro}_P)\n"
941 printf "#define ${macro}_P() (1)\n"
942 printf "#endif\n"
943 printf "#endif\n"
944 printf "\n"
945 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
946 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
947 printf "#error \"Non multi-arch definition of ${macro}\"\n"
948 printf "#endif\n"
949 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
950 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
951 printf "#endif\n"
952 fi
953 fi
954 if class_is_variable_p
955 then
956 printf "\n"
957 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
958 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
959 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
960 printf "#error \"Non multi-arch definition of ${macro}\"\n"
961 printf "#endif\n"
962 printf "#if !defined (${macro})\n"
963 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
964 printf "#endif\n"
965 fi
966 if class_is_function_p
967 then
968 printf "\n"
969 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
970 then
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
972 elif class_is_multiarch_p
973 then
974 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
975 else
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
977 fi
978 if [ "x${formal}" = "xvoid" ]
979 then
980 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
981 else
982 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
983 fi
984 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
985 if class_is_multiarch_p ; then :
986 else
987 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
988 printf "#error \"Non multi-arch definition of ${macro}\"\n"
989 printf "#endif\n"
990 if [ "x${actual}" = "x" ]
991 then
992 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
993 elif [ "x${actual}" = "x-" ]
994 then
995 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
996 else
997 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
998 fi
999 printf "#if !defined (${macro})\n"
1000 if [ "x${actual}" = "x" ]
1001 then
1002 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
1003 elif [ "x${actual}" = "x-" ]
1004 then
1005 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1006 else
1007 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1008 fi
1009 printf "#endif\n"
1010 fi
1011 fi
1012 done
1013
1014 # close it off
1015 cat <<EOF
1016
1017 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1018
1019
1020 /* Mechanism for co-ordinating the selection of a specific
1021 architecture.
1022
1023 GDB targets (*-tdep.c) can register an interest in a specific
1024 architecture. Other GDB components can register a need to maintain
1025 per-architecture data.
1026
1027 The mechanisms below ensures that there is only a loose connection
1028 between the set-architecture command and the various GDB
1029 components. Each component can independently register their need
1030 to maintain architecture specific data with gdbarch.
1031
1032 Pragmatics:
1033
1034 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1035 didn't scale.
1036
1037 The more traditional mega-struct containing architecture specific
1038 data for all the various GDB components was also considered. Since
1039 GDB is built from a variable number of (fairly independent)
1040 components it was determined that the global aproach was not
1041 applicable. */
1042
1043
1044 /* Register a new architectural family with GDB.
1045
1046 Register support for the specified ARCHITECTURE with GDB. When
1047 gdbarch determines that the specified architecture has been
1048 selected, the corresponding INIT function is called.
1049
1050 --
1051
1052 The INIT function takes two parameters: INFO which contains the
1053 information available to gdbarch about the (possibly new)
1054 architecture; ARCHES which is a list of the previously created
1055 \`\`struct gdbarch'' for this architecture.
1056
1057 The INFO parameter is, as far as possible, be pre-initialized with
1058 information obtained from INFO.ABFD or the previously selected
1059 architecture.
1060
1061 The ARCHES parameter is a linked list (sorted most recently used)
1062 of all the previously created architures for this architecture
1063 family. The (possibly NULL) ARCHES->gdbarch can used to access
1064 values from the previously selected architecture for this
1065 architecture family. The global \`\`current_gdbarch'' shall not be
1066 used.
1067
1068 The INIT function shall return any of: NULL - indicating that it
1069 doesn't recognize the selected architecture; an existing \`\`struct
1070 gdbarch'' from the ARCHES list - indicating that the new
1071 architecture is just a synonym for an earlier architecture (see
1072 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1073 - that describes the selected architecture (see gdbarch_alloc()).
1074
1075 The DUMP_TDEP function shall print out all target specific values.
1076 Care should be taken to ensure that the function works in both the
1077 multi-arch and non- multi-arch cases. */
1078
1079 struct gdbarch_list
1080 {
1081 struct gdbarch *gdbarch;
1082 struct gdbarch_list *next;
1083 };
1084
1085 struct gdbarch_info
1086 {
1087 /* Use default: NULL (ZERO). */
1088 const struct bfd_arch_info *bfd_arch_info;
1089
1090 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1091 int byte_order;
1092
1093 /* Use default: NULL (ZERO). */
1094 bfd *abfd;
1095
1096 /* Use default: NULL (ZERO). */
1097 struct gdbarch_tdep_info *tdep_info;
1098
1099 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1100 enum gdb_osabi osabi;
1101 };
1102
1103 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1104 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1105
1106 /* DEPRECATED - use gdbarch_register() */
1107 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1108
1109 extern void gdbarch_register (enum bfd_architecture architecture,
1110 gdbarch_init_ftype *,
1111 gdbarch_dump_tdep_ftype *);
1112
1113
1114 /* Return a freshly allocated, NULL terminated, array of the valid
1115 architecture names. Since architectures are registered during the
1116 _initialize phase this function only returns useful information
1117 once initialization has been completed. */
1118
1119 extern const char **gdbarch_printable_names (void);
1120
1121
1122 /* Helper function. Search the list of ARCHES for a GDBARCH that
1123 matches the information provided by INFO. */
1124
1125 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1126
1127
1128 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1129 basic initialization using values obtained from the INFO andTDEP
1130 parameters. set_gdbarch_*() functions are called to complete the
1131 initialization of the object. */
1132
1133 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1134
1135
1136 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1137 It is assumed that the caller freeds the \`\`struct
1138 gdbarch_tdep''. */
1139
1140 extern void gdbarch_free (struct gdbarch *);
1141
1142
1143 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1144 obstack. The memory is freed when the corresponding architecture
1145 is also freed. */
1146
1147 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1148 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1149 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1150
1151
1152 /* Helper function. Force an update of the current architecture.
1153
1154 The actual architecture selected is determined by INFO, \`\`(gdb) set
1155 architecture'' et.al., the existing architecture and BFD's default
1156 architecture. INFO should be initialized to zero and then selected
1157 fields should be updated.
1158
1159 Returns non-zero if the update succeeds */
1160
1161 extern int gdbarch_update_p (struct gdbarch_info info);
1162
1163
1164 /* Helper function. Find an architecture matching info.
1165
1166 INFO should be initialized using gdbarch_info_init, relevant fields
1167 set, and then finished using gdbarch_info_fill.
1168
1169 Returns the corresponding architecture, or NULL if no matching
1170 architecture was found. "current_gdbarch" is not updated. */
1171
1172 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1173
1174
1175 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1176
1177 FIXME: kettenis/20031124: Of the functions that follow, only
1178 gdbarch_from_bfd is supposed to survive. The others will
1179 dissappear since in the future GDB will (hopefully) be truly
1180 multi-arch. However, for now we're still stuck with the concept of
1181 a single active architecture. */
1182
1183 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1184
1185
1186 /* Register per-architecture data-pointer.
1187
1188 Reserve space for a per-architecture data-pointer. An identifier
1189 for the reserved data-pointer is returned. That identifer should
1190 be saved in a local static variable.
1191
1192 The per-architecture data-pointer is either initialized explicitly
1193 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1194 gdbarch_data()).
1195
1196 Memory for the per-architecture data shall be allocated using
1197 gdbarch_obstack_zalloc. That memory will be deleted when the
1198 corresponding architecture object is deleted.
1199
1200 When a previously created architecture is re-selected, the
1201 per-architecture data-pointer for that previous architecture is
1202 restored. INIT() is not re-called.
1203
1204 Multiple registrarants for any architecture are allowed (and
1205 strongly encouraged). */
1206
1207 struct gdbarch_data;
1208
1209 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1210 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1211 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1212 struct gdbarch_data *data,
1213 void *pointer);
1214
1215 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1216
1217
1218 /* Register per-architecture memory region.
1219
1220 Provide a memory-region swap mechanism. Per-architecture memory
1221 region are created. These memory regions are swapped whenever the
1222 architecture is changed. For a new architecture, the memory region
1223 is initialized with zero (0) and the INIT function is called.
1224
1225 Memory regions are swapped / initialized in the order that they are
1226 registered. NULL DATA and/or INIT values can be specified.
1227
1228 New code should use register_gdbarch_data(). */
1229
1230 typedef void (gdbarch_swap_ftype) (void);
1231 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1232 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1233
1234
1235
1236 /* The target-system-dependent byte order is dynamic */
1237
1238 extern int target_byte_order;
1239 #ifndef TARGET_BYTE_ORDER
1240 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1241 #endif
1242
1243 extern int target_byte_order_auto;
1244 #ifndef TARGET_BYTE_ORDER_AUTO
1245 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1246 #endif
1247
1248
1249
1250 /* The target-system-dependent BFD architecture is dynamic */
1251
1252 extern int target_architecture_auto;
1253 #ifndef TARGET_ARCHITECTURE_AUTO
1254 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1255 #endif
1256
1257 extern const struct bfd_arch_info *target_architecture;
1258 #ifndef TARGET_ARCHITECTURE
1259 #define TARGET_ARCHITECTURE (target_architecture + 0)
1260 #endif
1261
1262
1263 /* Set the dynamic target-system-dependent parameters (architecture,
1264 byte-order, ...) using information found in the BFD */
1265
1266 extern void set_gdbarch_from_file (bfd *);
1267
1268
1269 /* Initialize the current architecture to the "first" one we find on
1270 our list. */
1271
1272 extern void initialize_current_architecture (void);
1273
1274 /* gdbarch trace variable */
1275 extern int gdbarch_debug;
1276
1277 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1278
1279 #endif
1280 EOF
1281 exec 1>&2
1282 #../move-if-change new-gdbarch.h gdbarch.h
1283 compare_new gdbarch.h
1284
1285
1286 #
1287 # C file
1288 #
1289
1290 exec > new-gdbarch.c
1291 copyright
1292 cat <<EOF
1293
1294 #include "defs.h"
1295 #include "arch-utils.h"
1296
1297 #include "gdbcmd.h"
1298 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1299 #include "symcat.h"
1300
1301 #include "floatformat.h"
1302
1303 #include "gdb_assert.h"
1304 #include "gdb_string.h"
1305 #include "gdb-events.h"
1306 #include "reggroups.h"
1307 #include "osabi.h"
1308 #include "symfile.h" /* For entry_point_address. */
1309 #include "gdb_obstack.h"
1310
1311 /* Static function declarations */
1312
1313 static void alloc_gdbarch_data (struct gdbarch *);
1314
1315 /* Non-zero if we want to trace architecture code. */
1316
1317 #ifndef GDBARCH_DEBUG
1318 #define GDBARCH_DEBUG 0
1319 #endif
1320 int gdbarch_debug = GDBARCH_DEBUG;
1321
1322 EOF
1323
1324 # gdbarch open the gdbarch object
1325 printf "\n"
1326 printf "/* Maintain the struct gdbarch object */\n"
1327 printf "\n"
1328 printf "struct gdbarch\n"
1329 printf "{\n"
1330 printf " /* Has this architecture been fully initialized? */\n"
1331 printf " int initialized_p;\n"
1332 printf "\n"
1333 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1334 printf " struct obstack *obstack;\n"
1335 printf "\n"
1336 printf " /* basic architectural information */\n"
1337 function_list | while do_read
1338 do
1339 if class_is_info_p
1340 then
1341 printf " ${returntype} ${function};\n"
1342 fi
1343 done
1344 printf "\n"
1345 printf " /* target specific vector. */\n"
1346 printf " struct gdbarch_tdep *tdep;\n"
1347 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1348 printf "\n"
1349 printf " /* per-architecture data-pointers */\n"
1350 printf " unsigned nr_data;\n"
1351 printf " void **data;\n"
1352 printf "\n"
1353 printf " /* per-architecture swap-regions */\n"
1354 printf " struct gdbarch_swap *swap;\n"
1355 printf "\n"
1356 cat <<EOF
1357 /* Multi-arch values.
1358
1359 When extending this structure you must:
1360
1361 Add the field below.
1362
1363 Declare set/get functions and define the corresponding
1364 macro in gdbarch.h.
1365
1366 gdbarch_alloc(): If zero/NULL is not a suitable default,
1367 initialize the new field.
1368
1369 verify_gdbarch(): Confirm that the target updated the field
1370 correctly.
1371
1372 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1373 field is dumped out
1374
1375 \`\`startup_gdbarch()'': Append an initial value to the static
1376 variable (base values on the host's c-type system).
1377
1378 get_gdbarch(): Implement the set/get functions (probably using
1379 the macro's as shortcuts).
1380
1381 */
1382
1383 EOF
1384 function_list | while do_read
1385 do
1386 if class_is_variable_p
1387 then
1388 printf " ${returntype} ${function};\n"
1389 elif class_is_function_p
1390 then
1391 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1392 fi
1393 done
1394 printf "};\n"
1395
1396 # A pre-initialized vector
1397 printf "\n"
1398 printf "\n"
1399 cat <<EOF
1400 /* The default architecture uses host values (for want of a better
1401 choice). */
1402 EOF
1403 printf "\n"
1404 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1405 printf "\n"
1406 printf "struct gdbarch startup_gdbarch =\n"
1407 printf "{\n"
1408 printf " 1, /* Always initialized. */\n"
1409 printf " NULL, /* The obstack. */\n"
1410 printf " /* basic architecture information */\n"
1411 function_list | while do_read
1412 do
1413 if class_is_info_p
1414 then
1415 printf " ${staticdefault}, /* ${function} */\n"
1416 fi
1417 done
1418 cat <<EOF
1419 /* target specific vector and its dump routine */
1420 NULL, NULL,
1421 /*per-architecture data-pointers and swap regions */
1422 0, NULL, NULL,
1423 /* Multi-arch values */
1424 EOF
1425 function_list | while do_read
1426 do
1427 if class_is_function_p || class_is_variable_p
1428 then
1429 printf " ${staticdefault}, /* ${function} */\n"
1430 fi
1431 done
1432 cat <<EOF
1433 /* startup_gdbarch() */
1434 };
1435
1436 struct gdbarch *current_gdbarch = &startup_gdbarch;
1437 EOF
1438
1439 # Create a new gdbarch struct
1440 cat <<EOF
1441
1442 /* Create a new \`\`struct gdbarch'' based on information provided by
1443 \`\`struct gdbarch_info''. */
1444 EOF
1445 printf "\n"
1446 cat <<EOF
1447 struct gdbarch *
1448 gdbarch_alloc (const struct gdbarch_info *info,
1449 struct gdbarch_tdep *tdep)
1450 {
1451 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1452 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1453 the current local architecture and not the previous global
1454 architecture. This ensures that the new architectures initial
1455 values are not influenced by the previous architecture. Once
1456 everything is parameterised with gdbarch, this will go away. */
1457 struct gdbarch *current_gdbarch;
1458
1459 /* Create an obstack for allocating all the per-architecture memory,
1460 then use that to allocate the architecture vector. */
1461 struct obstack *obstack = XMALLOC (struct obstack);
1462 obstack_init (obstack);
1463 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1464 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1465 current_gdbarch->obstack = obstack;
1466
1467 alloc_gdbarch_data (current_gdbarch);
1468
1469 current_gdbarch->tdep = tdep;
1470 EOF
1471 printf "\n"
1472 function_list | while do_read
1473 do
1474 if class_is_info_p
1475 then
1476 printf " current_gdbarch->${function} = info->${function};\n"
1477 fi
1478 done
1479 printf "\n"
1480 printf " /* Force the explicit initialization of these. */\n"
1481 function_list | while do_read
1482 do
1483 if class_is_function_p || class_is_variable_p
1484 then
1485 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1486 then
1487 printf " current_gdbarch->${function} = ${predefault};\n"
1488 fi
1489 fi
1490 done
1491 cat <<EOF
1492 /* gdbarch_alloc() */
1493
1494 return current_gdbarch;
1495 }
1496 EOF
1497
1498 # Free a gdbarch struct.
1499 printf "\n"
1500 printf "\n"
1501 cat <<EOF
1502 /* Allocate extra space using the per-architecture obstack. */
1503
1504 void *
1505 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1506 {
1507 void *data = obstack_alloc (arch->obstack, size);
1508 memset (data, 0, size);
1509 return data;
1510 }
1511
1512
1513 /* Free a gdbarch struct. This should never happen in normal
1514 operation --- once you've created a gdbarch, you keep it around.
1515 However, if an architecture's init function encounters an error
1516 building the structure, it may need to clean up a partially
1517 constructed gdbarch. */
1518
1519 void
1520 gdbarch_free (struct gdbarch *arch)
1521 {
1522 struct obstack *obstack;
1523 gdb_assert (arch != NULL);
1524 gdb_assert (!arch->initialized_p);
1525 obstack = arch->obstack;
1526 obstack_free (obstack, 0); /* Includes the ARCH. */
1527 xfree (obstack);
1528 }
1529 EOF
1530
1531 # verify a new architecture
1532 cat <<EOF
1533
1534
1535 /* Ensure that all values in a GDBARCH are reasonable. */
1536
1537 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1538 just happens to match the global variable \`\`current_gdbarch''. That
1539 way macros refering to that variable get the local and not the global
1540 version - ulgh. Once everything is parameterised with gdbarch, this
1541 will go away. */
1542
1543 static void
1544 verify_gdbarch (struct gdbarch *current_gdbarch)
1545 {
1546 struct ui_file *log;
1547 struct cleanup *cleanups;
1548 long dummy;
1549 char *buf;
1550 log = mem_fileopen ();
1551 cleanups = make_cleanup_ui_file_delete (log);
1552 /* fundamental */
1553 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1554 fprintf_unfiltered (log, "\n\tbyte-order");
1555 if (current_gdbarch->bfd_arch_info == NULL)
1556 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1557 /* Check those that need to be defined for the given multi-arch level. */
1558 EOF
1559 function_list | while do_read
1560 do
1561 if class_is_function_p || class_is_variable_p
1562 then
1563 if [ "x${invalid_p}" = "x0" ]
1564 then
1565 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1566 elif class_is_predicate_p
1567 then
1568 printf " /* Skip verify of ${function}, has predicate */\n"
1569 # FIXME: See do_read for potential simplification
1570 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1571 then
1572 printf " if (${invalid_p})\n"
1573 printf " current_gdbarch->${function} = ${postdefault};\n"
1574 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1575 then
1576 printf " if (current_gdbarch->${function} == ${predefault})\n"
1577 printf " current_gdbarch->${function} = ${postdefault};\n"
1578 elif [ -n "${postdefault}" ]
1579 then
1580 printf " if (current_gdbarch->${function} == 0)\n"
1581 printf " current_gdbarch->${function} = ${postdefault};\n"
1582 elif [ -n "${invalid_p}" ]
1583 then
1584 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1585 printf " && (${invalid_p}))\n"
1586 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1587 elif [ -n "${predefault}" ]
1588 then
1589 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1590 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1591 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1592 fi
1593 fi
1594 done
1595 cat <<EOF
1596 buf = ui_file_xstrdup (log, &dummy);
1597 make_cleanup (xfree, buf);
1598 if (strlen (buf) > 0)
1599 internal_error (__FILE__, __LINE__,
1600 "verify_gdbarch: the following are invalid ...%s",
1601 buf);
1602 do_cleanups (cleanups);
1603 }
1604 EOF
1605
1606 # dump the structure
1607 printf "\n"
1608 printf "\n"
1609 cat <<EOF
1610 /* Print out the details of the current architecture. */
1611
1612 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1613 just happens to match the global variable \`\`current_gdbarch''. That
1614 way macros refering to that variable get the local and not the global
1615 version - ulgh. Once everything is parameterised with gdbarch, this
1616 will go away. */
1617
1618 void
1619 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1620 {
1621 fprintf_unfiltered (file,
1622 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1623 GDB_MULTI_ARCH);
1624 EOF
1625 function_list | sort -t: -k 3 | while do_read
1626 do
1627 # First the predicate
1628 if class_is_predicate_p
1629 then
1630 if class_is_multiarch_p
1631 then
1632 printf " fprintf_unfiltered (file,\n"
1633 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1634 printf " gdbarch_${function}_p (current_gdbarch));\n"
1635 else
1636 printf "#ifdef ${macro}_P\n"
1637 printf " fprintf_unfiltered (file,\n"
1638 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1639 printf " \"${macro}_P()\",\n"
1640 printf " XSTRING (${macro}_P ()));\n"
1641 printf " fprintf_unfiltered (file,\n"
1642 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1643 printf " ${macro}_P ());\n"
1644 printf "#endif\n"
1645 fi
1646 fi
1647 # multiarch functions don't have macros.
1648 if class_is_multiarch_p
1649 then
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1652 printf " (long) current_gdbarch->${function});\n"
1653 continue
1654 fi
1655 # Print the macro definition.
1656 printf "#ifdef ${macro}\n"
1657 if class_is_function_p
1658 then
1659 printf " fprintf_unfiltered (file,\n"
1660 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1661 printf " \"${macro}(${actual})\",\n"
1662 printf " XSTRING (${macro} (${actual})));\n"
1663 else
1664 printf " fprintf_unfiltered (file,\n"
1665 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1666 printf " XSTRING (${macro}));\n"
1667 fi
1668 if [ "x${print_p}" = "x()" ]
1669 then
1670 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1671 elif [ "x${print_p}" = "x0" ]
1672 then
1673 printf " /* skip print of ${macro}, print_p == 0. */\n"
1674 elif [ -n "${print_p}" ]
1675 then
1676 printf " if (${print_p})\n"
1677 printf " fprintf_unfiltered (file,\n"
1678 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1679 printf " ${print});\n"
1680 elif class_is_function_p
1681 then
1682 printf " fprintf_unfiltered (file,\n"
1683 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1684 printf " (long) current_gdbarch->${function}\n"
1685 printf " /*${macro} ()*/);\n"
1686 else
1687 printf " fprintf_unfiltered (file,\n"
1688 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1689 printf " ${print});\n"
1690 fi
1691 printf "#endif\n"
1692 done
1693 cat <<EOF
1694 if (current_gdbarch->dump_tdep != NULL)
1695 current_gdbarch->dump_tdep (current_gdbarch, file);
1696 }
1697 EOF
1698
1699
1700 # GET/SET
1701 printf "\n"
1702 cat <<EOF
1703 struct gdbarch_tdep *
1704 gdbarch_tdep (struct gdbarch *gdbarch)
1705 {
1706 if (gdbarch_debug >= 2)
1707 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1708 return gdbarch->tdep;
1709 }
1710 EOF
1711 printf "\n"
1712 function_list | while do_read
1713 do
1714 if class_is_predicate_p
1715 then
1716 printf "\n"
1717 printf "int\n"
1718 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1719 printf "{\n"
1720 printf " gdb_assert (gdbarch != NULL);\n"
1721 printf " return ${predicate};\n"
1722 printf "}\n"
1723 fi
1724 if class_is_function_p
1725 then
1726 printf "\n"
1727 printf "${returntype}\n"
1728 if [ "x${formal}" = "xvoid" ]
1729 then
1730 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1731 else
1732 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1733 fi
1734 printf "{\n"
1735 printf " gdb_assert (gdbarch != NULL);\n"
1736 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1737 if class_is_predicate_p && test -n "${predefault}"
1738 then
1739 # Allow a call to a function with a predicate.
1740 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1741 fi
1742 printf " if (gdbarch_debug >= 2)\n"
1743 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1744 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1745 then
1746 if class_is_multiarch_p
1747 then
1748 params="gdbarch"
1749 else
1750 params=""
1751 fi
1752 else
1753 if class_is_multiarch_p
1754 then
1755 params="gdbarch, ${actual}"
1756 else
1757 params="${actual}"
1758 fi
1759 fi
1760 if [ "x${returntype}" = "xvoid" ]
1761 then
1762 printf " gdbarch->${function} (${params});\n"
1763 else
1764 printf " return gdbarch->${function} (${params});\n"
1765 fi
1766 printf "}\n"
1767 printf "\n"
1768 printf "void\n"
1769 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1770 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1771 printf "{\n"
1772 printf " gdbarch->${function} = ${function};\n"
1773 printf "}\n"
1774 elif class_is_variable_p
1775 then
1776 printf "\n"
1777 printf "${returntype}\n"
1778 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1779 printf "{\n"
1780 printf " gdb_assert (gdbarch != NULL);\n"
1781 if [ "x${invalid_p}" = "x0" ]
1782 then
1783 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1784 elif [ -n "${invalid_p}" ]
1785 then
1786 printf " /* Check variable is valid. */\n"
1787 printf " gdb_assert (!(${invalid_p}));\n"
1788 elif [ -n "${predefault}" ]
1789 then
1790 printf " /* Check variable changed from pre-default. */\n"
1791 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1792 fi
1793 printf " if (gdbarch_debug >= 2)\n"
1794 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1795 printf " return gdbarch->${function};\n"
1796 printf "}\n"
1797 printf "\n"
1798 printf "void\n"
1799 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1800 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1801 printf "{\n"
1802 printf " gdbarch->${function} = ${function};\n"
1803 printf "}\n"
1804 elif class_is_info_p
1805 then
1806 printf "\n"
1807 printf "${returntype}\n"
1808 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1809 printf "{\n"
1810 printf " gdb_assert (gdbarch != NULL);\n"
1811 printf " if (gdbarch_debug >= 2)\n"
1812 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1813 printf " return gdbarch->${function};\n"
1814 printf "}\n"
1815 fi
1816 done
1817
1818 # All the trailing guff
1819 cat <<EOF
1820
1821
1822 /* Keep a registry of per-architecture data-pointers required by GDB
1823 modules. */
1824
1825 struct gdbarch_data
1826 {
1827 unsigned index;
1828 int init_p;
1829 gdbarch_data_init_ftype *init;
1830 };
1831
1832 struct gdbarch_data_registration
1833 {
1834 struct gdbarch_data *data;
1835 struct gdbarch_data_registration *next;
1836 };
1837
1838 struct gdbarch_data_registry
1839 {
1840 unsigned nr;
1841 struct gdbarch_data_registration *registrations;
1842 };
1843
1844 struct gdbarch_data_registry gdbarch_data_registry =
1845 {
1846 0, NULL,
1847 };
1848
1849 struct gdbarch_data *
1850 register_gdbarch_data (gdbarch_data_init_ftype *init)
1851 {
1852 struct gdbarch_data_registration **curr;
1853 /* Append the new registraration. */
1854 for (curr = &gdbarch_data_registry.registrations;
1855 (*curr) != NULL;
1856 curr = &(*curr)->next);
1857 (*curr) = XMALLOC (struct gdbarch_data_registration);
1858 (*curr)->next = NULL;
1859 (*curr)->data = XMALLOC (struct gdbarch_data);
1860 (*curr)->data->index = gdbarch_data_registry.nr++;
1861 (*curr)->data->init = init;
1862 (*curr)->data->init_p = 1;
1863 return (*curr)->data;
1864 }
1865
1866
1867 /* Create/delete the gdbarch data vector. */
1868
1869 static void
1870 alloc_gdbarch_data (struct gdbarch *gdbarch)
1871 {
1872 gdb_assert (gdbarch->data == NULL);
1873 gdbarch->nr_data = gdbarch_data_registry.nr;
1874 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1875 }
1876
1877 /* Initialize the current value of the specified per-architecture
1878 data-pointer. */
1879
1880 void
1881 set_gdbarch_data (struct gdbarch *gdbarch,
1882 struct gdbarch_data *data,
1883 void *pointer)
1884 {
1885 gdb_assert (data->index < gdbarch->nr_data);
1886 gdb_assert (gdbarch->data[data->index] == NULL);
1887 gdbarch->data[data->index] = pointer;
1888 }
1889
1890 /* Return the current value of the specified per-architecture
1891 data-pointer. */
1892
1893 void *
1894 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1895 {
1896 gdb_assert (data->index < gdbarch->nr_data);
1897 /* The data-pointer isn't initialized, call init() to get a value but
1898 only if the architecture initializaiton has completed. Otherwise
1899 punt - hope that the caller knows what they are doing. */
1900 if (gdbarch->data[data->index] == NULL
1901 && gdbarch->initialized_p)
1902 {
1903 /* Be careful to detect an initialization cycle. */
1904 gdb_assert (data->init_p);
1905 data->init_p = 0;
1906 gdb_assert (data->init != NULL);
1907 gdbarch->data[data->index] = data->init (gdbarch);
1908 data->init_p = 1;
1909 gdb_assert (gdbarch->data[data->index] != NULL);
1910 }
1911 return gdbarch->data[data->index];
1912 }
1913
1914
1915
1916 /* Keep a registry of swapped data required by GDB modules. */
1917
1918 struct gdbarch_swap
1919 {
1920 void *swap;
1921 struct gdbarch_swap_registration *source;
1922 struct gdbarch_swap *next;
1923 };
1924
1925 struct gdbarch_swap_registration
1926 {
1927 void *data;
1928 unsigned long sizeof_data;
1929 gdbarch_swap_ftype *init;
1930 struct gdbarch_swap_registration *next;
1931 };
1932
1933 struct gdbarch_swap_registry
1934 {
1935 int nr;
1936 struct gdbarch_swap_registration *registrations;
1937 };
1938
1939 struct gdbarch_swap_registry gdbarch_swap_registry =
1940 {
1941 0, NULL,
1942 };
1943
1944 void
1945 register_gdbarch_swap (void *data,
1946 unsigned long sizeof_data,
1947 gdbarch_swap_ftype *init)
1948 {
1949 struct gdbarch_swap_registration **rego;
1950 for (rego = &gdbarch_swap_registry.registrations;
1951 (*rego) != NULL;
1952 rego = &(*rego)->next);
1953 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1954 (*rego)->next = NULL;
1955 (*rego)->init = init;
1956 (*rego)->data = data;
1957 (*rego)->sizeof_data = sizeof_data;
1958 }
1959
1960 static void
1961 current_gdbarch_swap_init_hack (void)
1962 {
1963 struct gdbarch_swap_registration *rego;
1964 struct gdbarch_swap **curr = &current_gdbarch->swap;
1965 for (rego = gdbarch_swap_registry.registrations;
1966 rego != NULL;
1967 rego = rego->next)
1968 {
1969 if (rego->data != NULL)
1970 {
1971 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1972 struct gdbarch_swap);
1973 (*curr)->source = rego;
1974 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1975 rego->sizeof_data);
1976 (*curr)->next = NULL;
1977 curr = &(*curr)->next;
1978 }
1979 if (rego->init != NULL)
1980 rego->init ();
1981 }
1982 }
1983
1984 static struct gdbarch *
1985 current_gdbarch_swap_out_hack (void)
1986 {
1987 struct gdbarch *old_gdbarch = current_gdbarch;
1988 struct gdbarch_swap *curr;
1989
1990 gdb_assert (old_gdbarch != NULL);
1991 for (curr = old_gdbarch->swap;
1992 curr != NULL;
1993 curr = curr->next)
1994 {
1995 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1996 memset (curr->source->data, 0, curr->source->sizeof_data);
1997 }
1998 current_gdbarch = NULL;
1999 return old_gdbarch;
2000 }
2001
2002 static void
2003 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
2004 {
2005 struct gdbarch_swap *curr;
2006
2007 gdb_assert (current_gdbarch == NULL);
2008 for (curr = new_gdbarch->swap;
2009 curr != NULL;
2010 curr = curr->next)
2011 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2012 current_gdbarch = new_gdbarch;
2013 }
2014
2015
2016 /* Keep a registry of the architectures known by GDB. */
2017
2018 struct gdbarch_registration
2019 {
2020 enum bfd_architecture bfd_architecture;
2021 gdbarch_init_ftype *init;
2022 gdbarch_dump_tdep_ftype *dump_tdep;
2023 struct gdbarch_list *arches;
2024 struct gdbarch_registration *next;
2025 };
2026
2027 static struct gdbarch_registration *gdbarch_registry = NULL;
2028
2029 static void
2030 append_name (const char ***buf, int *nr, const char *name)
2031 {
2032 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2033 (*buf)[*nr] = name;
2034 *nr += 1;
2035 }
2036
2037 const char **
2038 gdbarch_printable_names (void)
2039 {
2040 /* Accumulate a list of names based on the registed list of
2041 architectures. */
2042 enum bfd_architecture a;
2043 int nr_arches = 0;
2044 const char **arches = NULL;
2045 struct gdbarch_registration *rego;
2046 for (rego = gdbarch_registry;
2047 rego != NULL;
2048 rego = rego->next)
2049 {
2050 const struct bfd_arch_info *ap;
2051 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2052 if (ap == NULL)
2053 internal_error (__FILE__, __LINE__,
2054 "gdbarch_architecture_names: multi-arch unknown");
2055 do
2056 {
2057 append_name (&arches, &nr_arches, ap->printable_name);
2058 ap = ap->next;
2059 }
2060 while (ap != NULL);
2061 }
2062 append_name (&arches, &nr_arches, NULL);
2063 return arches;
2064 }
2065
2066
2067 void
2068 gdbarch_register (enum bfd_architecture bfd_architecture,
2069 gdbarch_init_ftype *init,
2070 gdbarch_dump_tdep_ftype *dump_tdep)
2071 {
2072 struct gdbarch_registration **curr;
2073 const struct bfd_arch_info *bfd_arch_info;
2074 /* Check that BFD recognizes this architecture */
2075 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2076 if (bfd_arch_info == NULL)
2077 {
2078 internal_error (__FILE__, __LINE__,
2079 "gdbarch: Attempt to register unknown architecture (%d)",
2080 bfd_architecture);
2081 }
2082 /* Check that we haven't seen this architecture before */
2083 for (curr = &gdbarch_registry;
2084 (*curr) != NULL;
2085 curr = &(*curr)->next)
2086 {
2087 if (bfd_architecture == (*curr)->bfd_architecture)
2088 internal_error (__FILE__, __LINE__,
2089 "gdbarch: Duplicate registraration of architecture (%s)",
2090 bfd_arch_info->printable_name);
2091 }
2092 /* log it */
2093 if (gdbarch_debug)
2094 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2095 bfd_arch_info->printable_name,
2096 (long) init);
2097 /* Append it */
2098 (*curr) = XMALLOC (struct gdbarch_registration);
2099 (*curr)->bfd_architecture = bfd_architecture;
2100 (*curr)->init = init;
2101 (*curr)->dump_tdep = dump_tdep;
2102 (*curr)->arches = NULL;
2103 (*curr)->next = NULL;
2104 }
2105
2106 void
2107 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2108 gdbarch_init_ftype *init)
2109 {
2110 gdbarch_register (bfd_architecture, init, NULL);
2111 }
2112
2113
2114 /* Look for an architecture using gdbarch_info. Base search on only
2115 BFD_ARCH_INFO and BYTE_ORDER. */
2116
2117 struct gdbarch_list *
2118 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2119 const struct gdbarch_info *info)
2120 {
2121 for (; arches != NULL; arches = arches->next)
2122 {
2123 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2124 continue;
2125 if (info->byte_order != arches->gdbarch->byte_order)
2126 continue;
2127 if (info->osabi != arches->gdbarch->osabi)
2128 continue;
2129 return arches;
2130 }
2131 return NULL;
2132 }
2133
2134
2135 /* Find an architecture that matches the specified INFO. Create a new
2136 architecture if needed. Return that new architecture. Assumes
2137 that there is no current architecture. */
2138
2139 static struct gdbarch *
2140 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2141 {
2142 struct gdbarch *new_gdbarch;
2143 struct gdbarch_registration *rego;
2144
2145 /* The existing architecture has been swapped out - all this code
2146 works from a clean slate. */
2147 gdb_assert (current_gdbarch == NULL);
2148
2149 /* Fill in missing parts of the INFO struct using a number of
2150 sources: "set ..."; INFOabfd supplied; and the existing
2151 architecture. */
2152 gdbarch_info_fill (old_gdbarch, &info);
2153
2154 /* Must have found some sort of architecture. */
2155 gdb_assert (info.bfd_arch_info != NULL);
2156
2157 if (gdbarch_debug)
2158 {
2159 fprintf_unfiltered (gdb_stdlog,
2160 "find_arch_by_info: info.bfd_arch_info %s\n",
2161 (info.bfd_arch_info != NULL
2162 ? info.bfd_arch_info->printable_name
2163 : "(null)"));
2164 fprintf_unfiltered (gdb_stdlog,
2165 "find_arch_by_info: info.byte_order %d (%s)\n",
2166 info.byte_order,
2167 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2168 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2169 : "default"));
2170 fprintf_unfiltered (gdb_stdlog,
2171 "find_arch_by_info: info.osabi %d (%s)\n",
2172 info.osabi, gdbarch_osabi_name (info.osabi));
2173 fprintf_unfiltered (gdb_stdlog,
2174 "find_arch_by_info: info.abfd 0x%lx\n",
2175 (long) info.abfd);
2176 fprintf_unfiltered (gdb_stdlog,
2177 "find_arch_by_info: info.tdep_info 0x%lx\n",
2178 (long) info.tdep_info);
2179 }
2180
2181 /* Find the tdep code that knows about this architecture. */
2182 for (rego = gdbarch_registry;
2183 rego != NULL;
2184 rego = rego->next)
2185 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2186 break;
2187 if (rego == NULL)
2188 {
2189 if (gdbarch_debug)
2190 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2191 "No matching architecture\n");
2192 return 0;
2193 }
2194
2195 /* Ask the tdep code for an architecture that matches "info". */
2196 new_gdbarch = rego->init (info, rego->arches);
2197
2198 /* Did the tdep code like it? No. Reject the change and revert to
2199 the old architecture. */
2200 if (new_gdbarch == NULL)
2201 {
2202 if (gdbarch_debug)
2203 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2204 "Target rejected architecture\n");
2205 return NULL;
2206 }
2207
2208 /* Is this a pre-existing architecture (as determined by already
2209 being initialized)? Move it to the front of the architecture
2210 list (keeping the list sorted Most Recently Used). */
2211 if (new_gdbarch->initialized_p)
2212 {
2213 struct gdbarch_list **list;
2214 struct gdbarch_list *this;
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2217 "Previous architecture 0x%08lx (%s) selected\n",
2218 (long) new_gdbarch,
2219 new_gdbarch->bfd_arch_info->printable_name);
2220 /* Find the existing arch in the list. */
2221 for (list = &rego->arches;
2222 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2223 list = &(*list)->next);
2224 /* It had better be in the list of architectures. */
2225 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2226 /* Unlink THIS. */
2227 this = (*list);
2228 (*list) = this->next;
2229 /* Insert THIS at the front. */
2230 this->next = rego->arches;
2231 rego->arches = this;
2232 /* Return it. */
2233 return new_gdbarch;
2234 }
2235
2236 /* It's a new architecture. */
2237 if (gdbarch_debug)
2238 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2239 "New architecture 0x%08lx (%s) selected\n",
2240 (long) new_gdbarch,
2241 new_gdbarch->bfd_arch_info->printable_name);
2242
2243 /* Insert the new architecture into the front of the architecture
2244 list (keep the list sorted Most Recently Used). */
2245 {
2246 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2247 this->next = rego->arches;
2248 this->gdbarch = new_gdbarch;
2249 rego->arches = this;
2250 }
2251
2252 /* Check that the newly installed architecture is valid. Plug in
2253 any post init values. */
2254 new_gdbarch->dump_tdep = rego->dump_tdep;
2255 verify_gdbarch (new_gdbarch);
2256 new_gdbarch->initialized_p = 1;
2257
2258 /* Initialize any per-architecture swap areas. This phase requires
2259 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2260 swap the entire architecture out. */
2261 current_gdbarch = new_gdbarch;
2262 current_gdbarch_swap_init_hack ();
2263 current_gdbarch_swap_out_hack ();
2264
2265 if (gdbarch_debug)
2266 gdbarch_dump (new_gdbarch, gdb_stdlog);
2267
2268 return new_gdbarch;
2269 }
2270
2271 struct gdbarch *
2272 gdbarch_find_by_info (struct gdbarch_info info)
2273 {
2274 /* Save the previously selected architecture, setting the global to
2275 NULL. This stops things like gdbarch->init() trying to use the
2276 previous architecture's configuration. The previous architecture
2277 may not even be of the same architecture family. The most recent
2278 architecture of the same family is found at the head of the
2279 rego->arches list. */
2280 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2281
2282 /* Find the specified architecture. */
2283 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2284
2285 /* Restore the existing architecture. */
2286 gdb_assert (current_gdbarch == NULL);
2287 current_gdbarch_swap_in_hack (old_gdbarch);
2288
2289 return new_gdbarch;
2290 }
2291
2292 /* Make the specified architecture current, swapping the existing one
2293 out. */
2294
2295 void
2296 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2297 {
2298 gdb_assert (new_gdbarch != NULL);
2299 gdb_assert (current_gdbarch != NULL);
2300 gdb_assert (new_gdbarch->initialized_p);
2301 current_gdbarch_swap_out_hack ();
2302 current_gdbarch_swap_in_hack (new_gdbarch);
2303 architecture_changed_event ();
2304 }
2305
2306 extern void _initialize_gdbarch (void);
2307
2308 void
2309 _initialize_gdbarch (void)
2310 {
2311 struct cmd_list_element *c;
2312
2313 add_show_from_set (add_set_cmd ("arch",
2314 class_maintenance,
2315 var_zinteger,
2316 (char *)&gdbarch_debug,
2317 "Set architecture debugging.\\n\\
2318 When non-zero, architecture debugging is enabled.", &setdebuglist),
2319 &showdebuglist);
2320 c = add_set_cmd ("archdebug",
2321 class_maintenance,
2322 var_zinteger,
2323 (char *)&gdbarch_debug,
2324 "Set architecture debugging.\\n\\
2325 When non-zero, architecture debugging is enabled.", &setlist);
2326
2327 deprecate_cmd (c, "set debug arch");
2328 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2329 }
2330 EOF
2331
2332 # close things off
2333 exec 1>&2
2334 #../move-if-change new-gdbarch.c gdbarch.c
2335 compare_new gdbarch.c
This page took 0.08263 seconds and 4 git commands to generate.