From 2001-07-23 Andreas Schwab <schwab@suse.de>:
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 #
392 M:::void:register_read:int regnum, char *buf:regnum, buf:
393 M:::void:register_write:int regnum, char *buf:regnum, buf:
394 #
395 v:2:NUM_REGS:int:num_regs::::0:-1
396 # This macro gives the number of pseudo-registers that live in the
397 # register namespace but do not get fetched or stored on the target.
398 # These pseudo-registers may be aliases for other registers,
399 # combinations of other registers, or they may be computed by GDB.
400 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
401 v:2:SP_REGNUM:int:sp_regnum::::0:-1
402 v:2:FP_REGNUM:int:fp_regnum::::0:-1
403 v:2:PC_REGNUM:int:pc_regnum::::0:-1
404 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
405 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
406 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
407 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
408 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
409 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
410 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
411 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
412 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
413 # Convert from an sdb register number to an internal gdb register number.
414 # This should be defined in tm.h, if REGISTER_NAMES is not set up
415 # to map one to one onto the sdb register numbers.
416 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
417 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
418 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
419 v:2:REGISTER_SIZE:int:register_size::::0:-1
420 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
421 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
422 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
423 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
424 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
425 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
426 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
427 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
428 # MAP a GDB RAW register number onto a simulator register number. See
429 # also include/...-sim.h.
430 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
431 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
432 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
433 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
434 #
435 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
436 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
437 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
438 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
439 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
440 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
441 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
442 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
443 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
444 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
445 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
446 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
447 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
448 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
449 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
450 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
451 #
452 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
453 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
454 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
455 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
456 #
457 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
458 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
459 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
460 # This function is called when the value of a pseudo-register needs to
461 # be updated. Typically it will be defined on a per-architecture
462 # basis.
463 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be set or stored. Typically it will be defined on a
466 # per-architecture basis.
467 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
468 #
469 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
470 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
471 #
472 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
473 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
474 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
475 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
476 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
477 f:2:POP_FRAME:void:pop_frame:void:-:::0
478 #
479 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
480 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
481 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
482 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
483 #
484 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
485 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
486 #
487 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
488 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
489 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
490 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
491 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
492 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
493 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
494 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
495 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
496 #
497 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
498 #
499 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
500 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
501 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
502 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
503 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
504 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
505 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
506 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
507 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
508 #
509 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
510 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
511 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
512 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
513 v:2:PARM_BOUNDARY:int:parm_boundary
514 #
515 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
516 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
517 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
518 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
519 # On some machines there are bits in addresses which are not really
520 # part of the address, but are used by the kernel, the hardware, etc.
521 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
522 # we get a "real" address such as one would find in a symbol table.
523 # This is used only for addresses of instructions, and even then I'm
524 # not sure it's used in all contexts. It exists to deal with there
525 # being a few stray bits in the PC which would mislead us, not as some
526 # sort of generic thing to handle alignment or segmentation (it's
527 # possible it should be in TARGET_READ_PC instead).
528 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
529 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
530 # the target needs software single step. An ISA method to implement it.
531 #
532 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
533 # using the breakpoint system instead of blatting memory directly (as with rs6000).
534 #
535 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
536 # single step. If not, then implement single step using breakpoints.
537 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
538 EOF
539 }
540
541 #
542 # The .log file
543 #
544 exec > new-gdbarch.log
545 function_list | while do_read
546 do
547 cat <<EOF
548 ${class} ${macro}(${actual})
549 ${returntype} ${function} ($formal)${attrib}
550 EOF
551 for r in ${read}
552 do
553 eval echo \"\ \ \ \ ${r}=\${${r}}\"
554 done
555 # #fallbackdefault=${fallbackdefault}
556 # #valid_p=${valid_p}
557 #EOF
558 if class_is_predicate_p && fallback_default_p
559 then
560 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
561 kill $$
562 exit 1
563 fi
564 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
565 then
566 echo "Error: postdefault is useless when invalid_p=0" 1>&2
567 kill $$
568 exit 1
569 fi
570 echo ""
571 done
572
573 exec 1>&2
574 compare_new gdbarch.log
575
576
577 copyright ()
578 {
579 cat <<EOF
580 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
581
582 /* Dynamic architecture support for GDB, the GNU debugger.
583 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
584
585 This file is part of GDB.
586
587 This program is free software; you can redistribute it and/or modify
588 it under the terms of the GNU General Public License as published by
589 the Free Software Foundation; either version 2 of the License, or
590 (at your option) any later version.
591
592 This program is distributed in the hope that it will be useful,
593 but WITHOUT ANY WARRANTY; without even the implied warranty of
594 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
595 GNU General Public License for more details.
596
597 You should have received a copy of the GNU General Public License
598 along with this program; if not, write to the Free Software
599 Foundation, Inc., 59 Temple Place - Suite 330,
600 Boston, MA 02111-1307, USA. */
601
602 /* This file was created with the aid of \`\`gdbarch.sh''.
603
604 The Bourne shell script \`\`gdbarch.sh'' creates the files
605 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
606 against the existing \`\`gdbarch.[hc]''. Any differences found
607 being reported.
608
609 If editing this file, please also run gdbarch.sh and merge any
610 changes into that script. Conversely, when making sweeping changes
611 to this file, modifying gdbarch.sh and using its output may prove
612 easier. */
613
614 EOF
615 }
616
617 #
618 # The .h file
619 #
620
621 exec > new-gdbarch.h
622 copyright
623 cat <<EOF
624 #ifndef GDBARCH_H
625 #define GDBARCH_H
626
627 struct frame_info;
628 struct value;
629
630
631 extern struct gdbarch *current_gdbarch;
632
633
634 /* If any of the following are defined, the target wasn't correctly
635 converted. */
636
637 #if GDB_MULTI_ARCH
638 #if defined (EXTRA_FRAME_INFO)
639 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
640 #endif
641 #endif
642
643 #if GDB_MULTI_ARCH
644 #if defined (FRAME_FIND_SAVED_REGS)
645 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
646 #endif
647 #endif
648
649 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
650 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
651 #endif
652 EOF
653
654 # function typedef's
655 printf "\n"
656 printf "\n"
657 printf "/* The following are pre-initialized by GDBARCH. */\n"
658 function_list | while do_read
659 do
660 if class_is_info_p
661 then
662 printf "\n"
663 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
664 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
665 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
666 printf "#error \"Non multi-arch definition of ${macro}\"\n"
667 printf "#endif\n"
668 printf "#if GDB_MULTI_ARCH\n"
669 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
670 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
671 printf "#endif\n"
672 printf "#endif\n"
673 fi
674 done
675
676 # function typedef's
677 printf "\n"
678 printf "\n"
679 printf "/* The following are initialized by the target dependent code. */\n"
680 function_list | while do_read
681 do
682 if [ -n "${comment}" ]
683 then
684 echo "${comment}" | sed \
685 -e '2 s,#,/*,' \
686 -e '3,$ s,#, ,' \
687 -e '$ s,$, */,'
688 fi
689 if class_is_multiarch_p
690 then
691 if class_is_predicate_p
692 then
693 printf "\n"
694 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
695 fi
696 else
697 if class_is_predicate_p
698 then
699 printf "\n"
700 printf "#if defined (${macro})\n"
701 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
702 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
703 printf "#if !defined (${macro}_P)\n"
704 printf "#define ${macro}_P() (1)\n"
705 printf "#endif\n"
706 printf "#endif\n"
707 printf "\n"
708 printf "/* Default predicate for non- multi-arch targets. */\n"
709 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
710 printf "#define ${macro}_P() (0)\n"
711 printf "#endif\n"
712 printf "\n"
713 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
714 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
715 printf "#error \"Non multi-arch definition of ${macro}\"\n"
716 printf "#endif\n"
717 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
718 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
719 printf "#endif\n"
720 fi
721 fi
722 if class_is_variable_p
723 then
724 if fallback_default_p || class_is_predicate_p
725 then
726 printf "\n"
727 printf "/* Default (value) for non- multi-arch platforms. */\n"
728 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
729 echo "#define ${macro} (${fallbackdefault})" \
730 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
731 printf "#endif\n"
732 fi
733 printf "\n"
734 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
735 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
736 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
737 printf "#error \"Non multi-arch definition of ${macro}\"\n"
738 printf "#endif\n"
739 printf "#if GDB_MULTI_ARCH\n"
740 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
741 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
742 printf "#endif\n"
743 printf "#endif\n"
744 fi
745 if class_is_function_p
746 then
747 if class_is_multiarch_p ; then :
748 elif fallback_default_p || class_is_predicate_p
749 then
750 printf "\n"
751 printf "/* Default (function) for non- multi-arch platforms. */\n"
752 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
753 if [ "x${fallbackdefault}" = "x0" ]
754 then
755 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
756 else
757 # FIXME: Should be passing current_gdbarch through!
758 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
759 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
760 fi
761 printf "#endif\n"
762 fi
763 printf "\n"
764 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
765 then
766 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
767 elif class_is_multiarch_p
768 then
769 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
770 else
771 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
772 fi
773 if [ "x${formal}" = "xvoid" ]
774 then
775 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
776 else
777 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
778 fi
779 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
780 if class_is_multiarch_p ; then :
781 else
782 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
783 printf "#error \"Non multi-arch definition of ${macro}\"\n"
784 printf "#endif\n"
785 printf "#if GDB_MULTI_ARCH\n"
786 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
787 if [ "x${actual}" = "x" ]
788 then
789 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
790 elif [ "x${actual}" = "x-" ]
791 then
792 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
793 else
794 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
795 fi
796 printf "#endif\n"
797 printf "#endif\n"
798 fi
799 fi
800 done
801
802 # close it off
803 cat <<EOF
804
805 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
806
807
808 /* Mechanism for co-ordinating the selection of a specific
809 architecture.
810
811 GDB targets (*-tdep.c) can register an interest in a specific
812 architecture. Other GDB components can register a need to maintain
813 per-architecture data.
814
815 The mechanisms below ensures that there is only a loose connection
816 between the set-architecture command and the various GDB
817 components. Each component can independently register their need
818 to maintain architecture specific data with gdbarch.
819
820 Pragmatics:
821
822 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
823 didn't scale.
824
825 The more traditional mega-struct containing architecture specific
826 data for all the various GDB components was also considered. Since
827 GDB is built from a variable number of (fairly independent)
828 components it was determined that the global aproach was not
829 applicable. */
830
831
832 /* Register a new architectural family with GDB.
833
834 Register support for the specified ARCHITECTURE with GDB. When
835 gdbarch determines that the specified architecture has been
836 selected, the corresponding INIT function is called.
837
838 --
839
840 The INIT function takes two parameters: INFO which contains the
841 information available to gdbarch about the (possibly new)
842 architecture; ARCHES which is a list of the previously created
843 \`\`struct gdbarch'' for this architecture.
844
845 The INIT function parameter INFO shall, as far as possible, be
846 pre-initialized with information obtained from INFO.ABFD or
847 previously selected architecture (if similar). INIT shall ensure
848 that the INFO.BYTE_ORDER is non-zero.
849
850 The INIT function shall return any of: NULL - indicating that it
851 doesn't recognize the selected architecture; an existing \`\`struct
852 gdbarch'' from the ARCHES list - indicating that the new
853 architecture is just a synonym for an earlier architecture (see
854 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
855 - that describes the selected architecture (see gdbarch_alloc()).
856
857 The DUMP_TDEP function shall print out all target specific values.
858 Care should be taken to ensure that the function works in both the
859 multi-arch and non- multi-arch cases. */
860
861 struct gdbarch_list
862 {
863 struct gdbarch *gdbarch;
864 struct gdbarch_list *next;
865 };
866
867 struct gdbarch_info
868 {
869 /* Use default: NULL (ZERO). */
870 const struct bfd_arch_info *bfd_arch_info;
871
872 /* Use default: 0 (ZERO). */
873 int byte_order;
874
875 /* Use default: NULL (ZERO). */
876 bfd *abfd;
877
878 /* Use default: NULL (ZERO). */
879 struct gdbarch_tdep_info *tdep_info;
880 };
881
882 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
883 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
884
885 /* DEPRECATED - use gdbarch_register() */
886 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
887
888 extern void gdbarch_register (enum bfd_architecture architecture,
889 gdbarch_init_ftype *,
890 gdbarch_dump_tdep_ftype *);
891
892
893 /* Return a freshly allocated, NULL terminated, array of the valid
894 architecture names. Since architectures are registered during the
895 _initialize phase this function only returns useful information
896 once initialization has been completed. */
897
898 extern const char **gdbarch_printable_names (void);
899
900
901 /* Helper function. Search the list of ARCHES for a GDBARCH that
902 matches the information provided by INFO. */
903
904 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
905
906
907 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
908 basic initialization using values obtained from the INFO andTDEP
909 parameters. set_gdbarch_*() functions are called to complete the
910 initialization of the object. */
911
912 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
913
914
915 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
916 It is assumed that the caller freeds the \`\`struct
917 gdbarch_tdep''. */
918
919 extern void gdbarch_free (struct gdbarch *);
920
921
922 /* Helper function. Force an update of the current architecture.
923
924 The actual architecture selected is determined by INFO, \`\`(gdb) set
925 architecture'' et.al., the existing architecture and BFD's default
926 architecture. INFO should be initialized to zero and then selected
927 fields should be updated.
928
929 Returns non-zero if the update succeeds */
930
931 extern int gdbarch_update_p (struct gdbarch_info info);
932
933
934
935 /* Register per-architecture data-pointer.
936
937 Reserve space for a per-architecture data-pointer. An identifier
938 for the reserved data-pointer is returned. That identifer should
939 be saved in a local static variable.
940
941 The per-architecture data-pointer can be initialized in one of two
942 ways: The value can be set explicitly using a call to
943 set_gdbarch_data(); the value can be set implicitly using the value
944 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
945 called after the basic architecture vector has been created.
946
947 When a previously created architecture is re-selected, the
948 per-architecture data-pointer for that previous architecture is
949 restored. INIT() is not called.
950
951 During initialization, multiple assignments of the data-pointer are
952 allowed, non-NULL values are deleted by calling FREE(). If the
953 architecture is deleted using gdbarch_free() all non-NULL data
954 pointers are also deleted using FREE().
955
956 Multiple registrarants for any architecture are allowed (and
957 strongly encouraged). */
958
959 struct gdbarch_data;
960
961 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
962 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
963 void *pointer);
964 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
965 gdbarch_data_free_ftype *free);
966 extern void set_gdbarch_data (struct gdbarch *gdbarch,
967 struct gdbarch_data *data,
968 void *pointer);
969
970 extern void *gdbarch_data (struct gdbarch_data*);
971
972
973 /* Register per-architecture memory region.
974
975 Provide a memory-region swap mechanism. Per-architecture memory
976 region are created. These memory regions are swapped whenever the
977 architecture is changed. For a new architecture, the memory region
978 is initialized with zero (0) and the INIT function is called.
979
980 Memory regions are swapped / initialized in the order that they are
981 registered. NULL DATA and/or INIT values can be specified.
982
983 New code should use register_gdbarch_data(). */
984
985 typedef void (gdbarch_swap_ftype) (void);
986 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
987 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
988
989
990
991 /* The target-system-dependent byte order is dynamic */
992
993 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
994 is selectable at runtime. The user can use the \`\`set endian''
995 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
996 target_byte_order should be auto-detected (from the program image
997 say). */
998
999 #if GDB_MULTI_ARCH
1000 /* Multi-arch GDB is always bi-endian. */
1001 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1002 #endif
1003
1004 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1005 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1006 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1007 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1008 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1009 #else
1010 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1011 #endif
1012 #endif
1013
1014 extern int target_byte_order;
1015 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1016 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1017 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1018 #undef TARGET_BYTE_ORDER
1019 #endif
1020 #ifndef TARGET_BYTE_ORDER
1021 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1022 #endif
1023
1024 extern int target_byte_order_auto;
1025 #ifndef TARGET_BYTE_ORDER_AUTO
1026 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1027 #endif
1028
1029
1030
1031 /* The target-system-dependent BFD architecture is dynamic */
1032
1033 extern int target_architecture_auto;
1034 #ifndef TARGET_ARCHITECTURE_AUTO
1035 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1036 #endif
1037
1038 extern const struct bfd_arch_info *target_architecture;
1039 #ifndef TARGET_ARCHITECTURE
1040 #define TARGET_ARCHITECTURE (target_architecture + 0)
1041 #endif
1042
1043
1044 /* The target-system-dependent disassembler is semi-dynamic */
1045
1046 #include "dis-asm.h" /* Get defs for disassemble_info */
1047
1048 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1049 unsigned int len, disassemble_info *info);
1050
1051 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1052 disassemble_info *info);
1053
1054 extern void dis_asm_print_address (bfd_vma addr,
1055 disassemble_info *info);
1056
1057 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1058 extern disassemble_info tm_print_insn_info;
1059 #ifndef TARGET_PRINT_INSN
1060 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1061 #endif
1062 #ifndef TARGET_PRINT_INSN_INFO
1063 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1064 #endif
1065
1066
1067
1068 /* Set the dynamic target-system-dependent parameters (architecture,
1069 byte-order, ...) using information found in the BFD */
1070
1071 extern void set_gdbarch_from_file (bfd *);
1072
1073
1074 /* Initialize the current architecture to the "first" one we find on
1075 our list. */
1076
1077 extern void initialize_current_architecture (void);
1078
1079 /* For non-multiarched targets, do any initialization of the default
1080 gdbarch object necessary after the _initialize_MODULE functions
1081 have run. */
1082 extern void initialize_non_multiarch ();
1083
1084 /* gdbarch trace variable */
1085 extern int gdbarch_debug;
1086
1087 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1088
1089 #endif
1090 EOF
1091 exec 1>&2
1092 #../move-if-change new-gdbarch.h gdbarch.h
1093 compare_new gdbarch.h
1094
1095
1096 #
1097 # C file
1098 #
1099
1100 exec > new-gdbarch.c
1101 copyright
1102 cat <<EOF
1103
1104 #include "defs.h"
1105 #include "arch-utils.h"
1106
1107 #if GDB_MULTI_ARCH
1108 #include "gdbcmd.h"
1109 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1110 #else
1111 /* Just include everything in sight so that the every old definition
1112 of macro is visible. */
1113 #include "gdb_string.h"
1114 #include <ctype.h>
1115 #include "symtab.h"
1116 #include "frame.h"
1117 #include "inferior.h"
1118 #include "breakpoint.h"
1119 #include "gdb_wait.h"
1120 #include "gdbcore.h"
1121 #include "gdbcmd.h"
1122 #include "target.h"
1123 #include "gdbthread.h"
1124 #include "annotate.h"
1125 #include "symfile.h" /* for overlay functions */
1126 #endif
1127 #include "symcat.h"
1128
1129 #include "floatformat.h"
1130
1131 #include "gdb_assert.h"
1132
1133 /* Static function declarations */
1134
1135 static void verify_gdbarch (struct gdbarch *gdbarch);
1136 static void alloc_gdbarch_data (struct gdbarch *);
1137 static void init_gdbarch_data (struct gdbarch *);
1138 static void free_gdbarch_data (struct gdbarch *);
1139 static void init_gdbarch_swap (struct gdbarch *);
1140 static void swapout_gdbarch_swap (struct gdbarch *);
1141 static void swapin_gdbarch_swap (struct gdbarch *);
1142
1143 /* Convenience macro for allocting typesafe memory. */
1144
1145 #ifndef XMALLOC
1146 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1147 #endif
1148
1149
1150 /* Non-zero if we want to trace architecture code. */
1151
1152 #ifndef GDBARCH_DEBUG
1153 #define GDBARCH_DEBUG 0
1154 #endif
1155 int gdbarch_debug = GDBARCH_DEBUG;
1156
1157 EOF
1158
1159 # gdbarch open the gdbarch object
1160 printf "\n"
1161 printf "/* Maintain the struct gdbarch object */\n"
1162 printf "\n"
1163 printf "struct gdbarch\n"
1164 printf "{\n"
1165 printf " /* basic architectural information */\n"
1166 function_list | while do_read
1167 do
1168 if class_is_info_p
1169 then
1170 printf " ${returntype} ${function};\n"
1171 fi
1172 done
1173 printf "\n"
1174 printf " /* target specific vector. */\n"
1175 printf " struct gdbarch_tdep *tdep;\n"
1176 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1177 printf "\n"
1178 printf " /* per-architecture data-pointers */\n"
1179 printf " unsigned nr_data;\n"
1180 printf " void **data;\n"
1181 printf "\n"
1182 printf " /* per-architecture swap-regions */\n"
1183 printf " struct gdbarch_swap *swap;\n"
1184 printf "\n"
1185 cat <<EOF
1186 /* Multi-arch values.
1187
1188 When extending this structure you must:
1189
1190 Add the field below.
1191
1192 Declare set/get functions and define the corresponding
1193 macro in gdbarch.h.
1194
1195 gdbarch_alloc(): If zero/NULL is not a suitable default,
1196 initialize the new field.
1197
1198 verify_gdbarch(): Confirm that the target updated the field
1199 correctly.
1200
1201 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1202 field is dumped out
1203
1204 \`\`startup_gdbarch()'': Append an initial value to the static
1205 variable (base values on the host's c-type system).
1206
1207 get_gdbarch(): Implement the set/get functions (probably using
1208 the macro's as shortcuts).
1209
1210 */
1211
1212 EOF
1213 function_list | while do_read
1214 do
1215 if class_is_variable_p
1216 then
1217 printf " ${returntype} ${function};\n"
1218 elif class_is_function_p
1219 then
1220 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1221 fi
1222 done
1223 printf "};\n"
1224
1225 # A pre-initialized vector
1226 printf "\n"
1227 printf "\n"
1228 cat <<EOF
1229 /* The default architecture uses host values (for want of a better
1230 choice). */
1231 EOF
1232 printf "\n"
1233 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1234 printf "\n"
1235 printf "struct gdbarch startup_gdbarch =\n"
1236 printf "{\n"
1237 printf " /* basic architecture information */\n"
1238 function_list | while do_read
1239 do
1240 if class_is_info_p
1241 then
1242 printf " ${staticdefault},\n"
1243 fi
1244 done
1245 cat <<EOF
1246 /* target specific vector and its dump routine */
1247 NULL, NULL,
1248 /*per-architecture data-pointers and swap regions */
1249 0, NULL, NULL,
1250 /* Multi-arch values */
1251 EOF
1252 function_list | while do_read
1253 do
1254 if class_is_function_p || class_is_variable_p
1255 then
1256 printf " ${staticdefault},\n"
1257 fi
1258 done
1259 cat <<EOF
1260 /* startup_gdbarch() */
1261 };
1262
1263 struct gdbarch *current_gdbarch = &startup_gdbarch;
1264
1265 /* Do any initialization needed for a non-multiarch configuration
1266 after the _initialize_MODULE functions have been run. */
1267 void
1268 initialize_non_multiarch ()
1269 {
1270 alloc_gdbarch_data (&startup_gdbarch);
1271 init_gdbarch_data (&startup_gdbarch);
1272 }
1273 EOF
1274
1275 # Create a new gdbarch struct
1276 printf "\n"
1277 printf "\n"
1278 cat <<EOF
1279 /* Create a new \`\`struct gdbarch'' based on information provided by
1280 \`\`struct gdbarch_info''. */
1281 EOF
1282 printf "\n"
1283 cat <<EOF
1284 struct gdbarch *
1285 gdbarch_alloc (const struct gdbarch_info *info,
1286 struct gdbarch_tdep *tdep)
1287 {
1288 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1289 memset (gdbarch, 0, sizeof (*gdbarch));
1290
1291 alloc_gdbarch_data (gdbarch);
1292
1293 gdbarch->tdep = tdep;
1294 EOF
1295 printf "\n"
1296 function_list | while do_read
1297 do
1298 if class_is_info_p
1299 then
1300 printf " gdbarch->${function} = info->${function};\n"
1301 fi
1302 done
1303 printf "\n"
1304 printf " /* Force the explicit initialization of these. */\n"
1305 function_list | while do_read
1306 do
1307 if class_is_function_p || class_is_variable_p
1308 then
1309 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1310 then
1311 printf " gdbarch->${function} = ${predefault};\n"
1312 fi
1313 fi
1314 done
1315 cat <<EOF
1316 /* gdbarch_alloc() */
1317
1318 return gdbarch;
1319 }
1320 EOF
1321
1322 # Free a gdbarch struct.
1323 printf "\n"
1324 printf "\n"
1325 cat <<EOF
1326 /* Free a gdbarch struct. This should never happen in normal
1327 operation --- once you've created a gdbarch, you keep it around.
1328 However, if an architecture's init function encounters an error
1329 building the structure, it may need to clean up a partially
1330 constructed gdbarch. */
1331
1332 void
1333 gdbarch_free (struct gdbarch *arch)
1334 {
1335 gdb_assert (arch != NULL);
1336 free_gdbarch_data (arch);
1337 xfree (arch);
1338 }
1339 EOF
1340
1341 # verify a new architecture
1342 printf "\n"
1343 printf "\n"
1344 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1345 printf "\n"
1346 cat <<EOF
1347 static void
1348 verify_gdbarch (struct gdbarch *gdbarch)
1349 {
1350 /* Only perform sanity checks on a multi-arch target. */
1351 if (!GDB_MULTI_ARCH)
1352 return;
1353 /* fundamental */
1354 if (gdbarch->byte_order == 0)
1355 internal_error (__FILE__, __LINE__,
1356 "verify_gdbarch: byte-order unset");
1357 if (gdbarch->bfd_arch_info == NULL)
1358 internal_error (__FILE__, __LINE__,
1359 "verify_gdbarch: bfd_arch_info unset");
1360 /* Check those that need to be defined for the given multi-arch level. */
1361 EOF
1362 function_list | while do_read
1363 do
1364 if class_is_function_p || class_is_variable_p
1365 then
1366 if [ "x${invalid_p}" = "x0" ]
1367 then
1368 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1369 elif class_is_predicate_p
1370 then
1371 printf " /* Skip verify of ${function}, has predicate */\n"
1372 # FIXME: See do_read for potential simplification
1373 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1374 then
1375 printf " if (${invalid_p})\n"
1376 printf " gdbarch->${function} = ${postdefault};\n"
1377 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1378 then
1379 printf " if (gdbarch->${function} == ${predefault})\n"
1380 printf " gdbarch->${function} = ${postdefault};\n"
1381 elif [ -n "${postdefault}" ]
1382 then
1383 printf " if (gdbarch->${function} == 0)\n"
1384 printf " gdbarch->${function} = ${postdefault};\n"
1385 elif [ -n "${invalid_p}" ]
1386 then
1387 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1388 printf " && (${invalid_p}))\n"
1389 printf " internal_error (__FILE__, __LINE__,\n"
1390 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1391 elif [ -n "${predefault}" ]
1392 then
1393 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1394 printf " && (gdbarch->${function} == ${predefault}))\n"
1395 printf " internal_error (__FILE__, __LINE__,\n"
1396 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1397 fi
1398 fi
1399 done
1400 cat <<EOF
1401 }
1402 EOF
1403
1404 # dump the structure
1405 printf "\n"
1406 printf "\n"
1407 cat <<EOF
1408 /* Print out the details of the current architecture. */
1409
1410 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1411 just happens to match the global variable \`\`current_gdbarch''. That
1412 way macros refering to that variable get the local and not the global
1413 version - ulgh. Once everything is parameterised with gdbarch, this
1414 will go away. */
1415
1416 void
1417 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1418 {
1419 fprintf_unfiltered (file,
1420 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1421 GDB_MULTI_ARCH);
1422 EOF
1423 function_list | while do_read
1424 do
1425 # multiarch functions don't have macros.
1426 class_is_multiarch_p && continue
1427 if [ "x${returntype}" = "xvoid" ]
1428 then
1429 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1430 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1431 else
1432 printf "#ifdef ${macro}\n"
1433 fi
1434 if class_is_function_p
1435 then
1436 printf " fprintf_unfiltered (file,\n"
1437 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1438 printf " \"${macro}(${actual})\",\n"
1439 printf " XSTRING (${macro} (${actual})));\n"
1440 else
1441 printf " fprintf_unfiltered (file,\n"
1442 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1443 printf " XSTRING (${macro}));\n"
1444 fi
1445 printf "#endif\n"
1446 done
1447 function_list | while do_read
1448 do
1449 if class_is_multiarch_p
1450 then
1451 printf " if (GDB_MULTI_ARCH)\n"
1452 printf " fprintf_unfiltered (file,\n"
1453 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1454 printf " (long) current_gdbarch->${function});\n"
1455 continue
1456 fi
1457 printf "#ifdef ${macro}\n"
1458 if [ "x${print_p}" = "x()" ]
1459 then
1460 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1461 elif [ "x${print_p}" = "x0" ]
1462 then
1463 printf " /* skip print of ${macro}, print_p == 0. */\n"
1464 elif [ -n "${print_p}" ]
1465 then
1466 printf " if (${print_p})\n"
1467 printf " fprintf_unfiltered (file,\n"
1468 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1469 printf " ${print});\n"
1470 elif class_is_function_p
1471 then
1472 printf " if (GDB_MULTI_ARCH)\n"
1473 printf " fprintf_unfiltered (file,\n"
1474 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1475 printf " (long) current_gdbarch->${function}\n"
1476 printf " /*${macro} ()*/);\n"
1477 else
1478 printf " fprintf_unfiltered (file,\n"
1479 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1480 printf " ${print});\n"
1481 fi
1482 printf "#endif\n"
1483 done
1484 cat <<EOF
1485 if (current_gdbarch->dump_tdep != NULL)
1486 current_gdbarch->dump_tdep (current_gdbarch, file);
1487 }
1488 EOF
1489
1490
1491 # GET/SET
1492 printf "\n"
1493 cat <<EOF
1494 struct gdbarch_tdep *
1495 gdbarch_tdep (struct gdbarch *gdbarch)
1496 {
1497 if (gdbarch_debug >= 2)
1498 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1499 return gdbarch->tdep;
1500 }
1501 EOF
1502 printf "\n"
1503 function_list | while do_read
1504 do
1505 if class_is_predicate_p
1506 then
1507 printf "\n"
1508 printf "int\n"
1509 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1510 printf "{\n"
1511 if [ -n "${valid_p}" ]
1512 then
1513 printf " return ${valid_p};\n"
1514 else
1515 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1516 fi
1517 printf "}\n"
1518 fi
1519 if class_is_function_p
1520 then
1521 printf "\n"
1522 printf "${returntype}\n"
1523 if [ "x${formal}" = "xvoid" ]
1524 then
1525 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1526 else
1527 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1528 fi
1529 printf "{\n"
1530 printf " if (gdbarch->${function} == 0)\n"
1531 printf " internal_error (__FILE__, __LINE__,\n"
1532 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1533 printf " if (gdbarch_debug >= 2)\n"
1534 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1535 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1536 then
1537 if class_is_multiarch_p
1538 then
1539 params="gdbarch"
1540 else
1541 params=""
1542 fi
1543 else
1544 if class_is_multiarch_p
1545 then
1546 params="gdbarch, ${actual}"
1547 else
1548 params="${actual}"
1549 fi
1550 fi
1551 if [ "x${returntype}" = "xvoid" ]
1552 then
1553 printf " gdbarch->${function} (${params});\n"
1554 else
1555 printf " return gdbarch->${function} (${params});\n"
1556 fi
1557 printf "}\n"
1558 printf "\n"
1559 printf "void\n"
1560 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1561 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1562 printf "{\n"
1563 printf " gdbarch->${function} = ${function};\n"
1564 printf "}\n"
1565 elif class_is_variable_p
1566 then
1567 printf "\n"
1568 printf "${returntype}\n"
1569 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1570 printf "{\n"
1571 if [ "x${invalid_p}" = "x0" ]
1572 then
1573 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1574 elif [ -n "${invalid_p}" ]
1575 then
1576 printf " if (${invalid_p})\n"
1577 printf " internal_error (__FILE__, __LINE__,\n"
1578 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1579 elif [ -n "${predefault}" ]
1580 then
1581 printf " if (gdbarch->${function} == ${predefault})\n"
1582 printf " internal_error (__FILE__, __LINE__,\n"
1583 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1584 fi
1585 printf " if (gdbarch_debug >= 2)\n"
1586 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1587 printf " return gdbarch->${function};\n"
1588 printf "}\n"
1589 printf "\n"
1590 printf "void\n"
1591 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1592 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1593 printf "{\n"
1594 printf " gdbarch->${function} = ${function};\n"
1595 printf "}\n"
1596 elif class_is_info_p
1597 then
1598 printf "\n"
1599 printf "${returntype}\n"
1600 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1601 printf "{\n"
1602 printf " if (gdbarch_debug >= 2)\n"
1603 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1604 printf " return gdbarch->${function};\n"
1605 printf "}\n"
1606 fi
1607 done
1608
1609 # All the trailing guff
1610 cat <<EOF
1611
1612
1613 /* Keep a registry of per-architecture data-pointers required by GDB
1614 modules. */
1615
1616 struct gdbarch_data
1617 {
1618 unsigned index;
1619 gdbarch_data_init_ftype *init;
1620 gdbarch_data_free_ftype *free;
1621 };
1622
1623 struct gdbarch_data_registration
1624 {
1625 struct gdbarch_data *data;
1626 struct gdbarch_data_registration *next;
1627 };
1628
1629 struct gdbarch_data_registry
1630 {
1631 unsigned nr;
1632 struct gdbarch_data_registration *registrations;
1633 };
1634
1635 struct gdbarch_data_registry gdbarch_data_registry =
1636 {
1637 0, NULL,
1638 };
1639
1640 struct gdbarch_data *
1641 register_gdbarch_data (gdbarch_data_init_ftype *init,
1642 gdbarch_data_free_ftype *free)
1643 {
1644 struct gdbarch_data_registration **curr;
1645 for (curr = &gdbarch_data_registry.registrations;
1646 (*curr) != NULL;
1647 curr = &(*curr)->next);
1648 (*curr) = XMALLOC (struct gdbarch_data_registration);
1649 (*curr)->next = NULL;
1650 (*curr)->data = XMALLOC (struct gdbarch_data);
1651 (*curr)->data->index = gdbarch_data_registry.nr++;
1652 (*curr)->data->init = init;
1653 (*curr)->data->free = free;
1654 return (*curr)->data;
1655 }
1656
1657
1658 /* Walk through all the registered users initializing each in turn. */
1659
1660 static void
1661 init_gdbarch_data (struct gdbarch *gdbarch)
1662 {
1663 struct gdbarch_data_registration *rego;
1664 for (rego = gdbarch_data_registry.registrations;
1665 rego != NULL;
1666 rego = rego->next)
1667 {
1668 struct gdbarch_data *data = rego->data;
1669 gdb_assert (data->index < gdbarch->nr_data);
1670 if (data->init != NULL)
1671 {
1672 void *pointer = data->init (gdbarch);
1673 set_gdbarch_data (gdbarch, data, pointer);
1674 }
1675 }
1676 }
1677
1678 /* Create/delete the gdbarch data vector. */
1679
1680 static void
1681 alloc_gdbarch_data (struct gdbarch *gdbarch)
1682 {
1683 gdb_assert (gdbarch->data == NULL);
1684 gdbarch->nr_data = gdbarch_data_registry.nr;
1685 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1686 }
1687
1688 static void
1689 free_gdbarch_data (struct gdbarch *gdbarch)
1690 {
1691 struct gdbarch_data_registration *rego;
1692 gdb_assert (gdbarch->data != NULL);
1693 for (rego = gdbarch_data_registry.registrations;
1694 rego != NULL;
1695 rego = rego->next)
1696 {
1697 struct gdbarch_data *data = rego->data;
1698 gdb_assert (data->index < gdbarch->nr_data);
1699 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1700 {
1701 data->free (gdbarch, gdbarch->data[data->index]);
1702 gdbarch->data[data->index] = NULL;
1703 }
1704 }
1705 xfree (gdbarch->data);
1706 gdbarch->data = NULL;
1707 }
1708
1709
1710 /* Initialize the current value of thee specified per-architecture
1711 data-pointer. */
1712
1713 void
1714 set_gdbarch_data (struct gdbarch *gdbarch,
1715 struct gdbarch_data *data,
1716 void *pointer)
1717 {
1718 gdb_assert (data->index < gdbarch->nr_data);
1719 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1720 data->free (gdbarch, gdbarch->data[data->index]);
1721 gdbarch->data[data->index] = pointer;
1722 }
1723
1724 /* Return the current value of the specified per-architecture
1725 data-pointer. */
1726
1727 void *
1728 gdbarch_data (struct gdbarch_data *data)
1729 {
1730 gdb_assert (data->index < current_gdbarch->nr_data);
1731 return current_gdbarch->data[data->index];
1732 }
1733
1734
1735
1736 /* Keep a registry of swapped data required by GDB modules. */
1737
1738 struct gdbarch_swap
1739 {
1740 void *swap;
1741 struct gdbarch_swap_registration *source;
1742 struct gdbarch_swap *next;
1743 };
1744
1745 struct gdbarch_swap_registration
1746 {
1747 void *data;
1748 unsigned long sizeof_data;
1749 gdbarch_swap_ftype *init;
1750 struct gdbarch_swap_registration *next;
1751 };
1752
1753 struct gdbarch_swap_registry
1754 {
1755 int nr;
1756 struct gdbarch_swap_registration *registrations;
1757 };
1758
1759 struct gdbarch_swap_registry gdbarch_swap_registry =
1760 {
1761 0, NULL,
1762 };
1763
1764 void
1765 register_gdbarch_swap (void *data,
1766 unsigned long sizeof_data,
1767 gdbarch_swap_ftype *init)
1768 {
1769 struct gdbarch_swap_registration **rego;
1770 for (rego = &gdbarch_swap_registry.registrations;
1771 (*rego) != NULL;
1772 rego = &(*rego)->next);
1773 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1774 (*rego)->next = NULL;
1775 (*rego)->init = init;
1776 (*rego)->data = data;
1777 (*rego)->sizeof_data = sizeof_data;
1778 }
1779
1780
1781 static void
1782 init_gdbarch_swap (struct gdbarch *gdbarch)
1783 {
1784 struct gdbarch_swap_registration *rego;
1785 struct gdbarch_swap **curr = &gdbarch->swap;
1786 for (rego = gdbarch_swap_registry.registrations;
1787 rego != NULL;
1788 rego = rego->next)
1789 {
1790 if (rego->data != NULL)
1791 {
1792 (*curr) = XMALLOC (struct gdbarch_swap);
1793 (*curr)->source = rego;
1794 (*curr)->swap = xmalloc (rego->sizeof_data);
1795 (*curr)->next = NULL;
1796 memset (rego->data, 0, rego->sizeof_data);
1797 curr = &(*curr)->next;
1798 }
1799 if (rego->init != NULL)
1800 rego->init ();
1801 }
1802 }
1803
1804 static void
1805 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1806 {
1807 struct gdbarch_swap *curr;
1808 for (curr = gdbarch->swap;
1809 curr != NULL;
1810 curr = curr->next)
1811 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1812 }
1813
1814 static void
1815 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1816 {
1817 struct gdbarch_swap *curr;
1818 for (curr = gdbarch->swap;
1819 curr != NULL;
1820 curr = curr->next)
1821 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1822 }
1823
1824
1825 /* Keep a registry of the architectures known by GDB. */
1826
1827 struct gdbarch_registration
1828 {
1829 enum bfd_architecture bfd_architecture;
1830 gdbarch_init_ftype *init;
1831 gdbarch_dump_tdep_ftype *dump_tdep;
1832 struct gdbarch_list *arches;
1833 struct gdbarch_registration *next;
1834 };
1835
1836 static struct gdbarch_registration *gdbarch_registry = NULL;
1837
1838 static void
1839 append_name (const char ***buf, int *nr, const char *name)
1840 {
1841 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1842 (*buf)[*nr] = name;
1843 *nr += 1;
1844 }
1845
1846 const char **
1847 gdbarch_printable_names (void)
1848 {
1849 if (GDB_MULTI_ARCH)
1850 {
1851 /* Accumulate a list of names based on the registed list of
1852 architectures. */
1853 enum bfd_architecture a;
1854 int nr_arches = 0;
1855 const char **arches = NULL;
1856 struct gdbarch_registration *rego;
1857 for (rego = gdbarch_registry;
1858 rego != NULL;
1859 rego = rego->next)
1860 {
1861 const struct bfd_arch_info *ap;
1862 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1863 if (ap == NULL)
1864 internal_error (__FILE__, __LINE__,
1865 "gdbarch_architecture_names: multi-arch unknown");
1866 do
1867 {
1868 append_name (&arches, &nr_arches, ap->printable_name);
1869 ap = ap->next;
1870 }
1871 while (ap != NULL);
1872 }
1873 append_name (&arches, &nr_arches, NULL);
1874 return arches;
1875 }
1876 else
1877 /* Just return all the architectures that BFD knows. Assume that
1878 the legacy architecture framework supports them. */
1879 return bfd_arch_list ();
1880 }
1881
1882
1883 void
1884 gdbarch_register (enum bfd_architecture bfd_architecture,
1885 gdbarch_init_ftype *init,
1886 gdbarch_dump_tdep_ftype *dump_tdep)
1887 {
1888 struct gdbarch_registration **curr;
1889 const struct bfd_arch_info *bfd_arch_info;
1890 /* Check that BFD recognizes this architecture */
1891 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1892 if (bfd_arch_info == NULL)
1893 {
1894 internal_error (__FILE__, __LINE__,
1895 "gdbarch: Attempt to register unknown architecture (%d)",
1896 bfd_architecture);
1897 }
1898 /* Check that we haven't seen this architecture before */
1899 for (curr = &gdbarch_registry;
1900 (*curr) != NULL;
1901 curr = &(*curr)->next)
1902 {
1903 if (bfd_architecture == (*curr)->bfd_architecture)
1904 internal_error (__FILE__, __LINE__,
1905 "gdbarch: Duplicate registraration of architecture (%s)",
1906 bfd_arch_info->printable_name);
1907 }
1908 /* log it */
1909 if (gdbarch_debug)
1910 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1911 bfd_arch_info->printable_name,
1912 (long) init);
1913 /* Append it */
1914 (*curr) = XMALLOC (struct gdbarch_registration);
1915 (*curr)->bfd_architecture = bfd_architecture;
1916 (*curr)->init = init;
1917 (*curr)->dump_tdep = dump_tdep;
1918 (*curr)->arches = NULL;
1919 (*curr)->next = NULL;
1920 /* When non- multi-arch, install whatever target dump routine we've
1921 been provided - hopefully that routine has been written correctly
1922 and works regardless of multi-arch. */
1923 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1924 && startup_gdbarch.dump_tdep == NULL)
1925 startup_gdbarch.dump_tdep = dump_tdep;
1926 }
1927
1928 void
1929 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1930 gdbarch_init_ftype *init)
1931 {
1932 gdbarch_register (bfd_architecture, init, NULL);
1933 }
1934
1935
1936 /* Look for an architecture using gdbarch_info. Base search on only
1937 BFD_ARCH_INFO and BYTE_ORDER. */
1938
1939 struct gdbarch_list *
1940 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1941 const struct gdbarch_info *info)
1942 {
1943 for (; arches != NULL; arches = arches->next)
1944 {
1945 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1946 continue;
1947 if (info->byte_order != arches->gdbarch->byte_order)
1948 continue;
1949 return arches;
1950 }
1951 return NULL;
1952 }
1953
1954
1955 /* Update the current architecture. Return ZERO if the update request
1956 failed. */
1957
1958 int
1959 gdbarch_update_p (struct gdbarch_info info)
1960 {
1961 struct gdbarch *new_gdbarch;
1962 struct gdbarch_list **list;
1963 struct gdbarch_registration *rego;
1964
1965 /* Fill in missing parts of the INFO struct using a number of
1966 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1967
1968 /* \`\`(gdb) set architecture ...'' */
1969 if (info.bfd_arch_info == NULL
1970 && !TARGET_ARCHITECTURE_AUTO)
1971 info.bfd_arch_info = TARGET_ARCHITECTURE;
1972 if (info.bfd_arch_info == NULL
1973 && info.abfd != NULL
1974 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1975 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1976 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1977 if (info.bfd_arch_info == NULL)
1978 info.bfd_arch_info = TARGET_ARCHITECTURE;
1979
1980 /* \`\`(gdb) set byte-order ...'' */
1981 if (info.byte_order == 0
1982 && !TARGET_BYTE_ORDER_AUTO)
1983 info.byte_order = TARGET_BYTE_ORDER;
1984 /* From the INFO struct. */
1985 if (info.byte_order == 0
1986 && info.abfd != NULL)
1987 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1988 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1989 : 0);
1990 /* From the current target. */
1991 if (info.byte_order == 0)
1992 info.byte_order = TARGET_BYTE_ORDER;
1993
1994 /* Must have found some sort of architecture. */
1995 gdb_assert (info.bfd_arch_info != NULL);
1996
1997 if (gdbarch_debug)
1998 {
1999 fprintf_unfiltered (gdb_stdlog,
2000 "gdbarch_update: info.bfd_arch_info %s\n",
2001 (info.bfd_arch_info != NULL
2002 ? info.bfd_arch_info->printable_name
2003 : "(null)"));
2004 fprintf_unfiltered (gdb_stdlog,
2005 "gdbarch_update: info.byte_order %d (%s)\n",
2006 info.byte_order,
2007 (info.byte_order == BIG_ENDIAN ? "big"
2008 : info.byte_order == LITTLE_ENDIAN ? "little"
2009 : "default"));
2010 fprintf_unfiltered (gdb_stdlog,
2011 "gdbarch_update: info.abfd 0x%lx\n",
2012 (long) info.abfd);
2013 fprintf_unfiltered (gdb_stdlog,
2014 "gdbarch_update: info.tdep_info 0x%lx\n",
2015 (long) info.tdep_info);
2016 }
2017
2018 /* Find the target that knows about this architecture. */
2019 for (rego = gdbarch_registry;
2020 rego != NULL;
2021 rego = rego->next)
2022 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2023 break;
2024 if (rego == NULL)
2025 {
2026 if (gdbarch_debug)
2027 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2028 return 0;
2029 }
2030
2031 /* Ask the target for a replacement architecture. */
2032 new_gdbarch = rego->init (info, rego->arches);
2033
2034 /* Did the target like it? No. Reject the change. */
2035 if (new_gdbarch == NULL)
2036 {
2037 if (gdbarch_debug)
2038 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2039 return 0;
2040 }
2041
2042 /* Did the architecture change? No. Do nothing. */
2043 if (current_gdbarch == new_gdbarch)
2044 {
2045 if (gdbarch_debug)
2046 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2047 (long) new_gdbarch,
2048 new_gdbarch->bfd_arch_info->printable_name);
2049 return 1;
2050 }
2051
2052 /* Swap all data belonging to the old target out */
2053 swapout_gdbarch_swap (current_gdbarch);
2054
2055 /* Is this a pre-existing architecture? Yes. Swap it in. */
2056 for (list = &rego->arches;
2057 (*list) != NULL;
2058 list = &(*list)->next)
2059 {
2060 if ((*list)->gdbarch == new_gdbarch)
2061 {
2062 if (gdbarch_debug)
2063 fprintf_unfiltered (gdb_stdlog,
2064 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2065 (long) new_gdbarch,
2066 new_gdbarch->bfd_arch_info->printable_name);
2067 current_gdbarch = new_gdbarch;
2068 swapin_gdbarch_swap (new_gdbarch);
2069 return 1;
2070 }
2071 }
2072
2073 /* Append this new architecture to this targets list. */
2074 (*list) = XMALLOC (struct gdbarch_list);
2075 (*list)->next = NULL;
2076 (*list)->gdbarch = new_gdbarch;
2077
2078 /* Switch to this new architecture. Dump it out. */
2079 current_gdbarch = new_gdbarch;
2080 if (gdbarch_debug)
2081 {
2082 fprintf_unfiltered (gdb_stdlog,
2083 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2084 (long) new_gdbarch,
2085 new_gdbarch->bfd_arch_info->printable_name);
2086 }
2087
2088 /* Check that the newly installed architecture is valid. Plug in
2089 any post init values. */
2090 new_gdbarch->dump_tdep = rego->dump_tdep;
2091 verify_gdbarch (new_gdbarch);
2092
2093 /* Initialize the per-architecture memory (swap) areas.
2094 CURRENT_GDBARCH must be update before these modules are
2095 called. */
2096 init_gdbarch_swap (new_gdbarch);
2097
2098 /* Initialize the per-architecture data-pointer of all parties that
2099 registered an interest in this architecture. CURRENT_GDBARCH
2100 must be updated before these modules are called. */
2101 init_gdbarch_data (new_gdbarch);
2102
2103 if (gdbarch_debug)
2104 gdbarch_dump (current_gdbarch, gdb_stdlog);
2105
2106 return 1;
2107 }
2108
2109
2110 /* Disassembler */
2111
2112 /* Pointer to the target-dependent disassembly function. */
2113 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2114 disassemble_info tm_print_insn_info;
2115
2116
2117 extern void _initialize_gdbarch (void);
2118
2119 void
2120 _initialize_gdbarch (void)
2121 {
2122 struct cmd_list_element *c;
2123
2124 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2125 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2126 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2127 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2128 tm_print_insn_info.print_address_func = dis_asm_print_address;
2129
2130 add_show_from_set (add_set_cmd ("arch",
2131 class_maintenance,
2132 var_zinteger,
2133 (char *)&gdbarch_debug,
2134 "Set architecture debugging.\\n\\
2135 When non-zero, architecture debugging is enabled.", &setdebuglist),
2136 &showdebuglist);
2137 c = add_set_cmd ("archdebug",
2138 class_maintenance,
2139 var_zinteger,
2140 (char *)&gdbarch_debug,
2141 "Set architecture debugging.\\n\\
2142 When non-zero, architecture debugging is enabled.", &setlist);
2143
2144 deprecate_cmd (c, "set debug arch");
2145 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2146 }
2147 EOF
2148
2149 # close things off
2150 exec 1>&2
2151 #../move-if-change new-gdbarch.c gdbarch.c
2152 compare_new gdbarch.c
This page took 0.0902 seconds and 4 git commands to generate.