* Makefile.in (dbxread.o): Note new dependency on $(gdb_assert_h).
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
642 #
643 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp
644 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
645 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
646 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
647 v:2:PARM_BOUNDARY:int:parm_boundary
648 #
649 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
650 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
651 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
652 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
653 # On some machines there are bits in addresses which are not really
654 # part of the address, but are used by the kernel, the hardware, etc.
655 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
656 # we get a "real" address such as one would find in a symbol table.
657 # This is used only for addresses of instructions, and even then I'm
658 # not sure it's used in all contexts. It exists to deal with there
659 # being a few stray bits in the PC which would mislead us, not as some
660 # sort of generic thing to handle alignment or segmentation (it's
661 # possible it should be in TARGET_READ_PC instead).
662 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
663 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
664 # ADDR_BITS_REMOVE.
665 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
666 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
667 # the target needs software single step. An ISA method to implement it.
668 #
669 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
670 # using the breakpoint system instead of blatting memory directly (as with rs6000).
671 #
672 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
673 # single step. If not, then implement single step using breakpoints.
674 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
675 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
676 # disassembler. Perhaphs objdump can handle it?
677 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::0:
678 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
679
680
681 # For SVR4 shared libraries, each call goes through a small piece of
682 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
683 # to nonzero if we are currently stopped in one of these.
684 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
685
686 # Some systems also have trampoline code for returning from shared libs.
687 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
688
689 # Sigtramp is a routine that the kernel calls (which then calls the
690 # signal handler). On most machines it is a library routine that is
691 # linked into the executable.
692 #
693 # This macro, given a program counter value and the name of the
694 # function in which that PC resides (which can be null if the name is
695 # not known), returns nonzero if the PC and name show that we are in
696 # sigtramp.
697 #
698 # On most machines just see if the name is sigtramp (and if we have
699 # no name, assume we are not in sigtramp).
700 #
701 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
702 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
703 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
704 # own local NAME lookup.
705 #
706 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
707 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
708 # does not.
709 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
710 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
711 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
712 # A target might have problems with watchpoints as soon as the stack
713 # frame of the current function has been destroyed. This mostly happens
714 # as the first action in a funtion's epilogue. in_function_epilogue_p()
715 # is defined to return a non-zero value if either the given addr is one
716 # instruction after the stack destroying instruction up to the trailing
717 # return instruction or if we can figure out that the stack frame has
718 # already been invalidated regardless of the value of addr. Targets
719 # which don't suffer from that problem could just let this functionality
720 # untouched.
721 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
722 # Given a vector of command-line arguments, return a newly allocated
723 # string which, when passed to the create_inferior function, will be
724 # parsed (on Unix systems, by the shell) to yield the same vector.
725 # This function should call error() if the argument vector is not
726 # representable for this target or if this target does not support
727 # command-line arguments.
728 # ARGC is the number of elements in the vector.
729 # ARGV is an array of strings, one per argument.
730 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
731 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
732 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
733 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
734 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
735 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
736 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
737 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
738 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
739 # Is a register in a group
740 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
741 # Fetch the pointer to the ith function argument.
742 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
743 EOF
744 }
745
746 #
747 # The .log file
748 #
749 exec > new-gdbarch.log
750 function_list | while do_read
751 do
752 cat <<EOF
753 ${class} ${macro}(${actual})
754 ${returntype} ${function} ($formal)${attrib}
755 EOF
756 for r in ${read}
757 do
758 eval echo \"\ \ \ \ ${r}=\${${r}}\"
759 done
760 if class_is_predicate_p && fallback_default_p
761 then
762 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
763 kill $$
764 exit 1
765 fi
766 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
767 then
768 echo "Error: postdefault is useless when invalid_p=0" 1>&2
769 kill $$
770 exit 1
771 fi
772 if class_is_multiarch_p
773 then
774 if class_is_predicate_p ; then :
775 elif test "x${predefault}" = "x"
776 then
777 echo "Error: pure multi-arch function must have a predefault" 1>&2
778 kill $$
779 exit 1
780 fi
781 fi
782 echo ""
783 done
784
785 exec 1>&2
786 compare_new gdbarch.log
787
788
789 copyright ()
790 {
791 cat <<EOF
792 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
793
794 /* Dynamic architecture support for GDB, the GNU debugger.
795 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
796
797 This file is part of GDB.
798
799 This program is free software; you can redistribute it and/or modify
800 it under the terms of the GNU General Public License as published by
801 the Free Software Foundation; either version 2 of the License, or
802 (at your option) any later version.
803
804 This program is distributed in the hope that it will be useful,
805 but WITHOUT ANY WARRANTY; without even the implied warranty of
806 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
807 GNU General Public License for more details.
808
809 You should have received a copy of the GNU General Public License
810 along with this program; if not, write to the Free Software
811 Foundation, Inc., 59 Temple Place - Suite 330,
812 Boston, MA 02111-1307, USA. */
813
814 /* This file was created with the aid of \`\`gdbarch.sh''.
815
816 The Bourne shell script \`\`gdbarch.sh'' creates the files
817 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
818 against the existing \`\`gdbarch.[hc]''. Any differences found
819 being reported.
820
821 If editing this file, please also run gdbarch.sh and merge any
822 changes into that script. Conversely, when making sweeping changes
823 to this file, modifying gdbarch.sh and using its output may prove
824 easier. */
825
826 EOF
827 }
828
829 #
830 # The .h file
831 #
832
833 exec > new-gdbarch.h
834 copyright
835 cat <<EOF
836 #ifndef GDBARCH_H
837 #define GDBARCH_H
838
839 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
840
841 struct floatformat;
842 struct ui_file;
843 struct frame_info;
844 struct value;
845 struct objfile;
846 struct minimal_symbol;
847 struct regcache;
848 struct reggroup;
849
850 extern struct gdbarch *current_gdbarch;
851
852
853 /* If any of the following are defined, the target wasn't correctly
854 converted. */
855
856 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
857 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
858 #endif
859 EOF
860
861 # function typedef's
862 printf "\n"
863 printf "\n"
864 printf "/* The following are pre-initialized by GDBARCH. */\n"
865 function_list | while do_read
866 do
867 if class_is_info_p
868 then
869 printf "\n"
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
871 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
872 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
873 printf "#error \"Non multi-arch definition of ${macro}\"\n"
874 printf "#endif\n"
875 printf "#if !defined (${macro})\n"
876 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 printf "#endif\n"
878 fi
879 done
880
881 # function typedef's
882 printf "\n"
883 printf "\n"
884 printf "/* The following are initialized by the target dependent code. */\n"
885 function_list | while do_read
886 do
887 if [ -n "${comment}" ]
888 then
889 echo "${comment}" | sed \
890 -e '2 s,#,/*,' \
891 -e '3,$ s,#, ,' \
892 -e '$ s,$, */,'
893 fi
894 if class_is_multiarch_p
895 then
896 if class_is_predicate_p
897 then
898 printf "\n"
899 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
900 fi
901 else
902 if class_is_predicate_p
903 then
904 printf "\n"
905 printf "#if defined (${macro})\n"
906 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
907 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
908 printf "#if !defined (${macro}_P)\n"
909 printf "#define ${macro}_P() (1)\n"
910 printf "#endif\n"
911 printf "#endif\n"
912 printf "\n"
913 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
914 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
915 printf "#error \"Non multi-arch definition of ${macro}\"\n"
916 printf "#endif\n"
917 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
918 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
919 printf "#endif\n"
920 fi
921 fi
922 if class_is_variable_p
923 then
924 printf "\n"
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
927 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
928 printf "#error \"Non multi-arch definition of ${macro}\"\n"
929 printf "#endif\n"
930 printf "#if !defined (${macro})\n"
931 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
932 printf "#endif\n"
933 fi
934 if class_is_function_p
935 then
936 printf "\n"
937 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
938 then
939 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
940 elif class_is_multiarch_p
941 then
942 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
943 else
944 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
945 fi
946 if [ "x${formal}" = "xvoid" ]
947 then
948 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
949 else
950 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
951 fi
952 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
953 if class_is_multiarch_p ; then :
954 else
955 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
956 printf "#error \"Non multi-arch definition of ${macro}\"\n"
957 printf "#endif\n"
958 if [ "x${actual}" = "x" ]
959 then
960 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
961 elif [ "x${actual}" = "x-" ]
962 then
963 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
964 else
965 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
966 fi
967 printf "#if !defined (${macro})\n"
968 if [ "x${actual}" = "x" ]
969 then
970 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
971 elif [ "x${actual}" = "x-" ]
972 then
973 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
974 else
975 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
976 fi
977 printf "#endif\n"
978 fi
979 fi
980 done
981
982 # close it off
983 cat <<EOF
984
985 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
986
987
988 /* Mechanism for co-ordinating the selection of a specific
989 architecture.
990
991 GDB targets (*-tdep.c) can register an interest in a specific
992 architecture. Other GDB components can register a need to maintain
993 per-architecture data.
994
995 The mechanisms below ensures that there is only a loose connection
996 between the set-architecture command and the various GDB
997 components. Each component can independently register their need
998 to maintain architecture specific data with gdbarch.
999
1000 Pragmatics:
1001
1002 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1003 didn't scale.
1004
1005 The more traditional mega-struct containing architecture specific
1006 data for all the various GDB components was also considered. Since
1007 GDB is built from a variable number of (fairly independent)
1008 components it was determined that the global aproach was not
1009 applicable. */
1010
1011
1012 /* Register a new architectural family with GDB.
1013
1014 Register support for the specified ARCHITECTURE with GDB. When
1015 gdbarch determines that the specified architecture has been
1016 selected, the corresponding INIT function is called.
1017
1018 --
1019
1020 The INIT function takes two parameters: INFO which contains the
1021 information available to gdbarch about the (possibly new)
1022 architecture; ARCHES which is a list of the previously created
1023 \`\`struct gdbarch'' for this architecture.
1024
1025 The INFO parameter is, as far as possible, be pre-initialized with
1026 information obtained from INFO.ABFD or the previously selected
1027 architecture.
1028
1029 The ARCHES parameter is a linked list (sorted most recently used)
1030 of all the previously created architures for this architecture
1031 family. The (possibly NULL) ARCHES->gdbarch can used to access
1032 values from the previously selected architecture for this
1033 architecture family. The global \`\`current_gdbarch'' shall not be
1034 used.
1035
1036 The INIT function shall return any of: NULL - indicating that it
1037 doesn't recognize the selected architecture; an existing \`\`struct
1038 gdbarch'' from the ARCHES list - indicating that the new
1039 architecture is just a synonym for an earlier architecture (see
1040 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1041 - that describes the selected architecture (see gdbarch_alloc()).
1042
1043 The DUMP_TDEP function shall print out all target specific values.
1044 Care should be taken to ensure that the function works in both the
1045 multi-arch and non- multi-arch cases. */
1046
1047 struct gdbarch_list
1048 {
1049 struct gdbarch *gdbarch;
1050 struct gdbarch_list *next;
1051 };
1052
1053 struct gdbarch_info
1054 {
1055 /* Use default: NULL (ZERO). */
1056 const struct bfd_arch_info *bfd_arch_info;
1057
1058 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1059 int byte_order;
1060
1061 /* Use default: NULL (ZERO). */
1062 bfd *abfd;
1063
1064 /* Use default: NULL (ZERO). */
1065 struct gdbarch_tdep_info *tdep_info;
1066
1067 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1068 enum gdb_osabi osabi;
1069 };
1070
1071 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1072 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1073
1074 /* DEPRECATED - use gdbarch_register() */
1075 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1076
1077 extern void gdbarch_register (enum bfd_architecture architecture,
1078 gdbarch_init_ftype *,
1079 gdbarch_dump_tdep_ftype *);
1080
1081
1082 /* Return a freshly allocated, NULL terminated, array of the valid
1083 architecture names. Since architectures are registered during the
1084 _initialize phase this function only returns useful information
1085 once initialization has been completed. */
1086
1087 extern const char **gdbarch_printable_names (void);
1088
1089
1090 /* Helper function. Search the list of ARCHES for a GDBARCH that
1091 matches the information provided by INFO. */
1092
1093 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1094
1095
1096 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1097 basic initialization using values obtained from the INFO andTDEP
1098 parameters. set_gdbarch_*() functions are called to complete the
1099 initialization of the object. */
1100
1101 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1102
1103
1104 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1105 It is assumed that the caller freeds the \`\`struct
1106 gdbarch_tdep''. */
1107
1108 extern void gdbarch_free (struct gdbarch *);
1109
1110
1111 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1112 obstack. The memory is freed when the corresponding architecture
1113 is also freed. */
1114
1115 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1116 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1117 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1118
1119
1120 /* Helper function. Force an update of the current architecture.
1121
1122 The actual architecture selected is determined by INFO, \`\`(gdb) set
1123 architecture'' et.al., the existing architecture and BFD's default
1124 architecture. INFO should be initialized to zero and then selected
1125 fields should be updated.
1126
1127 Returns non-zero if the update succeeds */
1128
1129 extern int gdbarch_update_p (struct gdbarch_info info);
1130
1131
1132
1133 /* Register per-architecture data-pointer.
1134
1135 Reserve space for a per-architecture data-pointer. An identifier
1136 for the reserved data-pointer is returned. That identifer should
1137 be saved in a local static variable.
1138
1139 The per-architecture data-pointer is either initialized explicitly
1140 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1141 gdbarch_data()).
1142
1143 Memory for the per-architecture data shall be allocated using
1144 gdbarch_obstack_zalloc. That memory will be deleted when the
1145 corresponding architecture object is deleted.
1146
1147 When a previously created architecture is re-selected, the
1148 per-architecture data-pointer for that previous architecture is
1149 restored. INIT() is not re-called.
1150
1151 Multiple registrarants for any architecture are allowed (and
1152 strongly encouraged). */
1153
1154 struct gdbarch_data;
1155
1156 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1157 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1158 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1159 struct gdbarch_data *data,
1160 void *pointer);
1161
1162 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1163
1164
1165 /* Register per-architecture memory region.
1166
1167 Provide a memory-region swap mechanism. Per-architecture memory
1168 region are created. These memory regions are swapped whenever the
1169 architecture is changed. For a new architecture, the memory region
1170 is initialized with zero (0) and the INIT function is called.
1171
1172 Memory regions are swapped / initialized in the order that they are
1173 registered. NULL DATA and/or INIT values can be specified.
1174
1175 New code should use register_gdbarch_data(). */
1176
1177 typedef void (gdbarch_swap_ftype) (void);
1178 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1179 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1180
1181
1182
1183 /* The target-system-dependent byte order is dynamic */
1184
1185 extern int target_byte_order;
1186 #ifndef TARGET_BYTE_ORDER
1187 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1188 #endif
1189
1190 extern int target_byte_order_auto;
1191 #ifndef TARGET_BYTE_ORDER_AUTO
1192 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1193 #endif
1194
1195
1196
1197 /* The target-system-dependent BFD architecture is dynamic */
1198
1199 extern int target_architecture_auto;
1200 #ifndef TARGET_ARCHITECTURE_AUTO
1201 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1202 #endif
1203
1204 extern const struct bfd_arch_info *target_architecture;
1205 #ifndef TARGET_ARCHITECTURE
1206 #define TARGET_ARCHITECTURE (target_architecture + 0)
1207 #endif
1208
1209
1210 /* Set the dynamic target-system-dependent parameters (architecture,
1211 byte-order, ...) using information found in the BFD */
1212
1213 extern void set_gdbarch_from_file (bfd *);
1214
1215
1216 /* Initialize the current architecture to the "first" one we find on
1217 our list. */
1218
1219 extern void initialize_current_architecture (void);
1220
1221 /* For non-multiarched targets, do any initialization of the default
1222 gdbarch object necessary after the _initialize_MODULE functions
1223 have run. */
1224 extern void initialize_non_multiarch (void);
1225
1226 /* gdbarch trace variable */
1227 extern int gdbarch_debug;
1228
1229 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1230
1231 #endif
1232 EOF
1233 exec 1>&2
1234 #../move-if-change new-gdbarch.h gdbarch.h
1235 compare_new gdbarch.h
1236
1237
1238 #
1239 # C file
1240 #
1241
1242 exec > new-gdbarch.c
1243 copyright
1244 cat <<EOF
1245
1246 #include "defs.h"
1247 #include "arch-utils.h"
1248
1249 #include "gdbcmd.h"
1250 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1251 #include "symcat.h"
1252
1253 #include "floatformat.h"
1254
1255 #include "gdb_assert.h"
1256 #include "gdb_string.h"
1257 #include "gdb-events.h"
1258 #include "reggroups.h"
1259 #include "osabi.h"
1260 #include "symfile.h" /* For entry_point_address. */
1261 #include "gdb_obstack.h"
1262
1263 /* Static function declarations */
1264
1265 static void verify_gdbarch (struct gdbarch *gdbarch);
1266 static void alloc_gdbarch_data (struct gdbarch *);
1267 static void init_gdbarch_swap (struct gdbarch *);
1268 static void clear_gdbarch_swap (struct gdbarch *);
1269 static void swapout_gdbarch_swap (struct gdbarch *);
1270 static void swapin_gdbarch_swap (struct gdbarch *);
1271
1272 /* Non-zero if we want to trace architecture code. */
1273
1274 #ifndef GDBARCH_DEBUG
1275 #define GDBARCH_DEBUG 0
1276 #endif
1277 int gdbarch_debug = GDBARCH_DEBUG;
1278
1279 EOF
1280
1281 # gdbarch open the gdbarch object
1282 printf "\n"
1283 printf "/* Maintain the struct gdbarch object */\n"
1284 printf "\n"
1285 printf "struct gdbarch\n"
1286 printf "{\n"
1287 printf " /* Has this architecture been fully initialized? */\n"
1288 printf " int initialized_p;\n"
1289 printf "\n"
1290 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1291 printf " struct obstack *obstack;\n"
1292 printf "\n"
1293 printf " /* basic architectural information */\n"
1294 function_list | while do_read
1295 do
1296 if class_is_info_p
1297 then
1298 printf " ${returntype} ${function};\n"
1299 fi
1300 done
1301 printf "\n"
1302 printf " /* target specific vector. */\n"
1303 printf " struct gdbarch_tdep *tdep;\n"
1304 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1305 printf "\n"
1306 printf " /* per-architecture data-pointers */\n"
1307 printf " unsigned nr_data;\n"
1308 printf " void **data;\n"
1309 printf "\n"
1310 printf " /* per-architecture swap-regions */\n"
1311 printf " struct gdbarch_swap *swap;\n"
1312 printf "\n"
1313 cat <<EOF
1314 /* Multi-arch values.
1315
1316 When extending this structure you must:
1317
1318 Add the field below.
1319
1320 Declare set/get functions and define the corresponding
1321 macro in gdbarch.h.
1322
1323 gdbarch_alloc(): If zero/NULL is not a suitable default,
1324 initialize the new field.
1325
1326 verify_gdbarch(): Confirm that the target updated the field
1327 correctly.
1328
1329 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1330 field is dumped out
1331
1332 \`\`startup_gdbarch()'': Append an initial value to the static
1333 variable (base values on the host's c-type system).
1334
1335 get_gdbarch(): Implement the set/get functions (probably using
1336 the macro's as shortcuts).
1337
1338 */
1339
1340 EOF
1341 function_list | while do_read
1342 do
1343 if class_is_variable_p
1344 then
1345 printf " ${returntype} ${function};\n"
1346 elif class_is_function_p
1347 then
1348 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1349 fi
1350 done
1351 printf "};\n"
1352
1353 # A pre-initialized vector
1354 printf "\n"
1355 printf "\n"
1356 cat <<EOF
1357 /* The default architecture uses host values (for want of a better
1358 choice). */
1359 EOF
1360 printf "\n"
1361 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1362 printf "\n"
1363 printf "struct gdbarch startup_gdbarch =\n"
1364 printf "{\n"
1365 printf " 1, /* Always initialized. */\n"
1366 printf " NULL, /* The obstack. */\n"
1367 printf " /* basic architecture information */\n"
1368 function_list | while do_read
1369 do
1370 if class_is_info_p
1371 then
1372 printf " ${staticdefault}, /* ${function} */\n"
1373 fi
1374 done
1375 cat <<EOF
1376 /* target specific vector and its dump routine */
1377 NULL, NULL,
1378 /*per-architecture data-pointers and swap regions */
1379 0, NULL, NULL,
1380 /* Multi-arch values */
1381 EOF
1382 function_list | while do_read
1383 do
1384 if class_is_function_p || class_is_variable_p
1385 then
1386 printf " ${staticdefault}, /* ${function} */\n"
1387 fi
1388 done
1389 cat <<EOF
1390 /* startup_gdbarch() */
1391 };
1392
1393 struct gdbarch *current_gdbarch = &startup_gdbarch;
1394
1395 /* Do any initialization needed for a non-multiarch configuration
1396 after the _initialize_MODULE functions have been run. */
1397 void
1398 initialize_non_multiarch (void)
1399 {
1400 alloc_gdbarch_data (&startup_gdbarch);
1401 /* Ensure that all swap areas are zeroed so that they again think
1402 they are starting from scratch. */
1403 clear_gdbarch_swap (&startup_gdbarch);
1404 init_gdbarch_swap (&startup_gdbarch);
1405 }
1406 EOF
1407
1408 # Create a new gdbarch struct
1409 printf "\n"
1410 printf "\n"
1411 cat <<EOF
1412 /* Create a new \`\`struct gdbarch'' based on information provided by
1413 \`\`struct gdbarch_info''. */
1414 EOF
1415 printf "\n"
1416 cat <<EOF
1417 struct gdbarch *
1418 gdbarch_alloc (const struct gdbarch_info *info,
1419 struct gdbarch_tdep *tdep)
1420 {
1421 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1422 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1423 the current local architecture and not the previous global
1424 architecture. This ensures that the new architectures initial
1425 values are not influenced by the previous architecture. Once
1426 everything is parameterised with gdbarch, this will go away. */
1427 struct gdbarch *current_gdbarch;
1428
1429 /* Create an obstack for allocating all the per-architecture memory,
1430 then use that to allocate the architecture vector. */
1431 struct obstack *obstack = XMALLOC (struct obstack);
1432 obstack_init (obstack);
1433 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1434 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1435 current_gdbarch->obstack = obstack;
1436
1437 alloc_gdbarch_data (current_gdbarch);
1438
1439 current_gdbarch->tdep = tdep;
1440 EOF
1441 printf "\n"
1442 function_list | while do_read
1443 do
1444 if class_is_info_p
1445 then
1446 printf " current_gdbarch->${function} = info->${function};\n"
1447 fi
1448 done
1449 printf "\n"
1450 printf " /* Force the explicit initialization of these. */\n"
1451 function_list | while do_read
1452 do
1453 if class_is_function_p || class_is_variable_p
1454 then
1455 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1456 then
1457 printf " current_gdbarch->${function} = ${predefault};\n"
1458 fi
1459 fi
1460 done
1461 cat <<EOF
1462 /* gdbarch_alloc() */
1463
1464 return current_gdbarch;
1465 }
1466 EOF
1467
1468 # Free a gdbarch struct.
1469 printf "\n"
1470 printf "\n"
1471 cat <<EOF
1472 /* Allocate extra space using the per-architecture obstack. */
1473
1474 void *
1475 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1476 {
1477 void *data = obstack_alloc (arch->obstack, size);
1478 memset (data, 0, size);
1479 return data;
1480 }
1481
1482
1483 /* Free a gdbarch struct. This should never happen in normal
1484 operation --- once you've created a gdbarch, you keep it around.
1485 However, if an architecture's init function encounters an error
1486 building the structure, it may need to clean up a partially
1487 constructed gdbarch. */
1488
1489 void
1490 gdbarch_free (struct gdbarch *arch)
1491 {
1492 struct obstack *obstack;
1493 gdb_assert (arch != NULL);
1494 gdb_assert (!arch->initialized_p);
1495 obstack = arch->obstack;
1496 obstack_free (obstack, 0); /* Includes the ARCH. */
1497 xfree (obstack);
1498 }
1499 EOF
1500
1501 # verify a new architecture
1502 printf "\n"
1503 printf "\n"
1504 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1505 printf "\n"
1506 cat <<EOF
1507 static void
1508 verify_gdbarch (struct gdbarch *gdbarch)
1509 {
1510 struct ui_file *log;
1511 struct cleanup *cleanups;
1512 long dummy;
1513 char *buf;
1514 log = mem_fileopen ();
1515 cleanups = make_cleanup_ui_file_delete (log);
1516 /* fundamental */
1517 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1518 fprintf_unfiltered (log, "\n\tbyte-order");
1519 if (gdbarch->bfd_arch_info == NULL)
1520 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1521 /* Check those that need to be defined for the given multi-arch level. */
1522 EOF
1523 function_list | while do_read
1524 do
1525 if class_is_function_p || class_is_variable_p
1526 then
1527 if [ "x${invalid_p}" = "x0" ]
1528 then
1529 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1530 elif class_is_predicate_p
1531 then
1532 printf " /* Skip verify of ${function}, has predicate */\n"
1533 # FIXME: See do_read for potential simplification
1534 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1535 then
1536 printf " if (${invalid_p})\n"
1537 printf " gdbarch->${function} = ${postdefault};\n"
1538 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1539 then
1540 printf " if (gdbarch->${function} == ${predefault})\n"
1541 printf " gdbarch->${function} = ${postdefault};\n"
1542 elif [ -n "${postdefault}" ]
1543 then
1544 printf " if (gdbarch->${function} == 0)\n"
1545 printf " gdbarch->${function} = ${postdefault};\n"
1546 elif [ -n "${invalid_p}" ]
1547 then
1548 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1549 printf " && (${invalid_p}))\n"
1550 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1551 elif [ -n "${predefault}" ]
1552 then
1553 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1554 printf " && (gdbarch->${function} == ${predefault}))\n"
1555 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1556 fi
1557 fi
1558 done
1559 cat <<EOF
1560 buf = ui_file_xstrdup (log, &dummy);
1561 make_cleanup (xfree, buf);
1562 if (strlen (buf) > 0)
1563 internal_error (__FILE__, __LINE__,
1564 "verify_gdbarch: the following are invalid ...%s",
1565 buf);
1566 do_cleanups (cleanups);
1567 }
1568 EOF
1569
1570 # dump the structure
1571 printf "\n"
1572 printf "\n"
1573 cat <<EOF
1574 /* Print out the details of the current architecture. */
1575
1576 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1577 just happens to match the global variable \`\`current_gdbarch''. That
1578 way macros refering to that variable get the local and not the global
1579 version - ulgh. Once everything is parameterised with gdbarch, this
1580 will go away. */
1581
1582 void
1583 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1584 {
1585 fprintf_unfiltered (file,
1586 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1587 GDB_MULTI_ARCH);
1588 EOF
1589 function_list | sort -t: -k 3 | while do_read
1590 do
1591 # First the predicate
1592 if class_is_predicate_p
1593 then
1594 if class_is_multiarch_p
1595 then
1596 printf " fprintf_unfiltered (file,\n"
1597 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1598 printf " gdbarch_${function}_p (current_gdbarch));\n"
1599 else
1600 printf "#ifdef ${macro}_P\n"
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1603 printf " \"${macro}_P()\",\n"
1604 printf " XSTRING (${macro}_P ()));\n"
1605 printf " fprintf_unfiltered (file,\n"
1606 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1607 printf " ${macro}_P ());\n"
1608 printf "#endif\n"
1609 fi
1610 fi
1611 # multiarch functions don't have macros.
1612 if class_is_multiarch_p
1613 then
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1616 printf " (long) current_gdbarch->${function});\n"
1617 continue
1618 fi
1619 # Print the macro definition.
1620 printf "#ifdef ${macro}\n"
1621 if class_is_function_p
1622 then
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1625 printf " \"${macro}(${actual})\",\n"
1626 printf " XSTRING (${macro} (${actual})));\n"
1627 else
1628 printf " fprintf_unfiltered (file,\n"
1629 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1630 printf " XSTRING (${macro}));\n"
1631 fi
1632 if [ "x${print_p}" = "x()" ]
1633 then
1634 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1635 elif [ "x${print_p}" = "x0" ]
1636 then
1637 printf " /* skip print of ${macro}, print_p == 0. */\n"
1638 elif [ -n "${print_p}" ]
1639 then
1640 printf " if (${print_p})\n"
1641 printf " fprintf_unfiltered (file,\n"
1642 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1643 printf " ${print});\n"
1644 elif class_is_function_p
1645 then
1646 printf " fprintf_unfiltered (file,\n"
1647 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1648 printf " (long) current_gdbarch->${function}\n"
1649 printf " /*${macro} ()*/);\n"
1650 else
1651 printf " fprintf_unfiltered (file,\n"
1652 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1653 printf " ${print});\n"
1654 fi
1655 printf "#endif\n"
1656 done
1657 cat <<EOF
1658 if (current_gdbarch->dump_tdep != NULL)
1659 current_gdbarch->dump_tdep (current_gdbarch, file);
1660 }
1661 EOF
1662
1663
1664 # GET/SET
1665 printf "\n"
1666 cat <<EOF
1667 struct gdbarch_tdep *
1668 gdbarch_tdep (struct gdbarch *gdbarch)
1669 {
1670 if (gdbarch_debug >= 2)
1671 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1672 return gdbarch->tdep;
1673 }
1674 EOF
1675 printf "\n"
1676 function_list | while do_read
1677 do
1678 if class_is_predicate_p
1679 then
1680 printf "\n"
1681 printf "int\n"
1682 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1683 printf "{\n"
1684 printf " gdb_assert (gdbarch != NULL);\n"
1685 printf " return ${predicate};\n"
1686 printf "}\n"
1687 fi
1688 if class_is_function_p
1689 then
1690 printf "\n"
1691 printf "${returntype}\n"
1692 if [ "x${formal}" = "xvoid" ]
1693 then
1694 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1695 else
1696 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1697 fi
1698 printf "{\n"
1699 printf " gdb_assert (gdbarch != NULL);\n"
1700 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1701 if class_is_predicate_p && test -n "${predefault}"
1702 then
1703 # Allow a call to a function with a predicate.
1704 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1705 fi
1706 printf " if (gdbarch_debug >= 2)\n"
1707 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1708 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1709 then
1710 if class_is_multiarch_p
1711 then
1712 params="gdbarch"
1713 else
1714 params=""
1715 fi
1716 else
1717 if class_is_multiarch_p
1718 then
1719 params="gdbarch, ${actual}"
1720 else
1721 params="${actual}"
1722 fi
1723 fi
1724 if [ "x${returntype}" = "xvoid" ]
1725 then
1726 printf " gdbarch->${function} (${params});\n"
1727 else
1728 printf " return gdbarch->${function} (${params});\n"
1729 fi
1730 printf "}\n"
1731 printf "\n"
1732 printf "void\n"
1733 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1734 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1735 printf "{\n"
1736 printf " gdbarch->${function} = ${function};\n"
1737 printf "}\n"
1738 elif class_is_variable_p
1739 then
1740 printf "\n"
1741 printf "${returntype}\n"
1742 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1743 printf "{\n"
1744 printf " gdb_assert (gdbarch != NULL);\n"
1745 if [ "x${invalid_p}" = "x0" ]
1746 then
1747 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1748 elif [ -n "${invalid_p}" ]
1749 then
1750 printf " /* Check variable is valid. */\n"
1751 printf " gdb_assert (!(${invalid_p}));\n"
1752 elif [ -n "${predefault}" ]
1753 then
1754 printf " /* Check variable changed from pre-default. */\n"
1755 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1756 fi
1757 printf " if (gdbarch_debug >= 2)\n"
1758 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1759 printf " return gdbarch->${function};\n"
1760 printf "}\n"
1761 printf "\n"
1762 printf "void\n"
1763 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1764 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1765 printf "{\n"
1766 printf " gdbarch->${function} = ${function};\n"
1767 printf "}\n"
1768 elif class_is_info_p
1769 then
1770 printf "\n"
1771 printf "${returntype}\n"
1772 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1773 printf "{\n"
1774 printf " gdb_assert (gdbarch != NULL);\n"
1775 printf " if (gdbarch_debug >= 2)\n"
1776 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1777 printf " return gdbarch->${function};\n"
1778 printf "}\n"
1779 fi
1780 done
1781
1782 # All the trailing guff
1783 cat <<EOF
1784
1785
1786 /* Keep a registry of per-architecture data-pointers required by GDB
1787 modules. */
1788
1789 struct gdbarch_data
1790 {
1791 unsigned index;
1792 int init_p;
1793 gdbarch_data_init_ftype *init;
1794 };
1795
1796 struct gdbarch_data_registration
1797 {
1798 struct gdbarch_data *data;
1799 struct gdbarch_data_registration *next;
1800 };
1801
1802 struct gdbarch_data_registry
1803 {
1804 unsigned nr;
1805 struct gdbarch_data_registration *registrations;
1806 };
1807
1808 struct gdbarch_data_registry gdbarch_data_registry =
1809 {
1810 0, NULL,
1811 };
1812
1813 struct gdbarch_data *
1814 register_gdbarch_data (gdbarch_data_init_ftype *init)
1815 {
1816 struct gdbarch_data_registration **curr;
1817 /* Append the new registraration. */
1818 for (curr = &gdbarch_data_registry.registrations;
1819 (*curr) != NULL;
1820 curr = &(*curr)->next);
1821 (*curr) = XMALLOC (struct gdbarch_data_registration);
1822 (*curr)->next = NULL;
1823 (*curr)->data = XMALLOC (struct gdbarch_data);
1824 (*curr)->data->index = gdbarch_data_registry.nr++;
1825 (*curr)->data->init = init;
1826 (*curr)->data->init_p = 1;
1827 return (*curr)->data;
1828 }
1829
1830
1831 /* Create/delete the gdbarch data vector. */
1832
1833 static void
1834 alloc_gdbarch_data (struct gdbarch *gdbarch)
1835 {
1836 gdb_assert (gdbarch->data == NULL);
1837 gdbarch->nr_data = gdbarch_data_registry.nr;
1838 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1839 }
1840
1841 /* Initialize the current value of the specified per-architecture
1842 data-pointer. */
1843
1844 void
1845 set_gdbarch_data (struct gdbarch *gdbarch,
1846 struct gdbarch_data *data,
1847 void *pointer)
1848 {
1849 gdb_assert (data->index < gdbarch->nr_data);
1850 gdb_assert (gdbarch->data[data->index] == NULL);
1851 gdbarch->data[data->index] = pointer;
1852 }
1853
1854 /* Return the current value of the specified per-architecture
1855 data-pointer. */
1856
1857 void *
1858 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1859 {
1860 gdb_assert (data->index < gdbarch->nr_data);
1861 /* The data-pointer isn't initialized, call init() to get a value but
1862 only if the architecture initializaiton has completed. Otherwise
1863 punt - hope that the caller knows what they are doing. */
1864 if (gdbarch->data[data->index] == NULL
1865 && gdbarch->initialized_p)
1866 {
1867 /* Be careful to detect an initialization cycle. */
1868 gdb_assert (data->init_p);
1869 data->init_p = 0;
1870 gdb_assert (data->init != NULL);
1871 gdbarch->data[data->index] = data->init (gdbarch);
1872 data->init_p = 1;
1873 gdb_assert (gdbarch->data[data->index] != NULL);
1874 }
1875 return gdbarch->data[data->index];
1876 }
1877
1878
1879
1880 /* Keep a registry of swapped data required by GDB modules. */
1881
1882 struct gdbarch_swap
1883 {
1884 void *swap;
1885 struct gdbarch_swap_registration *source;
1886 struct gdbarch_swap *next;
1887 };
1888
1889 struct gdbarch_swap_registration
1890 {
1891 void *data;
1892 unsigned long sizeof_data;
1893 gdbarch_swap_ftype *init;
1894 struct gdbarch_swap_registration *next;
1895 };
1896
1897 struct gdbarch_swap_registry
1898 {
1899 int nr;
1900 struct gdbarch_swap_registration *registrations;
1901 };
1902
1903 struct gdbarch_swap_registry gdbarch_swap_registry =
1904 {
1905 0, NULL,
1906 };
1907
1908 void
1909 register_gdbarch_swap (void *data,
1910 unsigned long sizeof_data,
1911 gdbarch_swap_ftype *init)
1912 {
1913 struct gdbarch_swap_registration **rego;
1914 for (rego = &gdbarch_swap_registry.registrations;
1915 (*rego) != NULL;
1916 rego = &(*rego)->next);
1917 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1918 (*rego)->next = NULL;
1919 (*rego)->init = init;
1920 (*rego)->data = data;
1921 (*rego)->sizeof_data = sizeof_data;
1922 }
1923
1924 static void
1925 clear_gdbarch_swap (struct gdbarch *gdbarch)
1926 {
1927 struct gdbarch_swap *curr;
1928 for (curr = gdbarch->swap;
1929 curr != NULL;
1930 curr = curr->next)
1931 {
1932 memset (curr->source->data, 0, curr->source->sizeof_data);
1933 }
1934 }
1935
1936 static void
1937 init_gdbarch_swap (struct gdbarch *gdbarch)
1938 {
1939 struct gdbarch_swap_registration *rego;
1940 struct gdbarch_swap **curr = &gdbarch->swap;
1941 for (rego = gdbarch_swap_registry.registrations;
1942 rego != NULL;
1943 rego = rego->next)
1944 {
1945 if (rego->data != NULL)
1946 {
1947 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1948 (*curr)->source = rego;
1949 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1950 (*curr)->next = NULL;
1951 curr = &(*curr)->next;
1952 }
1953 if (rego->init != NULL)
1954 rego->init ();
1955 }
1956 }
1957
1958 static void
1959 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1960 {
1961 struct gdbarch_swap *curr;
1962 for (curr = gdbarch->swap;
1963 curr != NULL;
1964 curr = curr->next)
1965 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1966 }
1967
1968 static void
1969 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1970 {
1971 struct gdbarch_swap *curr;
1972 for (curr = gdbarch->swap;
1973 curr != NULL;
1974 curr = curr->next)
1975 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1976 }
1977
1978
1979 /* Keep a registry of the architectures known by GDB. */
1980
1981 struct gdbarch_registration
1982 {
1983 enum bfd_architecture bfd_architecture;
1984 gdbarch_init_ftype *init;
1985 gdbarch_dump_tdep_ftype *dump_tdep;
1986 struct gdbarch_list *arches;
1987 struct gdbarch_registration *next;
1988 };
1989
1990 static struct gdbarch_registration *gdbarch_registry = NULL;
1991
1992 static void
1993 append_name (const char ***buf, int *nr, const char *name)
1994 {
1995 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1996 (*buf)[*nr] = name;
1997 *nr += 1;
1998 }
1999
2000 const char **
2001 gdbarch_printable_names (void)
2002 {
2003 /* Accumulate a list of names based on the registed list of
2004 architectures. */
2005 enum bfd_architecture a;
2006 int nr_arches = 0;
2007 const char **arches = NULL;
2008 struct gdbarch_registration *rego;
2009 for (rego = gdbarch_registry;
2010 rego != NULL;
2011 rego = rego->next)
2012 {
2013 const struct bfd_arch_info *ap;
2014 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2015 if (ap == NULL)
2016 internal_error (__FILE__, __LINE__,
2017 "gdbarch_architecture_names: multi-arch unknown");
2018 do
2019 {
2020 append_name (&arches, &nr_arches, ap->printable_name);
2021 ap = ap->next;
2022 }
2023 while (ap != NULL);
2024 }
2025 append_name (&arches, &nr_arches, NULL);
2026 return arches;
2027 }
2028
2029
2030 void
2031 gdbarch_register (enum bfd_architecture bfd_architecture,
2032 gdbarch_init_ftype *init,
2033 gdbarch_dump_tdep_ftype *dump_tdep)
2034 {
2035 struct gdbarch_registration **curr;
2036 const struct bfd_arch_info *bfd_arch_info;
2037 /* Check that BFD recognizes this architecture */
2038 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2039 if (bfd_arch_info == NULL)
2040 {
2041 internal_error (__FILE__, __LINE__,
2042 "gdbarch: Attempt to register unknown architecture (%d)",
2043 bfd_architecture);
2044 }
2045 /* Check that we haven't seen this architecture before */
2046 for (curr = &gdbarch_registry;
2047 (*curr) != NULL;
2048 curr = &(*curr)->next)
2049 {
2050 if (bfd_architecture == (*curr)->bfd_architecture)
2051 internal_error (__FILE__, __LINE__,
2052 "gdbarch: Duplicate registraration of architecture (%s)",
2053 bfd_arch_info->printable_name);
2054 }
2055 /* log it */
2056 if (gdbarch_debug)
2057 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2058 bfd_arch_info->printable_name,
2059 (long) init);
2060 /* Append it */
2061 (*curr) = XMALLOC (struct gdbarch_registration);
2062 (*curr)->bfd_architecture = bfd_architecture;
2063 (*curr)->init = init;
2064 (*curr)->dump_tdep = dump_tdep;
2065 (*curr)->arches = NULL;
2066 (*curr)->next = NULL;
2067 }
2068
2069 void
2070 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2071 gdbarch_init_ftype *init)
2072 {
2073 gdbarch_register (bfd_architecture, init, NULL);
2074 }
2075
2076
2077 /* Look for an architecture using gdbarch_info. Base search on only
2078 BFD_ARCH_INFO and BYTE_ORDER. */
2079
2080 struct gdbarch_list *
2081 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2082 const struct gdbarch_info *info)
2083 {
2084 for (; arches != NULL; arches = arches->next)
2085 {
2086 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2087 continue;
2088 if (info->byte_order != arches->gdbarch->byte_order)
2089 continue;
2090 if (info->osabi != arches->gdbarch->osabi)
2091 continue;
2092 return arches;
2093 }
2094 return NULL;
2095 }
2096
2097
2098 /* Update the current architecture. Return ZERO if the update request
2099 failed. */
2100
2101 int
2102 gdbarch_update_p (struct gdbarch_info info)
2103 {
2104 struct gdbarch *new_gdbarch;
2105 struct gdbarch *old_gdbarch;
2106 struct gdbarch_registration *rego;
2107
2108 /* Fill in missing parts of the INFO struct using a number of
2109 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2110
2111 /* \`\`(gdb) set architecture ...'' */
2112 if (info.bfd_arch_info == NULL
2113 && !TARGET_ARCHITECTURE_AUTO)
2114 info.bfd_arch_info = TARGET_ARCHITECTURE;
2115 if (info.bfd_arch_info == NULL
2116 && info.abfd != NULL
2117 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2118 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2119 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2120 if (info.bfd_arch_info == NULL)
2121 info.bfd_arch_info = TARGET_ARCHITECTURE;
2122
2123 /* \`\`(gdb) set byte-order ...'' */
2124 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2125 && !TARGET_BYTE_ORDER_AUTO)
2126 info.byte_order = TARGET_BYTE_ORDER;
2127 /* From the INFO struct. */
2128 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2129 && info.abfd != NULL)
2130 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2131 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2132 : BFD_ENDIAN_UNKNOWN);
2133 /* From the current target. */
2134 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2135 info.byte_order = TARGET_BYTE_ORDER;
2136
2137 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2138 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2139 info.osabi = gdbarch_lookup_osabi (info.abfd);
2140 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2141 info.osabi = current_gdbarch->osabi;
2142
2143 /* Must have found some sort of architecture. */
2144 gdb_assert (info.bfd_arch_info != NULL);
2145
2146 if (gdbarch_debug)
2147 {
2148 fprintf_unfiltered (gdb_stdlog,
2149 "gdbarch_update: info.bfd_arch_info %s\n",
2150 (info.bfd_arch_info != NULL
2151 ? info.bfd_arch_info->printable_name
2152 : "(null)"));
2153 fprintf_unfiltered (gdb_stdlog,
2154 "gdbarch_update: info.byte_order %d (%s)\n",
2155 info.byte_order,
2156 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2157 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2158 : "default"));
2159 fprintf_unfiltered (gdb_stdlog,
2160 "gdbarch_update: info.osabi %d (%s)\n",
2161 info.osabi, gdbarch_osabi_name (info.osabi));
2162 fprintf_unfiltered (gdb_stdlog,
2163 "gdbarch_update: info.abfd 0x%lx\n",
2164 (long) info.abfd);
2165 fprintf_unfiltered (gdb_stdlog,
2166 "gdbarch_update: info.tdep_info 0x%lx\n",
2167 (long) info.tdep_info);
2168 }
2169
2170 /* Find the target that knows about this architecture. */
2171 for (rego = gdbarch_registry;
2172 rego != NULL;
2173 rego = rego->next)
2174 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2175 break;
2176 if (rego == NULL)
2177 {
2178 if (gdbarch_debug)
2179 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2180 return 0;
2181 }
2182
2183 /* Swap the data belonging to the old target out setting the
2184 installed data to zero. This stops the ->init() function trying
2185 to refer to the previous architecture's global data structures. */
2186 swapout_gdbarch_swap (current_gdbarch);
2187 clear_gdbarch_swap (current_gdbarch);
2188
2189 /* Save the previously selected architecture, setting the global to
2190 NULL. This stops ->init() trying to use the previous
2191 architecture's configuration. The previous architecture may not
2192 even be of the same architecture family. The most recent
2193 architecture of the same family is found at the head of the
2194 rego->arches list. */
2195 old_gdbarch = current_gdbarch;
2196 current_gdbarch = NULL;
2197
2198 /* Ask the target for a replacement architecture. */
2199 new_gdbarch = rego->init (info, rego->arches);
2200
2201 /* Did the target like it? No. Reject the change and revert to the
2202 old architecture. */
2203 if (new_gdbarch == NULL)
2204 {
2205 if (gdbarch_debug)
2206 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2207 swapin_gdbarch_swap (old_gdbarch);
2208 current_gdbarch = old_gdbarch;
2209 return 0;
2210 }
2211
2212 /* Did the architecture change? No. Oops, put the old architecture
2213 back. */
2214 if (old_gdbarch == new_gdbarch)
2215 {
2216 if (gdbarch_debug)
2217 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2218 (long) new_gdbarch,
2219 new_gdbarch->bfd_arch_info->printable_name);
2220 swapin_gdbarch_swap (old_gdbarch);
2221 current_gdbarch = old_gdbarch;
2222 return 1;
2223 }
2224
2225 /* Is this a pre-existing architecture? Yes. Move it to the front
2226 of the list of architectures (keeping the list sorted Most
2227 Recently Used) and then copy it in. */
2228 {
2229 struct gdbarch_list **list;
2230 for (list = &rego->arches;
2231 (*list) != NULL;
2232 list = &(*list)->next)
2233 {
2234 if ((*list)->gdbarch == new_gdbarch)
2235 {
2236 struct gdbarch_list *this;
2237 if (gdbarch_debug)
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2240 (long) new_gdbarch,
2241 new_gdbarch->bfd_arch_info->printable_name);
2242 /* Unlink this. */
2243 this = (*list);
2244 (*list) = this->next;
2245 /* Insert in the front. */
2246 this->next = rego->arches;
2247 rego->arches = this;
2248 /* Copy the new architecture in. */
2249 current_gdbarch = new_gdbarch;
2250 swapin_gdbarch_swap (new_gdbarch);
2251 architecture_changed_event ();
2252 return 1;
2253 }
2254 }
2255 }
2256
2257 /* Prepend this new architecture to the architecture list (keep the
2258 list sorted Most Recently Used). */
2259 {
2260 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2261 this->next = rego->arches;
2262 this->gdbarch = new_gdbarch;
2263 rego->arches = this;
2264 }
2265
2266 /* Switch to this new architecture marking it initialized. */
2267 current_gdbarch = new_gdbarch;
2268 current_gdbarch->initialized_p = 1;
2269 if (gdbarch_debug)
2270 {
2271 fprintf_unfiltered (gdb_stdlog,
2272 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2273 (long) new_gdbarch,
2274 new_gdbarch->bfd_arch_info->printable_name);
2275 }
2276
2277 /* Check that the newly installed architecture is valid. Plug in
2278 any post init values. */
2279 new_gdbarch->dump_tdep = rego->dump_tdep;
2280 verify_gdbarch (new_gdbarch);
2281
2282 /* Initialize the per-architecture memory (swap) areas.
2283 CURRENT_GDBARCH must be update before these modules are
2284 called. */
2285 init_gdbarch_swap (new_gdbarch);
2286
2287 /* Initialize the per-architecture data. CURRENT_GDBARCH
2288 must be updated before these modules are called. */
2289 architecture_changed_event ();
2290
2291 if (gdbarch_debug)
2292 gdbarch_dump (current_gdbarch, gdb_stdlog);
2293
2294 return 1;
2295 }
2296
2297
2298 extern void _initialize_gdbarch (void);
2299
2300 void
2301 _initialize_gdbarch (void)
2302 {
2303 struct cmd_list_element *c;
2304
2305 add_show_from_set (add_set_cmd ("arch",
2306 class_maintenance,
2307 var_zinteger,
2308 (char *)&gdbarch_debug,
2309 "Set architecture debugging.\\n\\
2310 When non-zero, architecture debugging is enabled.", &setdebuglist),
2311 &showdebuglist);
2312 c = add_set_cmd ("archdebug",
2313 class_maintenance,
2314 var_zinteger,
2315 (char *)&gdbarch_debug,
2316 "Set architecture debugging.\\n\\
2317 When non-zero, architecture debugging is enabled.", &setlist);
2318
2319 deprecate_cmd (c, "set debug arch");
2320 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2321 }
2322 EOF
2323
2324 # close things off
2325 exec 1>&2
2326 #../move-if-change new-gdbarch.c gdbarch.c
2327 compare_new gdbarch.c
This page took 0.081842 seconds and 4 git commands to generate.