Typo fix.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
6 # Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
399
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
404 #
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
407 #
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
417 #
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
424 # serious shakedown.
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
426 #
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
436
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
439 # all (-1).
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
455
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
466
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
472
473 # See gdbint.texinfo. See infcall.c.
474 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
475 # DEPRECATED_REGISTER_SIZE can be deleted.
476 v:=:int:deprecated_register_size
477 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
479
480 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
487 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489 # setjmp/longjmp support.
490 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
491 #
492 v:=:int:believe_pcc_promotion:::::::
493 #
494 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
495 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
496 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
497 #
498 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
499 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
500 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
501 #
502 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
503 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
504
505 # It has been suggested that this, well actually its predecessor,
506 # should take the type/value of the function to be called and not the
507 # return type. This is left as an exercise for the reader.
508
509 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
510 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
511 # (via legacy_return_value), when a small struct is involved.
512
513 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
514
515 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
516 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
517 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
518 # RETURN_VALUE.
519
520 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
521 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
522 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
523 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
524 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
525
526 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
527 # ABI suitable for the implementation of a robust extract
528 # struct-convention return-value address method (the sparc saves the
529 # address in the callers frame). All the other cases so far examined,
530 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
531 # erreneous - the code was incorrectly assuming that the return-value
532 # address, stored in a register, was preserved across the entire
533 # function call.
534
535 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
536 # the ABIs that are still to be analyzed - perhaps this should simply
537 # be deleted. The commented out extract_returned_value_address method
538 # is provided as a starting point for the 32-bit SPARC. It, or
539 # something like it, along with changes to both infcmd.c and stack.c
540 # will be needed for that case to work. NB: It is passed the callers
541 # frame since it is only after the callee has returned that this
542 # function is used.
543
544 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
545 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
546
547 #
548 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
549 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
550 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
551 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
552 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
553 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
554 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
555
556 # A function can be addressed by either it's "pointer" (possibly a
557 # descriptor address) or "entry point" (first executable instruction).
558 # The method "convert_from_func_ptr_addr" converting the former to the
559 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
560 # a simplified subset of that functionality - the function's address
561 # corresponds to the "function pointer" and the function's start
562 # corresponds to the "function entry point" - and hence is redundant.
563
564 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
565
566 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
567
568 # Fetch the target specific address used to represent a load module.
569 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
570 #
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
578 #
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
582 # alignment.
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
590 #
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
603 # ADDR_BITS_REMOVE.
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
607 #
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # Return non-zero if the processor is executing a delay slot and a
615 # further single-step is needed before the instruction finishes.
616 M::int:single_step_through_delay:struct frame_info *frame:frame
617 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
618 # disassembler. Perhaps objdump can handle it?
619 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
620 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
621
622
623 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
624 # evaluates non-zero, this is the address where the debugger will place
625 # a step-resume breakpoint to get us past the dynamic linker.
626 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
627 # Some systems also have trampoline code for returning from shared libs.
628 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
629
630 # A target might have problems with watchpoints as soon as the stack
631 # frame of the current function has been destroyed. This mostly happens
632 # as the first action in a funtion's epilogue. in_function_epilogue_p()
633 # is defined to return a non-zero value if either the given addr is one
634 # instruction after the stack destroying instruction up to the trailing
635 # return instruction or if we can figure out that the stack frame has
636 # already been invalidated regardless of the value of addr. Targets
637 # which don't suffer from that problem could just let this functionality
638 # untouched.
639 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
640 # Given a vector of command-line arguments, return a newly allocated
641 # string which, when passed to the create_inferior function, will be
642 # parsed (on Unix systems, by the shell) to yield the same vector.
643 # This function should call error() if the argument vector is not
644 # representable for this target or if this target does not support
645 # command-line arguments.
646 # ARGC is the number of elements in the vector.
647 # ARGV is an array of strings, one per argument.
648 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
649 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
650 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
651 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
652 v:=:int:cannot_step_breakpoint:::0:0::0
653 v:=:int:have_nonsteppable_watchpoint:::0:0::0
654 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
655 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
656 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
657 # Is a register in a group
658 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
659 # Fetch the pointer to the ith function argument.
660 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
661
662 # Return the appropriate register set for a core file section with
663 # name SECT_NAME and size SECT_SIZE.
664 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
665 EOF
666 }
667
668 #
669 # The .log file
670 #
671 exec > new-gdbarch.log
672 function_list | while do_read
673 do
674 cat <<EOF
675 ${class} ${returntype} ${function} ($formal)
676 EOF
677 for r in ${read}
678 do
679 eval echo \"\ \ \ \ ${r}=\${${r}}\"
680 done
681 if class_is_predicate_p && fallback_default_p
682 then
683 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
684 kill $$
685 exit 1
686 fi
687 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
688 then
689 echo "Error: postdefault is useless when invalid_p=0" 1>&2
690 kill $$
691 exit 1
692 fi
693 if class_is_multiarch_p
694 then
695 if class_is_predicate_p ; then :
696 elif test "x${predefault}" = "x"
697 then
698 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
699 kill $$
700 exit 1
701 fi
702 fi
703 echo ""
704 done
705
706 exec 1>&2
707 compare_new gdbarch.log
708
709
710 copyright ()
711 {
712 cat <<EOF
713 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
714
715 /* Dynamic architecture support for GDB, the GNU debugger.
716
717 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free
718 Software Foundation, Inc.
719
720 This file is part of GDB.
721
722 This program is free software; you can redistribute it and/or modify
723 it under the terms of the GNU General Public License as published by
724 the Free Software Foundation; either version 2 of the License, or
725 (at your option) any later version.
726
727 This program is distributed in the hope that it will be useful,
728 but WITHOUT ANY WARRANTY; without even the implied warranty of
729 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
730 GNU General Public License for more details.
731
732 You should have received a copy of the GNU General Public License
733 along with this program; if not, write to the Free Software
734 Foundation, Inc., 51 Franklin Street, Fifth Floor,
735 Boston, MA 02110-1301, USA. */
736
737 /* This file was created with the aid of \`\`gdbarch.sh''.
738
739 The Bourne shell script \`\`gdbarch.sh'' creates the files
740 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
741 against the existing \`\`gdbarch.[hc]''. Any differences found
742 being reported.
743
744 If editing this file, please also run gdbarch.sh and merge any
745 changes into that script. Conversely, when making sweeping changes
746 to this file, modifying gdbarch.sh and using its output may prove
747 easier. */
748
749 EOF
750 }
751
752 #
753 # The .h file
754 #
755
756 exec > new-gdbarch.h
757 copyright
758 cat <<EOF
759 #ifndef GDBARCH_H
760 #define GDBARCH_H
761
762 struct floatformat;
763 struct ui_file;
764 struct frame_info;
765 struct value;
766 struct objfile;
767 struct minimal_symbol;
768 struct regcache;
769 struct reggroup;
770 struct regset;
771 struct disassemble_info;
772 struct target_ops;
773 struct obstack;
774 struct bp_target_info;
775
776 extern struct gdbarch *current_gdbarch;
777 EOF
778
779 # function typedef's
780 printf "\n"
781 printf "\n"
782 printf "/* The following are pre-initialized by GDBARCH. */\n"
783 function_list | while do_read
784 do
785 if class_is_info_p
786 then
787 printf "\n"
788 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
789 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
790 if test -n "${macro}"
791 then
792 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
793 printf "#error \"Non multi-arch definition of ${macro}\"\n"
794 printf "#endif\n"
795 printf "#if !defined (${macro})\n"
796 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
797 printf "#endif\n"
798 fi
799 fi
800 done
801
802 # function typedef's
803 printf "\n"
804 printf "\n"
805 printf "/* The following are initialized by the target dependent code. */\n"
806 function_list | while do_read
807 do
808 if [ -n "${comment}" ]
809 then
810 echo "${comment}" | sed \
811 -e '2 s,#,/*,' \
812 -e '3,$ s,#, ,' \
813 -e '$ s,$, */,'
814 fi
815
816 if class_is_predicate_p
817 then
818 if test -n "${macro}"
819 then
820 printf "\n"
821 printf "#if defined (${macro})\n"
822 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
823 printf "#if !defined (${macro}_P)\n"
824 printf "#define ${macro}_P() (1)\n"
825 printf "#endif\n"
826 printf "#endif\n"
827 fi
828 printf "\n"
829 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
830 if test -n "${macro}"
831 then
832 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
833 printf "#error \"Non multi-arch definition of ${macro}\"\n"
834 printf "#endif\n"
835 printf "#if !defined (${macro}_P)\n"
836 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
837 printf "#endif\n"
838 fi
839 fi
840 if class_is_variable_p
841 then
842 printf "\n"
843 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
844 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
845 if test -n "${macro}"
846 then
847 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
848 printf "#error \"Non multi-arch definition of ${macro}\"\n"
849 printf "#endif\n"
850 printf "#if !defined (${macro})\n"
851 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
852 printf "#endif\n"
853 fi
854 fi
855 if class_is_function_p
856 then
857 printf "\n"
858 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
859 then
860 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
861 elif class_is_multiarch_p
862 then
863 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
864 else
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
866 fi
867 if [ "x${formal}" = "xvoid" ]
868 then
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 else
871 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
872 fi
873 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
874 if test -n "${macro}"
875 then
876 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 printf "#endif\n"
879 if [ "x${actual}" = "x" ]
880 then
881 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
882 elif [ "x${actual}" = "x-" ]
883 then
884 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
885 else
886 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
887 fi
888 printf "#if !defined (${macro})\n"
889 if [ "x${actual}" = "x" ]
890 then
891 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
892 elif [ "x${actual}" = "x-" ]
893 then
894 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
895 else
896 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
897 fi
898 printf "#endif\n"
899 fi
900 fi
901 done
902
903 # close it off
904 cat <<EOF
905
906 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
907
908
909 /* Mechanism for co-ordinating the selection of a specific
910 architecture.
911
912 GDB targets (*-tdep.c) can register an interest in a specific
913 architecture. Other GDB components can register a need to maintain
914 per-architecture data.
915
916 The mechanisms below ensures that there is only a loose connection
917 between the set-architecture command and the various GDB
918 components. Each component can independently register their need
919 to maintain architecture specific data with gdbarch.
920
921 Pragmatics:
922
923 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
924 didn't scale.
925
926 The more traditional mega-struct containing architecture specific
927 data for all the various GDB components was also considered. Since
928 GDB is built from a variable number of (fairly independent)
929 components it was determined that the global aproach was not
930 applicable. */
931
932
933 /* Register a new architectural family with GDB.
934
935 Register support for the specified ARCHITECTURE with GDB. When
936 gdbarch determines that the specified architecture has been
937 selected, the corresponding INIT function is called.
938
939 --
940
941 The INIT function takes two parameters: INFO which contains the
942 information available to gdbarch about the (possibly new)
943 architecture; ARCHES which is a list of the previously created
944 \`\`struct gdbarch'' for this architecture.
945
946 The INFO parameter is, as far as possible, be pre-initialized with
947 information obtained from INFO.ABFD or the previously selected
948 architecture.
949
950 The ARCHES parameter is a linked list (sorted most recently used)
951 of all the previously created architures for this architecture
952 family. The (possibly NULL) ARCHES->gdbarch can used to access
953 values from the previously selected architecture for this
954 architecture family. The global \`\`current_gdbarch'' shall not be
955 used.
956
957 The INIT function shall return any of: NULL - indicating that it
958 doesn't recognize the selected architecture; an existing \`\`struct
959 gdbarch'' from the ARCHES list - indicating that the new
960 architecture is just a synonym for an earlier architecture (see
961 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
962 - that describes the selected architecture (see gdbarch_alloc()).
963
964 The DUMP_TDEP function shall print out all target specific values.
965 Care should be taken to ensure that the function works in both the
966 multi-arch and non- multi-arch cases. */
967
968 struct gdbarch_list
969 {
970 struct gdbarch *gdbarch;
971 struct gdbarch_list *next;
972 };
973
974 struct gdbarch_info
975 {
976 /* Use default: NULL (ZERO). */
977 const struct bfd_arch_info *bfd_arch_info;
978
979 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
980 int byte_order;
981
982 /* Use default: NULL (ZERO). */
983 bfd *abfd;
984
985 /* Use default: NULL (ZERO). */
986 struct gdbarch_tdep_info *tdep_info;
987
988 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
989 enum gdb_osabi osabi;
990 };
991
992 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
993 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
994
995 /* DEPRECATED - use gdbarch_register() */
996 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
997
998 extern void gdbarch_register (enum bfd_architecture architecture,
999 gdbarch_init_ftype *,
1000 gdbarch_dump_tdep_ftype *);
1001
1002
1003 /* Return a freshly allocated, NULL terminated, array of the valid
1004 architecture names. Since architectures are registered during the
1005 _initialize phase this function only returns useful information
1006 once initialization has been completed. */
1007
1008 extern const char **gdbarch_printable_names (void);
1009
1010
1011 /* Helper function. Search the list of ARCHES for a GDBARCH that
1012 matches the information provided by INFO. */
1013
1014 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1015
1016
1017 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1018 basic initialization using values obtained from the INFO andTDEP
1019 parameters. set_gdbarch_*() functions are called to complete the
1020 initialization of the object. */
1021
1022 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1023
1024
1025 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1026 It is assumed that the caller freeds the \`\`struct
1027 gdbarch_tdep''. */
1028
1029 extern void gdbarch_free (struct gdbarch *);
1030
1031
1032 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1033 obstack. The memory is freed when the corresponding architecture
1034 is also freed. */
1035
1036 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1037 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1038 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1039
1040
1041 /* Helper function. Force an update of the current architecture.
1042
1043 The actual architecture selected is determined by INFO, \`\`(gdb) set
1044 architecture'' et.al., the existing architecture and BFD's default
1045 architecture. INFO should be initialized to zero and then selected
1046 fields should be updated.
1047
1048 Returns non-zero if the update succeeds */
1049
1050 extern int gdbarch_update_p (struct gdbarch_info info);
1051
1052
1053 /* Helper function. Find an architecture matching info.
1054
1055 INFO should be initialized using gdbarch_info_init, relevant fields
1056 set, and then finished using gdbarch_info_fill.
1057
1058 Returns the corresponding architecture, or NULL if no matching
1059 architecture was found. "current_gdbarch" is not updated. */
1060
1061 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1062
1063
1064 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1065
1066 FIXME: kettenis/20031124: Of the functions that follow, only
1067 gdbarch_from_bfd is supposed to survive. The others will
1068 dissappear since in the future GDB will (hopefully) be truly
1069 multi-arch. However, for now we're still stuck with the concept of
1070 a single active architecture. */
1071
1072 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1073
1074
1075 /* Register per-architecture data-pointer.
1076
1077 Reserve space for a per-architecture data-pointer. An identifier
1078 for the reserved data-pointer is returned. That identifer should
1079 be saved in a local static variable.
1080
1081 Memory for the per-architecture data shall be allocated using
1082 gdbarch_obstack_zalloc. That memory will be deleted when the
1083 corresponding architecture object is deleted.
1084
1085 When a previously created architecture is re-selected, the
1086 per-architecture data-pointer for that previous architecture is
1087 restored. INIT() is not re-called.
1088
1089 Multiple registrarants for any architecture are allowed (and
1090 strongly encouraged). */
1091
1092 struct gdbarch_data;
1093
1094 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1095 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1096 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1097 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1098 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1099 struct gdbarch_data *data,
1100 void *pointer);
1101
1102 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1103
1104
1105
1106 /* Register per-architecture memory region.
1107
1108 Provide a memory-region swap mechanism. Per-architecture memory
1109 region are created. These memory regions are swapped whenever the
1110 architecture is changed. For a new architecture, the memory region
1111 is initialized with zero (0) and the INIT function is called.
1112
1113 Memory regions are swapped / initialized in the order that they are
1114 registered. NULL DATA and/or INIT values can be specified.
1115
1116 New code should use gdbarch_data_register_*(). */
1117
1118 typedef void (gdbarch_swap_ftype) (void);
1119 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1120 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1121
1122
1123
1124 /* Set the dynamic target-system-dependent parameters (architecture,
1125 byte-order, ...) using information found in the BFD */
1126
1127 extern void set_gdbarch_from_file (bfd *);
1128
1129
1130 /* Initialize the current architecture to the "first" one we find on
1131 our list. */
1132
1133 extern void initialize_current_architecture (void);
1134
1135 /* gdbarch trace variable */
1136 extern int gdbarch_debug;
1137
1138 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1139
1140 #endif
1141 EOF
1142 exec 1>&2
1143 #../move-if-change new-gdbarch.h gdbarch.h
1144 compare_new gdbarch.h
1145
1146
1147 #
1148 # C file
1149 #
1150
1151 exec > new-gdbarch.c
1152 copyright
1153 cat <<EOF
1154
1155 #include "defs.h"
1156 #include "arch-utils.h"
1157
1158 #include "gdbcmd.h"
1159 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1160 #include "symcat.h"
1161
1162 #include "floatformat.h"
1163
1164 #include "gdb_assert.h"
1165 #include "gdb_string.h"
1166 #include "gdb-events.h"
1167 #include "reggroups.h"
1168 #include "osabi.h"
1169 #include "gdb_obstack.h"
1170
1171 /* Static function declarations */
1172
1173 static void alloc_gdbarch_data (struct gdbarch *);
1174
1175 /* Non-zero if we want to trace architecture code. */
1176
1177 #ifndef GDBARCH_DEBUG
1178 #define GDBARCH_DEBUG 0
1179 #endif
1180 int gdbarch_debug = GDBARCH_DEBUG;
1181 static void
1182 show_gdbarch_debug (struct ui_file *file, int from_tty,
1183 struct cmd_list_element *c, const char *value)
1184 {
1185 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1186 }
1187
1188 static const char *
1189 pformat (const struct floatformat *format)
1190 {
1191 if (format == NULL)
1192 return "(null)";
1193 else
1194 return format->name;
1195 }
1196
1197 EOF
1198
1199 # gdbarch open the gdbarch object
1200 printf "\n"
1201 printf "/* Maintain the struct gdbarch object */\n"
1202 printf "\n"
1203 printf "struct gdbarch\n"
1204 printf "{\n"
1205 printf " /* Has this architecture been fully initialized? */\n"
1206 printf " int initialized_p;\n"
1207 printf "\n"
1208 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1209 printf " struct obstack *obstack;\n"
1210 printf "\n"
1211 printf " /* basic architectural information */\n"
1212 function_list | while do_read
1213 do
1214 if class_is_info_p
1215 then
1216 printf " ${returntype} ${function};\n"
1217 fi
1218 done
1219 printf "\n"
1220 printf " /* target specific vector. */\n"
1221 printf " struct gdbarch_tdep *tdep;\n"
1222 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1223 printf "\n"
1224 printf " /* per-architecture data-pointers */\n"
1225 printf " unsigned nr_data;\n"
1226 printf " void **data;\n"
1227 printf "\n"
1228 printf " /* per-architecture swap-regions */\n"
1229 printf " struct gdbarch_swap *swap;\n"
1230 printf "\n"
1231 cat <<EOF
1232 /* Multi-arch values.
1233
1234 When extending this structure you must:
1235
1236 Add the field below.
1237
1238 Declare set/get functions and define the corresponding
1239 macro in gdbarch.h.
1240
1241 gdbarch_alloc(): If zero/NULL is not a suitable default,
1242 initialize the new field.
1243
1244 verify_gdbarch(): Confirm that the target updated the field
1245 correctly.
1246
1247 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1248 field is dumped out
1249
1250 \`\`startup_gdbarch()'': Append an initial value to the static
1251 variable (base values on the host's c-type system).
1252
1253 get_gdbarch(): Implement the set/get functions (probably using
1254 the macro's as shortcuts).
1255
1256 */
1257
1258 EOF
1259 function_list | while do_read
1260 do
1261 if class_is_variable_p
1262 then
1263 printf " ${returntype} ${function};\n"
1264 elif class_is_function_p
1265 then
1266 printf " gdbarch_${function}_ftype *${function};\n"
1267 fi
1268 done
1269 printf "};\n"
1270
1271 # A pre-initialized vector
1272 printf "\n"
1273 printf "\n"
1274 cat <<EOF
1275 /* The default architecture uses host values (for want of a better
1276 choice). */
1277 EOF
1278 printf "\n"
1279 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1280 printf "\n"
1281 printf "struct gdbarch startup_gdbarch =\n"
1282 printf "{\n"
1283 printf " 1, /* Always initialized. */\n"
1284 printf " NULL, /* The obstack. */\n"
1285 printf " /* basic architecture information */\n"
1286 function_list | while do_read
1287 do
1288 if class_is_info_p
1289 then
1290 printf " ${staticdefault}, /* ${function} */\n"
1291 fi
1292 done
1293 cat <<EOF
1294 /* target specific vector and its dump routine */
1295 NULL, NULL,
1296 /*per-architecture data-pointers and swap regions */
1297 0, NULL, NULL,
1298 /* Multi-arch values */
1299 EOF
1300 function_list | while do_read
1301 do
1302 if class_is_function_p || class_is_variable_p
1303 then
1304 printf " ${staticdefault}, /* ${function} */\n"
1305 fi
1306 done
1307 cat <<EOF
1308 /* startup_gdbarch() */
1309 };
1310
1311 struct gdbarch *current_gdbarch = &startup_gdbarch;
1312 EOF
1313
1314 # Create a new gdbarch struct
1315 cat <<EOF
1316
1317 /* Create a new \`\`struct gdbarch'' based on information provided by
1318 \`\`struct gdbarch_info''. */
1319 EOF
1320 printf "\n"
1321 cat <<EOF
1322 struct gdbarch *
1323 gdbarch_alloc (const struct gdbarch_info *info,
1324 struct gdbarch_tdep *tdep)
1325 {
1326 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1327 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1328 the current local architecture and not the previous global
1329 architecture. This ensures that the new architectures initial
1330 values are not influenced by the previous architecture. Once
1331 everything is parameterised with gdbarch, this will go away. */
1332 struct gdbarch *current_gdbarch;
1333
1334 /* Create an obstack for allocating all the per-architecture memory,
1335 then use that to allocate the architecture vector. */
1336 struct obstack *obstack = XMALLOC (struct obstack);
1337 obstack_init (obstack);
1338 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1339 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1340 current_gdbarch->obstack = obstack;
1341
1342 alloc_gdbarch_data (current_gdbarch);
1343
1344 current_gdbarch->tdep = tdep;
1345 EOF
1346 printf "\n"
1347 function_list | while do_read
1348 do
1349 if class_is_info_p
1350 then
1351 printf " current_gdbarch->${function} = info->${function};\n"
1352 fi
1353 done
1354 printf "\n"
1355 printf " /* Force the explicit initialization of these. */\n"
1356 function_list | while do_read
1357 do
1358 if class_is_function_p || class_is_variable_p
1359 then
1360 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1361 then
1362 printf " current_gdbarch->${function} = ${predefault};\n"
1363 fi
1364 fi
1365 done
1366 cat <<EOF
1367 /* gdbarch_alloc() */
1368
1369 return current_gdbarch;
1370 }
1371 EOF
1372
1373 # Free a gdbarch struct.
1374 printf "\n"
1375 printf "\n"
1376 cat <<EOF
1377 /* Allocate extra space using the per-architecture obstack. */
1378
1379 void *
1380 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1381 {
1382 void *data = obstack_alloc (arch->obstack, size);
1383 memset (data, 0, size);
1384 return data;
1385 }
1386
1387
1388 /* Free a gdbarch struct. This should never happen in normal
1389 operation --- once you've created a gdbarch, you keep it around.
1390 However, if an architecture's init function encounters an error
1391 building the structure, it may need to clean up a partially
1392 constructed gdbarch. */
1393
1394 void
1395 gdbarch_free (struct gdbarch *arch)
1396 {
1397 struct obstack *obstack;
1398 gdb_assert (arch != NULL);
1399 gdb_assert (!arch->initialized_p);
1400 obstack = arch->obstack;
1401 obstack_free (obstack, 0); /* Includes the ARCH. */
1402 xfree (obstack);
1403 }
1404 EOF
1405
1406 # verify a new architecture
1407 cat <<EOF
1408
1409
1410 /* Ensure that all values in a GDBARCH are reasonable. */
1411
1412 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1413 just happens to match the global variable \`\`current_gdbarch''. That
1414 way macros refering to that variable get the local and not the global
1415 version - ulgh. Once everything is parameterised with gdbarch, this
1416 will go away. */
1417
1418 static void
1419 verify_gdbarch (struct gdbarch *current_gdbarch)
1420 {
1421 struct ui_file *log;
1422 struct cleanup *cleanups;
1423 long dummy;
1424 char *buf;
1425 log = mem_fileopen ();
1426 cleanups = make_cleanup_ui_file_delete (log);
1427 /* fundamental */
1428 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1429 fprintf_unfiltered (log, "\n\tbyte-order");
1430 if (current_gdbarch->bfd_arch_info == NULL)
1431 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1432 /* Check those that need to be defined for the given multi-arch level. */
1433 EOF
1434 function_list | while do_read
1435 do
1436 if class_is_function_p || class_is_variable_p
1437 then
1438 if [ "x${invalid_p}" = "x0" ]
1439 then
1440 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1441 elif class_is_predicate_p
1442 then
1443 printf " /* Skip verify of ${function}, has predicate */\n"
1444 # FIXME: See do_read for potential simplification
1445 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1446 then
1447 printf " if (${invalid_p})\n"
1448 printf " current_gdbarch->${function} = ${postdefault};\n"
1449 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1450 then
1451 printf " if (current_gdbarch->${function} == ${predefault})\n"
1452 printf " current_gdbarch->${function} = ${postdefault};\n"
1453 elif [ -n "${postdefault}" ]
1454 then
1455 printf " if (current_gdbarch->${function} == 0)\n"
1456 printf " current_gdbarch->${function} = ${postdefault};\n"
1457 elif [ -n "${invalid_p}" ]
1458 then
1459 printf " if (${invalid_p})\n"
1460 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1461 elif [ -n "${predefault}" ]
1462 then
1463 printf " if (current_gdbarch->${function} == ${predefault})\n"
1464 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1465 fi
1466 fi
1467 done
1468 cat <<EOF
1469 buf = ui_file_xstrdup (log, &dummy);
1470 make_cleanup (xfree, buf);
1471 if (strlen (buf) > 0)
1472 internal_error (__FILE__, __LINE__,
1473 _("verify_gdbarch: the following are invalid ...%s"),
1474 buf);
1475 do_cleanups (cleanups);
1476 }
1477 EOF
1478
1479 # dump the structure
1480 printf "\n"
1481 printf "\n"
1482 cat <<EOF
1483 /* Print out the details of the current architecture. */
1484
1485 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1486 just happens to match the global variable \`\`current_gdbarch''. That
1487 way macros refering to that variable get the local and not the global
1488 version - ulgh. Once everything is parameterised with gdbarch, this
1489 will go away. */
1490
1491 void
1492 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1493 {
1494 const char *gdb_xm_file = "<not-defined>";
1495 const char *gdb_nm_file = "<not-defined>";
1496 const char *gdb_tm_file = "<not-defined>";
1497 #if defined (GDB_XM_FILE)
1498 gdb_xm_file = GDB_XM_FILE;
1499 #endif
1500 fprintf_unfiltered (file,
1501 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1502 gdb_xm_file);
1503 #if defined (GDB_NM_FILE)
1504 gdb_nm_file = GDB_NM_FILE;
1505 #endif
1506 fprintf_unfiltered (file,
1507 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1508 gdb_nm_file);
1509 #if defined (GDB_TM_FILE)
1510 gdb_tm_file = GDB_TM_FILE;
1511 #endif
1512 fprintf_unfiltered (file,
1513 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1514 gdb_tm_file);
1515 EOF
1516 function_list | sort -t: -k 4 | while do_read
1517 do
1518 # First the predicate
1519 if class_is_predicate_p
1520 then
1521 if test -n "${macro}"
1522 then
1523 printf "#ifdef ${macro}_P\n"
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1526 printf " \"${macro}_P()\",\n"
1527 printf " XSTRING (${macro}_P ()));\n"
1528 printf "#endif\n"
1529 fi
1530 printf " fprintf_unfiltered (file,\n"
1531 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1532 printf " gdbarch_${function}_p (current_gdbarch));\n"
1533 fi
1534 # Print the macro definition.
1535 if test -n "${macro}"
1536 then
1537 printf "#ifdef ${macro}\n"
1538 if class_is_function_p
1539 then
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1542 printf " \"${macro}(${actual})\",\n"
1543 printf " XSTRING (${macro} (${actual})));\n"
1544 else
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1547 printf " XSTRING (${macro}));\n"
1548 fi
1549 printf "#endif\n"
1550 fi
1551 # Print the corresponding value.
1552 if class_is_function_p
1553 then
1554 printf " fprintf_unfiltered (file,\n"
1555 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1556 printf " (long) current_gdbarch->${function});\n"
1557 else
1558 # It is a variable
1559 case "${print}:${returntype}" in
1560 :CORE_ADDR )
1561 fmt="0x%s"
1562 print="paddr_nz (current_gdbarch->${function})"
1563 ;;
1564 :* )
1565 fmt="%s"
1566 print="paddr_d (current_gdbarch->${function})"
1567 ;;
1568 * )
1569 fmt="%s"
1570 ;;
1571 esac
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1574 printf " ${print});\n"
1575 fi
1576 done
1577 cat <<EOF
1578 if (current_gdbarch->dump_tdep != NULL)
1579 current_gdbarch->dump_tdep (current_gdbarch, file);
1580 }
1581 EOF
1582
1583
1584 # GET/SET
1585 printf "\n"
1586 cat <<EOF
1587 struct gdbarch_tdep *
1588 gdbarch_tdep (struct gdbarch *gdbarch)
1589 {
1590 if (gdbarch_debug >= 2)
1591 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1592 return gdbarch->tdep;
1593 }
1594 EOF
1595 printf "\n"
1596 function_list | while do_read
1597 do
1598 if class_is_predicate_p
1599 then
1600 printf "\n"
1601 printf "int\n"
1602 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1603 printf "{\n"
1604 printf " gdb_assert (gdbarch != NULL);\n"
1605 printf " return ${predicate};\n"
1606 printf "}\n"
1607 fi
1608 if class_is_function_p
1609 then
1610 printf "\n"
1611 printf "${returntype}\n"
1612 if [ "x${formal}" = "xvoid" ]
1613 then
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1615 else
1616 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1617 fi
1618 printf "{\n"
1619 printf " gdb_assert (gdbarch != NULL);\n"
1620 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1621 if class_is_predicate_p && test -n "${predefault}"
1622 then
1623 # Allow a call to a function with a predicate.
1624 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1625 fi
1626 printf " if (gdbarch_debug >= 2)\n"
1627 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1628 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1629 then
1630 if class_is_multiarch_p
1631 then
1632 params="gdbarch"
1633 else
1634 params=""
1635 fi
1636 else
1637 if class_is_multiarch_p
1638 then
1639 params="gdbarch, ${actual}"
1640 else
1641 params="${actual}"
1642 fi
1643 fi
1644 if [ "x${returntype}" = "xvoid" ]
1645 then
1646 printf " gdbarch->${function} (${params});\n"
1647 else
1648 printf " return gdbarch->${function} (${params});\n"
1649 fi
1650 printf "}\n"
1651 printf "\n"
1652 printf "void\n"
1653 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1654 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1655 printf "{\n"
1656 printf " gdbarch->${function} = ${function};\n"
1657 printf "}\n"
1658 elif class_is_variable_p
1659 then
1660 printf "\n"
1661 printf "${returntype}\n"
1662 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1663 printf "{\n"
1664 printf " gdb_assert (gdbarch != NULL);\n"
1665 if [ "x${invalid_p}" = "x0" ]
1666 then
1667 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1668 elif [ -n "${invalid_p}" ]
1669 then
1670 printf " /* Check variable is valid. */\n"
1671 printf " gdb_assert (!(${invalid_p}));\n"
1672 elif [ -n "${predefault}" ]
1673 then
1674 printf " /* Check variable changed from pre-default. */\n"
1675 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1676 fi
1677 printf " if (gdbarch_debug >= 2)\n"
1678 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1679 printf " return gdbarch->${function};\n"
1680 printf "}\n"
1681 printf "\n"
1682 printf "void\n"
1683 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1684 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1685 printf "{\n"
1686 printf " gdbarch->${function} = ${function};\n"
1687 printf "}\n"
1688 elif class_is_info_p
1689 then
1690 printf "\n"
1691 printf "${returntype}\n"
1692 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1693 printf "{\n"
1694 printf " gdb_assert (gdbarch != NULL);\n"
1695 printf " if (gdbarch_debug >= 2)\n"
1696 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1697 printf " return gdbarch->${function};\n"
1698 printf "}\n"
1699 fi
1700 done
1701
1702 # All the trailing guff
1703 cat <<EOF
1704
1705
1706 /* Keep a registry of per-architecture data-pointers required by GDB
1707 modules. */
1708
1709 struct gdbarch_data
1710 {
1711 unsigned index;
1712 int init_p;
1713 gdbarch_data_pre_init_ftype *pre_init;
1714 gdbarch_data_post_init_ftype *post_init;
1715 };
1716
1717 struct gdbarch_data_registration
1718 {
1719 struct gdbarch_data *data;
1720 struct gdbarch_data_registration *next;
1721 };
1722
1723 struct gdbarch_data_registry
1724 {
1725 unsigned nr;
1726 struct gdbarch_data_registration *registrations;
1727 };
1728
1729 struct gdbarch_data_registry gdbarch_data_registry =
1730 {
1731 0, NULL,
1732 };
1733
1734 static struct gdbarch_data *
1735 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1736 gdbarch_data_post_init_ftype *post_init)
1737 {
1738 struct gdbarch_data_registration **curr;
1739 /* Append the new registraration. */
1740 for (curr = &gdbarch_data_registry.registrations;
1741 (*curr) != NULL;
1742 curr = &(*curr)->next);
1743 (*curr) = XMALLOC (struct gdbarch_data_registration);
1744 (*curr)->next = NULL;
1745 (*curr)->data = XMALLOC (struct gdbarch_data);
1746 (*curr)->data->index = gdbarch_data_registry.nr++;
1747 (*curr)->data->pre_init = pre_init;
1748 (*curr)->data->post_init = post_init;
1749 (*curr)->data->init_p = 1;
1750 return (*curr)->data;
1751 }
1752
1753 struct gdbarch_data *
1754 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1755 {
1756 return gdbarch_data_register (pre_init, NULL);
1757 }
1758
1759 struct gdbarch_data *
1760 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1761 {
1762 return gdbarch_data_register (NULL, post_init);
1763 }
1764
1765 /* Create/delete the gdbarch data vector. */
1766
1767 static void
1768 alloc_gdbarch_data (struct gdbarch *gdbarch)
1769 {
1770 gdb_assert (gdbarch->data == NULL);
1771 gdbarch->nr_data = gdbarch_data_registry.nr;
1772 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1773 }
1774
1775 /* Initialize the current value of the specified per-architecture
1776 data-pointer. */
1777
1778 void
1779 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1780 struct gdbarch_data *data,
1781 void *pointer)
1782 {
1783 gdb_assert (data->index < gdbarch->nr_data);
1784 gdb_assert (gdbarch->data[data->index] == NULL);
1785 gdb_assert (data->pre_init == NULL);
1786 gdbarch->data[data->index] = pointer;
1787 }
1788
1789 /* Return the current value of the specified per-architecture
1790 data-pointer. */
1791
1792 void *
1793 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1794 {
1795 gdb_assert (data->index < gdbarch->nr_data);
1796 if (gdbarch->data[data->index] == NULL)
1797 {
1798 /* The data-pointer isn't initialized, call init() to get a
1799 value. */
1800 if (data->pre_init != NULL)
1801 /* Mid architecture creation: pass just the obstack, and not
1802 the entire architecture, as that way it isn't possible for
1803 pre-init code to refer to undefined architecture
1804 fields. */
1805 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1806 else if (gdbarch->initialized_p
1807 && data->post_init != NULL)
1808 /* Post architecture creation: pass the entire architecture
1809 (as all fields are valid), but be careful to also detect
1810 recursive references. */
1811 {
1812 gdb_assert (data->init_p);
1813 data->init_p = 0;
1814 gdbarch->data[data->index] = data->post_init (gdbarch);
1815 data->init_p = 1;
1816 }
1817 else
1818 /* The architecture initialization hasn't completed - punt -
1819 hope that the caller knows what they are doing. Once
1820 deprecated_set_gdbarch_data has been initialized, this can be
1821 changed to an internal error. */
1822 return NULL;
1823 gdb_assert (gdbarch->data[data->index] != NULL);
1824 }
1825 return gdbarch->data[data->index];
1826 }
1827
1828
1829
1830 /* Keep a registry of swapped data required by GDB modules. */
1831
1832 struct gdbarch_swap
1833 {
1834 void *swap;
1835 struct gdbarch_swap_registration *source;
1836 struct gdbarch_swap *next;
1837 };
1838
1839 struct gdbarch_swap_registration
1840 {
1841 void *data;
1842 unsigned long sizeof_data;
1843 gdbarch_swap_ftype *init;
1844 struct gdbarch_swap_registration *next;
1845 };
1846
1847 struct gdbarch_swap_registry
1848 {
1849 int nr;
1850 struct gdbarch_swap_registration *registrations;
1851 };
1852
1853 struct gdbarch_swap_registry gdbarch_swap_registry =
1854 {
1855 0, NULL,
1856 };
1857
1858 void
1859 deprecated_register_gdbarch_swap (void *data,
1860 unsigned long sizeof_data,
1861 gdbarch_swap_ftype *init)
1862 {
1863 struct gdbarch_swap_registration **rego;
1864 for (rego = &gdbarch_swap_registry.registrations;
1865 (*rego) != NULL;
1866 rego = &(*rego)->next);
1867 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1868 (*rego)->next = NULL;
1869 (*rego)->init = init;
1870 (*rego)->data = data;
1871 (*rego)->sizeof_data = sizeof_data;
1872 }
1873
1874 static void
1875 current_gdbarch_swap_init_hack (void)
1876 {
1877 struct gdbarch_swap_registration *rego;
1878 struct gdbarch_swap **curr = &current_gdbarch->swap;
1879 for (rego = gdbarch_swap_registry.registrations;
1880 rego != NULL;
1881 rego = rego->next)
1882 {
1883 if (rego->data != NULL)
1884 {
1885 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1886 struct gdbarch_swap);
1887 (*curr)->source = rego;
1888 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1889 rego->sizeof_data);
1890 (*curr)->next = NULL;
1891 curr = &(*curr)->next;
1892 }
1893 if (rego->init != NULL)
1894 rego->init ();
1895 }
1896 }
1897
1898 static struct gdbarch *
1899 current_gdbarch_swap_out_hack (void)
1900 {
1901 struct gdbarch *old_gdbarch = current_gdbarch;
1902 struct gdbarch_swap *curr;
1903
1904 gdb_assert (old_gdbarch != NULL);
1905 for (curr = old_gdbarch->swap;
1906 curr != NULL;
1907 curr = curr->next)
1908 {
1909 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1910 memset (curr->source->data, 0, curr->source->sizeof_data);
1911 }
1912 current_gdbarch = NULL;
1913 return old_gdbarch;
1914 }
1915
1916 static void
1917 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1918 {
1919 struct gdbarch_swap *curr;
1920
1921 gdb_assert (current_gdbarch == NULL);
1922 for (curr = new_gdbarch->swap;
1923 curr != NULL;
1924 curr = curr->next)
1925 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1926 current_gdbarch = new_gdbarch;
1927 }
1928
1929
1930 /* Keep a registry of the architectures known by GDB. */
1931
1932 struct gdbarch_registration
1933 {
1934 enum bfd_architecture bfd_architecture;
1935 gdbarch_init_ftype *init;
1936 gdbarch_dump_tdep_ftype *dump_tdep;
1937 struct gdbarch_list *arches;
1938 struct gdbarch_registration *next;
1939 };
1940
1941 static struct gdbarch_registration *gdbarch_registry = NULL;
1942
1943 static void
1944 append_name (const char ***buf, int *nr, const char *name)
1945 {
1946 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1947 (*buf)[*nr] = name;
1948 *nr += 1;
1949 }
1950
1951 const char **
1952 gdbarch_printable_names (void)
1953 {
1954 /* Accumulate a list of names based on the registed list of
1955 architectures. */
1956 enum bfd_architecture a;
1957 int nr_arches = 0;
1958 const char **arches = NULL;
1959 struct gdbarch_registration *rego;
1960 for (rego = gdbarch_registry;
1961 rego != NULL;
1962 rego = rego->next)
1963 {
1964 const struct bfd_arch_info *ap;
1965 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1966 if (ap == NULL)
1967 internal_error (__FILE__, __LINE__,
1968 _("gdbarch_architecture_names: multi-arch unknown"));
1969 do
1970 {
1971 append_name (&arches, &nr_arches, ap->printable_name);
1972 ap = ap->next;
1973 }
1974 while (ap != NULL);
1975 }
1976 append_name (&arches, &nr_arches, NULL);
1977 return arches;
1978 }
1979
1980
1981 void
1982 gdbarch_register (enum bfd_architecture bfd_architecture,
1983 gdbarch_init_ftype *init,
1984 gdbarch_dump_tdep_ftype *dump_tdep)
1985 {
1986 struct gdbarch_registration **curr;
1987 const struct bfd_arch_info *bfd_arch_info;
1988 /* Check that BFD recognizes this architecture */
1989 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1990 if (bfd_arch_info == NULL)
1991 {
1992 internal_error (__FILE__, __LINE__,
1993 _("gdbarch: Attempt to register unknown architecture (%d)"),
1994 bfd_architecture);
1995 }
1996 /* Check that we haven't seen this architecture before */
1997 for (curr = &gdbarch_registry;
1998 (*curr) != NULL;
1999 curr = &(*curr)->next)
2000 {
2001 if (bfd_architecture == (*curr)->bfd_architecture)
2002 internal_error (__FILE__, __LINE__,
2003 _("gdbarch: Duplicate registraration of architecture (%s)"),
2004 bfd_arch_info->printable_name);
2005 }
2006 /* log it */
2007 if (gdbarch_debug)
2008 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2009 bfd_arch_info->printable_name,
2010 (long) init);
2011 /* Append it */
2012 (*curr) = XMALLOC (struct gdbarch_registration);
2013 (*curr)->bfd_architecture = bfd_architecture;
2014 (*curr)->init = init;
2015 (*curr)->dump_tdep = dump_tdep;
2016 (*curr)->arches = NULL;
2017 (*curr)->next = NULL;
2018 }
2019
2020 void
2021 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2022 gdbarch_init_ftype *init)
2023 {
2024 gdbarch_register (bfd_architecture, init, NULL);
2025 }
2026
2027
2028 /* Look for an architecture using gdbarch_info. Base search on only
2029 BFD_ARCH_INFO and BYTE_ORDER. */
2030
2031 struct gdbarch_list *
2032 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2033 const struct gdbarch_info *info)
2034 {
2035 for (; arches != NULL; arches = arches->next)
2036 {
2037 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2038 continue;
2039 if (info->byte_order != arches->gdbarch->byte_order)
2040 continue;
2041 if (info->osabi != arches->gdbarch->osabi)
2042 continue;
2043 return arches;
2044 }
2045 return NULL;
2046 }
2047
2048
2049 /* Find an architecture that matches the specified INFO. Create a new
2050 architecture if needed. Return that new architecture. Assumes
2051 that there is no current architecture. */
2052
2053 static struct gdbarch *
2054 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2055 {
2056 struct gdbarch *new_gdbarch;
2057 struct gdbarch_registration *rego;
2058
2059 /* The existing architecture has been swapped out - all this code
2060 works from a clean slate. */
2061 gdb_assert (current_gdbarch == NULL);
2062
2063 /* Fill in missing parts of the INFO struct using a number of
2064 sources: "set ..."; INFOabfd supplied; and the existing
2065 architecture. */
2066 gdbarch_info_fill (old_gdbarch, &info);
2067
2068 /* Must have found some sort of architecture. */
2069 gdb_assert (info.bfd_arch_info != NULL);
2070
2071 if (gdbarch_debug)
2072 {
2073 fprintf_unfiltered (gdb_stdlog,
2074 "find_arch_by_info: info.bfd_arch_info %s\n",
2075 (info.bfd_arch_info != NULL
2076 ? info.bfd_arch_info->printable_name
2077 : "(null)"));
2078 fprintf_unfiltered (gdb_stdlog,
2079 "find_arch_by_info: info.byte_order %d (%s)\n",
2080 info.byte_order,
2081 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2082 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2083 : "default"));
2084 fprintf_unfiltered (gdb_stdlog,
2085 "find_arch_by_info: info.osabi %d (%s)\n",
2086 info.osabi, gdbarch_osabi_name (info.osabi));
2087 fprintf_unfiltered (gdb_stdlog,
2088 "find_arch_by_info: info.abfd 0x%lx\n",
2089 (long) info.abfd);
2090 fprintf_unfiltered (gdb_stdlog,
2091 "find_arch_by_info: info.tdep_info 0x%lx\n",
2092 (long) info.tdep_info);
2093 }
2094
2095 /* Find the tdep code that knows about this architecture. */
2096 for (rego = gdbarch_registry;
2097 rego != NULL;
2098 rego = rego->next)
2099 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2100 break;
2101 if (rego == NULL)
2102 {
2103 if (gdbarch_debug)
2104 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2105 "No matching architecture\n");
2106 return 0;
2107 }
2108
2109 /* Ask the tdep code for an architecture that matches "info". */
2110 new_gdbarch = rego->init (info, rego->arches);
2111
2112 /* Did the tdep code like it? No. Reject the change and revert to
2113 the old architecture. */
2114 if (new_gdbarch == NULL)
2115 {
2116 if (gdbarch_debug)
2117 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2118 "Target rejected architecture\n");
2119 return NULL;
2120 }
2121
2122 /* Is this a pre-existing architecture (as determined by already
2123 being initialized)? Move it to the front of the architecture
2124 list (keeping the list sorted Most Recently Used). */
2125 if (new_gdbarch->initialized_p)
2126 {
2127 struct gdbarch_list **list;
2128 struct gdbarch_list *this;
2129 if (gdbarch_debug)
2130 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2131 "Previous architecture 0x%08lx (%s) selected\n",
2132 (long) new_gdbarch,
2133 new_gdbarch->bfd_arch_info->printable_name);
2134 /* Find the existing arch in the list. */
2135 for (list = &rego->arches;
2136 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2137 list = &(*list)->next);
2138 /* It had better be in the list of architectures. */
2139 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2140 /* Unlink THIS. */
2141 this = (*list);
2142 (*list) = this->next;
2143 /* Insert THIS at the front. */
2144 this->next = rego->arches;
2145 rego->arches = this;
2146 /* Return it. */
2147 return new_gdbarch;
2148 }
2149
2150 /* It's a new architecture. */
2151 if (gdbarch_debug)
2152 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2153 "New architecture 0x%08lx (%s) selected\n",
2154 (long) new_gdbarch,
2155 new_gdbarch->bfd_arch_info->printable_name);
2156
2157 /* Insert the new architecture into the front of the architecture
2158 list (keep the list sorted Most Recently Used). */
2159 {
2160 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2161 this->next = rego->arches;
2162 this->gdbarch = new_gdbarch;
2163 rego->arches = this;
2164 }
2165
2166 /* Check that the newly installed architecture is valid. Plug in
2167 any post init values. */
2168 new_gdbarch->dump_tdep = rego->dump_tdep;
2169 verify_gdbarch (new_gdbarch);
2170 new_gdbarch->initialized_p = 1;
2171
2172 /* Initialize any per-architecture swap areas. This phase requires
2173 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2174 swap the entire architecture out. */
2175 current_gdbarch = new_gdbarch;
2176 current_gdbarch_swap_init_hack ();
2177 current_gdbarch_swap_out_hack ();
2178
2179 if (gdbarch_debug)
2180 gdbarch_dump (new_gdbarch, gdb_stdlog);
2181
2182 return new_gdbarch;
2183 }
2184
2185 struct gdbarch *
2186 gdbarch_find_by_info (struct gdbarch_info info)
2187 {
2188 /* Save the previously selected architecture, setting the global to
2189 NULL. This stops things like gdbarch->init() trying to use the
2190 previous architecture's configuration. The previous architecture
2191 may not even be of the same architecture family. The most recent
2192 architecture of the same family is found at the head of the
2193 rego->arches list. */
2194 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2195
2196 /* Find the specified architecture. */
2197 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2198
2199 /* Restore the existing architecture. */
2200 gdb_assert (current_gdbarch == NULL);
2201 current_gdbarch_swap_in_hack (old_gdbarch);
2202
2203 return new_gdbarch;
2204 }
2205
2206 /* Make the specified architecture current, swapping the existing one
2207 out. */
2208
2209 void
2210 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2211 {
2212 gdb_assert (new_gdbarch != NULL);
2213 gdb_assert (current_gdbarch != NULL);
2214 gdb_assert (new_gdbarch->initialized_p);
2215 current_gdbarch_swap_out_hack ();
2216 current_gdbarch_swap_in_hack (new_gdbarch);
2217 architecture_changed_event ();
2218 flush_cached_frames ();
2219 }
2220
2221 extern void _initialize_gdbarch (void);
2222
2223 void
2224 _initialize_gdbarch (void)
2225 {
2226 struct cmd_list_element *c;
2227
2228 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2229 Set architecture debugging."), _("\\
2230 Show architecture debugging."), _("\\
2231 When non-zero, architecture debugging is enabled."),
2232 NULL,
2233 show_gdbarch_debug,
2234 &setdebuglist, &showdebuglist);
2235 }
2236 EOF
2237
2238 # close things off
2239 exec 1>&2
2240 #../move-if-change new-gdbarch.c gdbarch.c
2241 compare_new gdbarch.c
This page took 0.095555 seconds and 4 git commands to generate.