* gdbarch.sh: Added new gdbarch struct
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
322 # (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::paddr_d ((long) gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364
365 # The ABI default bit-size and format for "float", "double", and "long
366 # double". These bit/format pairs should eventually be combined into
367 # a single object. For the moment, just initialize them as a pair.
368 # Each format describes both the big and little endian layouts (if
369 # useful).
370
371 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
372 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
373 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
374 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
375 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
376 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
377
378 # For most targets, a pointer on the target and its representation as an
379 # address in GDB have the same size and "look the same". For such a
380 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
381 # / addr_bit will be set from it.
382 #
383 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
384 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
385 # as well.
386 #
387 # ptr_bit is the size of a pointer on the target
388 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
389 # addr_bit is the size of a target address as represented in gdb
390 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
391 #
392 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
393 v:int:char_signed:::1:-1:1
394 #
395 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
396 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
397 # Function for getting target's idea of a frame pointer. FIXME: GDB's
398 # whole scheme for dealing with "frames" and "frame pointers" needs a
399 # serious shakedown.
400 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
401 #
402 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
403 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
404 #
405 v:int:num_regs:::0:-1
406 # This macro gives the number of pseudo-registers that live in the
407 # register namespace but do not get fetched or stored on the target.
408 # These pseudo-registers may be aliases for other registers,
409 # combinations of other registers, or they may be computed by GDB.
410 v:int:num_pseudo_regs:::0:0::0
411
412 # GDB's standard (or well known) register numbers. These can map onto
413 # a real register or a pseudo (computed) register or not be defined at
414 # all (-1).
415 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
416 v:int:sp_regnum:::-1:-1::0
417 v:int:pc_regnum:::-1:-1::0
418 v:int:ps_regnum:::-1:-1::0
419 v:int:fp0_regnum:::0:-1::0
420 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
421 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
422 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
423 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
424 # Convert from an sdb register number to an internal gdb register number.
425 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
426 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
427 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
428 m:const char *:register_name:int regnr:regnr::0
429
430 # Return the type of a register specified by the architecture. Only
431 # the register cache should call this function directly; others should
432 # use "register_type".
433 M:struct type *:register_type:int reg_nr:reg_nr
434
435 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
436 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
437 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
438 # deprecated_fp_regnum.
439 v:int:deprecated_fp_regnum:::-1:-1::0
440
441 # See gdbint.texinfo. See infcall.c.
442 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
443 v:int:call_dummy_location::::AT_ENTRY_POINT::0
444 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
445
446 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
447 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
448 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 # MAP a GDB RAW register number onto a simulator register number. See
450 # also include/...-sim.h.
451 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
452 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
453 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
454 # setjmp/longjmp support.
455 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
456 #
457 v:int:believe_pcc_promotion:::::::
458 #
459 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
460 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
461 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
462 # Construct a value representing the contents of register REGNUM in
463 # frame FRAME, interpreted as type TYPE. The routine needs to
464 # allocate and return a struct value with all value attributes
465 # (but not the value contents) filled in.
466 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
467 #
468 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
469 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
470 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
471
472 # Return the return-value convention that will be used by FUNCTYPE
473 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
474 # case the return convention is computed based only on VALTYPE.
475 #
476 # If READBUF is not NULL, extract the return value and save it in this buffer.
477 #
478 # If WRITEBUF is not NULL, it contains a return value which will be
479 # stored into the appropriate register. This can be used when we want
480 # to force the value returned by a function (see the "return" command
481 # for instance).
482 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
483
484 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
485 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
486 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
487 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
488 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
489 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
490 v:CORE_ADDR:decr_pc_after_break:::0:::0
491
492 # A function can be addressed by either it's "pointer" (possibly a
493 # descriptor address) or "entry point" (first executable instruction).
494 # The method "convert_from_func_ptr_addr" converting the former to the
495 # latter. gdbarch_deprecated_function_start_offset is being used to implement
496 # a simplified subset of that functionality - the function's address
497 # corresponds to the "function pointer" and the function's start
498 # corresponds to the "function entry point" - and hence is redundant.
499
500 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
501
502 # Return the remote protocol register number associated with this
503 # register. Normally the identity mapping.
504 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
505
506 # Fetch the target specific address used to represent a load module.
507 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
508 #
509 v:CORE_ADDR:frame_args_skip:::0:::0
510 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
511 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
512 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
513 # frame-base. Enable frame-base before frame-unwind.
514 F:int:frame_num_args:struct frame_info *frame:frame
515 #
516 M:CORE_ADDR:frame_align:CORE_ADDR address:address
517 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
518 v:int:frame_red_zone_size
519 #
520 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
521 # On some machines there are bits in addresses which are not really
522 # part of the address, but are used by the kernel, the hardware, etc.
523 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
524 # we get a "real" address such as one would find in a symbol table.
525 # This is used only for addresses of instructions, and even then I'm
526 # not sure it's used in all contexts. It exists to deal with there
527 # being a few stray bits in the PC which would mislead us, not as some
528 # sort of generic thing to handle alignment or segmentation (it's
529 # possible it should be in TARGET_READ_PC instead).
530 f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
531 # It is not at all clear why gdbarch_smash_text_address is not folded into
532 # gdbarch_addr_bits_remove.
533 f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
534
535 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
536 # indicates if the target needs software single step. An ISA method to
537 # implement it.
538 #
539 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
540 # breakpoints using the breakpoint system instead of blatting memory directly
541 # (as with rs6000).
542 #
543 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
544 # target can single step. If not, then implement single step using breakpoints.
545 #
546 # A return value of 1 means that the software_single_step breakpoints
547 # were inserted; 0 means they were not.
548 F:int:software_single_step:struct frame_info *frame:frame
549
550 # Return non-zero if the processor is executing a delay slot and a
551 # further single-step is needed before the instruction finishes.
552 M:int:single_step_through_delay:struct frame_info *frame:frame
553 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
554 # disassembler. Perhaps objdump can handle it?
555 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
556 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
557
558
559 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
560 # evaluates non-zero, this is the address where the debugger will place
561 # a step-resume breakpoint to get us past the dynamic linker.
562 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
563 # Some systems also have trampoline code for returning from shared libs.
564 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
565
566 # A target might have problems with watchpoints as soon as the stack
567 # frame of the current function has been destroyed. This mostly happens
568 # as the first action in a funtion's epilogue. in_function_epilogue_p()
569 # is defined to return a non-zero value if either the given addr is one
570 # instruction after the stack destroying instruction up to the trailing
571 # return instruction or if we can figure out that the stack frame has
572 # already been invalidated regardless of the value of addr. Targets
573 # which don't suffer from that problem could just let this functionality
574 # untouched.
575 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
576 # Given a vector of command-line arguments, return a newly allocated
577 # string which, when passed to the create_inferior function, will be
578 # parsed (on Unix systems, by the shell) to yield the same vector.
579 # This function should call error() if the argument vector is not
580 # representable for this target or if this target does not support
581 # command-line arguments.
582 # ARGC is the number of elements in the vector.
583 # ARGV is an array of strings, one per argument.
584 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
585 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
586 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
587 v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
588 v:int:cannot_step_breakpoint:::0:0::0
589 v:int:have_nonsteppable_watchpoint:::0:0::0
590 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
591 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
592 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
593 # Is a register in a group
594 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
595 # Fetch the pointer to the ith function argument.
596 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
597
598 # Return the appropriate register set for a core file section with
599 # name SECT_NAME and size SECT_SIZE.
600 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
601
602 # Supported register notes in a core file.
603 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
604
605 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
606 # core file into buffer READBUF with length LEN.
607 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
608
609 # If the elements of C++ vtables are in-place function descriptors rather
610 # than normal function pointers (which may point to code or a descriptor),
611 # set this to one.
612 v:int:vtable_function_descriptors:::0:0::0
613
614 # Set if the least significant bit of the delta is used instead of the least
615 # significant bit of the pfn for pointers to virtual member functions.
616 v:int:vbit_in_delta:::0:0::0
617
618 # Advance PC to next instruction in order to skip a permanent breakpoint.
619 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
620
621 # The maximum length of an instruction on this architecture.
622 V:ULONGEST:max_insn_length:::0:0
623
624 # Copy the instruction at FROM to TO, and make any adjustments
625 # necessary to single-step it at that address.
626 #
627 # REGS holds the state the thread's registers will have before
628 # executing the copied instruction; the PC in REGS will refer to FROM,
629 # not the copy at TO. The caller should update it to point at TO later.
630 #
631 # Return a pointer to data of the architecture's choice to be passed
632 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
633 # the instruction's effects have been completely simulated, with the
634 # resulting state written back to REGS.
635 #
636 # For a general explanation of displaced stepping and how GDB uses it,
637 # see the comments in infrun.c.
638 #
639 # The TO area is only guaranteed to have space for
640 # gdbarch_max_insn_length (arch) bytes, so this function must not
641 # write more bytes than that to that area.
642 #
643 # If you do not provide this function, GDB assumes that the
644 # architecture does not support displaced stepping.
645 #
646 # If your architecture doesn't need to adjust instructions before
647 # single-stepping them, consider using simple_displaced_step_copy_insn
648 # here.
649 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
650
651 # Fix up the state resulting from successfully single-stepping a
652 # displaced instruction, to give the result we would have gotten from
653 # stepping the instruction in its original location.
654 #
655 # REGS is the register state resulting from single-stepping the
656 # displaced instruction.
657 #
658 # CLOSURE is the result from the matching call to
659 # gdbarch_displaced_step_copy_insn.
660 #
661 # If you provide gdbarch_displaced_step_copy_insn.but not this
662 # function, then GDB assumes that no fixup is needed after
663 # single-stepping the instruction.
664 #
665 # For a general explanation of displaced stepping and how GDB uses it,
666 # see the comments in infrun.c.
667 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
668
669 # Free a closure returned by gdbarch_displaced_step_copy_insn.
670 #
671 # If you provide gdbarch_displaced_step_copy_insn, you must provide
672 # this function as well.
673 #
674 # If your architecture uses closures that don't need to be freed, then
675 # you can use simple_displaced_step_free_closure here.
676 #
677 # For a general explanation of displaced stepping and how GDB uses it,
678 # see the comments in infrun.c.
679 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
680
681 # Return the address of an appropriate place to put displaced
682 # instructions while we step over them. There need only be one such
683 # place, since we're only stepping one thread over a breakpoint at a
684 # time.
685 #
686 # For a general explanation of displaced stepping and how GDB uses it,
687 # see the comments in infrun.c.
688 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
689
690 # Refresh overlay mapped state for section OSECT.
691 F:void:overlay_update:struct obj_section *osect:osect
692
693 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
694
695 # Handle special encoding of static variables in stabs debug info.
696 F:char *:static_transform_name:char *name:name
697 # Set if the address in N_SO or N_FUN stabs may be zero.
698 v:int:sofun_address_maybe_missing:::0:0::0
699
700 # Signal translation: translate inferior's signal (host's) number into
701 # GDB's representation.
702 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
703 # Signal translation: translate GDB's signal number into inferior's host
704 # signal number.
705 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
706
707 # Record architecture-specific information from the symbol table.
708 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
709 EOF
710 }
711
712 #
713 # The .log file
714 #
715 exec > new-gdbarch.log
716 function_list | while do_read
717 do
718 cat <<EOF
719 ${class} ${returntype} ${function} ($formal)
720 EOF
721 for r in ${read}
722 do
723 eval echo \"\ \ \ \ ${r}=\${${r}}\"
724 done
725 if class_is_predicate_p && fallback_default_p
726 then
727 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
728 kill $$
729 exit 1
730 fi
731 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
732 then
733 echo "Error: postdefault is useless when invalid_p=0" 1>&2
734 kill $$
735 exit 1
736 fi
737 if class_is_multiarch_p
738 then
739 if class_is_predicate_p ; then :
740 elif test "x${predefault}" = "x"
741 then
742 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
743 kill $$
744 exit 1
745 fi
746 fi
747 echo ""
748 done
749
750 exec 1>&2
751 compare_new gdbarch.log
752
753
754 copyright ()
755 {
756 cat <<EOF
757 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
758
759 /* Dynamic architecture support for GDB, the GNU debugger.
760
761 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
762 Free Software Foundation, Inc.
763
764 This file is part of GDB.
765
766 This program is free software; you can redistribute it and/or modify
767 it under the terms of the GNU General Public License as published by
768 the Free Software Foundation; either version 3 of the License, or
769 (at your option) any later version.
770
771 This program is distributed in the hope that it will be useful,
772 but WITHOUT ANY WARRANTY; without even the implied warranty of
773 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
774 GNU General Public License for more details.
775
776 You should have received a copy of the GNU General Public License
777 along with this program. If not, see <http://www.gnu.org/licenses/>. */
778
779 /* This file was created with the aid of \`\`gdbarch.sh''.
780
781 The Bourne shell script \`\`gdbarch.sh'' creates the files
782 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
783 against the existing \`\`gdbarch.[hc]''. Any differences found
784 being reported.
785
786 If editing this file, please also run gdbarch.sh and merge any
787 changes into that script. Conversely, when making sweeping changes
788 to this file, modifying gdbarch.sh and using its output may prove
789 easier. */
790
791 EOF
792 }
793
794 #
795 # The .h file
796 #
797
798 exec > new-gdbarch.h
799 copyright
800 cat <<EOF
801 #ifndef GDBARCH_H
802 #define GDBARCH_H
803
804 struct floatformat;
805 struct ui_file;
806 struct frame_info;
807 struct value;
808 struct objfile;
809 struct obj_section;
810 struct minimal_symbol;
811 struct regcache;
812 struct reggroup;
813 struct regset;
814 struct disassemble_info;
815 struct target_ops;
816 struct obstack;
817 struct bp_target_info;
818 struct target_desc;
819 struct displaced_step_closure;
820 struct core_regset_section;
821
822 extern struct gdbarch *current_gdbarch;
823 EOF
824
825 # function typedef's
826 printf "\n"
827 printf "\n"
828 printf "/* The following are pre-initialized by GDBARCH. */\n"
829 function_list | while do_read
830 do
831 if class_is_info_p
832 then
833 printf "\n"
834 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
835 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
836 fi
837 done
838
839 # function typedef's
840 printf "\n"
841 printf "\n"
842 printf "/* The following are initialized by the target dependent code. */\n"
843 function_list | while do_read
844 do
845 if [ -n "${comment}" ]
846 then
847 echo "${comment}" | sed \
848 -e '2 s,#,/*,' \
849 -e '3,$ s,#, ,' \
850 -e '$ s,$, */,'
851 fi
852
853 if class_is_predicate_p
854 then
855 printf "\n"
856 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
857 fi
858 if class_is_variable_p
859 then
860 printf "\n"
861 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
862 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
863 fi
864 if class_is_function_p
865 then
866 printf "\n"
867 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
868 then
869 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
870 elif class_is_multiarch_p
871 then
872 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
873 else
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
875 fi
876 if [ "x${formal}" = "xvoid" ]
877 then
878 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
879 else
880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
881 fi
882 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
883 fi
884 done
885
886 # close it off
887 cat <<EOF
888
889 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
890
891
892 /* Mechanism for co-ordinating the selection of a specific
893 architecture.
894
895 GDB targets (*-tdep.c) can register an interest in a specific
896 architecture. Other GDB components can register a need to maintain
897 per-architecture data.
898
899 The mechanisms below ensures that there is only a loose connection
900 between the set-architecture command and the various GDB
901 components. Each component can independently register their need
902 to maintain architecture specific data with gdbarch.
903
904 Pragmatics:
905
906 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
907 didn't scale.
908
909 The more traditional mega-struct containing architecture specific
910 data for all the various GDB components was also considered. Since
911 GDB is built from a variable number of (fairly independent)
912 components it was determined that the global aproach was not
913 applicable. */
914
915
916 /* Register a new architectural family with GDB.
917
918 Register support for the specified ARCHITECTURE with GDB. When
919 gdbarch determines that the specified architecture has been
920 selected, the corresponding INIT function is called.
921
922 --
923
924 The INIT function takes two parameters: INFO which contains the
925 information available to gdbarch about the (possibly new)
926 architecture; ARCHES which is a list of the previously created
927 \`\`struct gdbarch'' for this architecture.
928
929 The INFO parameter is, as far as possible, be pre-initialized with
930 information obtained from INFO.ABFD or the global defaults.
931
932 The ARCHES parameter is a linked list (sorted most recently used)
933 of all the previously created architures for this architecture
934 family. The (possibly NULL) ARCHES->gdbarch can used to access
935 values from the previously selected architecture for this
936 architecture family. The global \`\`current_gdbarch'' shall not be
937 used.
938
939 The INIT function shall return any of: NULL - indicating that it
940 doesn't recognize the selected architecture; an existing \`\`struct
941 gdbarch'' from the ARCHES list - indicating that the new
942 architecture is just a synonym for an earlier architecture (see
943 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
944 - that describes the selected architecture (see gdbarch_alloc()).
945
946 The DUMP_TDEP function shall print out all target specific values.
947 Care should be taken to ensure that the function works in both the
948 multi-arch and non- multi-arch cases. */
949
950 struct gdbarch_list
951 {
952 struct gdbarch *gdbarch;
953 struct gdbarch_list *next;
954 };
955
956 struct gdbarch_info
957 {
958 /* Use default: NULL (ZERO). */
959 const struct bfd_arch_info *bfd_arch_info;
960
961 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
962 int byte_order;
963
964 /* Use default: NULL (ZERO). */
965 bfd *abfd;
966
967 /* Use default: NULL (ZERO). */
968 struct gdbarch_tdep_info *tdep_info;
969
970 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
971 enum gdb_osabi osabi;
972
973 /* Use default: NULL (ZERO). */
974 const struct target_desc *target_desc;
975 };
976
977 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
978 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
979
980 /* DEPRECATED - use gdbarch_register() */
981 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
982
983 extern void gdbarch_register (enum bfd_architecture architecture,
984 gdbarch_init_ftype *,
985 gdbarch_dump_tdep_ftype *);
986
987
988 /* Return a freshly allocated, NULL terminated, array of the valid
989 architecture names. Since architectures are registered during the
990 _initialize phase this function only returns useful information
991 once initialization has been completed. */
992
993 extern const char **gdbarch_printable_names (void);
994
995
996 /* Helper function. Search the list of ARCHES for a GDBARCH that
997 matches the information provided by INFO. */
998
999 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1000
1001
1002 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1003 basic initialization using values obtained from the INFO and TDEP
1004 parameters. set_gdbarch_*() functions are called to complete the
1005 initialization of the object. */
1006
1007 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1008
1009
1010 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1011 It is assumed that the caller freeds the \`\`struct
1012 gdbarch_tdep''. */
1013
1014 extern void gdbarch_free (struct gdbarch *);
1015
1016
1017 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1018 obstack. The memory is freed when the corresponding architecture
1019 is also freed. */
1020
1021 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1022 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1023 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1024
1025
1026 /* Helper function. Force an update of the current architecture.
1027
1028 The actual architecture selected is determined by INFO, \`\`(gdb) set
1029 architecture'' et.al., the existing architecture and BFD's default
1030 architecture. INFO should be initialized to zero and then selected
1031 fields should be updated.
1032
1033 Returns non-zero if the update succeeds */
1034
1035 extern int gdbarch_update_p (struct gdbarch_info info);
1036
1037
1038 /* Helper function. Find an architecture matching info.
1039
1040 INFO should be initialized using gdbarch_info_init, relevant fields
1041 set, and then finished using gdbarch_info_fill.
1042
1043 Returns the corresponding architecture, or NULL if no matching
1044 architecture was found. "current_gdbarch" is not updated. */
1045
1046 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1047
1048
1049 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1050
1051 FIXME: kettenis/20031124: Of the functions that follow, only
1052 gdbarch_from_bfd is supposed to survive. The others will
1053 dissappear since in the future GDB will (hopefully) be truly
1054 multi-arch. However, for now we're still stuck with the concept of
1055 a single active architecture. */
1056
1057 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1058
1059
1060 /* Register per-architecture data-pointer.
1061
1062 Reserve space for a per-architecture data-pointer. An identifier
1063 for the reserved data-pointer is returned. That identifer should
1064 be saved in a local static variable.
1065
1066 Memory for the per-architecture data shall be allocated using
1067 gdbarch_obstack_zalloc. That memory will be deleted when the
1068 corresponding architecture object is deleted.
1069
1070 When a previously created architecture is re-selected, the
1071 per-architecture data-pointer for that previous architecture is
1072 restored. INIT() is not re-called.
1073
1074 Multiple registrarants for any architecture are allowed (and
1075 strongly encouraged). */
1076
1077 struct gdbarch_data;
1078
1079 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1080 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1081 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1082 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1083 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1084 struct gdbarch_data *data,
1085 void *pointer);
1086
1087 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1088
1089
1090 /* Set the dynamic target-system-dependent parameters (architecture,
1091 byte-order, ...) using information found in the BFD */
1092
1093 extern void set_gdbarch_from_file (bfd *);
1094
1095
1096 /* Initialize the current architecture to the "first" one we find on
1097 our list. */
1098
1099 extern void initialize_current_architecture (void);
1100
1101 /* gdbarch trace variable */
1102 extern int gdbarch_debug;
1103
1104 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1105
1106 #endif
1107 EOF
1108 exec 1>&2
1109 #../move-if-change new-gdbarch.h gdbarch.h
1110 compare_new gdbarch.h
1111
1112
1113 #
1114 # C file
1115 #
1116
1117 exec > new-gdbarch.c
1118 copyright
1119 cat <<EOF
1120
1121 #include "defs.h"
1122 #include "arch-utils.h"
1123
1124 #include "gdbcmd.h"
1125 #include "inferior.h"
1126 #include "symcat.h"
1127
1128 #include "floatformat.h"
1129
1130 #include "gdb_assert.h"
1131 #include "gdb_string.h"
1132 #include "gdb-events.h"
1133 #include "reggroups.h"
1134 #include "osabi.h"
1135 #include "gdb_obstack.h"
1136
1137 /* Static function declarations */
1138
1139 static void alloc_gdbarch_data (struct gdbarch *);
1140
1141 /* Non-zero if we want to trace architecture code. */
1142
1143 #ifndef GDBARCH_DEBUG
1144 #define GDBARCH_DEBUG 0
1145 #endif
1146 int gdbarch_debug = GDBARCH_DEBUG;
1147 static void
1148 show_gdbarch_debug (struct ui_file *file, int from_tty,
1149 struct cmd_list_element *c, const char *value)
1150 {
1151 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1152 }
1153
1154 static const char *
1155 pformat (const struct floatformat **format)
1156 {
1157 if (format == NULL)
1158 return "(null)";
1159 else
1160 /* Just print out one of them - this is only for diagnostics. */
1161 return format[0]->name;
1162 }
1163
1164 EOF
1165
1166 # gdbarch open the gdbarch object
1167 printf "\n"
1168 printf "/* Maintain the struct gdbarch object */\n"
1169 printf "\n"
1170 printf "struct gdbarch\n"
1171 printf "{\n"
1172 printf " /* Has this architecture been fully initialized? */\n"
1173 printf " int initialized_p;\n"
1174 printf "\n"
1175 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1176 printf " struct obstack *obstack;\n"
1177 printf "\n"
1178 printf " /* basic architectural information */\n"
1179 function_list | while do_read
1180 do
1181 if class_is_info_p
1182 then
1183 printf " ${returntype} ${function};\n"
1184 fi
1185 done
1186 printf "\n"
1187 printf " /* target specific vector. */\n"
1188 printf " struct gdbarch_tdep *tdep;\n"
1189 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1190 printf "\n"
1191 printf " /* per-architecture data-pointers */\n"
1192 printf " unsigned nr_data;\n"
1193 printf " void **data;\n"
1194 printf "\n"
1195 printf " /* per-architecture swap-regions */\n"
1196 printf " struct gdbarch_swap *swap;\n"
1197 printf "\n"
1198 cat <<EOF
1199 /* Multi-arch values.
1200
1201 When extending this structure you must:
1202
1203 Add the field below.
1204
1205 Declare set/get functions and define the corresponding
1206 macro in gdbarch.h.
1207
1208 gdbarch_alloc(): If zero/NULL is not a suitable default,
1209 initialize the new field.
1210
1211 verify_gdbarch(): Confirm that the target updated the field
1212 correctly.
1213
1214 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1215 field is dumped out
1216
1217 \`\`startup_gdbarch()'': Append an initial value to the static
1218 variable (base values on the host's c-type system).
1219
1220 get_gdbarch(): Implement the set/get functions (probably using
1221 the macro's as shortcuts).
1222
1223 */
1224
1225 EOF
1226 function_list | while do_read
1227 do
1228 if class_is_variable_p
1229 then
1230 printf " ${returntype} ${function};\n"
1231 elif class_is_function_p
1232 then
1233 printf " gdbarch_${function}_ftype *${function};\n"
1234 fi
1235 done
1236 printf "};\n"
1237
1238 # A pre-initialized vector
1239 printf "\n"
1240 printf "\n"
1241 cat <<EOF
1242 /* The default architecture uses host values (for want of a better
1243 choice). */
1244 EOF
1245 printf "\n"
1246 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1247 printf "\n"
1248 printf "struct gdbarch startup_gdbarch =\n"
1249 printf "{\n"
1250 printf " 1, /* Always initialized. */\n"
1251 printf " NULL, /* The obstack. */\n"
1252 printf " /* basic architecture information */\n"
1253 function_list | while do_read
1254 do
1255 if class_is_info_p
1256 then
1257 printf " ${staticdefault}, /* ${function} */\n"
1258 fi
1259 done
1260 cat <<EOF
1261 /* target specific vector and its dump routine */
1262 NULL, NULL,
1263 /*per-architecture data-pointers and swap regions */
1264 0, NULL, NULL,
1265 /* Multi-arch values */
1266 EOF
1267 function_list | while do_read
1268 do
1269 if class_is_function_p || class_is_variable_p
1270 then
1271 printf " ${staticdefault}, /* ${function} */\n"
1272 fi
1273 done
1274 cat <<EOF
1275 /* startup_gdbarch() */
1276 };
1277
1278 struct gdbarch *current_gdbarch = &startup_gdbarch;
1279 EOF
1280
1281 # Create a new gdbarch struct
1282 cat <<EOF
1283
1284 /* Create a new \`\`struct gdbarch'' based on information provided by
1285 \`\`struct gdbarch_info''. */
1286 EOF
1287 printf "\n"
1288 cat <<EOF
1289 struct gdbarch *
1290 gdbarch_alloc (const struct gdbarch_info *info,
1291 struct gdbarch_tdep *tdep)
1292 {
1293 struct gdbarch *gdbarch;
1294
1295 /* Create an obstack for allocating all the per-architecture memory,
1296 then use that to allocate the architecture vector. */
1297 struct obstack *obstack = XMALLOC (struct obstack);
1298 obstack_init (obstack);
1299 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1300 memset (gdbarch, 0, sizeof (*gdbarch));
1301 gdbarch->obstack = obstack;
1302
1303 alloc_gdbarch_data (gdbarch);
1304
1305 gdbarch->tdep = tdep;
1306 EOF
1307 printf "\n"
1308 function_list | while do_read
1309 do
1310 if class_is_info_p
1311 then
1312 printf " gdbarch->${function} = info->${function};\n"
1313 fi
1314 done
1315 printf "\n"
1316 printf " /* Force the explicit initialization of these. */\n"
1317 function_list | while do_read
1318 do
1319 if class_is_function_p || class_is_variable_p
1320 then
1321 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1322 then
1323 printf " gdbarch->${function} = ${predefault};\n"
1324 fi
1325 fi
1326 done
1327 cat <<EOF
1328 /* gdbarch_alloc() */
1329
1330 return gdbarch;
1331 }
1332 EOF
1333
1334 # Free a gdbarch struct.
1335 printf "\n"
1336 printf "\n"
1337 cat <<EOF
1338 /* Allocate extra space using the per-architecture obstack. */
1339
1340 void *
1341 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1342 {
1343 void *data = obstack_alloc (arch->obstack, size);
1344 memset (data, 0, size);
1345 return data;
1346 }
1347
1348
1349 /* Free a gdbarch struct. This should never happen in normal
1350 operation --- once you've created a gdbarch, you keep it around.
1351 However, if an architecture's init function encounters an error
1352 building the structure, it may need to clean up a partially
1353 constructed gdbarch. */
1354
1355 void
1356 gdbarch_free (struct gdbarch *arch)
1357 {
1358 struct obstack *obstack;
1359 gdb_assert (arch != NULL);
1360 gdb_assert (!arch->initialized_p);
1361 obstack = arch->obstack;
1362 obstack_free (obstack, 0); /* Includes the ARCH. */
1363 xfree (obstack);
1364 }
1365 EOF
1366
1367 # verify a new architecture
1368 cat <<EOF
1369
1370
1371 /* Ensure that all values in a GDBARCH are reasonable. */
1372
1373 static void
1374 verify_gdbarch (struct gdbarch *gdbarch)
1375 {
1376 struct ui_file *log;
1377 struct cleanup *cleanups;
1378 long dummy;
1379 char *buf;
1380 log = mem_fileopen ();
1381 cleanups = make_cleanup_ui_file_delete (log);
1382 /* fundamental */
1383 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1384 fprintf_unfiltered (log, "\n\tbyte-order");
1385 if (gdbarch->bfd_arch_info == NULL)
1386 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1387 /* Check those that need to be defined for the given multi-arch level. */
1388 EOF
1389 function_list | while do_read
1390 do
1391 if class_is_function_p || class_is_variable_p
1392 then
1393 if [ "x${invalid_p}" = "x0" ]
1394 then
1395 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1396 elif class_is_predicate_p
1397 then
1398 printf " /* Skip verify of ${function}, has predicate */\n"
1399 # FIXME: See do_read for potential simplification
1400 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1401 then
1402 printf " if (${invalid_p})\n"
1403 printf " gdbarch->${function} = ${postdefault};\n"
1404 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1405 then
1406 printf " if (gdbarch->${function} == ${predefault})\n"
1407 printf " gdbarch->${function} = ${postdefault};\n"
1408 elif [ -n "${postdefault}" ]
1409 then
1410 printf " if (gdbarch->${function} == 0)\n"
1411 printf " gdbarch->${function} = ${postdefault};\n"
1412 elif [ -n "${invalid_p}" ]
1413 then
1414 printf " if (${invalid_p})\n"
1415 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1416 elif [ -n "${predefault}" ]
1417 then
1418 printf " if (gdbarch->${function} == ${predefault})\n"
1419 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1420 fi
1421 fi
1422 done
1423 cat <<EOF
1424 buf = ui_file_xstrdup (log, &dummy);
1425 make_cleanup (xfree, buf);
1426 if (strlen (buf) > 0)
1427 internal_error (__FILE__, __LINE__,
1428 _("verify_gdbarch: the following are invalid ...%s"),
1429 buf);
1430 do_cleanups (cleanups);
1431 }
1432 EOF
1433
1434 # dump the structure
1435 printf "\n"
1436 printf "\n"
1437 cat <<EOF
1438 /* Print out the details of the current architecture. */
1439
1440 void
1441 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1442 {
1443 const char *gdb_nm_file = "<not-defined>";
1444 #if defined (GDB_NM_FILE)
1445 gdb_nm_file = GDB_NM_FILE;
1446 #endif
1447 fprintf_unfiltered (file,
1448 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1449 gdb_nm_file);
1450 EOF
1451 function_list | sort -t: -k 3 | while do_read
1452 do
1453 # First the predicate
1454 if class_is_predicate_p
1455 then
1456 printf " fprintf_unfiltered (file,\n"
1457 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1458 printf " gdbarch_${function}_p (gdbarch));\n"
1459 fi
1460 # Print the corresponding value.
1461 if class_is_function_p
1462 then
1463 printf " fprintf_unfiltered (file,\n"
1464 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1465 printf " (long) gdbarch->${function});\n"
1466 else
1467 # It is a variable
1468 case "${print}:${returntype}" in
1469 :CORE_ADDR )
1470 fmt="0x%s"
1471 print="paddr_nz (gdbarch->${function})"
1472 ;;
1473 :* )
1474 fmt="%s"
1475 print="paddr_d (gdbarch->${function})"
1476 ;;
1477 * )
1478 fmt="%s"
1479 ;;
1480 esac
1481 printf " fprintf_unfiltered (file,\n"
1482 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1483 printf " ${print});\n"
1484 fi
1485 done
1486 cat <<EOF
1487 if (gdbarch->dump_tdep != NULL)
1488 gdbarch->dump_tdep (gdbarch, file);
1489 }
1490 EOF
1491
1492
1493 # GET/SET
1494 printf "\n"
1495 cat <<EOF
1496 struct gdbarch_tdep *
1497 gdbarch_tdep (struct gdbarch *gdbarch)
1498 {
1499 if (gdbarch_debug >= 2)
1500 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1501 return gdbarch->tdep;
1502 }
1503 EOF
1504 printf "\n"
1505 function_list | while do_read
1506 do
1507 if class_is_predicate_p
1508 then
1509 printf "\n"
1510 printf "int\n"
1511 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1512 printf "{\n"
1513 printf " gdb_assert (gdbarch != NULL);\n"
1514 printf " return ${predicate};\n"
1515 printf "}\n"
1516 fi
1517 if class_is_function_p
1518 then
1519 printf "\n"
1520 printf "${returntype}\n"
1521 if [ "x${formal}" = "xvoid" ]
1522 then
1523 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1524 else
1525 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1526 fi
1527 printf "{\n"
1528 printf " gdb_assert (gdbarch != NULL);\n"
1529 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1530 if class_is_predicate_p && test -n "${predefault}"
1531 then
1532 # Allow a call to a function with a predicate.
1533 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1534 fi
1535 printf " if (gdbarch_debug >= 2)\n"
1536 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1537 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1538 then
1539 if class_is_multiarch_p
1540 then
1541 params="gdbarch"
1542 else
1543 params=""
1544 fi
1545 else
1546 if class_is_multiarch_p
1547 then
1548 params="gdbarch, ${actual}"
1549 else
1550 params="${actual}"
1551 fi
1552 fi
1553 if [ "x${returntype}" = "xvoid" ]
1554 then
1555 printf " gdbarch->${function} (${params});\n"
1556 else
1557 printf " return gdbarch->${function} (${params});\n"
1558 fi
1559 printf "}\n"
1560 printf "\n"
1561 printf "void\n"
1562 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1563 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1564 printf "{\n"
1565 printf " gdbarch->${function} = ${function};\n"
1566 printf "}\n"
1567 elif class_is_variable_p
1568 then
1569 printf "\n"
1570 printf "${returntype}\n"
1571 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1572 printf "{\n"
1573 printf " gdb_assert (gdbarch != NULL);\n"
1574 if [ "x${invalid_p}" = "x0" ]
1575 then
1576 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1577 elif [ -n "${invalid_p}" ]
1578 then
1579 printf " /* Check variable is valid. */\n"
1580 printf " gdb_assert (!(${invalid_p}));\n"
1581 elif [ -n "${predefault}" ]
1582 then
1583 printf " /* Check variable changed from pre-default. */\n"
1584 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1585 fi
1586 printf " if (gdbarch_debug >= 2)\n"
1587 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1588 printf " return gdbarch->${function};\n"
1589 printf "}\n"
1590 printf "\n"
1591 printf "void\n"
1592 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1593 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1594 printf "{\n"
1595 printf " gdbarch->${function} = ${function};\n"
1596 printf "}\n"
1597 elif class_is_info_p
1598 then
1599 printf "\n"
1600 printf "${returntype}\n"
1601 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1602 printf "{\n"
1603 printf " gdb_assert (gdbarch != NULL);\n"
1604 printf " if (gdbarch_debug >= 2)\n"
1605 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1606 printf " return gdbarch->${function};\n"
1607 printf "}\n"
1608 fi
1609 done
1610
1611 # All the trailing guff
1612 cat <<EOF
1613
1614
1615 /* Keep a registry of per-architecture data-pointers required by GDB
1616 modules. */
1617
1618 struct gdbarch_data
1619 {
1620 unsigned index;
1621 int init_p;
1622 gdbarch_data_pre_init_ftype *pre_init;
1623 gdbarch_data_post_init_ftype *post_init;
1624 };
1625
1626 struct gdbarch_data_registration
1627 {
1628 struct gdbarch_data *data;
1629 struct gdbarch_data_registration *next;
1630 };
1631
1632 struct gdbarch_data_registry
1633 {
1634 unsigned nr;
1635 struct gdbarch_data_registration *registrations;
1636 };
1637
1638 struct gdbarch_data_registry gdbarch_data_registry =
1639 {
1640 0, NULL,
1641 };
1642
1643 static struct gdbarch_data *
1644 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1645 gdbarch_data_post_init_ftype *post_init)
1646 {
1647 struct gdbarch_data_registration **curr;
1648 /* Append the new registraration. */
1649 for (curr = &gdbarch_data_registry.registrations;
1650 (*curr) != NULL;
1651 curr = &(*curr)->next);
1652 (*curr) = XMALLOC (struct gdbarch_data_registration);
1653 (*curr)->next = NULL;
1654 (*curr)->data = XMALLOC (struct gdbarch_data);
1655 (*curr)->data->index = gdbarch_data_registry.nr++;
1656 (*curr)->data->pre_init = pre_init;
1657 (*curr)->data->post_init = post_init;
1658 (*curr)->data->init_p = 1;
1659 return (*curr)->data;
1660 }
1661
1662 struct gdbarch_data *
1663 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1664 {
1665 return gdbarch_data_register (pre_init, NULL);
1666 }
1667
1668 struct gdbarch_data *
1669 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1670 {
1671 return gdbarch_data_register (NULL, post_init);
1672 }
1673
1674 /* Create/delete the gdbarch data vector. */
1675
1676 static void
1677 alloc_gdbarch_data (struct gdbarch *gdbarch)
1678 {
1679 gdb_assert (gdbarch->data == NULL);
1680 gdbarch->nr_data = gdbarch_data_registry.nr;
1681 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1682 }
1683
1684 /* Initialize the current value of the specified per-architecture
1685 data-pointer. */
1686
1687 void
1688 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1689 struct gdbarch_data *data,
1690 void *pointer)
1691 {
1692 gdb_assert (data->index < gdbarch->nr_data);
1693 gdb_assert (gdbarch->data[data->index] == NULL);
1694 gdb_assert (data->pre_init == NULL);
1695 gdbarch->data[data->index] = pointer;
1696 }
1697
1698 /* Return the current value of the specified per-architecture
1699 data-pointer. */
1700
1701 void *
1702 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1703 {
1704 gdb_assert (data->index < gdbarch->nr_data);
1705 if (gdbarch->data[data->index] == NULL)
1706 {
1707 /* The data-pointer isn't initialized, call init() to get a
1708 value. */
1709 if (data->pre_init != NULL)
1710 /* Mid architecture creation: pass just the obstack, and not
1711 the entire architecture, as that way it isn't possible for
1712 pre-init code to refer to undefined architecture
1713 fields. */
1714 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1715 else if (gdbarch->initialized_p
1716 && data->post_init != NULL)
1717 /* Post architecture creation: pass the entire architecture
1718 (as all fields are valid), but be careful to also detect
1719 recursive references. */
1720 {
1721 gdb_assert (data->init_p);
1722 data->init_p = 0;
1723 gdbarch->data[data->index] = data->post_init (gdbarch);
1724 data->init_p = 1;
1725 }
1726 else
1727 /* The architecture initialization hasn't completed - punt -
1728 hope that the caller knows what they are doing. Once
1729 deprecated_set_gdbarch_data has been initialized, this can be
1730 changed to an internal error. */
1731 return NULL;
1732 gdb_assert (gdbarch->data[data->index] != NULL);
1733 }
1734 return gdbarch->data[data->index];
1735 }
1736
1737
1738 /* Keep a registry of the architectures known by GDB. */
1739
1740 struct gdbarch_registration
1741 {
1742 enum bfd_architecture bfd_architecture;
1743 gdbarch_init_ftype *init;
1744 gdbarch_dump_tdep_ftype *dump_tdep;
1745 struct gdbarch_list *arches;
1746 struct gdbarch_registration *next;
1747 };
1748
1749 static struct gdbarch_registration *gdbarch_registry = NULL;
1750
1751 static void
1752 append_name (const char ***buf, int *nr, const char *name)
1753 {
1754 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1755 (*buf)[*nr] = name;
1756 *nr += 1;
1757 }
1758
1759 const char **
1760 gdbarch_printable_names (void)
1761 {
1762 /* Accumulate a list of names based on the registed list of
1763 architectures. */
1764 enum bfd_architecture a;
1765 int nr_arches = 0;
1766 const char **arches = NULL;
1767 struct gdbarch_registration *rego;
1768 for (rego = gdbarch_registry;
1769 rego != NULL;
1770 rego = rego->next)
1771 {
1772 const struct bfd_arch_info *ap;
1773 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1774 if (ap == NULL)
1775 internal_error (__FILE__, __LINE__,
1776 _("gdbarch_architecture_names: multi-arch unknown"));
1777 do
1778 {
1779 append_name (&arches, &nr_arches, ap->printable_name);
1780 ap = ap->next;
1781 }
1782 while (ap != NULL);
1783 }
1784 append_name (&arches, &nr_arches, NULL);
1785 return arches;
1786 }
1787
1788
1789 void
1790 gdbarch_register (enum bfd_architecture bfd_architecture,
1791 gdbarch_init_ftype *init,
1792 gdbarch_dump_tdep_ftype *dump_tdep)
1793 {
1794 struct gdbarch_registration **curr;
1795 const struct bfd_arch_info *bfd_arch_info;
1796 /* Check that BFD recognizes this architecture */
1797 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1798 if (bfd_arch_info == NULL)
1799 {
1800 internal_error (__FILE__, __LINE__,
1801 _("gdbarch: Attempt to register unknown architecture (%d)"),
1802 bfd_architecture);
1803 }
1804 /* Check that we haven't seen this architecture before */
1805 for (curr = &gdbarch_registry;
1806 (*curr) != NULL;
1807 curr = &(*curr)->next)
1808 {
1809 if (bfd_architecture == (*curr)->bfd_architecture)
1810 internal_error (__FILE__, __LINE__,
1811 _("gdbarch: Duplicate registraration of architecture (%s)"),
1812 bfd_arch_info->printable_name);
1813 }
1814 /* log it */
1815 if (gdbarch_debug)
1816 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1817 bfd_arch_info->printable_name,
1818 (long) init);
1819 /* Append it */
1820 (*curr) = XMALLOC (struct gdbarch_registration);
1821 (*curr)->bfd_architecture = bfd_architecture;
1822 (*curr)->init = init;
1823 (*curr)->dump_tdep = dump_tdep;
1824 (*curr)->arches = NULL;
1825 (*curr)->next = NULL;
1826 }
1827
1828 void
1829 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1830 gdbarch_init_ftype *init)
1831 {
1832 gdbarch_register (bfd_architecture, init, NULL);
1833 }
1834
1835
1836 /* Look for an architecture using gdbarch_info. */
1837
1838 struct gdbarch_list *
1839 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1840 const struct gdbarch_info *info)
1841 {
1842 for (; arches != NULL; arches = arches->next)
1843 {
1844 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1845 continue;
1846 if (info->byte_order != arches->gdbarch->byte_order)
1847 continue;
1848 if (info->osabi != arches->gdbarch->osabi)
1849 continue;
1850 if (info->target_desc != arches->gdbarch->target_desc)
1851 continue;
1852 return arches;
1853 }
1854 return NULL;
1855 }
1856
1857
1858 /* Find an architecture that matches the specified INFO. Create a new
1859 architecture if needed. Return that new architecture. Assumes
1860 that there is no current architecture. */
1861
1862 static struct gdbarch *
1863 find_arch_by_info (struct gdbarch_info info)
1864 {
1865 struct gdbarch *new_gdbarch;
1866 struct gdbarch_registration *rego;
1867
1868 /* The existing architecture has been swapped out - all this code
1869 works from a clean slate. */
1870 gdb_assert (current_gdbarch == NULL);
1871
1872 /* Fill in missing parts of the INFO struct using a number of
1873 sources: "set ..."; INFOabfd supplied; and the global
1874 defaults. */
1875 gdbarch_info_fill (&info);
1876
1877 /* Must have found some sort of architecture. */
1878 gdb_assert (info.bfd_arch_info != NULL);
1879
1880 if (gdbarch_debug)
1881 {
1882 fprintf_unfiltered (gdb_stdlog,
1883 "find_arch_by_info: info.bfd_arch_info %s\n",
1884 (info.bfd_arch_info != NULL
1885 ? info.bfd_arch_info->printable_name
1886 : "(null)"));
1887 fprintf_unfiltered (gdb_stdlog,
1888 "find_arch_by_info: info.byte_order %d (%s)\n",
1889 info.byte_order,
1890 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1891 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1892 : "default"));
1893 fprintf_unfiltered (gdb_stdlog,
1894 "find_arch_by_info: info.osabi %d (%s)\n",
1895 info.osabi, gdbarch_osabi_name (info.osabi));
1896 fprintf_unfiltered (gdb_stdlog,
1897 "find_arch_by_info: info.abfd 0x%lx\n",
1898 (long) info.abfd);
1899 fprintf_unfiltered (gdb_stdlog,
1900 "find_arch_by_info: info.tdep_info 0x%lx\n",
1901 (long) info.tdep_info);
1902 }
1903
1904 /* Find the tdep code that knows about this architecture. */
1905 for (rego = gdbarch_registry;
1906 rego != NULL;
1907 rego = rego->next)
1908 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1909 break;
1910 if (rego == NULL)
1911 {
1912 if (gdbarch_debug)
1913 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1914 "No matching architecture\n");
1915 return 0;
1916 }
1917
1918 /* Ask the tdep code for an architecture that matches "info". */
1919 new_gdbarch = rego->init (info, rego->arches);
1920
1921 /* Did the tdep code like it? No. Reject the change and revert to
1922 the old architecture. */
1923 if (new_gdbarch == NULL)
1924 {
1925 if (gdbarch_debug)
1926 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1927 "Target rejected architecture\n");
1928 return NULL;
1929 }
1930
1931 /* Is this a pre-existing architecture (as determined by already
1932 being initialized)? Move it to the front of the architecture
1933 list (keeping the list sorted Most Recently Used). */
1934 if (new_gdbarch->initialized_p)
1935 {
1936 struct gdbarch_list **list;
1937 struct gdbarch_list *this;
1938 if (gdbarch_debug)
1939 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1940 "Previous architecture 0x%08lx (%s) selected\n",
1941 (long) new_gdbarch,
1942 new_gdbarch->bfd_arch_info->printable_name);
1943 /* Find the existing arch in the list. */
1944 for (list = &rego->arches;
1945 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1946 list = &(*list)->next);
1947 /* It had better be in the list of architectures. */
1948 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1949 /* Unlink THIS. */
1950 this = (*list);
1951 (*list) = this->next;
1952 /* Insert THIS at the front. */
1953 this->next = rego->arches;
1954 rego->arches = this;
1955 /* Return it. */
1956 return new_gdbarch;
1957 }
1958
1959 /* It's a new architecture. */
1960 if (gdbarch_debug)
1961 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1962 "New architecture 0x%08lx (%s) selected\n",
1963 (long) new_gdbarch,
1964 new_gdbarch->bfd_arch_info->printable_name);
1965
1966 /* Insert the new architecture into the front of the architecture
1967 list (keep the list sorted Most Recently Used). */
1968 {
1969 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1970 this->next = rego->arches;
1971 this->gdbarch = new_gdbarch;
1972 rego->arches = this;
1973 }
1974
1975 /* Check that the newly installed architecture is valid. Plug in
1976 any post init values. */
1977 new_gdbarch->dump_tdep = rego->dump_tdep;
1978 verify_gdbarch (new_gdbarch);
1979 new_gdbarch->initialized_p = 1;
1980
1981 if (gdbarch_debug)
1982 gdbarch_dump (new_gdbarch, gdb_stdlog);
1983
1984 return new_gdbarch;
1985 }
1986
1987 struct gdbarch *
1988 gdbarch_find_by_info (struct gdbarch_info info)
1989 {
1990 struct gdbarch *new_gdbarch;
1991
1992 /* Save the previously selected architecture, setting the global to
1993 NULL. This stops things like gdbarch->init() trying to use the
1994 previous architecture's configuration. The previous architecture
1995 may not even be of the same architecture family. The most recent
1996 architecture of the same family is found at the head of the
1997 rego->arches list. */
1998 struct gdbarch *old_gdbarch = current_gdbarch;
1999 current_gdbarch = NULL;
2000
2001 /* Find the specified architecture. */
2002 new_gdbarch = find_arch_by_info (info);
2003
2004 /* Restore the existing architecture. */
2005 gdb_assert (current_gdbarch == NULL);
2006 current_gdbarch = old_gdbarch;
2007
2008 return new_gdbarch;
2009 }
2010
2011 /* Make the specified architecture current. */
2012
2013 void
2014 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2015 {
2016 gdb_assert (new_gdbarch != NULL);
2017 gdb_assert (current_gdbarch != NULL);
2018 gdb_assert (new_gdbarch->initialized_p);
2019 current_gdbarch = new_gdbarch;
2020 architecture_changed_event ();
2021 reinit_frame_cache ();
2022 }
2023
2024 extern void _initialize_gdbarch (void);
2025
2026 void
2027 _initialize_gdbarch (void)
2028 {
2029 struct cmd_list_element *c;
2030
2031 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2032 Set architecture debugging."), _("\\
2033 Show architecture debugging."), _("\\
2034 When non-zero, architecture debugging is enabled."),
2035 NULL,
2036 show_gdbarch_debug,
2037 &setdebuglist, &showdebuglist);
2038 }
2039 EOF
2040
2041 # close things off
2042 exec 1>&2
2043 #../move-if-change new-gdbarch.c gdbarch.c
2044 compare_new gdbarch.c
This page took 0.076426 seconds and 4 git commands to generate.