* target.h (TARGET_VIRTUAL_FRAME_POINTER): Delete, multi-arched.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault=""
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 # Function for getting target's idea of a frame pointer. FIXME: GDB's
392 # whole scheme for dealing with "frames" and "frame pointers" needs a
393 # serious shakedown.
394 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
395 #
396 M:::void:register_read:int regnum, char *buf:regnum, buf:
397 M:::void:register_write:int regnum, char *buf:regnum, buf:
398 #
399 v:2:NUM_REGS:int:num_regs::::0:-1
400 # This macro gives the number of pseudo-registers that live in the
401 # register namespace but do not get fetched or stored on the target.
402 # These pseudo-registers may be aliases for other registers,
403 # combinations of other registers, or they may be computed by GDB.
404 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405 v:2:SP_REGNUM:int:sp_regnum::::0:-1
406 v:2:FP_REGNUM:int:fp_regnum::::0:-1
407 v:2:PC_REGNUM:int:pc_regnum::::0:-1
408 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
414 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
416 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417 # Convert from an sdb register number to an internal gdb register number.
418 # This should be defined in tm.h, if REGISTER_NAMES is not set up
419 # to map one to one onto the sdb register numbers.
420 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423 v:2:REGISTER_SIZE:int:register_size::::0:-1
424 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432 # MAP a GDB RAW register number onto a simulator register number. See
433 # also include/...-sim.h.
434 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
438 #
439 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
455 #
456 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
460 #
461 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be updated. Typically it will be defined on a per-architecture
466 # basis.
467 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be set or stored. Typically it will be defined on a
470 # per-architecture basis.
471 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
472 #
473 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
475 #
476 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
477 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
478 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
479 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
480 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
481 f:2:POP_FRAME:void:pop_frame:void:-:::0
482 #
483 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
484 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
485 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
486 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
487 #
488 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
489 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
490 #
491 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
492 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
493 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
494 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
495 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
496 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
497 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
498 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
499 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
500 #
501 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
502 #
503 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
504 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
505 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
506 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
507 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
508 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
509 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
510 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
511 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
512 #
513 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
514 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
515 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
516 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
517 v:2:PARM_BOUNDARY:int:parm_boundary
518 #
519 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
520 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
521 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
522 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
533 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
534 # the target needs software single step. An ISA method to implement it.
535 #
536 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
537 # using the breakpoint system instead of blatting memory directly (as with rs6000).
538 #
539 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
540 # single step. If not, then implement single step using breakpoints.
541 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
542 EOF
543 }
544
545 #
546 # The .log file
547 #
548 exec > new-gdbarch.log
549 function_list | while do_read
550 do
551 cat <<EOF
552 ${class} ${macro}(${actual})
553 ${returntype} ${function} ($formal)${attrib}
554 EOF
555 for r in ${read}
556 do
557 eval echo \"\ \ \ \ ${r}=\${${r}}\"
558 done
559 # #fallbackdefault=${fallbackdefault}
560 # #valid_p=${valid_p}
561 #EOF
562 if class_is_predicate_p && fallback_default_p
563 then
564 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
565 kill $$
566 exit 1
567 fi
568 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
569 then
570 echo "Error: postdefault is useless when invalid_p=0" 1>&2
571 kill $$
572 exit 1
573 fi
574 echo ""
575 done
576
577 exec 1>&2
578 compare_new gdbarch.log
579
580
581 copyright ()
582 {
583 cat <<EOF
584 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
585
586 /* Dynamic architecture support for GDB, the GNU debugger.
587 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
588
589 This file is part of GDB.
590
591 This program is free software; you can redistribute it and/or modify
592 it under the terms of the GNU General Public License as published by
593 the Free Software Foundation; either version 2 of the License, or
594 (at your option) any later version.
595
596 This program is distributed in the hope that it will be useful,
597 but WITHOUT ANY WARRANTY; without even the implied warranty of
598 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
599 GNU General Public License for more details.
600
601 You should have received a copy of the GNU General Public License
602 along with this program; if not, write to the Free Software
603 Foundation, Inc., 59 Temple Place - Suite 330,
604 Boston, MA 02111-1307, USA. */
605
606 /* This file was created with the aid of \`\`gdbarch.sh''.
607
608 The Bourne shell script \`\`gdbarch.sh'' creates the files
609 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
610 against the existing \`\`gdbarch.[hc]''. Any differences found
611 being reported.
612
613 If editing this file, please also run gdbarch.sh and merge any
614 changes into that script. Conversely, when making sweeping changes
615 to this file, modifying gdbarch.sh and using its output may prove
616 easier. */
617
618 EOF
619 }
620
621 #
622 # The .h file
623 #
624
625 exec > new-gdbarch.h
626 copyright
627 cat <<EOF
628 #ifndef GDBARCH_H
629 #define GDBARCH_H
630
631 struct frame_info;
632 struct value;
633
634
635 extern struct gdbarch *current_gdbarch;
636
637
638 /* If any of the following are defined, the target wasn't correctly
639 converted. */
640
641 #if GDB_MULTI_ARCH
642 #if defined (EXTRA_FRAME_INFO)
643 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
644 #endif
645 #endif
646
647 #if GDB_MULTI_ARCH
648 #if defined (FRAME_FIND_SAVED_REGS)
649 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
650 #endif
651 #endif
652
653 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
654 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
655 #endif
656 EOF
657
658 # function typedef's
659 printf "\n"
660 printf "\n"
661 printf "/* The following are pre-initialized by GDBARCH. */\n"
662 function_list | while do_read
663 do
664 if class_is_info_p
665 then
666 printf "\n"
667 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
668 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
669 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
670 printf "#error \"Non multi-arch definition of ${macro}\"\n"
671 printf "#endif\n"
672 printf "#if GDB_MULTI_ARCH\n"
673 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
674 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
675 printf "#endif\n"
676 printf "#endif\n"
677 fi
678 done
679
680 # function typedef's
681 printf "\n"
682 printf "\n"
683 printf "/* The following are initialized by the target dependent code. */\n"
684 function_list | while do_read
685 do
686 if [ -n "${comment}" ]
687 then
688 echo "${comment}" | sed \
689 -e '2 s,#,/*,' \
690 -e '3,$ s,#, ,' \
691 -e '$ s,$, */,'
692 fi
693 if class_is_multiarch_p
694 then
695 if class_is_predicate_p
696 then
697 printf "\n"
698 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
699 fi
700 else
701 if class_is_predicate_p
702 then
703 printf "\n"
704 printf "#if defined (${macro})\n"
705 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
706 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
707 printf "#if !defined (${macro}_P)\n"
708 printf "#define ${macro}_P() (1)\n"
709 printf "#endif\n"
710 printf "#endif\n"
711 printf "\n"
712 printf "/* Default predicate for non- multi-arch targets. */\n"
713 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
714 printf "#define ${macro}_P() (0)\n"
715 printf "#endif\n"
716 printf "\n"
717 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
718 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
719 printf "#error \"Non multi-arch definition of ${macro}\"\n"
720 printf "#endif\n"
721 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
722 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
723 printf "#endif\n"
724 fi
725 fi
726 if class_is_variable_p
727 then
728 if fallback_default_p || class_is_predicate_p
729 then
730 printf "\n"
731 printf "/* Default (value) for non- multi-arch platforms. */\n"
732 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
733 echo "#define ${macro} (${fallbackdefault})" \
734 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
735 printf "#endif\n"
736 fi
737 printf "\n"
738 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
739 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
740 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
741 printf "#error \"Non multi-arch definition of ${macro}\"\n"
742 printf "#endif\n"
743 printf "#if GDB_MULTI_ARCH\n"
744 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
745 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
746 printf "#endif\n"
747 printf "#endif\n"
748 fi
749 if class_is_function_p
750 then
751 if class_is_multiarch_p ; then :
752 elif fallback_default_p || class_is_predicate_p
753 then
754 printf "\n"
755 printf "/* Default (function) for non- multi-arch platforms. */\n"
756 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
757 if [ "x${fallbackdefault}" = "x0" ]
758 then
759 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
760 else
761 # FIXME: Should be passing current_gdbarch through!
762 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
763 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
764 fi
765 printf "#endif\n"
766 fi
767 printf "\n"
768 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
769 then
770 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
771 elif class_is_multiarch_p
772 then
773 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
774 else
775 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
776 fi
777 if [ "x${formal}" = "xvoid" ]
778 then
779 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
780 else
781 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
782 fi
783 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
784 if class_is_multiarch_p ; then :
785 else
786 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
787 printf "#error \"Non multi-arch definition of ${macro}\"\n"
788 printf "#endif\n"
789 printf "#if GDB_MULTI_ARCH\n"
790 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
791 if [ "x${actual}" = "x" ]
792 then
793 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
794 elif [ "x${actual}" = "x-" ]
795 then
796 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
797 else
798 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
799 fi
800 printf "#endif\n"
801 printf "#endif\n"
802 fi
803 fi
804 done
805
806 # close it off
807 cat <<EOF
808
809 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
810
811
812 /* Mechanism for co-ordinating the selection of a specific
813 architecture.
814
815 GDB targets (*-tdep.c) can register an interest in a specific
816 architecture. Other GDB components can register a need to maintain
817 per-architecture data.
818
819 The mechanisms below ensures that there is only a loose connection
820 between the set-architecture command and the various GDB
821 components. Each component can independently register their need
822 to maintain architecture specific data with gdbarch.
823
824 Pragmatics:
825
826 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
827 didn't scale.
828
829 The more traditional mega-struct containing architecture specific
830 data for all the various GDB components was also considered. Since
831 GDB is built from a variable number of (fairly independent)
832 components it was determined that the global aproach was not
833 applicable. */
834
835
836 /* Register a new architectural family with GDB.
837
838 Register support for the specified ARCHITECTURE with GDB. When
839 gdbarch determines that the specified architecture has been
840 selected, the corresponding INIT function is called.
841
842 --
843
844 The INIT function takes two parameters: INFO which contains the
845 information available to gdbarch about the (possibly new)
846 architecture; ARCHES which is a list of the previously created
847 \`\`struct gdbarch'' for this architecture.
848
849 The INIT function parameter INFO shall, as far as possible, be
850 pre-initialized with information obtained from INFO.ABFD or
851 previously selected architecture (if similar). INIT shall ensure
852 that the INFO.BYTE_ORDER is non-zero.
853
854 The INIT function shall return any of: NULL - indicating that it
855 doesn't recognize the selected architecture; an existing \`\`struct
856 gdbarch'' from the ARCHES list - indicating that the new
857 architecture is just a synonym for an earlier architecture (see
858 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
859 - that describes the selected architecture (see gdbarch_alloc()).
860
861 The DUMP_TDEP function shall print out all target specific values.
862 Care should be taken to ensure that the function works in both the
863 multi-arch and non- multi-arch cases. */
864
865 struct gdbarch_list
866 {
867 struct gdbarch *gdbarch;
868 struct gdbarch_list *next;
869 };
870
871 struct gdbarch_info
872 {
873 /* Use default: NULL (ZERO). */
874 const struct bfd_arch_info *bfd_arch_info;
875
876 /* Use default: 0 (ZERO). */
877 int byte_order;
878
879 /* Use default: NULL (ZERO). */
880 bfd *abfd;
881
882 /* Use default: NULL (ZERO). */
883 struct gdbarch_tdep_info *tdep_info;
884 };
885
886 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
887 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
888
889 /* DEPRECATED - use gdbarch_register() */
890 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
891
892 extern void gdbarch_register (enum bfd_architecture architecture,
893 gdbarch_init_ftype *,
894 gdbarch_dump_tdep_ftype *);
895
896
897 /* Return a freshly allocated, NULL terminated, array of the valid
898 architecture names. Since architectures are registered during the
899 _initialize phase this function only returns useful information
900 once initialization has been completed. */
901
902 extern const char **gdbarch_printable_names (void);
903
904
905 /* Helper function. Search the list of ARCHES for a GDBARCH that
906 matches the information provided by INFO. */
907
908 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
909
910
911 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
912 basic initialization using values obtained from the INFO andTDEP
913 parameters. set_gdbarch_*() functions are called to complete the
914 initialization of the object. */
915
916 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
917
918
919 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
920 It is assumed that the caller freeds the \`\`struct
921 gdbarch_tdep''. */
922
923 extern void gdbarch_free (struct gdbarch *);
924
925
926 /* Helper function. Force an update of the current architecture.
927
928 The actual architecture selected is determined by INFO, \`\`(gdb) set
929 architecture'' et.al., the existing architecture and BFD's default
930 architecture. INFO should be initialized to zero and then selected
931 fields should be updated.
932
933 Returns non-zero if the update succeeds */
934
935 extern int gdbarch_update_p (struct gdbarch_info info);
936
937
938
939 /* Register per-architecture data-pointer.
940
941 Reserve space for a per-architecture data-pointer. An identifier
942 for the reserved data-pointer is returned. That identifer should
943 be saved in a local static variable.
944
945 The per-architecture data-pointer can be initialized in one of two
946 ways: The value can be set explicitly using a call to
947 set_gdbarch_data(); the value can be set implicitly using the value
948 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
949 called after the basic architecture vector has been created.
950
951 When a previously created architecture is re-selected, the
952 per-architecture data-pointer for that previous architecture is
953 restored. INIT() is not called.
954
955 During initialization, multiple assignments of the data-pointer are
956 allowed, non-NULL values are deleted by calling FREE(). If the
957 architecture is deleted using gdbarch_free() all non-NULL data
958 pointers are also deleted using FREE().
959
960 Multiple registrarants for any architecture are allowed (and
961 strongly encouraged). */
962
963 struct gdbarch_data;
964
965 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
966 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
967 void *pointer);
968 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
969 gdbarch_data_free_ftype *free);
970 extern void set_gdbarch_data (struct gdbarch *gdbarch,
971 struct gdbarch_data *data,
972 void *pointer);
973
974 extern void *gdbarch_data (struct gdbarch_data*);
975
976
977 /* Register per-architecture memory region.
978
979 Provide a memory-region swap mechanism. Per-architecture memory
980 region are created. These memory regions are swapped whenever the
981 architecture is changed. For a new architecture, the memory region
982 is initialized with zero (0) and the INIT function is called.
983
984 Memory regions are swapped / initialized in the order that they are
985 registered. NULL DATA and/or INIT values can be specified.
986
987 New code should use register_gdbarch_data(). */
988
989 typedef void (gdbarch_swap_ftype) (void);
990 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
991 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
992
993
994
995 /* The target-system-dependent byte order is dynamic */
996
997 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
998 is selectable at runtime. The user can use the \`\`set endian''
999 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1000 target_byte_order should be auto-detected (from the program image
1001 say). */
1002
1003 #if GDB_MULTI_ARCH
1004 /* Multi-arch GDB is always bi-endian. */
1005 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1006 #endif
1007
1008 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1009 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1010 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1011 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1012 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1013 #else
1014 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1015 #endif
1016 #endif
1017
1018 extern int target_byte_order;
1019 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1020 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1021 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1022 #undef TARGET_BYTE_ORDER
1023 #endif
1024 #ifndef TARGET_BYTE_ORDER
1025 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1026 #endif
1027
1028 extern int target_byte_order_auto;
1029 #ifndef TARGET_BYTE_ORDER_AUTO
1030 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1031 #endif
1032
1033
1034
1035 /* The target-system-dependent BFD architecture is dynamic */
1036
1037 extern int target_architecture_auto;
1038 #ifndef TARGET_ARCHITECTURE_AUTO
1039 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1040 #endif
1041
1042 extern const struct bfd_arch_info *target_architecture;
1043 #ifndef TARGET_ARCHITECTURE
1044 #define TARGET_ARCHITECTURE (target_architecture + 0)
1045 #endif
1046
1047
1048 /* The target-system-dependent disassembler is semi-dynamic */
1049
1050 #include "dis-asm.h" /* Get defs for disassemble_info */
1051
1052 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1053 unsigned int len, disassemble_info *info);
1054
1055 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1056 disassemble_info *info);
1057
1058 extern void dis_asm_print_address (bfd_vma addr,
1059 disassemble_info *info);
1060
1061 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1062 extern disassemble_info tm_print_insn_info;
1063 #ifndef TARGET_PRINT_INSN
1064 #define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
1065 #endif
1066 #ifndef TARGET_PRINT_INSN_INFO
1067 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1068 #endif
1069
1070
1071
1072 /* Set the dynamic target-system-dependent parameters (architecture,
1073 byte-order, ...) using information found in the BFD */
1074
1075 extern void set_gdbarch_from_file (bfd *);
1076
1077
1078 /* Initialize the current architecture to the "first" one we find on
1079 our list. */
1080
1081 extern void initialize_current_architecture (void);
1082
1083 /* For non-multiarched targets, do any initialization of the default
1084 gdbarch object necessary after the _initialize_MODULE functions
1085 have run. */
1086 extern void initialize_non_multiarch ();
1087
1088 /* gdbarch trace variable */
1089 extern int gdbarch_debug;
1090
1091 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1092
1093 #endif
1094 EOF
1095 exec 1>&2
1096 #../move-if-change new-gdbarch.h gdbarch.h
1097 compare_new gdbarch.h
1098
1099
1100 #
1101 # C file
1102 #
1103
1104 exec > new-gdbarch.c
1105 copyright
1106 cat <<EOF
1107
1108 #include "defs.h"
1109 #include "arch-utils.h"
1110
1111 #if GDB_MULTI_ARCH
1112 #include "gdbcmd.h"
1113 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1114 #else
1115 /* Just include everything in sight so that the every old definition
1116 of macro is visible. */
1117 #include "gdb_string.h"
1118 #include <ctype.h>
1119 #include "symtab.h"
1120 #include "frame.h"
1121 #include "inferior.h"
1122 #include "breakpoint.h"
1123 #include "gdb_wait.h"
1124 #include "gdbcore.h"
1125 #include "gdbcmd.h"
1126 #include "target.h"
1127 #include "gdbthread.h"
1128 #include "annotate.h"
1129 #include "symfile.h" /* for overlay functions */
1130 #endif
1131 #include "symcat.h"
1132
1133 #include "floatformat.h"
1134
1135 #include "gdb_assert.h"
1136 #include "gdb-events.h"
1137
1138 /* Static function declarations */
1139
1140 static void verify_gdbarch (struct gdbarch *gdbarch);
1141 static void alloc_gdbarch_data (struct gdbarch *);
1142 static void init_gdbarch_data (struct gdbarch *);
1143 static void free_gdbarch_data (struct gdbarch *);
1144 static void init_gdbarch_swap (struct gdbarch *);
1145 static void swapout_gdbarch_swap (struct gdbarch *);
1146 static void swapin_gdbarch_swap (struct gdbarch *);
1147
1148 /* Convenience macro for allocting typesafe memory. */
1149
1150 #ifndef XMALLOC
1151 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1152 #endif
1153
1154
1155 /* Non-zero if we want to trace architecture code. */
1156
1157 #ifndef GDBARCH_DEBUG
1158 #define GDBARCH_DEBUG 0
1159 #endif
1160 int gdbarch_debug = GDBARCH_DEBUG;
1161
1162 EOF
1163
1164 # gdbarch open the gdbarch object
1165 printf "\n"
1166 printf "/* Maintain the struct gdbarch object */\n"
1167 printf "\n"
1168 printf "struct gdbarch\n"
1169 printf "{\n"
1170 printf " /* basic architectural information */\n"
1171 function_list | while do_read
1172 do
1173 if class_is_info_p
1174 then
1175 printf " ${returntype} ${function};\n"
1176 fi
1177 done
1178 printf "\n"
1179 printf " /* target specific vector. */\n"
1180 printf " struct gdbarch_tdep *tdep;\n"
1181 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1182 printf "\n"
1183 printf " /* per-architecture data-pointers */\n"
1184 printf " unsigned nr_data;\n"
1185 printf " void **data;\n"
1186 printf "\n"
1187 printf " /* per-architecture swap-regions */\n"
1188 printf " struct gdbarch_swap *swap;\n"
1189 printf "\n"
1190 cat <<EOF
1191 /* Multi-arch values.
1192
1193 When extending this structure you must:
1194
1195 Add the field below.
1196
1197 Declare set/get functions and define the corresponding
1198 macro in gdbarch.h.
1199
1200 gdbarch_alloc(): If zero/NULL is not a suitable default,
1201 initialize the new field.
1202
1203 verify_gdbarch(): Confirm that the target updated the field
1204 correctly.
1205
1206 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1207 field is dumped out
1208
1209 \`\`startup_gdbarch()'': Append an initial value to the static
1210 variable (base values on the host's c-type system).
1211
1212 get_gdbarch(): Implement the set/get functions (probably using
1213 the macro's as shortcuts).
1214
1215 */
1216
1217 EOF
1218 function_list | while do_read
1219 do
1220 if class_is_variable_p
1221 then
1222 printf " ${returntype} ${function};\n"
1223 elif class_is_function_p
1224 then
1225 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1226 fi
1227 done
1228 printf "};\n"
1229
1230 # A pre-initialized vector
1231 printf "\n"
1232 printf "\n"
1233 cat <<EOF
1234 /* The default architecture uses host values (for want of a better
1235 choice). */
1236 EOF
1237 printf "\n"
1238 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1239 printf "\n"
1240 printf "struct gdbarch startup_gdbarch =\n"
1241 printf "{\n"
1242 printf " /* basic architecture information */\n"
1243 function_list | while do_read
1244 do
1245 if class_is_info_p
1246 then
1247 printf " ${staticdefault},\n"
1248 fi
1249 done
1250 cat <<EOF
1251 /* target specific vector and its dump routine */
1252 NULL, NULL,
1253 /*per-architecture data-pointers and swap regions */
1254 0, NULL, NULL,
1255 /* Multi-arch values */
1256 EOF
1257 function_list | while do_read
1258 do
1259 if class_is_function_p || class_is_variable_p
1260 then
1261 printf " ${staticdefault},\n"
1262 fi
1263 done
1264 cat <<EOF
1265 /* startup_gdbarch() */
1266 };
1267
1268 struct gdbarch *current_gdbarch = &startup_gdbarch;
1269
1270 /* Do any initialization needed for a non-multiarch configuration
1271 after the _initialize_MODULE functions have been run. */
1272 void
1273 initialize_non_multiarch ()
1274 {
1275 alloc_gdbarch_data (&startup_gdbarch);
1276 init_gdbarch_data (&startup_gdbarch);
1277 }
1278 EOF
1279
1280 # Create a new gdbarch struct
1281 printf "\n"
1282 printf "\n"
1283 cat <<EOF
1284 /* Create a new \`\`struct gdbarch'' based on information provided by
1285 \`\`struct gdbarch_info''. */
1286 EOF
1287 printf "\n"
1288 cat <<EOF
1289 struct gdbarch *
1290 gdbarch_alloc (const struct gdbarch_info *info,
1291 struct gdbarch_tdep *tdep)
1292 {
1293 struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
1294 memset (gdbarch, 0, sizeof (*gdbarch));
1295
1296 alloc_gdbarch_data (gdbarch);
1297
1298 gdbarch->tdep = tdep;
1299 EOF
1300 printf "\n"
1301 function_list | while do_read
1302 do
1303 if class_is_info_p
1304 then
1305 printf " gdbarch->${function} = info->${function};\n"
1306 fi
1307 done
1308 printf "\n"
1309 printf " /* Force the explicit initialization of these. */\n"
1310 function_list | while do_read
1311 do
1312 if class_is_function_p || class_is_variable_p
1313 then
1314 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1315 then
1316 printf " gdbarch->${function} = ${predefault};\n"
1317 fi
1318 fi
1319 done
1320 cat <<EOF
1321 /* gdbarch_alloc() */
1322
1323 return gdbarch;
1324 }
1325 EOF
1326
1327 # Free a gdbarch struct.
1328 printf "\n"
1329 printf "\n"
1330 cat <<EOF
1331 /* Free a gdbarch struct. This should never happen in normal
1332 operation --- once you've created a gdbarch, you keep it around.
1333 However, if an architecture's init function encounters an error
1334 building the structure, it may need to clean up a partially
1335 constructed gdbarch. */
1336
1337 void
1338 gdbarch_free (struct gdbarch *arch)
1339 {
1340 gdb_assert (arch != NULL);
1341 free_gdbarch_data (arch);
1342 xfree (arch);
1343 }
1344 EOF
1345
1346 # verify a new architecture
1347 printf "\n"
1348 printf "\n"
1349 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1350 printf "\n"
1351 cat <<EOF
1352 static void
1353 verify_gdbarch (struct gdbarch *gdbarch)
1354 {
1355 /* Only perform sanity checks on a multi-arch target. */
1356 if (!GDB_MULTI_ARCH)
1357 return;
1358 /* fundamental */
1359 if (gdbarch->byte_order == 0)
1360 internal_error (__FILE__, __LINE__,
1361 "verify_gdbarch: byte-order unset");
1362 if (gdbarch->bfd_arch_info == NULL)
1363 internal_error (__FILE__, __LINE__,
1364 "verify_gdbarch: bfd_arch_info unset");
1365 /* Check those that need to be defined for the given multi-arch level. */
1366 EOF
1367 function_list | while do_read
1368 do
1369 if class_is_function_p || class_is_variable_p
1370 then
1371 if [ "x${invalid_p}" = "x0" ]
1372 then
1373 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1374 elif class_is_predicate_p
1375 then
1376 printf " /* Skip verify of ${function}, has predicate */\n"
1377 # FIXME: See do_read for potential simplification
1378 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1379 then
1380 printf " if (${invalid_p})\n"
1381 printf " gdbarch->${function} = ${postdefault};\n"
1382 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1383 then
1384 printf " if (gdbarch->${function} == ${predefault})\n"
1385 printf " gdbarch->${function} = ${postdefault};\n"
1386 elif [ -n "${postdefault}" ]
1387 then
1388 printf " if (gdbarch->${function} == 0)\n"
1389 printf " gdbarch->${function} = ${postdefault};\n"
1390 elif [ -n "${invalid_p}" ]
1391 then
1392 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1393 printf " && (${invalid_p}))\n"
1394 printf " internal_error (__FILE__, __LINE__,\n"
1395 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1396 elif [ -n "${predefault}" ]
1397 then
1398 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1399 printf " && (gdbarch->${function} == ${predefault}))\n"
1400 printf " internal_error (__FILE__, __LINE__,\n"
1401 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1402 fi
1403 fi
1404 done
1405 cat <<EOF
1406 }
1407 EOF
1408
1409 # dump the structure
1410 printf "\n"
1411 printf "\n"
1412 cat <<EOF
1413 /* Print out the details of the current architecture. */
1414
1415 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1416 just happens to match the global variable \`\`current_gdbarch''. That
1417 way macros refering to that variable get the local and not the global
1418 version - ulgh. Once everything is parameterised with gdbarch, this
1419 will go away. */
1420
1421 void
1422 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1423 {
1424 fprintf_unfiltered (file,
1425 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1426 GDB_MULTI_ARCH);
1427 EOF
1428 function_list | while do_read
1429 do
1430 # multiarch functions don't have macros.
1431 class_is_multiarch_p && continue
1432 if [ "x${returntype}" = "xvoid" ]
1433 then
1434 printf "#if defined (${macro}) && GDB_MULTI_ARCH\n"
1435 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1436 else
1437 printf "#ifdef ${macro}\n"
1438 fi
1439 if class_is_function_p
1440 then
1441 printf " fprintf_unfiltered (file,\n"
1442 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1443 printf " \"${macro}(${actual})\",\n"
1444 printf " XSTRING (${macro} (${actual})));\n"
1445 else
1446 printf " fprintf_unfiltered (file,\n"
1447 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1448 printf " XSTRING (${macro}));\n"
1449 fi
1450 printf "#endif\n"
1451 done
1452 function_list | while do_read
1453 do
1454 if class_is_multiarch_p
1455 then
1456 printf " if (GDB_MULTI_ARCH)\n"
1457 printf " fprintf_unfiltered (file,\n"
1458 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1459 printf " (long) current_gdbarch->${function});\n"
1460 continue
1461 fi
1462 printf "#ifdef ${macro}\n"
1463 if [ "x${print_p}" = "x()" ]
1464 then
1465 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1466 elif [ "x${print_p}" = "x0" ]
1467 then
1468 printf " /* skip print of ${macro}, print_p == 0. */\n"
1469 elif [ -n "${print_p}" ]
1470 then
1471 printf " if (${print_p})\n"
1472 printf " fprintf_unfiltered (file,\n"
1473 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1474 printf " ${print});\n"
1475 elif class_is_function_p
1476 then
1477 printf " if (GDB_MULTI_ARCH)\n"
1478 printf " fprintf_unfiltered (file,\n"
1479 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1480 printf " (long) current_gdbarch->${function}\n"
1481 printf " /*${macro} ()*/);\n"
1482 else
1483 printf " fprintf_unfiltered (file,\n"
1484 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1485 printf " ${print});\n"
1486 fi
1487 printf "#endif\n"
1488 done
1489 cat <<EOF
1490 if (current_gdbarch->dump_tdep != NULL)
1491 current_gdbarch->dump_tdep (current_gdbarch, file);
1492 }
1493 EOF
1494
1495
1496 # GET/SET
1497 printf "\n"
1498 cat <<EOF
1499 struct gdbarch_tdep *
1500 gdbarch_tdep (struct gdbarch *gdbarch)
1501 {
1502 if (gdbarch_debug >= 2)
1503 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1504 return gdbarch->tdep;
1505 }
1506 EOF
1507 printf "\n"
1508 function_list | while do_read
1509 do
1510 if class_is_predicate_p
1511 then
1512 printf "\n"
1513 printf "int\n"
1514 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1515 printf "{\n"
1516 if [ -n "${valid_p}" ]
1517 then
1518 printf " return ${valid_p};\n"
1519 else
1520 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1521 fi
1522 printf "}\n"
1523 fi
1524 if class_is_function_p
1525 then
1526 printf "\n"
1527 printf "${returntype}\n"
1528 if [ "x${formal}" = "xvoid" ]
1529 then
1530 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1531 else
1532 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1533 fi
1534 printf "{\n"
1535 printf " if (gdbarch->${function} == 0)\n"
1536 printf " internal_error (__FILE__, __LINE__,\n"
1537 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1538 printf " if (gdbarch_debug >= 2)\n"
1539 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1540 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1541 then
1542 if class_is_multiarch_p
1543 then
1544 params="gdbarch"
1545 else
1546 params=""
1547 fi
1548 else
1549 if class_is_multiarch_p
1550 then
1551 params="gdbarch, ${actual}"
1552 else
1553 params="${actual}"
1554 fi
1555 fi
1556 if [ "x${returntype}" = "xvoid" ]
1557 then
1558 printf " gdbarch->${function} (${params});\n"
1559 else
1560 printf " return gdbarch->${function} (${params});\n"
1561 fi
1562 printf "}\n"
1563 printf "\n"
1564 printf "void\n"
1565 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1566 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1567 printf "{\n"
1568 printf " gdbarch->${function} = ${function};\n"
1569 printf "}\n"
1570 elif class_is_variable_p
1571 then
1572 printf "\n"
1573 printf "${returntype}\n"
1574 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1575 printf "{\n"
1576 if [ "x${invalid_p}" = "x0" ]
1577 then
1578 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1579 elif [ -n "${invalid_p}" ]
1580 then
1581 printf " if (${invalid_p})\n"
1582 printf " internal_error (__FILE__, __LINE__,\n"
1583 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1584 elif [ -n "${predefault}" ]
1585 then
1586 printf " if (gdbarch->${function} == ${predefault})\n"
1587 printf " internal_error (__FILE__, __LINE__,\n"
1588 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1589 fi
1590 printf " if (gdbarch_debug >= 2)\n"
1591 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1592 printf " return gdbarch->${function};\n"
1593 printf "}\n"
1594 printf "\n"
1595 printf "void\n"
1596 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1597 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1598 printf "{\n"
1599 printf " gdbarch->${function} = ${function};\n"
1600 printf "}\n"
1601 elif class_is_info_p
1602 then
1603 printf "\n"
1604 printf "${returntype}\n"
1605 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1606 printf "{\n"
1607 printf " if (gdbarch_debug >= 2)\n"
1608 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1609 printf " return gdbarch->${function};\n"
1610 printf "}\n"
1611 fi
1612 done
1613
1614 # All the trailing guff
1615 cat <<EOF
1616
1617
1618 /* Keep a registry of per-architecture data-pointers required by GDB
1619 modules. */
1620
1621 struct gdbarch_data
1622 {
1623 unsigned index;
1624 gdbarch_data_init_ftype *init;
1625 gdbarch_data_free_ftype *free;
1626 };
1627
1628 struct gdbarch_data_registration
1629 {
1630 struct gdbarch_data *data;
1631 struct gdbarch_data_registration *next;
1632 };
1633
1634 struct gdbarch_data_registry
1635 {
1636 unsigned nr;
1637 struct gdbarch_data_registration *registrations;
1638 };
1639
1640 struct gdbarch_data_registry gdbarch_data_registry =
1641 {
1642 0, NULL,
1643 };
1644
1645 struct gdbarch_data *
1646 register_gdbarch_data (gdbarch_data_init_ftype *init,
1647 gdbarch_data_free_ftype *free)
1648 {
1649 struct gdbarch_data_registration **curr;
1650 for (curr = &gdbarch_data_registry.registrations;
1651 (*curr) != NULL;
1652 curr = &(*curr)->next);
1653 (*curr) = XMALLOC (struct gdbarch_data_registration);
1654 (*curr)->next = NULL;
1655 (*curr)->data = XMALLOC (struct gdbarch_data);
1656 (*curr)->data->index = gdbarch_data_registry.nr++;
1657 (*curr)->data->init = init;
1658 (*curr)->data->free = free;
1659 return (*curr)->data;
1660 }
1661
1662
1663 /* Walk through all the registered users initializing each in turn. */
1664
1665 static void
1666 init_gdbarch_data (struct gdbarch *gdbarch)
1667 {
1668 struct gdbarch_data_registration *rego;
1669 for (rego = gdbarch_data_registry.registrations;
1670 rego != NULL;
1671 rego = rego->next)
1672 {
1673 struct gdbarch_data *data = rego->data;
1674 gdb_assert (data->index < gdbarch->nr_data);
1675 if (data->init != NULL)
1676 {
1677 void *pointer = data->init (gdbarch);
1678 set_gdbarch_data (gdbarch, data, pointer);
1679 }
1680 }
1681 }
1682
1683 /* Create/delete the gdbarch data vector. */
1684
1685 static void
1686 alloc_gdbarch_data (struct gdbarch *gdbarch)
1687 {
1688 gdb_assert (gdbarch->data == NULL);
1689 gdbarch->nr_data = gdbarch_data_registry.nr;
1690 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1691 }
1692
1693 static void
1694 free_gdbarch_data (struct gdbarch *gdbarch)
1695 {
1696 struct gdbarch_data_registration *rego;
1697 gdb_assert (gdbarch->data != NULL);
1698 for (rego = gdbarch_data_registry.registrations;
1699 rego != NULL;
1700 rego = rego->next)
1701 {
1702 struct gdbarch_data *data = rego->data;
1703 gdb_assert (data->index < gdbarch->nr_data);
1704 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1705 {
1706 data->free (gdbarch, gdbarch->data[data->index]);
1707 gdbarch->data[data->index] = NULL;
1708 }
1709 }
1710 xfree (gdbarch->data);
1711 gdbarch->data = NULL;
1712 }
1713
1714
1715 /* Initialize the current value of thee specified per-architecture
1716 data-pointer. */
1717
1718 void
1719 set_gdbarch_data (struct gdbarch *gdbarch,
1720 struct gdbarch_data *data,
1721 void *pointer)
1722 {
1723 gdb_assert (data->index < gdbarch->nr_data);
1724 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1725 data->free (gdbarch, gdbarch->data[data->index]);
1726 gdbarch->data[data->index] = pointer;
1727 }
1728
1729 /* Return the current value of the specified per-architecture
1730 data-pointer. */
1731
1732 void *
1733 gdbarch_data (struct gdbarch_data *data)
1734 {
1735 gdb_assert (data->index < current_gdbarch->nr_data);
1736 return current_gdbarch->data[data->index];
1737 }
1738
1739
1740
1741 /* Keep a registry of swapped data required by GDB modules. */
1742
1743 struct gdbarch_swap
1744 {
1745 void *swap;
1746 struct gdbarch_swap_registration *source;
1747 struct gdbarch_swap *next;
1748 };
1749
1750 struct gdbarch_swap_registration
1751 {
1752 void *data;
1753 unsigned long sizeof_data;
1754 gdbarch_swap_ftype *init;
1755 struct gdbarch_swap_registration *next;
1756 };
1757
1758 struct gdbarch_swap_registry
1759 {
1760 int nr;
1761 struct gdbarch_swap_registration *registrations;
1762 };
1763
1764 struct gdbarch_swap_registry gdbarch_swap_registry =
1765 {
1766 0, NULL,
1767 };
1768
1769 void
1770 register_gdbarch_swap (void *data,
1771 unsigned long sizeof_data,
1772 gdbarch_swap_ftype *init)
1773 {
1774 struct gdbarch_swap_registration **rego;
1775 for (rego = &gdbarch_swap_registry.registrations;
1776 (*rego) != NULL;
1777 rego = &(*rego)->next);
1778 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1779 (*rego)->next = NULL;
1780 (*rego)->init = init;
1781 (*rego)->data = data;
1782 (*rego)->sizeof_data = sizeof_data;
1783 }
1784
1785
1786 static void
1787 init_gdbarch_swap (struct gdbarch *gdbarch)
1788 {
1789 struct gdbarch_swap_registration *rego;
1790 struct gdbarch_swap **curr = &gdbarch->swap;
1791 for (rego = gdbarch_swap_registry.registrations;
1792 rego != NULL;
1793 rego = rego->next)
1794 {
1795 if (rego->data != NULL)
1796 {
1797 (*curr) = XMALLOC (struct gdbarch_swap);
1798 (*curr)->source = rego;
1799 (*curr)->swap = xmalloc (rego->sizeof_data);
1800 (*curr)->next = NULL;
1801 memset (rego->data, 0, rego->sizeof_data);
1802 curr = &(*curr)->next;
1803 }
1804 if (rego->init != NULL)
1805 rego->init ();
1806 }
1807 }
1808
1809 static void
1810 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1811 {
1812 struct gdbarch_swap *curr;
1813 for (curr = gdbarch->swap;
1814 curr != NULL;
1815 curr = curr->next)
1816 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1817 }
1818
1819 static void
1820 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1821 {
1822 struct gdbarch_swap *curr;
1823 for (curr = gdbarch->swap;
1824 curr != NULL;
1825 curr = curr->next)
1826 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1827 }
1828
1829
1830 /* Keep a registry of the architectures known by GDB. */
1831
1832 struct gdbarch_registration
1833 {
1834 enum bfd_architecture bfd_architecture;
1835 gdbarch_init_ftype *init;
1836 gdbarch_dump_tdep_ftype *dump_tdep;
1837 struct gdbarch_list *arches;
1838 struct gdbarch_registration *next;
1839 };
1840
1841 static struct gdbarch_registration *gdbarch_registry = NULL;
1842
1843 static void
1844 append_name (const char ***buf, int *nr, const char *name)
1845 {
1846 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1847 (*buf)[*nr] = name;
1848 *nr += 1;
1849 }
1850
1851 const char **
1852 gdbarch_printable_names (void)
1853 {
1854 if (GDB_MULTI_ARCH)
1855 {
1856 /* Accumulate a list of names based on the registed list of
1857 architectures. */
1858 enum bfd_architecture a;
1859 int nr_arches = 0;
1860 const char **arches = NULL;
1861 struct gdbarch_registration *rego;
1862 for (rego = gdbarch_registry;
1863 rego != NULL;
1864 rego = rego->next)
1865 {
1866 const struct bfd_arch_info *ap;
1867 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1868 if (ap == NULL)
1869 internal_error (__FILE__, __LINE__,
1870 "gdbarch_architecture_names: multi-arch unknown");
1871 do
1872 {
1873 append_name (&arches, &nr_arches, ap->printable_name);
1874 ap = ap->next;
1875 }
1876 while (ap != NULL);
1877 }
1878 append_name (&arches, &nr_arches, NULL);
1879 return arches;
1880 }
1881 else
1882 /* Just return all the architectures that BFD knows. Assume that
1883 the legacy architecture framework supports them. */
1884 return bfd_arch_list ();
1885 }
1886
1887
1888 void
1889 gdbarch_register (enum bfd_architecture bfd_architecture,
1890 gdbarch_init_ftype *init,
1891 gdbarch_dump_tdep_ftype *dump_tdep)
1892 {
1893 struct gdbarch_registration **curr;
1894 const struct bfd_arch_info *bfd_arch_info;
1895 /* Check that BFD recognizes this architecture */
1896 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1897 if (bfd_arch_info == NULL)
1898 {
1899 internal_error (__FILE__, __LINE__,
1900 "gdbarch: Attempt to register unknown architecture (%d)",
1901 bfd_architecture);
1902 }
1903 /* Check that we haven't seen this architecture before */
1904 for (curr = &gdbarch_registry;
1905 (*curr) != NULL;
1906 curr = &(*curr)->next)
1907 {
1908 if (bfd_architecture == (*curr)->bfd_architecture)
1909 internal_error (__FILE__, __LINE__,
1910 "gdbarch: Duplicate registraration of architecture (%s)",
1911 bfd_arch_info->printable_name);
1912 }
1913 /* log it */
1914 if (gdbarch_debug)
1915 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1916 bfd_arch_info->printable_name,
1917 (long) init);
1918 /* Append it */
1919 (*curr) = XMALLOC (struct gdbarch_registration);
1920 (*curr)->bfd_architecture = bfd_architecture;
1921 (*curr)->init = init;
1922 (*curr)->dump_tdep = dump_tdep;
1923 (*curr)->arches = NULL;
1924 (*curr)->next = NULL;
1925 /* When non- multi-arch, install whatever target dump routine we've
1926 been provided - hopefully that routine has been written correctly
1927 and works regardless of multi-arch. */
1928 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1929 && startup_gdbarch.dump_tdep == NULL)
1930 startup_gdbarch.dump_tdep = dump_tdep;
1931 }
1932
1933 void
1934 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1935 gdbarch_init_ftype *init)
1936 {
1937 gdbarch_register (bfd_architecture, init, NULL);
1938 }
1939
1940
1941 /* Look for an architecture using gdbarch_info. Base search on only
1942 BFD_ARCH_INFO and BYTE_ORDER. */
1943
1944 struct gdbarch_list *
1945 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1946 const struct gdbarch_info *info)
1947 {
1948 for (; arches != NULL; arches = arches->next)
1949 {
1950 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1951 continue;
1952 if (info->byte_order != arches->gdbarch->byte_order)
1953 continue;
1954 return arches;
1955 }
1956 return NULL;
1957 }
1958
1959
1960 /* Update the current architecture. Return ZERO if the update request
1961 failed. */
1962
1963 int
1964 gdbarch_update_p (struct gdbarch_info info)
1965 {
1966 struct gdbarch *new_gdbarch;
1967 struct gdbarch_list **list;
1968 struct gdbarch_registration *rego;
1969
1970 /* Fill in missing parts of the INFO struct using a number of
1971 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1972
1973 /* \`\`(gdb) set architecture ...'' */
1974 if (info.bfd_arch_info == NULL
1975 && !TARGET_ARCHITECTURE_AUTO)
1976 info.bfd_arch_info = TARGET_ARCHITECTURE;
1977 if (info.bfd_arch_info == NULL
1978 && info.abfd != NULL
1979 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1980 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1981 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1982 if (info.bfd_arch_info == NULL)
1983 info.bfd_arch_info = TARGET_ARCHITECTURE;
1984
1985 /* \`\`(gdb) set byte-order ...'' */
1986 if (info.byte_order == 0
1987 && !TARGET_BYTE_ORDER_AUTO)
1988 info.byte_order = TARGET_BYTE_ORDER;
1989 /* From the INFO struct. */
1990 if (info.byte_order == 0
1991 && info.abfd != NULL)
1992 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
1993 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
1994 : 0);
1995 /* From the current target. */
1996 if (info.byte_order == 0)
1997 info.byte_order = TARGET_BYTE_ORDER;
1998
1999 /* Must have found some sort of architecture. */
2000 gdb_assert (info.bfd_arch_info != NULL);
2001
2002 if (gdbarch_debug)
2003 {
2004 fprintf_unfiltered (gdb_stdlog,
2005 "gdbarch_update: info.bfd_arch_info %s\n",
2006 (info.bfd_arch_info != NULL
2007 ? info.bfd_arch_info->printable_name
2008 : "(null)"));
2009 fprintf_unfiltered (gdb_stdlog,
2010 "gdbarch_update: info.byte_order %d (%s)\n",
2011 info.byte_order,
2012 (info.byte_order == BIG_ENDIAN ? "big"
2013 : info.byte_order == LITTLE_ENDIAN ? "little"
2014 : "default"));
2015 fprintf_unfiltered (gdb_stdlog,
2016 "gdbarch_update: info.abfd 0x%lx\n",
2017 (long) info.abfd);
2018 fprintf_unfiltered (gdb_stdlog,
2019 "gdbarch_update: info.tdep_info 0x%lx\n",
2020 (long) info.tdep_info);
2021 }
2022
2023 /* Find the target that knows about this architecture. */
2024 for (rego = gdbarch_registry;
2025 rego != NULL;
2026 rego = rego->next)
2027 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2028 break;
2029 if (rego == NULL)
2030 {
2031 if (gdbarch_debug)
2032 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2033 return 0;
2034 }
2035
2036 /* Ask the target for a replacement architecture. */
2037 new_gdbarch = rego->init (info, rego->arches);
2038
2039 /* Did the target like it? No. Reject the change. */
2040 if (new_gdbarch == NULL)
2041 {
2042 if (gdbarch_debug)
2043 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2044 return 0;
2045 }
2046
2047 /* Did the architecture change? No. Do nothing. */
2048 if (current_gdbarch == new_gdbarch)
2049 {
2050 if (gdbarch_debug)
2051 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2052 (long) new_gdbarch,
2053 new_gdbarch->bfd_arch_info->printable_name);
2054 return 1;
2055 }
2056
2057 /* Swap all data belonging to the old target out */
2058 swapout_gdbarch_swap (current_gdbarch);
2059
2060 /* Is this a pre-existing architecture? Yes. Swap it in. */
2061 for (list = &rego->arches;
2062 (*list) != NULL;
2063 list = &(*list)->next)
2064 {
2065 if ((*list)->gdbarch == new_gdbarch)
2066 {
2067 if (gdbarch_debug)
2068 fprintf_unfiltered (gdb_stdlog,
2069 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2070 (long) new_gdbarch,
2071 new_gdbarch->bfd_arch_info->printable_name);
2072 current_gdbarch = new_gdbarch;
2073 swapin_gdbarch_swap (new_gdbarch);
2074 architecture_changed_event ();
2075 return 1;
2076 }
2077 }
2078
2079 /* Append this new architecture to this targets list. */
2080 (*list) = XMALLOC (struct gdbarch_list);
2081 (*list)->next = NULL;
2082 (*list)->gdbarch = new_gdbarch;
2083
2084 /* Switch to this new architecture. Dump it out. */
2085 current_gdbarch = new_gdbarch;
2086 if (gdbarch_debug)
2087 {
2088 fprintf_unfiltered (gdb_stdlog,
2089 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2090 (long) new_gdbarch,
2091 new_gdbarch->bfd_arch_info->printable_name);
2092 }
2093
2094 /* Check that the newly installed architecture is valid. Plug in
2095 any post init values. */
2096 new_gdbarch->dump_tdep = rego->dump_tdep;
2097 verify_gdbarch (new_gdbarch);
2098
2099 /* Initialize the per-architecture memory (swap) areas.
2100 CURRENT_GDBARCH must be update before these modules are
2101 called. */
2102 init_gdbarch_swap (new_gdbarch);
2103
2104 /* Initialize the per-architecture data-pointer of all parties that
2105 registered an interest in this architecture. CURRENT_GDBARCH
2106 must be updated before these modules are called. */
2107 init_gdbarch_data (new_gdbarch);
2108 architecture_changed_event ();
2109
2110 if (gdbarch_debug)
2111 gdbarch_dump (current_gdbarch, gdb_stdlog);
2112
2113 return 1;
2114 }
2115
2116
2117 /* Disassembler */
2118
2119 /* Pointer to the target-dependent disassembly function. */
2120 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2121 disassemble_info tm_print_insn_info;
2122
2123
2124 extern void _initialize_gdbarch (void);
2125
2126 void
2127 _initialize_gdbarch (void)
2128 {
2129 struct cmd_list_element *c;
2130
2131 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2132 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2133 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2134 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2135 tm_print_insn_info.print_address_func = dis_asm_print_address;
2136
2137 add_show_from_set (add_set_cmd ("arch",
2138 class_maintenance,
2139 var_zinteger,
2140 (char *)&gdbarch_debug,
2141 "Set architecture debugging.\\n\\
2142 When non-zero, architecture debugging is enabled.", &setdebuglist),
2143 &showdebuglist);
2144 c = add_set_cmd ("archdebug",
2145 class_maintenance,
2146 var_zinteger,
2147 (char *)&gdbarch_debug,
2148 "Set architecture debugging.\\n\\
2149 When non-zero, architecture debugging is enabled.", &setlist);
2150
2151 deprecate_cmd (c, "set debug arch");
2152 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2153 }
2154 EOF
2155
2156 # close things off
2157 exec 1>&2
2158 #../move-if-change new-gdbarch.c gdbarch.c
2159 compare_new gdbarch.c
This page took 0.157754 seconds and 4 git commands to generate.