gdb/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
98
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
102 "" )
103 if test -n "${predefault}"
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
113 fi
114 ;;
115 * )
116 echo "Predicate function ${function} with invalid_p." 1>&2
117 kill $$
118 exit 1
119 ;;
120 esac
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
130 if [ -n "${postdefault}" ]
131 then
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
134 then
135 fallbackdefault="${predefault}"
136 else
137 fallbackdefault="0"
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
144 fi
145 done
146 if [ -n "${class}" ]
147 then
148 true
149 else
150 false
151 fi
152 }
153
154
155 fallback_default_p ()
156 {
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
159 }
160
161 class_is_variable_p ()
162 {
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
167 }
168
169 class_is_function_p ()
170 {
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175 }
176
177 class_is_multiarch_p ()
178 {
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_predicate_p ()
186 {
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_info_p ()
194 {
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201
202 # dump out/verify the doco
203 for field in ${read}
204 do
205 case ${field} in
206
207 class ) : ;;
208
209 # # -> line disable
210 # f -> function
211 # hiding a function
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
214 # v -> variable
215 # hiding a variable
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
218 # i -> set from info
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
224
225 returntype ) : ;;
226
227 # For functions, the return type; for variables, the data type
228
229 function ) : ;;
230
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
234
235 formal ) : ;;
236
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
241
242 actual ) : ;;
243
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
247
248 staticdefault ) : ;;
249
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
254
255 # If STATICDEFAULT is empty, zero is used.
256
257 predefault ) : ;;
258
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
263
264 # If PREDEFAULT is empty, zero is used.
265
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
297 # taken.
298
299 invalid_p ) : ;;
300
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
313
314 # See also PREDEFAULT and POSTDEFAULT.
315
316 print ) : ;;
317
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
320
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
323
324 garbage_at_eol ) : ;;
325
326 # Catches stray fields.
327
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
331 esac
332 done
333
334
335 function_list ()
336 {
337 # See below (DOCO) for description of each field
338 cat <<EOF
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
340 #
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
343 #
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
345 #
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
347
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
355 #
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
363 # machine.
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
365
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
370 # useful).
371
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
378
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
383 #
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386 # as well.
387 #
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
392 #
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
395 #
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
400 # serious shakedown.
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
402 #
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
405 #
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
412
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
415 # all (-1).
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
430
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
435
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
441
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
446
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
457 #
458 v:int:believe_pcc_promotion:::::::
459 #
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
468 #
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
472
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
476 #
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
478 #
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
482 # for instance).
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
484
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
493
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
501
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
503
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
507
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
510 #
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
517 #
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
521 #
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
536
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
539 # implement it.
540 #
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
543 # (as with rs6000).
544 #
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
547 #
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
551
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
559
560
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
567
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
576 # untouched.
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 # Given a vector of command-line arguments, return a newly allocated
579 # string which, when passed to the create_inferior function, will be
580 # parsed (on Unix systems, by the shell) to yield the same vector.
581 # This function should call error() if the argument vector is not
582 # representable for this target or if this target does not support
583 # command-line arguments.
584 # ARGC is the number of elements in the vector.
585 # ARGV is an array of strings, one per argument.
586 m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
589 v:int:cannot_step_breakpoint:::0:0::0
590 v:int:have_nonsteppable_watchpoint:::0:0::0
591 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
592 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
593 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
594 # Is a register in a group
595 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
596 # Fetch the pointer to the ith function argument.
597 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
598
599 # Return the appropriate register set for a core file section with
600 # name SECT_NAME and size SECT_SIZE.
601 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
602
603 # Supported register notes in a core file.
604 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
605
606 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
607 # core file into buffer READBUF with length LEN.
608 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
609
610 # If the elements of C++ vtables are in-place function descriptors rather
611 # than normal function pointers (which may point to code or a descriptor),
612 # set this to one.
613 v:int:vtable_function_descriptors:::0:0::0
614
615 # Set if the least significant bit of the delta is used instead of the least
616 # significant bit of the pfn for pointers to virtual member functions.
617 v:int:vbit_in_delta:::0:0::0
618
619 # Advance PC to next instruction in order to skip a permanent breakpoint.
620 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
621
622 # The maximum length of an instruction on this architecture.
623 V:ULONGEST:max_insn_length:::0:0
624
625 # Copy the instruction at FROM to TO, and make any adjustments
626 # necessary to single-step it at that address.
627 #
628 # REGS holds the state the thread's registers will have before
629 # executing the copied instruction; the PC in REGS will refer to FROM,
630 # not the copy at TO. The caller should update it to point at TO later.
631 #
632 # Return a pointer to data of the architecture's choice to be passed
633 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
634 # the instruction's effects have been completely simulated, with the
635 # resulting state written back to REGS.
636 #
637 # For a general explanation of displaced stepping and how GDB uses it,
638 # see the comments in infrun.c.
639 #
640 # The TO area is only guaranteed to have space for
641 # gdbarch_max_insn_length (arch) bytes, so this function must not
642 # write more bytes than that to that area.
643 #
644 # If you do not provide this function, GDB assumes that the
645 # architecture does not support displaced stepping.
646 #
647 # If your architecture doesn't need to adjust instructions before
648 # single-stepping them, consider using simple_displaced_step_copy_insn
649 # here.
650 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
651
652 # Fix up the state resulting from successfully single-stepping a
653 # displaced instruction, to give the result we would have gotten from
654 # stepping the instruction in its original location.
655 #
656 # REGS is the register state resulting from single-stepping the
657 # displaced instruction.
658 #
659 # CLOSURE is the result from the matching call to
660 # gdbarch_displaced_step_copy_insn.
661 #
662 # If you provide gdbarch_displaced_step_copy_insn.but not this
663 # function, then GDB assumes that no fixup is needed after
664 # single-stepping the instruction.
665 #
666 # For a general explanation of displaced stepping and how GDB uses it,
667 # see the comments in infrun.c.
668 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
669
670 # Free a closure returned by gdbarch_displaced_step_copy_insn.
671 #
672 # If you provide gdbarch_displaced_step_copy_insn, you must provide
673 # this function as well.
674 #
675 # If your architecture uses closures that don't need to be freed, then
676 # you can use simple_displaced_step_free_closure here.
677 #
678 # For a general explanation of displaced stepping and how GDB uses it,
679 # see the comments in infrun.c.
680 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
681
682 # Return the address of an appropriate place to put displaced
683 # instructions while we step over them. There need only be one such
684 # place, since we're only stepping one thread over a breakpoint at a
685 # time.
686 #
687 # For a general explanation of displaced stepping and how GDB uses it,
688 # see the comments in infrun.c.
689 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
690
691 # Refresh overlay mapped state for section OSECT.
692 F:void:overlay_update:struct obj_section *osect:osect
693
694 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
695
696 # Handle special encoding of static variables in stabs debug info.
697 F:char *:static_transform_name:char *name:name
698 # Set if the address in N_SO or N_FUN stabs may be zero.
699 v:int:sofun_address_maybe_missing:::0:0::0
700
701 # Signal translation: translate inferior's signal (host's) number into
702 # GDB's representation.
703 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
704 # Signal translation: translate GDB's signal number into inferior's host
705 # signal number.
706 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
707
708 # Extra signal info inspection.
709 #
710 # Return a type suitable to inspect extra signal information.
711 M:struct type *:get_siginfo_type:void:
712
713 # Record architecture-specific information from the symbol table.
714 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
715
716 # True if the list of shared libraries is one and only for all
717 # processes, as opposed to a list of shared libraries per inferior.
718 # When this property is true, GDB assumes that since shared libraries
719 # are shared across processes, so is all code. Hence, GDB further
720 # assumes an inserted breakpoint location is visible to all processes.
721 v:int:has_global_solist:::0:0::0
722 EOF
723 }
724
725 #
726 # The .log file
727 #
728 exec > new-gdbarch.log
729 function_list | while do_read
730 do
731 cat <<EOF
732 ${class} ${returntype} ${function} ($formal)
733 EOF
734 for r in ${read}
735 do
736 eval echo \"\ \ \ \ ${r}=\${${r}}\"
737 done
738 if class_is_predicate_p && fallback_default_p
739 then
740 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
741 kill $$
742 exit 1
743 fi
744 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
745 then
746 echo "Error: postdefault is useless when invalid_p=0" 1>&2
747 kill $$
748 exit 1
749 fi
750 if class_is_multiarch_p
751 then
752 if class_is_predicate_p ; then :
753 elif test "x${predefault}" = "x"
754 then
755 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
756 kill $$
757 exit 1
758 fi
759 fi
760 echo ""
761 done
762
763 exec 1>&2
764 compare_new gdbarch.log
765
766
767 copyright ()
768 {
769 cat <<EOF
770 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
771
772 /* Dynamic architecture support for GDB, the GNU debugger.
773
774 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
775 Free Software Foundation, Inc.
776
777 This file is part of GDB.
778
779 This program is free software; you can redistribute it and/or modify
780 it under the terms of the GNU General Public License as published by
781 the Free Software Foundation; either version 3 of the License, or
782 (at your option) any later version.
783
784 This program is distributed in the hope that it will be useful,
785 but WITHOUT ANY WARRANTY; without even the implied warranty of
786 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
787 GNU General Public License for more details.
788
789 You should have received a copy of the GNU General Public License
790 along with this program. If not, see <http://www.gnu.org/licenses/>. */
791
792 /* This file was created with the aid of \`\`gdbarch.sh''.
793
794 The Bourne shell script \`\`gdbarch.sh'' creates the files
795 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
796 against the existing \`\`gdbarch.[hc]''. Any differences found
797 being reported.
798
799 If editing this file, please also run gdbarch.sh and merge any
800 changes into that script. Conversely, when making sweeping changes
801 to this file, modifying gdbarch.sh and using its output may prove
802 easier. */
803
804 EOF
805 }
806
807 #
808 # The .h file
809 #
810
811 exec > new-gdbarch.h
812 copyright
813 cat <<EOF
814 #ifndef GDBARCH_H
815 #define GDBARCH_H
816
817 struct floatformat;
818 struct ui_file;
819 struct frame_info;
820 struct value;
821 struct objfile;
822 struct obj_section;
823 struct minimal_symbol;
824 struct regcache;
825 struct reggroup;
826 struct regset;
827 struct disassemble_info;
828 struct target_ops;
829 struct obstack;
830 struct bp_target_info;
831 struct target_desc;
832 struct displaced_step_closure;
833 struct core_regset_section;
834
835 extern struct gdbarch *current_gdbarch;
836 extern struct gdbarch *target_gdbarch;
837 EOF
838
839 # function typedef's
840 printf "\n"
841 printf "\n"
842 printf "/* The following are pre-initialized by GDBARCH. */\n"
843 function_list | while do_read
844 do
845 if class_is_info_p
846 then
847 printf "\n"
848 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
849 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
850 fi
851 done
852
853 # function typedef's
854 printf "\n"
855 printf "\n"
856 printf "/* The following are initialized by the target dependent code. */\n"
857 function_list | while do_read
858 do
859 if [ -n "${comment}" ]
860 then
861 echo "${comment}" | sed \
862 -e '2 s,#,/*,' \
863 -e '3,$ s,#, ,' \
864 -e '$ s,$, */,'
865 fi
866
867 if class_is_predicate_p
868 then
869 printf "\n"
870 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
871 fi
872 if class_is_variable_p
873 then
874 printf "\n"
875 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
876 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
877 fi
878 if class_is_function_p
879 then
880 printf "\n"
881 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
882 then
883 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
884 elif class_is_multiarch_p
885 then
886 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
887 else
888 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
889 fi
890 if [ "x${formal}" = "xvoid" ]
891 then
892 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
893 else
894 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
895 fi
896 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
897 fi
898 done
899
900 # close it off
901 cat <<EOF
902
903 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
904
905
906 /* Mechanism for co-ordinating the selection of a specific
907 architecture.
908
909 GDB targets (*-tdep.c) can register an interest in a specific
910 architecture. Other GDB components can register a need to maintain
911 per-architecture data.
912
913 The mechanisms below ensures that there is only a loose connection
914 between the set-architecture command and the various GDB
915 components. Each component can independently register their need
916 to maintain architecture specific data with gdbarch.
917
918 Pragmatics:
919
920 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
921 didn't scale.
922
923 The more traditional mega-struct containing architecture specific
924 data for all the various GDB components was also considered. Since
925 GDB is built from a variable number of (fairly independent)
926 components it was determined that the global aproach was not
927 applicable. */
928
929
930 /* Register a new architectural family with GDB.
931
932 Register support for the specified ARCHITECTURE with GDB. When
933 gdbarch determines that the specified architecture has been
934 selected, the corresponding INIT function is called.
935
936 --
937
938 The INIT function takes two parameters: INFO which contains the
939 information available to gdbarch about the (possibly new)
940 architecture; ARCHES which is a list of the previously created
941 \`\`struct gdbarch'' for this architecture.
942
943 The INFO parameter is, as far as possible, be pre-initialized with
944 information obtained from INFO.ABFD or the global defaults.
945
946 The ARCHES parameter is a linked list (sorted most recently used)
947 of all the previously created architures for this architecture
948 family. The (possibly NULL) ARCHES->gdbarch can used to access
949 values from the previously selected architecture for this
950 architecture family. The global \`\`current_gdbarch'' shall not be
951 used.
952
953 The INIT function shall return any of: NULL - indicating that it
954 doesn't recognize the selected architecture; an existing \`\`struct
955 gdbarch'' from the ARCHES list - indicating that the new
956 architecture is just a synonym for an earlier architecture (see
957 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
958 - that describes the selected architecture (see gdbarch_alloc()).
959
960 The DUMP_TDEP function shall print out all target specific values.
961 Care should be taken to ensure that the function works in both the
962 multi-arch and non- multi-arch cases. */
963
964 struct gdbarch_list
965 {
966 struct gdbarch *gdbarch;
967 struct gdbarch_list *next;
968 };
969
970 struct gdbarch_info
971 {
972 /* Use default: NULL (ZERO). */
973 const struct bfd_arch_info *bfd_arch_info;
974
975 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
976 int byte_order;
977
978 int byte_order_for_code;
979
980 /* Use default: NULL (ZERO). */
981 bfd *abfd;
982
983 /* Use default: NULL (ZERO). */
984 struct gdbarch_tdep_info *tdep_info;
985
986 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
987 enum gdb_osabi osabi;
988
989 /* Use default: NULL (ZERO). */
990 const struct target_desc *target_desc;
991 };
992
993 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
994 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
995
996 /* DEPRECATED - use gdbarch_register() */
997 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
998
999 extern void gdbarch_register (enum bfd_architecture architecture,
1000 gdbarch_init_ftype *,
1001 gdbarch_dump_tdep_ftype *);
1002
1003
1004 /* Return a freshly allocated, NULL terminated, array of the valid
1005 architecture names. Since architectures are registered during the
1006 _initialize phase this function only returns useful information
1007 once initialization has been completed. */
1008
1009 extern const char **gdbarch_printable_names (void);
1010
1011
1012 /* Helper function. Search the list of ARCHES for a GDBARCH that
1013 matches the information provided by INFO. */
1014
1015 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1016
1017
1018 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1019 basic initialization using values obtained from the INFO and TDEP
1020 parameters. set_gdbarch_*() functions are called to complete the
1021 initialization of the object. */
1022
1023 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1024
1025
1026 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1027 It is assumed that the caller freeds the \`\`struct
1028 gdbarch_tdep''. */
1029
1030 extern void gdbarch_free (struct gdbarch *);
1031
1032
1033 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1034 obstack. The memory is freed when the corresponding architecture
1035 is also freed. */
1036
1037 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1038 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1039 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1040
1041
1042 /* Helper function. Force an update of the current architecture.
1043
1044 The actual architecture selected is determined by INFO, \`\`(gdb) set
1045 architecture'' et.al., the existing architecture and BFD's default
1046 architecture. INFO should be initialized to zero and then selected
1047 fields should be updated.
1048
1049 Returns non-zero if the update succeeds */
1050
1051 extern int gdbarch_update_p (struct gdbarch_info info);
1052
1053
1054 /* Helper function. Find an architecture matching info.
1055
1056 INFO should be initialized using gdbarch_info_init, relevant fields
1057 set, and then finished using gdbarch_info_fill.
1058
1059 Returns the corresponding architecture, or NULL if no matching
1060 architecture was found. "current_gdbarch" is not updated. */
1061
1062 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1063
1064
1065 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1066
1067 FIXME: kettenis/20031124: Of the functions that follow, only
1068 gdbarch_from_bfd is supposed to survive. The others will
1069 dissappear since in the future GDB will (hopefully) be truly
1070 multi-arch. However, for now we're still stuck with the concept of
1071 a single active architecture. */
1072
1073 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1074
1075
1076 /* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1081
1082 Memory for the per-architecture data shall be allocated using
1083 gdbarch_obstack_zalloc. That memory will be deleted when the
1084 corresponding architecture object is deleted.
1085
1086 When a previously created architecture is re-selected, the
1087 per-architecture data-pointer for that previous architecture is
1088 restored. INIT() is not re-called.
1089
1090 Multiple registrarants for any architecture are allowed (and
1091 strongly encouraged). */
1092
1093 struct gdbarch_data;
1094
1095 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1096 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1097 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1098 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1099 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1100 struct gdbarch_data *data,
1101 void *pointer);
1102
1103 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1104
1105
1106 /* Set the dynamic target-system-dependent parameters (architecture,
1107 byte-order, ...) using information found in the BFD */
1108
1109 extern void set_gdbarch_from_file (bfd *);
1110
1111
1112 /* Initialize the current architecture to the "first" one we find on
1113 our list. */
1114
1115 extern void initialize_current_architecture (void);
1116
1117 /* gdbarch trace variable */
1118 extern int gdbarch_debug;
1119
1120 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1121
1122 #endif
1123 EOF
1124 exec 1>&2
1125 #../move-if-change new-gdbarch.h gdbarch.h
1126 compare_new gdbarch.h
1127
1128
1129 #
1130 # C file
1131 #
1132
1133 exec > new-gdbarch.c
1134 copyright
1135 cat <<EOF
1136
1137 #include "defs.h"
1138 #include "arch-utils.h"
1139
1140 #include "gdbcmd.h"
1141 #include "inferior.h"
1142 #include "symcat.h"
1143
1144 #include "floatformat.h"
1145
1146 #include "gdb_assert.h"
1147 #include "gdb_string.h"
1148 #include "reggroups.h"
1149 #include "osabi.h"
1150 #include "gdb_obstack.h"
1151 #include "observer.h"
1152 #include "regcache.h"
1153
1154 /* Static function declarations */
1155
1156 static void alloc_gdbarch_data (struct gdbarch *);
1157
1158 /* Non-zero if we want to trace architecture code. */
1159
1160 #ifndef GDBARCH_DEBUG
1161 #define GDBARCH_DEBUG 0
1162 #endif
1163 int gdbarch_debug = GDBARCH_DEBUG;
1164 static void
1165 show_gdbarch_debug (struct ui_file *file, int from_tty,
1166 struct cmd_list_element *c, const char *value)
1167 {
1168 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1169 }
1170
1171 static const char *
1172 pformat (const struct floatformat **format)
1173 {
1174 if (format == NULL)
1175 return "(null)";
1176 else
1177 /* Just print out one of them - this is only for diagnostics. */
1178 return format[0]->name;
1179 }
1180
1181 EOF
1182
1183 # gdbarch open the gdbarch object
1184 printf "\n"
1185 printf "/* Maintain the struct gdbarch object */\n"
1186 printf "\n"
1187 printf "struct gdbarch\n"
1188 printf "{\n"
1189 printf " /* Has this architecture been fully initialized? */\n"
1190 printf " int initialized_p;\n"
1191 printf "\n"
1192 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1193 printf " struct obstack *obstack;\n"
1194 printf "\n"
1195 printf " /* basic architectural information */\n"
1196 function_list | while do_read
1197 do
1198 if class_is_info_p
1199 then
1200 printf " ${returntype} ${function};\n"
1201 fi
1202 done
1203 printf "\n"
1204 printf " /* target specific vector. */\n"
1205 printf " struct gdbarch_tdep *tdep;\n"
1206 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1207 printf "\n"
1208 printf " /* per-architecture data-pointers */\n"
1209 printf " unsigned nr_data;\n"
1210 printf " void **data;\n"
1211 printf "\n"
1212 printf " /* per-architecture swap-regions */\n"
1213 printf " struct gdbarch_swap *swap;\n"
1214 printf "\n"
1215 cat <<EOF
1216 /* Multi-arch values.
1217
1218 When extending this structure you must:
1219
1220 Add the field below.
1221
1222 Declare set/get functions and define the corresponding
1223 macro in gdbarch.h.
1224
1225 gdbarch_alloc(): If zero/NULL is not a suitable default,
1226 initialize the new field.
1227
1228 verify_gdbarch(): Confirm that the target updated the field
1229 correctly.
1230
1231 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1232 field is dumped out
1233
1234 \`\`startup_gdbarch()'': Append an initial value to the static
1235 variable (base values on the host's c-type system).
1236
1237 get_gdbarch(): Implement the set/get functions (probably using
1238 the macro's as shortcuts).
1239
1240 */
1241
1242 EOF
1243 function_list | while do_read
1244 do
1245 if class_is_variable_p
1246 then
1247 printf " ${returntype} ${function};\n"
1248 elif class_is_function_p
1249 then
1250 printf " gdbarch_${function}_ftype *${function};\n"
1251 fi
1252 done
1253 printf "};\n"
1254
1255 # A pre-initialized vector
1256 printf "\n"
1257 printf "\n"
1258 cat <<EOF
1259 /* The default architecture uses host values (for want of a better
1260 choice). */
1261 EOF
1262 printf "\n"
1263 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1264 printf "\n"
1265 printf "struct gdbarch startup_gdbarch =\n"
1266 printf "{\n"
1267 printf " 1, /* Always initialized. */\n"
1268 printf " NULL, /* The obstack. */\n"
1269 printf " /* basic architecture information */\n"
1270 function_list | while do_read
1271 do
1272 if class_is_info_p
1273 then
1274 printf " ${staticdefault}, /* ${function} */\n"
1275 fi
1276 done
1277 cat <<EOF
1278 /* target specific vector and its dump routine */
1279 NULL, NULL,
1280 /*per-architecture data-pointers and swap regions */
1281 0, NULL, NULL,
1282 /* Multi-arch values */
1283 EOF
1284 function_list | while do_read
1285 do
1286 if class_is_function_p || class_is_variable_p
1287 then
1288 printf " ${staticdefault}, /* ${function} */\n"
1289 fi
1290 done
1291 cat <<EOF
1292 /* startup_gdbarch() */
1293 };
1294
1295 struct gdbarch *current_gdbarch = &startup_gdbarch;
1296 struct gdbarch *target_gdbarch = &startup_gdbarch;
1297 EOF
1298
1299 # Create a new gdbarch struct
1300 cat <<EOF
1301
1302 /* Create a new \`\`struct gdbarch'' based on information provided by
1303 \`\`struct gdbarch_info''. */
1304 EOF
1305 printf "\n"
1306 cat <<EOF
1307 struct gdbarch *
1308 gdbarch_alloc (const struct gdbarch_info *info,
1309 struct gdbarch_tdep *tdep)
1310 {
1311 struct gdbarch *gdbarch;
1312
1313 /* Create an obstack for allocating all the per-architecture memory,
1314 then use that to allocate the architecture vector. */
1315 struct obstack *obstack = XMALLOC (struct obstack);
1316 obstack_init (obstack);
1317 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1318 memset (gdbarch, 0, sizeof (*gdbarch));
1319 gdbarch->obstack = obstack;
1320
1321 alloc_gdbarch_data (gdbarch);
1322
1323 gdbarch->tdep = tdep;
1324 EOF
1325 printf "\n"
1326 function_list | while do_read
1327 do
1328 if class_is_info_p
1329 then
1330 printf " gdbarch->${function} = info->${function};\n"
1331 fi
1332 done
1333 printf "\n"
1334 printf " /* Force the explicit initialization of these. */\n"
1335 function_list | while do_read
1336 do
1337 if class_is_function_p || class_is_variable_p
1338 then
1339 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1340 then
1341 printf " gdbarch->${function} = ${predefault};\n"
1342 fi
1343 fi
1344 done
1345 cat <<EOF
1346 /* gdbarch_alloc() */
1347
1348 return gdbarch;
1349 }
1350 EOF
1351
1352 # Free a gdbarch struct.
1353 printf "\n"
1354 printf "\n"
1355 cat <<EOF
1356 /* Allocate extra space using the per-architecture obstack. */
1357
1358 void *
1359 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1360 {
1361 void *data = obstack_alloc (arch->obstack, size);
1362 memset (data, 0, size);
1363 return data;
1364 }
1365
1366
1367 /* Free a gdbarch struct. This should never happen in normal
1368 operation --- once you've created a gdbarch, you keep it around.
1369 However, if an architecture's init function encounters an error
1370 building the structure, it may need to clean up a partially
1371 constructed gdbarch. */
1372
1373 void
1374 gdbarch_free (struct gdbarch *arch)
1375 {
1376 struct obstack *obstack;
1377 gdb_assert (arch != NULL);
1378 gdb_assert (!arch->initialized_p);
1379 obstack = arch->obstack;
1380 obstack_free (obstack, 0); /* Includes the ARCH. */
1381 xfree (obstack);
1382 }
1383 EOF
1384
1385 # verify a new architecture
1386 cat <<EOF
1387
1388
1389 /* Ensure that all values in a GDBARCH are reasonable. */
1390
1391 static void
1392 verify_gdbarch (struct gdbarch *gdbarch)
1393 {
1394 struct ui_file *log;
1395 struct cleanup *cleanups;
1396 long dummy;
1397 char *buf;
1398 log = mem_fileopen ();
1399 cleanups = make_cleanup_ui_file_delete (log);
1400 /* fundamental */
1401 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1402 fprintf_unfiltered (log, "\n\tbyte-order");
1403 if (gdbarch->bfd_arch_info == NULL)
1404 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1405 /* Check those that need to be defined for the given multi-arch level. */
1406 EOF
1407 function_list | while do_read
1408 do
1409 if class_is_function_p || class_is_variable_p
1410 then
1411 if [ "x${invalid_p}" = "x0" ]
1412 then
1413 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1414 elif class_is_predicate_p
1415 then
1416 printf " /* Skip verify of ${function}, has predicate */\n"
1417 # FIXME: See do_read for potential simplification
1418 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1419 then
1420 printf " if (${invalid_p})\n"
1421 printf " gdbarch->${function} = ${postdefault};\n"
1422 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1423 then
1424 printf " if (gdbarch->${function} == ${predefault})\n"
1425 printf " gdbarch->${function} = ${postdefault};\n"
1426 elif [ -n "${postdefault}" ]
1427 then
1428 printf " if (gdbarch->${function} == 0)\n"
1429 printf " gdbarch->${function} = ${postdefault};\n"
1430 elif [ -n "${invalid_p}" ]
1431 then
1432 printf " if (${invalid_p})\n"
1433 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1434 elif [ -n "${predefault}" ]
1435 then
1436 printf " if (gdbarch->${function} == ${predefault})\n"
1437 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1438 fi
1439 fi
1440 done
1441 cat <<EOF
1442 buf = ui_file_xstrdup (log, &dummy);
1443 make_cleanup (xfree, buf);
1444 if (strlen (buf) > 0)
1445 internal_error (__FILE__, __LINE__,
1446 _("verify_gdbarch: the following are invalid ...%s"),
1447 buf);
1448 do_cleanups (cleanups);
1449 }
1450 EOF
1451
1452 # dump the structure
1453 printf "\n"
1454 printf "\n"
1455 cat <<EOF
1456 /* Print out the details of the current architecture. */
1457
1458 void
1459 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1460 {
1461 const char *gdb_nm_file = "<not-defined>";
1462 #if defined (GDB_NM_FILE)
1463 gdb_nm_file = GDB_NM_FILE;
1464 #endif
1465 fprintf_unfiltered (file,
1466 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1467 gdb_nm_file);
1468 EOF
1469 function_list | sort -t: -k 3 | while do_read
1470 do
1471 # First the predicate
1472 if class_is_predicate_p
1473 then
1474 printf " fprintf_unfiltered (file,\n"
1475 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1476 printf " gdbarch_${function}_p (gdbarch));\n"
1477 fi
1478 # Print the corresponding value.
1479 if class_is_function_p
1480 then
1481 printf " fprintf_unfiltered (file,\n"
1482 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1483 printf " host_address_to_string (gdbarch->${function}));\n"
1484 else
1485 # It is a variable
1486 case "${print}:${returntype}" in
1487 :CORE_ADDR )
1488 fmt="%s"
1489 print="core_addr_to_string_nz (gdbarch->${function})"
1490 ;;
1491 :* )
1492 fmt="%s"
1493 print="plongest (gdbarch->${function})"
1494 ;;
1495 * )
1496 fmt="%s"
1497 ;;
1498 esac
1499 printf " fprintf_unfiltered (file,\n"
1500 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1501 printf " ${print});\n"
1502 fi
1503 done
1504 cat <<EOF
1505 if (gdbarch->dump_tdep != NULL)
1506 gdbarch->dump_tdep (gdbarch, file);
1507 }
1508 EOF
1509
1510
1511 # GET/SET
1512 printf "\n"
1513 cat <<EOF
1514 struct gdbarch_tdep *
1515 gdbarch_tdep (struct gdbarch *gdbarch)
1516 {
1517 if (gdbarch_debug >= 2)
1518 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1519 return gdbarch->tdep;
1520 }
1521 EOF
1522 printf "\n"
1523 function_list | while do_read
1524 do
1525 if class_is_predicate_p
1526 then
1527 printf "\n"
1528 printf "int\n"
1529 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1530 printf "{\n"
1531 printf " gdb_assert (gdbarch != NULL);\n"
1532 printf " return ${predicate};\n"
1533 printf "}\n"
1534 fi
1535 if class_is_function_p
1536 then
1537 printf "\n"
1538 printf "${returntype}\n"
1539 if [ "x${formal}" = "xvoid" ]
1540 then
1541 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1542 else
1543 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1544 fi
1545 printf "{\n"
1546 printf " gdb_assert (gdbarch != NULL);\n"
1547 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1548 if class_is_predicate_p && test -n "${predefault}"
1549 then
1550 # Allow a call to a function with a predicate.
1551 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1552 fi
1553 printf " if (gdbarch_debug >= 2)\n"
1554 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1555 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1556 then
1557 if class_is_multiarch_p
1558 then
1559 params="gdbarch"
1560 else
1561 params=""
1562 fi
1563 else
1564 if class_is_multiarch_p
1565 then
1566 params="gdbarch, ${actual}"
1567 else
1568 params="${actual}"
1569 fi
1570 fi
1571 if [ "x${returntype}" = "xvoid" ]
1572 then
1573 printf " gdbarch->${function} (${params});\n"
1574 else
1575 printf " return gdbarch->${function} (${params});\n"
1576 fi
1577 printf "}\n"
1578 printf "\n"
1579 printf "void\n"
1580 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1581 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1582 printf "{\n"
1583 printf " gdbarch->${function} = ${function};\n"
1584 printf "}\n"
1585 elif class_is_variable_p
1586 then
1587 printf "\n"
1588 printf "${returntype}\n"
1589 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1590 printf "{\n"
1591 printf " gdb_assert (gdbarch != NULL);\n"
1592 if [ "x${invalid_p}" = "x0" ]
1593 then
1594 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1595 elif [ -n "${invalid_p}" ]
1596 then
1597 printf " /* Check variable is valid. */\n"
1598 printf " gdb_assert (!(${invalid_p}));\n"
1599 elif [ -n "${predefault}" ]
1600 then
1601 printf " /* Check variable changed from pre-default. */\n"
1602 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1603 fi
1604 printf " if (gdbarch_debug >= 2)\n"
1605 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1606 printf " return gdbarch->${function};\n"
1607 printf "}\n"
1608 printf "\n"
1609 printf "void\n"
1610 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1611 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1612 printf "{\n"
1613 printf " gdbarch->${function} = ${function};\n"
1614 printf "}\n"
1615 elif class_is_info_p
1616 then
1617 printf "\n"
1618 printf "${returntype}\n"
1619 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1620 printf "{\n"
1621 printf " gdb_assert (gdbarch != NULL);\n"
1622 printf " if (gdbarch_debug >= 2)\n"
1623 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1624 printf " return gdbarch->${function};\n"
1625 printf "}\n"
1626 fi
1627 done
1628
1629 # All the trailing guff
1630 cat <<EOF
1631
1632
1633 /* Keep a registry of per-architecture data-pointers required by GDB
1634 modules. */
1635
1636 struct gdbarch_data
1637 {
1638 unsigned index;
1639 int init_p;
1640 gdbarch_data_pre_init_ftype *pre_init;
1641 gdbarch_data_post_init_ftype *post_init;
1642 };
1643
1644 struct gdbarch_data_registration
1645 {
1646 struct gdbarch_data *data;
1647 struct gdbarch_data_registration *next;
1648 };
1649
1650 struct gdbarch_data_registry
1651 {
1652 unsigned nr;
1653 struct gdbarch_data_registration *registrations;
1654 };
1655
1656 struct gdbarch_data_registry gdbarch_data_registry =
1657 {
1658 0, NULL,
1659 };
1660
1661 static struct gdbarch_data *
1662 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1663 gdbarch_data_post_init_ftype *post_init)
1664 {
1665 struct gdbarch_data_registration **curr;
1666 /* Append the new registraration. */
1667 for (curr = &gdbarch_data_registry.registrations;
1668 (*curr) != NULL;
1669 curr = &(*curr)->next);
1670 (*curr) = XMALLOC (struct gdbarch_data_registration);
1671 (*curr)->next = NULL;
1672 (*curr)->data = XMALLOC (struct gdbarch_data);
1673 (*curr)->data->index = gdbarch_data_registry.nr++;
1674 (*curr)->data->pre_init = pre_init;
1675 (*curr)->data->post_init = post_init;
1676 (*curr)->data->init_p = 1;
1677 return (*curr)->data;
1678 }
1679
1680 struct gdbarch_data *
1681 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1682 {
1683 return gdbarch_data_register (pre_init, NULL);
1684 }
1685
1686 struct gdbarch_data *
1687 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1688 {
1689 return gdbarch_data_register (NULL, post_init);
1690 }
1691
1692 /* Create/delete the gdbarch data vector. */
1693
1694 static void
1695 alloc_gdbarch_data (struct gdbarch *gdbarch)
1696 {
1697 gdb_assert (gdbarch->data == NULL);
1698 gdbarch->nr_data = gdbarch_data_registry.nr;
1699 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1700 }
1701
1702 /* Initialize the current value of the specified per-architecture
1703 data-pointer. */
1704
1705 void
1706 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1707 struct gdbarch_data *data,
1708 void *pointer)
1709 {
1710 gdb_assert (data->index < gdbarch->nr_data);
1711 gdb_assert (gdbarch->data[data->index] == NULL);
1712 gdb_assert (data->pre_init == NULL);
1713 gdbarch->data[data->index] = pointer;
1714 }
1715
1716 /* Return the current value of the specified per-architecture
1717 data-pointer. */
1718
1719 void *
1720 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1721 {
1722 gdb_assert (data->index < gdbarch->nr_data);
1723 if (gdbarch->data[data->index] == NULL)
1724 {
1725 /* The data-pointer isn't initialized, call init() to get a
1726 value. */
1727 if (data->pre_init != NULL)
1728 /* Mid architecture creation: pass just the obstack, and not
1729 the entire architecture, as that way it isn't possible for
1730 pre-init code to refer to undefined architecture
1731 fields. */
1732 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1733 else if (gdbarch->initialized_p
1734 && data->post_init != NULL)
1735 /* Post architecture creation: pass the entire architecture
1736 (as all fields are valid), but be careful to also detect
1737 recursive references. */
1738 {
1739 gdb_assert (data->init_p);
1740 data->init_p = 0;
1741 gdbarch->data[data->index] = data->post_init (gdbarch);
1742 data->init_p = 1;
1743 }
1744 else
1745 /* The architecture initialization hasn't completed - punt -
1746 hope that the caller knows what they are doing. Once
1747 deprecated_set_gdbarch_data has been initialized, this can be
1748 changed to an internal error. */
1749 return NULL;
1750 gdb_assert (gdbarch->data[data->index] != NULL);
1751 }
1752 return gdbarch->data[data->index];
1753 }
1754
1755
1756 /* Keep a registry of the architectures known by GDB. */
1757
1758 struct gdbarch_registration
1759 {
1760 enum bfd_architecture bfd_architecture;
1761 gdbarch_init_ftype *init;
1762 gdbarch_dump_tdep_ftype *dump_tdep;
1763 struct gdbarch_list *arches;
1764 struct gdbarch_registration *next;
1765 };
1766
1767 static struct gdbarch_registration *gdbarch_registry = NULL;
1768
1769 static void
1770 append_name (const char ***buf, int *nr, const char *name)
1771 {
1772 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1773 (*buf)[*nr] = name;
1774 *nr += 1;
1775 }
1776
1777 const char **
1778 gdbarch_printable_names (void)
1779 {
1780 /* Accumulate a list of names based on the registed list of
1781 architectures. */
1782 enum bfd_architecture a;
1783 int nr_arches = 0;
1784 const char **arches = NULL;
1785 struct gdbarch_registration *rego;
1786 for (rego = gdbarch_registry;
1787 rego != NULL;
1788 rego = rego->next)
1789 {
1790 const struct bfd_arch_info *ap;
1791 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1792 if (ap == NULL)
1793 internal_error (__FILE__, __LINE__,
1794 _("gdbarch_architecture_names: multi-arch unknown"));
1795 do
1796 {
1797 append_name (&arches, &nr_arches, ap->printable_name);
1798 ap = ap->next;
1799 }
1800 while (ap != NULL);
1801 }
1802 append_name (&arches, &nr_arches, NULL);
1803 return arches;
1804 }
1805
1806
1807 void
1808 gdbarch_register (enum bfd_architecture bfd_architecture,
1809 gdbarch_init_ftype *init,
1810 gdbarch_dump_tdep_ftype *dump_tdep)
1811 {
1812 struct gdbarch_registration **curr;
1813 const struct bfd_arch_info *bfd_arch_info;
1814 /* Check that BFD recognizes this architecture */
1815 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1816 if (bfd_arch_info == NULL)
1817 {
1818 internal_error (__FILE__, __LINE__,
1819 _("gdbarch: Attempt to register unknown architecture (%d)"),
1820 bfd_architecture);
1821 }
1822 /* Check that we haven't seen this architecture before */
1823 for (curr = &gdbarch_registry;
1824 (*curr) != NULL;
1825 curr = &(*curr)->next)
1826 {
1827 if (bfd_architecture == (*curr)->bfd_architecture)
1828 internal_error (__FILE__, __LINE__,
1829 _("gdbarch: Duplicate registraration of architecture (%s)"),
1830 bfd_arch_info->printable_name);
1831 }
1832 /* log it */
1833 if (gdbarch_debug)
1834 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1835 bfd_arch_info->printable_name,
1836 host_address_to_string (init));
1837 /* Append it */
1838 (*curr) = XMALLOC (struct gdbarch_registration);
1839 (*curr)->bfd_architecture = bfd_architecture;
1840 (*curr)->init = init;
1841 (*curr)->dump_tdep = dump_tdep;
1842 (*curr)->arches = NULL;
1843 (*curr)->next = NULL;
1844 }
1845
1846 void
1847 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1848 gdbarch_init_ftype *init)
1849 {
1850 gdbarch_register (bfd_architecture, init, NULL);
1851 }
1852
1853
1854 /* Look for an architecture using gdbarch_info. */
1855
1856 struct gdbarch_list *
1857 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1858 const struct gdbarch_info *info)
1859 {
1860 for (; arches != NULL; arches = arches->next)
1861 {
1862 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1863 continue;
1864 if (info->byte_order != arches->gdbarch->byte_order)
1865 continue;
1866 if (info->osabi != arches->gdbarch->osabi)
1867 continue;
1868 if (info->target_desc != arches->gdbarch->target_desc)
1869 continue;
1870 return arches;
1871 }
1872 return NULL;
1873 }
1874
1875
1876 /* Find an architecture that matches the specified INFO. Create a new
1877 architecture if needed. Return that new architecture. Assumes
1878 that there is no current architecture. */
1879
1880 static struct gdbarch *
1881 find_arch_by_info (struct gdbarch_info info)
1882 {
1883 struct gdbarch *new_gdbarch;
1884 struct gdbarch_registration *rego;
1885
1886 /* The existing architecture has been swapped out - all this code
1887 works from a clean slate. */
1888 gdb_assert (current_gdbarch == NULL);
1889
1890 /* Fill in missing parts of the INFO struct using a number of
1891 sources: "set ..."; INFOabfd supplied; and the global
1892 defaults. */
1893 gdbarch_info_fill (&info);
1894
1895 /* Must have found some sort of architecture. */
1896 gdb_assert (info.bfd_arch_info != NULL);
1897
1898 if (gdbarch_debug)
1899 {
1900 fprintf_unfiltered (gdb_stdlog,
1901 "find_arch_by_info: info.bfd_arch_info %s\n",
1902 (info.bfd_arch_info != NULL
1903 ? info.bfd_arch_info->printable_name
1904 : "(null)"));
1905 fprintf_unfiltered (gdb_stdlog,
1906 "find_arch_by_info: info.byte_order %d (%s)\n",
1907 info.byte_order,
1908 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1909 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1910 : "default"));
1911 fprintf_unfiltered (gdb_stdlog,
1912 "find_arch_by_info: info.osabi %d (%s)\n",
1913 info.osabi, gdbarch_osabi_name (info.osabi));
1914 fprintf_unfiltered (gdb_stdlog,
1915 "find_arch_by_info: info.abfd %s\n",
1916 host_address_to_string (info.abfd));
1917 fprintf_unfiltered (gdb_stdlog,
1918 "find_arch_by_info: info.tdep_info %s\n",
1919 host_address_to_string (info.tdep_info));
1920 }
1921
1922 /* Find the tdep code that knows about this architecture. */
1923 for (rego = gdbarch_registry;
1924 rego != NULL;
1925 rego = rego->next)
1926 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1927 break;
1928 if (rego == NULL)
1929 {
1930 if (gdbarch_debug)
1931 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1932 "No matching architecture\n");
1933 return 0;
1934 }
1935
1936 /* Ask the tdep code for an architecture that matches "info". */
1937 new_gdbarch = rego->init (info, rego->arches);
1938
1939 /* Did the tdep code like it? No. Reject the change and revert to
1940 the old architecture. */
1941 if (new_gdbarch == NULL)
1942 {
1943 if (gdbarch_debug)
1944 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1945 "Target rejected architecture\n");
1946 return NULL;
1947 }
1948
1949 /* Is this a pre-existing architecture (as determined by already
1950 being initialized)? Move it to the front of the architecture
1951 list (keeping the list sorted Most Recently Used). */
1952 if (new_gdbarch->initialized_p)
1953 {
1954 struct gdbarch_list **list;
1955 struct gdbarch_list *this;
1956 if (gdbarch_debug)
1957 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1958 "Previous architecture %s (%s) selected\n",
1959 host_address_to_string (new_gdbarch),
1960 new_gdbarch->bfd_arch_info->printable_name);
1961 /* Find the existing arch in the list. */
1962 for (list = &rego->arches;
1963 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1964 list = &(*list)->next);
1965 /* It had better be in the list of architectures. */
1966 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1967 /* Unlink THIS. */
1968 this = (*list);
1969 (*list) = this->next;
1970 /* Insert THIS at the front. */
1971 this->next = rego->arches;
1972 rego->arches = this;
1973 /* Return it. */
1974 return new_gdbarch;
1975 }
1976
1977 /* It's a new architecture. */
1978 if (gdbarch_debug)
1979 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1980 "New architecture %s (%s) selected\n",
1981 host_address_to_string (new_gdbarch),
1982 new_gdbarch->bfd_arch_info->printable_name);
1983
1984 /* Insert the new architecture into the front of the architecture
1985 list (keep the list sorted Most Recently Used). */
1986 {
1987 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1988 this->next = rego->arches;
1989 this->gdbarch = new_gdbarch;
1990 rego->arches = this;
1991 }
1992
1993 /* Check that the newly installed architecture is valid. Plug in
1994 any post init values. */
1995 new_gdbarch->dump_tdep = rego->dump_tdep;
1996 verify_gdbarch (new_gdbarch);
1997 new_gdbarch->initialized_p = 1;
1998
1999 if (gdbarch_debug)
2000 gdbarch_dump (new_gdbarch, gdb_stdlog);
2001
2002 return new_gdbarch;
2003 }
2004
2005 struct gdbarch *
2006 gdbarch_find_by_info (struct gdbarch_info info)
2007 {
2008 struct gdbarch *new_gdbarch;
2009
2010 /* Save the previously selected architecture, setting the global to
2011 NULL. This stops things like gdbarch->init() trying to use the
2012 previous architecture's configuration. The previous architecture
2013 may not even be of the same architecture family. The most recent
2014 architecture of the same family is found at the head of the
2015 rego->arches list. */
2016 struct gdbarch *old_gdbarch = current_gdbarch;
2017 current_gdbarch = NULL;
2018
2019 /* Find the specified architecture. */
2020 new_gdbarch = find_arch_by_info (info);
2021
2022 /* Restore the existing architecture. */
2023 gdb_assert (current_gdbarch == NULL);
2024 current_gdbarch = old_gdbarch;
2025
2026 return new_gdbarch;
2027 }
2028
2029 /* Make the specified architecture current. */
2030
2031 void
2032 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2033 {
2034 gdb_assert (new_gdbarch != NULL);
2035 gdb_assert (current_gdbarch != NULL);
2036 gdb_assert (new_gdbarch->initialized_p);
2037 current_gdbarch = new_gdbarch;
2038 target_gdbarch = new_gdbarch;
2039 observer_notify_architecture_changed (new_gdbarch);
2040 registers_changed ();
2041 }
2042
2043 extern void _initialize_gdbarch (void);
2044
2045 void
2046 _initialize_gdbarch (void)
2047 {
2048 struct cmd_list_element *c;
2049
2050 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2051 Set architecture debugging."), _("\\
2052 Show architecture debugging."), _("\\
2053 When non-zero, architecture debugging is enabled."),
2054 NULL,
2055 show_gdbarch_debug,
2056 &setdebuglist, &showdebuglist);
2057 }
2058 EOF
2059
2060 # close things off
2061 exec 1>&2
2062 #../move-if-change new-gdbarch.c gdbarch.c
2063 compare_new gdbarch.c
This page took 0.075852 seconds and 4 git commands to generate.