valops.c (value_of_local): New function.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
121 if [ -n "${predefault}" ]
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
140 if [ -n "${postdefault}" ]
141 then
142 fallbackdefault="${postdefault}"
143 elif [ -n "${predefault}" ]
144 then
145 fallbackdefault="${predefault}"
146 else
147 fallbackdefault="0"
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
154 fi
155 done
156 if [ -n "${class}" ]
157 then
158 true
159 else
160 false
161 fi
162 }
163
164
165 fallback_default_p ()
166 {
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169 }
170
171 class_is_variable_p ()
172 {
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_function_p ()
180 {
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_multiarch_p ()
188 {
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_predicate_p ()
196 {
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203 class_is_info_p ()
204 {
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
209 }
210
211
212 # dump out/verify the doco
213 for field in ${read}
214 do
215 case ${field} in
216
217 class ) : ;;
218
219 # # -> line disable
220 # f -> function
221 # hiding a function
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
224 # v -> variable
225 # hiding a variable
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
228 # i -> set from info
229 # hiding something from the ``struct info'' object
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
234
235 level ) : ;;
236
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
240
241 macro ) : ;;
242
243 # The name of the MACRO that this method is to be accessed by.
244
245 returntype ) : ;;
246
247 # For functions, the return type; for variables, the data type
248
249 function ) : ;;
250
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
254
255 formal ) : ;;
256
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
261
262 actual ) : ;;
263
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
267
268 attrib ) : ;;
269
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
272
273 staticdefault ) : ;;
274
275 # To help with the GDB startup a static gdbarch object is
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
279
280 # If STATICDEFAULT is empty, zero is used.
281
282 predefault ) : ;;
283
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
288
289 # If PREDEFAULT is empty, zero is used.
290
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
322
323 invalid_p ) : ;;
324
325 # A predicate equation that validates MEMBER. Non-zero is
326 # returned if the code creating the new architecture failed to
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
337
338 # See also PREDEFAULT and POSTDEFAULT.
339
340 fmt ) : ;;
341
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
346 # If FMT is empty, ``%ld'' is used.
347
348 print ) : ;;
349
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
353 # If PRINT is empty, ``(long)'' is used.
354
355 print_p ) : ;;
356
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
360 # () -> Call a custom function to do the dump.
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
363
364 # If PRINT_P is empty, ``1'' is always used.
365
366 description ) : ;;
367
368 # Currently unused.
369
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
373 esac
374 done
375
376
377 function_list ()
378 {
379 # See below (DOCO) for description of each field
380 cat <<EOF
381 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382 #
383 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384 # Number of bits in a char or unsigned char for the target machine.
385 # Just like CHAR_BIT in <limits.h> but describes the target machine.
386 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387 #
388 # Number of bits in a short or unsigned short for the target machine.
389 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390 # Number of bits in an int or unsigned int for the target machine.
391 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392 # Number of bits in a long or unsigned long for the target machine.
393 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394 # Number of bits in a long long or unsigned long long for the target
395 # machine.
396 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397 # Number of bits in a float for the target machine.
398 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399 # Number of bits in a double for the target machine.
400 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401 # Number of bits in a long double for the target machine.
402 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403 # For most targets, a pointer on the target and its representation as an
404 # address in GDB have the same size and "look the same". For such a
405 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406 # / addr_bit will be set from it.
407 #
408 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415 # Number of bits in a BFD_VMA for the target object file format.
416 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420 #
421 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426 # Function for getting target's idea of a frame pointer. FIXME: GDB's
427 # whole scheme for dealing with "frames" and "frame pointers" needs a
428 # serious shakedown.
429 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430 #
431 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433 #
434 v:2:NUM_REGS:int:num_regs::::0:-1
435 # This macro gives the number of pseudo-registers that live in the
436 # register namespace but do not get fetched or stored on the target.
437 # These pseudo-registers may be aliases for other registers,
438 # combinations of other registers, or they may be computed by GDB.
439 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
441 # GDB's standard (or well known) register numbers. These can map onto
442 # a real register or a pseudo (computed) register or not be defined at
443 # all (-1).
444 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
453 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
455 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456 # Convert from an sdb register number to an internal gdb register number.
457 # This should be defined in tm.h, if REGISTER_NAMES is not set up
458 # to map one to one onto the sdb register numbers.
459 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462 v:2:REGISTER_SIZE:int:register_size::::0:-1
463 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470 #
471 F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481 # setjmp/longjmp support.
482 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483 #
484 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485 # much better but at least they are vaguely consistent). The headers
486 # and body contain convoluted #if/#else sequences for determine how
487 # things should be compiled. Instead of trying to mimic that
488 # behaviour here (and hence entrench it further) gdbarch simply
489 # reqires that these methods be set up from the word go. This also
490 # avoids any potential problems with moving beyond multi-arch partial.
491 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498 f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507 #
508 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511 f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512 #
513 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516 #
517 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520 #
521 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524 #
525 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529 f:2:POP_FRAME:void:pop_frame:void:-:::0
530 #
531 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532 #
533 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537 #
538 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541 #
542 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544 #
545 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554 #
555 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556 #
557 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
562 # given frame is the outermost one and has no caller.
563 #
564 # XXXX - both default and alternate frame_chain_valid functions are
565 # deprecated. New code should use dummy frames and one of the generic
566 # functions.
567 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573 #
574 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
576 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
577 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
578 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
579 v:2:PARM_BOUNDARY:int:parm_boundary
580 #
581 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
582 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
583 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
584 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
585 # On some machines there are bits in addresses which are not really
586 # part of the address, but are used by the kernel, the hardware, etc.
587 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
588 # we get a "real" address such as one would find in a symbol table.
589 # This is used only for addresses of instructions, and even then I'm
590 # not sure it's used in all contexts. It exists to deal with there
591 # being a few stray bits in the PC which would mislead us, not as some
592 # sort of generic thing to handle alignment or segmentation (it's
593 # possible it should be in TARGET_READ_PC instead).
594 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
595 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
596 # ADDR_BITS_REMOVE.
597 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
598 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
599 # the target needs software single step. An ISA method to implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
602 # using the breakpoint system instead of blatting memory directly (as with rs6000).
603 #
604 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
605 # single step. If not, then implement single step using breakpoints.
606 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
607 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
608 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
609
610
611 # For SVR4 shared libraries, each call goes through a small piece of
612 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
613 # to nonzero if we are currently stopped in one of these.
614 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
615
616 # Some systems also have trampoline code for returning from shared libs.
617 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
618
619 # Sigtramp is a routine that the kernel calls (which then calls the
620 # signal handler). On most machines it is a library routine that is
621 # linked into the executable.
622 #
623 # This macro, given a program counter value and the name of the
624 # function in which that PC resides (which can be null if the name is
625 # not known), returns nonzero if the PC and name show that we are in
626 # sigtramp.
627 #
628 # On most machines just see if the name is sigtramp (and if we have
629 # no name, assume we are not in sigtramp).
630 #
631 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
632 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
633 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
634 # own local NAME lookup.
635 #
636 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
637 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
638 # does not.
639 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
640 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
641 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
642 # A target might have problems with watchpoints as soon as the stack
643 # frame of the current function has been destroyed. This mostly happens
644 # as the first action in a funtion's epilogue. in_function_epilogue_p()
645 # is defined to return a non-zero value if either the given addr is one
646 # instruction after the stack destroying instruction up to the trailing
647 # return instruction or if we can figure out that the stack frame has
648 # already been invalidated regardless of the value of addr. Targets
649 # which don't suffer from that problem could just let this functionality
650 # untouched.
651 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
652 # Given a vector of command-line arguments, return a newly allocated
653 # string which, when passed to the create_inferior function, will be
654 # parsed (on Unix systems, by the shell) to yield the same vector.
655 # This function should call error() if the argument vector is not
656 # representable for this target or if this target does not support
657 # command-line arguments.
658 # ARGC is the number of elements in the vector.
659 # ARGV is an array of strings, one per argument.
660 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
661 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
662 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
663 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
664 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0
665 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
666 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
667 EOF
668 }
669
670 #
671 # The .log file
672 #
673 exec > new-gdbarch.log
674 function_list | while do_read
675 do
676 cat <<EOF
677 ${class} ${macro}(${actual})
678 ${returntype} ${function} ($formal)${attrib}
679 EOF
680 for r in ${read}
681 do
682 eval echo \"\ \ \ \ ${r}=\${${r}}\"
683 done
684 # #fallbackdefault=${fallbackdefault}
685 # #valid_p=${valid_p}
686 #EOF
687 if class_is_predicate_p && fallback_default_p
688 then
689 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
690 kill $$
691 exit 1
692 fi
693 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
694 then
695 echo "Error: postdefault is useless when invalid_p=0" 1>&2
696 kill $$
697 exit 1
698 fi
699 if class_is_multiarch_p
700 then
701 if class_is_predicate_p ; then :
702 elif test "x${predefault}" = "x"
703 then
704 echo "Error: pure multi-arch function must have a predefault" 1>&2
705 kill $$
706 exit 1
707 fi
708 fi
709 echo ""
710 done
711
712 exec 1>&2
713 compare_new gdbarch.log
714
715
716 copyright ()
717 {
718 cat <<EOF
719 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
720
721 /* Dynamic architecture support for GDB, the GNU debugger.
722 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
723
724 This file is part of GDB.
725
726 This program is free software; you can redistribute it and/or modify
727 it under the terms of the GNU General Public License as published by
728 the Free Software Foundation; either version 2 of the License, or
729 (at your option) any later version.
730
731 This program is distributed in the hope that it will be useful,
732 but WITHOUT ANY WARRANTY; without even the implied warranty of
733 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
734 GNU General Public License for more details.
735
736 You should have received a copy of the GNU General Public License
737 along with this program; if not, write to the Free Software
738 Foundation, Inc., 59 Temple Place - Suite 330,
739 Boston, MA 02111-1307, USA. */
740
741 /* This file was created with the aid of \`\`gdbarch.sh''.
742
743 The Bourne shell script \`\`gdbarch.sh'' creates the files
744 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
745 against the existing \`\`gdbarch.[hc]''. Any differences found
746 being reported.
747
748 If editing this file, please also run gdbarch.sh and merge any
749 changes into that script. Conversely, when making sweeping changes
750 to this file, modifying gdbarch.sh and using its output may prove
751 easier. */
752
753 EOF
754 }
755
756 #
757 # The .h file
758 #
759
760 exec > new-gdbarch.h
761 copyright
762 cat <<EOF
763 #ifndef GDBARCH_H
764 #define GDBARCH_H
765
766 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
767 #if !GDB_MULTI_ARCH
768 /* Pull in function declarations refered to, indirectly, via macros. */
769 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
770 #include "inferior.h" /* For unsigned_address_to_pointer(). */
771 #endif
772
773 struct frame_info;
774 struct value;
775 struct objfile;
776 struct minimal_symbol;
777 struct regcache;
778
779 extern struct gdbarch *current_gdbarch;
780
781
782 /* If any of the following are defined, the target wasn't correctly
783 converted. */
784
785 #if GDB_MULTI_ARCH
786 #if defined (EXTRA_FRAME_INFO)
787 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
788 #endif
789 #endif
790
791 #if GDB_MULTI_ARCH
792 #if defined (FRAME_FIND_SAVED_REGS)
793 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
794 #endif
795 #endif
796
797 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
798 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
799 #endif
800 EOF
801
802 # function typedef's
803 printf "\n"
804 printf "\n"
805 printf "/* The following are pre-initialized by GDBARCH. */\n"
806 function_list | while do_read
807 do
808 if class_is_info_p
809 then
810 printf "\n"
811 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
812 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
813 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
814 printf "#error \"Non multi-arch definition of ${macro}\"\n"
815 printf "#endif\n"
816 printf "#if GDB_MULTI_ARCH\n"
817 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
818 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
819 printf "#endif\n"
820 printf "#endif\n"
821 fi
822 done
823
824 # function typedef's
825 printf "\n"
826 printf "\n"
827 printf "/* The following are initialized by the target dependent code. */\n"
828 function_list | while do_read
829 do
830 if [ -n "${comment}" ]
831 then
832 echo "${comment}" | sed \
833 -e '2 s,#,/*,' \
834 -e '3,$ s,#, ,' \
835 -e '$ s,$, */,'
836 fi
837 if class_is_multiarch_p
838 then
839 if class_is_predicate_p
840 then
841 printf "\n"
842 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
843 fi
844 else
845 if class_is_predicate_p
846 then
847 printf "\n"
848 printf "#if defined (${macro})\n"
849 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
850 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
851 printf "#if !defined (${macro}_P)\n"
852 printf "#define ${macro}_P() (1)\n"
853 printf "#endif\n"
854 printf "#endif\n"
855 printf "\n"
856 printf "/* Default predicate for non- multi-arch targets. */\n"
857 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
858 printf "#define ${macro}_P() (0)\n"
859 printf "#endif\n"
860 printf "\n"
861 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
862 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
863 printf "#error \"Non multi-arch definition of ${macro}\"\n"
864 printf "#endif\n"
865 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
866 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
867 printf "#endif\n"
868 fi
869 fi
870 if class_is_variable_p
871 then
872 if fallback_default_p || class_is_predicate_p
873 then
874 printf "\n"
875 printf "/* Default (value) for non- multi-arch platforms. */\n"
876 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
877 echo "#define ${macro} (${fallbackdefault})" \
878 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
879 printf "#endif\n"
880 fi
881 printf "\n"
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
883 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
884 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
885 printf "#error \"Non multi-arch definition of ${macro}\"\n"
886 printf "#endif\n"
887 printf "#if GDB_MULTI_ARCH\n"
888 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
889 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
890 printf "#endif\n"
891 printf "#endif\n"
892 fi
893 if class_is_function_p
894 then
895 if class_is_multiarch_p ; then :
896 elif fallback_default_p || class_is_predicate_p
897 then
898 printf "\n"
899 printf "/* Default (function) for non- multi-arch platforms. */\n"
900 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
901 if [ "x${fallbackdefault}" = "x0" ]
902 then
903 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
904 else
905 # FIXME: Should be passing current_gdbarch through!
906 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
907 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
908 fi
909 printf "#endif\n"
910 fi
911 printf "\n"
912 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
913 then
914 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
915 elif class_is_multiarch_p
916 then
917 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
918 else
919 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
920 fi
921 if [ "x${formal}" = "xvoid" ]
922 then
923 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
924 else
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
926 fi
927 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
928 if class_is_multiarch_p ; then :
929 else
930 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
931 printf "#error \"Non multi-arch definition of ${macro}\"\n"
932 printf "#endif\n"
933 printf "#if GDB_MULTI_ARCH\n"
934 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
935 if [ "x${actual}" = "x" ]
936 then
937 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
938 elif [ "x${actual}" = "x-" ]
939 then
940 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
941 else
942 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
943 fi
944 printf "#endif\n"
945 printf "#endif\n"
946 fi
947 fi
948 done
949
950 # close it off
951 cat <<EOF
952
953 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
954
955
956 /* Mechanism for co-ordinating the selection of a specific
957 architecture.
958
959 GDB targets (*-tdep.c) can register an interest in a specific
960 architecture. Other GDB components can register a need to maintain
961 per-architecture data.
962
963 The mechanisms below ensures that there is only a loose connection
964 between the set-architecture command and the various GDB
965 components. Each component can independently register their need
966 to maintain architecture specific data with gdbarch.
967
968 Pragmatics:
969
970 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
971 didn't scale.
972
973 The more traditional mega-struct containing architecture specific
974 data for all the various GDB components was also considered. Since
975 GDB is built from a variable number of (fairly independent)
976 components it was determined that the global aproach was not
977 applicable. */
978
979
980 /* Register a new architectural family with GDB.
981
982 Register support for the specified ARCHITECTURE with GDB. When
983 gdbarch determines that the specified architecture has been
984 selected, the corresponding INIT function is called.
985
986 --
987
988 The INIT function takes two parameters: INFO which contains the
989 information available to gdbarch about the (possibly new)
990 architecture; ARCHES which is a list of the previously created
991 \`\`struct gdbarch'' for this architecture.
992
993 The INFO parameter is, as far as possible, be pre-initialized with
994 information obtained from INFO.ABFD or the previously selected
995 architecture.
996
997 The ARCHES parameter is a linked list (sorted most recently used)
998 of all the previously created architures for this architecture
999 family. The (possibly NULL) ARCHES->gdbarch can used to access
1000 values from the previously selected architecture for this
1001 architecture family. The global \`\`current_gdbarch'' shall not be
1002 used.
1003
1004 The INIT function shall return any of: NULL - indicating that it
1005 doesn't recognize the selected architecture; an existing \`\`struct
1006 gdbarch'' from the ARCHES list - indicating that the new
1007 architecture is just a synonym for an earlier architecture (see
1008 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1009 - that describes the selected architecture (see gdbarch_alloc()).
1010
1011 The DUMP_TDEP function shall print out all target specific values.
1012 Care should be taken to ensure that the function works in both the
1013 multi-arch and non- multi-arch cases. */
1014
1015 struct gdbarch_list
1016 {
1017 struct gdbarch *gdbarch;
1018 struct gdbarch_list *next;
1019 };
1020
1021 struct gdbarch_info
1022 {
1023 /* Use default: NULL (ZERO). */
1024 const struct bfd_arch_info *bfd_arch_info;
1025
1026 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1027 int byte_order;
1028
1029 /* Use default: NULL (ZERO). */
1030 bfd *abfd;
1031
1032 /* Use default: NULL (ZERO). */
1033 struct gdbarch_tdep_info *tdep_info;
1034 };
1035
1036 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1037 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1038
1039 /* DEPRECATED - use gdbarch_register() */
1040 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1041
1042 extern void gdbarch_register (enum bfd_architecture architecture,
1043 gdbarch_init_ftype *,
1044 gdbarch_dump_tdep_ftype *);
1045
1046
1047 /* Return a freshly allocated, NULL terminated, array of the valid
1048 architecture names. Since architectures are registered during the
1049 _initialize phase this function only returns useful information
1050 once initialization has been completed. */
1051
1052 extern const char **gdbarch_printable_names (void);
1053
1054
1055 /* Helper function. Search the list of ARCHES for a GDBARCH that
1056 matches the information provided by INFO. */
1057
1058 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1059
1060
1061 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1062 basic initialization using values obtained from the INFO andTDEP
1063 parameters. set_gdbarch_*() functions are called to complete the
1064 initialization of the object. */
1065
1066 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1067
1068
1069 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1070 It is assumed that the caller freeds the \`\`struct
1071 gdbarch_tdep''. */
1072
1073 extern void gdbarch_free (struct gdbarch *);
1074
1075
1076 /* Helper function. Force an update of the current architecture.
1077
1078 The actual architecture selected is determined by INFO, \`\`(gdb) set
1079 architecture'' et.al., the existing architecture and BFD's default
1080 architecture. INFO should be initialized to zero and then selected
1081 fields should be updated.
1082
1083 Returns non-zero if the update succeeds */
1084
1085 extern int gdbarch_update_p (struct gdbarch_info info);
1086
1087
1088
1089 /* Register per-architecture data-pointer.
1090
1091 Reserve space for a per-architecture data-pointer. An identifier
1092 for the reserved data-pointer is returned. That identifer should
1093 be saved in a local static variable.
1094
1095 The per-architecture data-pointer is either initialized explicitly
1096 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1097 gdbarch_data()). FREE() is called to delete either an existing
1098 data-pointer overridden by set_gdbarch_data() or when the
1099 architecture object is being deleted.
1100
1101 When a previously created architecture is re-selected, the
1102 per-architecture data-pointer for that previous architecture is
1103 restored. INIT() is not re-called.
1104
1105 Multiple registrarants for any architecture are allowed (and
1106 strongly encouraged). */
1107
1108 struct gdbarch_data;
1109
1110 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1111 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1112 void *pointer);
1113 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1114 gdbarch_data_free_ftype *free);
1115 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1116 struct gdbarch_data *data,
1117 void *pointer);
1118
1119 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1120
1121
1122 /* Register per-architecture memory region.
1123
1124 Provide a memory-region swap mechanism. Per-architecture memory
1125 region are created. These memory regions are swapped whenever the
1126 architecture is changed. For a new architecture, the memory region
1127 is initialized with zero (0) and the INIT function is called.
1128
1129 Memory regions are swapped / initialized in the order that they are
1130 registered. NULL DATA and/or INIT values can be specified.
1131
1132 New code should use register_gdbarch_data(). */
1133
1134 typedef void (gdbarch_swap_ftype) (void);
1135 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1136 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1137
1138
1139
1140 /* The target-system-dependent byte order is dynamic */
1141
1142 extern int target_byte_order;
1143 #ifndef TARGET_BYTE_ORDER
1144 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1145 #endif
1146
1147 extern int target_byte_order_auto;
1148 #ifndef TARGET_BYTE_ORDER_AUTO
1149 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1150 #endif
1151
1152
1153
1154 /* The target-system-dependent BFD architecture is dynamic */
1155
1156 extern int target_architecture_auto;
1157 #ifndef TARGET_ARCHITECTURE_AUTO
1158 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1159 #endif
1160
1161 extern const struct bfd_arch_info *target_architecture;
1162 #ifndef TARGET_ARCHITECTURE
1163 #define TARGET_ARCHITECTURE (target_architecture + 0)
1164 #endif
1165
1166
1167 /* The target-system-dependent disassembler is semi-dynamic */
1168
1169 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1170 unsigned int len, disassemble_info *info);
1171
1172 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1173 disassemble_info *info);
1174
1175 extern void dis_asm_print_address (bfd_vma addr,
1176 disassemble_info *info);
1177
1178 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1179 extern disassemble_info tm_print_insn_info;
1180 #ifndef TARGET_PRINT_INSN_INFO
1181 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1182 #endif
1183
1184
1185
1186 /* Set the dynamic target-system-dependent parameters (architecture,
1187 byte-order, ...) using information found in the BFD */
1188
1189 extern void set_gdbarch_from_file (bfd *);
1190
1191
1192 /* Initialize the current architecture to the "first" one we find on
1193 our list. */
1194
1195 extern void initialize_current_architecture (void);
1196
1197 /* For non-multiarched targets, do any initialization of the default
1198 gdbarch object necessary after the _initialize_MODULE functions
1199 have run. */
1200 extern void initialize_non_multiarch (void);
1201
1202 /* gdbarch trace variable */
1203 extern int gdbarch_debug;
1204
1205 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1206
1207 #endif
1208 EOF
1209 exec 1>&2
1210 #../move-if-change new-gdbarch.h gdbarch.h
1211 compare_new gdbarch.h
1212
1213
1214 #
1215 # C file
1216 #
1217
1218 exec > new-gdbarch.c
1219 copyright
1220 cat <<EOF
1221
1222 #include "defs.h"
1223 #include "arch-utils.h"
1224
1225 #if GDB_MULTI_ARCH
1226 #include "gdbcmd.h"
1227 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1228 #else
1229 /* Just include everything in sight so that the every old definition
1230 of macro is visible. */
1231 #include "gdb_string.h"
1232 #include <ctype.h>
1233 #include "symtab.h"
1234 #include "frame.h"
1235 #include "inferior.h"
1236 #include "breakpoint.h"
1237 #include "gdb_wait.h"
1238 #include "gdbcore.h"
1239 #include "gdbcmd.h"
1240 #include "target.h"
1241 #include "gdbthread.h"
1242 #include "annotate.h"
1243 #include "symfile.h" /* for overlay functions */
1244 #include "value.h" /* For old tm.h/nm.h macros. */
1245 #endif
1246 #include "symcat.h"
1247
1248 #include "floatformat.h"
1249
1250 #include "gdb_assert.h"
1251 #include "gdb_string.h"
1252 #include "gdb-events.h"
1253
1254 /* Static function declarations */
1255
1256 static void verify_gdbarch (struct gdbarch *gdbarch);
1257 static void alloc_gdbarch_data (struct gdbarch *);
1258 static void free_gdbarch_data (struct gdbarch *);
1259 static void init_gdbarch_swap (struct gdbarch *);
1260 static void clear_gdbarch_swap (struct gdbarch *);
1261 static void swapout_gdbarch_swap (struct gdbarch *);
1262 static void swapin_gdbarch_swap (struct gdbarch *);
1263
1264 /* Non-zero if we want to trace architecture code. */
1265
1266 #ifndef GDBARCH_DEBUG
1267 #define GDBARCH_DEBUG 0
1268 #endif
1269 int gdbarch_debug = GDBARCH_DEBUG;
1270
1271 EOF
1272
1273 # gdbarch open the gdbarch object
1274 printf "\n"
1275 printf "/* Maintain the struct gdbarch object */\n"
1276 printf "\n"
1277 printf "struct gdbarch\n"
1278 printf "{\n"
1279 printf " /* Has this architecture been fully initialized? */\n"
1280 printf " int initialized_p;\n"
1281 printf " /* basic architectural information */\n"
1282 function_list | while do_read
1283 do
1284 if class_is_info_p
1285 then
1286 printf " ${returntype} ${function};\n"
1287 fi
1288 done
1289 printf "\n"
1290 printf " /* target specific vector. */\n"
1291 printf " struct gdbarch_tdep *tdep;\n"
1292 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1293 printf "\n"
1294 printf " /* per-architecture data-pointers */\n"
1295 printf " unsigned nr_data;\n"
1296 printf " void **data;\n"
1297 printf "\n"
1298 printf " /* per-architecture swap-regions */\n"
1299 printf " struct gdbarch_swap *swap;\n"
1300 printf "\n"
1301 cat <<EOF
1302 /* Multi-arch values.
1303
1304 When extending this structure you must:
1305
1306 Add the field below.
1307
1308 Declare set/get functions and define the corresponding
1309 macro in gdbarch.h.
1310
1311 gdbarch_alloc(): If zero/NULL is not a suitable default,
1312 initialize the new field.
1313
1314 verify_gdbarch(): Confirm that the target updated the field
1315 correctly.
1316
1317 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1318 field is dumped out
1319
1320 \`\`startup_gdbarch()'': Append an initial value to the static
1321 variable (base values on the host's c-type system).
1322
1323 get_gdbarch(): Implement the set/get functions (probably using
1324 the macro's as shortcuts).
1325
1326 */
1327
1328 EOF
1329 function_list | while do_read
1330 do
1331 if class_is_variable_p
1332 then
1333 printf " ${returntype} ${function};\n"
1334 elif class_is_function_p
1335 then
1336 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1337 fi
1338 done
1339 printf "};\n"
1340
1341 # A pre-initialized vector
1342 printf "\n"
1343 printf "\n"
1344 cat <<EOF
1345 /* The default architecture uses host values (for want of a better
1346 choice). */
1347 EOF
1348 printf "\n"
1349 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1350 printf "\n"
1351 printf "struct gdbarch startup_gdbarch =\n"
1352 printf "{\n"
1353 printf " 1, /* Always initialized. */\n"
1354 printf " /* basic architecture information */\n"
1355 function_list | while do_read
1356 do
1357 if class_is_info_p
1358 then
1359 printf " ${staticdefault},\n"
1360 fi
1361 done
1362 cat <<EOF
1363 /* target specific vector and its dump routine */
1364 NULL, NULL,
1365 /*per-architecture data-pointers and swap regions */
1366 0, NULL, NULL,
1367 /* Multi-arch values */
1368 EOF
1369 function_list | while do_read
1370 do
1371 if class_is_function_p || class_is_variable_p
1372 then
1373 printf " ${staticdefault},\n"
1374 fi
1375 done
1376 cat <<EOF
1377 /* startup_gdbarch() */
1378 };
1379
1380 struct gdbarch *current_gdbarch = &startup_gdbarch;
1381
1382 /* Do any initialization needed for a non-multiarch configuration
1383 after the _initialize_MODULE functions have been run. */
1384 void
1385 initialize_non_multiarch (void)
1386 {
1387 alloc_gdbarch_data (&startup_gdbarch);
1388 /* Ensure that all swap areas are zeroed so that they again think
1389 they are starting from scratch. */
1390 clear_gdbarch_swap (&startup_gdbarch);
1391 init_gdbarch_swap (&startup_gdbarch);
1392 }
1393 EOF
1394
1395 # Create a new gdbarch struct
1396 printf "\n"
1397 printf "\n"
1398 cat <<EOF
1399 /* Create a new \`\`struct gdbarch'' based on information provided by
1400 \`\`struct gdbarch_info''. */
1401 EOF
1402 printf "\n"
1403 cat <<EOF
1404 struct gdbarch *
1405 gdbarch_alloc (const struct gdbarch_info *info,
1406 struct gdbarch_tdep *tdep)
1407 {
1408 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1409 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1410 the current local architecture and not the previous global
1411 architecture. This ensures that the new architectures initial
1412 values are not influenced by the previous architecture. Once
1413 everything is parameterised with gdbarch, this will go away. */
1414 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1415 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1416
1417 alloc_gdbarch_data (current_gdbarch);
1418
1419 current_gdbarch->tdep = tdep;
1420 EOF
1421 printf "\n"
1422 function_list | while do_read
1423 do
1424 if class_is_info_p
1425 then
1426 printf " current_gdbarch->${function} = info->${function};\n"
1427 fi
1428 done
1429 printf "\n"
1430 printf " /* Force the explicit initialization of these. */\n"
1431 function_list | while do_read
1432 do
1433 if class_is_function_p || class_is_variable_p
1434 then
1435 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1436 then
1437 printf " current_gdbarch->${function} = ${predefault};\n"
1438 fi
1439 fi
1440 done
1441 cat <<EOF
1442 /* gdbarch_alloc() */
1443
1444 return current_gdbarch;
1445 }
1446 EOF
1447
1448 # Free a gdbarch struct.
1449 printf "\n"
1450 printf "\n"
1451 cat <<EOF
1452 /* Free a gdbarch struct. This should never happen in normal
1453 operation --- once you've created a gdbarch, you keep it around.
1454 However, if an architecture's init function encounters an error
1455 building the structure, it may need to clean up a partially
1456 constructed gdbarch. */
1457
1458 void
1459 gdbarch_free (struct gdbarch *arch)
1460 {
1461 gdb_assert (arch != NULL);
1462 free_gdbarch_data (arch);
1463 xfree (arch);
1464 }
1465 EOF
1466
1467 # verify a new architecture
1468 printf "\n"
1469 printf "\n"
1470 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1471 printf "\n"
1472 cat <<EOF
1473 static void
1474 verify_gdbarch (struct gdbarch *gdbarch)
1475 {
1476 struct ui_file *log;
1477 struct cleanup *cleanups;
1478 long dummy;
1479 char *buf;
1480 /* Only perform sanity checks on a multi-arch target. */
1481 if (!GDB_MULTI_ARCH)
1482 return;
1483 log = mem_fileopen ();
1484 cleanups = make_cleanup_ui_file_delete (log);
1485 /* fundamental */
1486 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1487 fprintf_unfiltered (log, "\n\tbyte-order");
1488 if (gdbarch->bfd_arch_info == NULL)
1489 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1490 /* Check those that need to be defined for the given multi-arch level. */
1491 EOF
1492 function_list | while do_read
1493 do
1494 if class_is_function_p || class_is_variable_p
1495 then
1496 if [ "x${invalid_p}" = "x0" ]
1497 then
1498 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1499 elif class_is_predicate_p
1500 then
1501 printf " /* Skip verify of ${function}, has predicate */\n"
1502 # FIXME: See do_read for potential simplification
1503 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1504 then
1505 printf " if (${invalid_p})\n"
1506 printf " gdbarch->${function} = ${postdefault};\n"
1507 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1508 then
1509 printf " if (gdbarch->${function} == ${predefault})\n"
1510 printf " gdbarch->${function} = ${postdefault};\n"
1511 elif [ -n "${postdefault}" ]
1512 then
1513 printf " if (gdbarch->${function} == 0)\n"
1514 printf " gdbarch->${function} = ${postdefault};\n"
1515 elif [ -n "${invalid_p}" ]
1516 then
1517 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1518 printf " && (${invalid_p}))\n"
1519 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1520 elif [ -n "${predefault}" ]
1521 then
1522 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1523 printf " && (gdbarch->${function} == ${predefault}))\n"
1524 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1525 fi
1526 fi
1527 done
1528 cat <<EOF
1529 buf = ui_file_xstrdup (log, &dummy);
1530 make_cleanup (xfree, buf);
1531 if (strlen (buf) > 0)
1532 internal_error (__FILE__, __LINE__,
1533 "verify_gdbarch: the following are invalid ...%s",
1534 buf);
1535 do_cleanups (cleanups);
1536 }
1537 EOF
1538
1539 # dump the structure
1540 printf "\n"
1541 printf "\n"
1542 cat <<EOF
1543 /* Print out the details of the current architecture. */
1544
1545 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1546 just happens to match the global variable \`\`current_gdbarch''. That
1547 way macros refering to that variable get the local and not the global
1548 version - ulgh. Once everything is parameterised with gdbarch, this
1549 will go away. */
1550
1551 void
1552 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1553 {
1554 fprintf_unfiltered (file,
1555 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1556 GDB_MULTI_ARCH);
1557 EOF
1558 function_list | sort -t: +2 | while do_read
1559 do
1560 # multiarch functions don't have macros.
1561 if class_is_multiarch_p
1562 then
1563 printf " if (GDB_MULTI_ARCH)\n"
1564 printf " fprintf_unfiltered (file,\n"
1565 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1566 printf " (long) current_gdbarch->${function});\n"
1567 continue
1568 fi
1569 # Print the macro definition.
1570 printf "#ifdef ${macro}\n"
1571 if [ "x${returntype}" = "xvoid" ]
1572 then
1573 printf "#if GDB_MULTI_ARCH\n"
1574 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1575 fi
1576 if class_is_function_p
1577 then
1578 printf " fprintf_unfiltered (file,\n"
1579 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1580 printf " \"${macro}(${actual})\",\n"
1581 printf " XSTRING (${macro} (${actual})));\n"
1582 else
1583 printf " fprintf_unfiltered (file,\n"
1584 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1585 printf " XSTRING (${macro}));\n"
1586 fi
1587 # Print the architecture vector value
1588 if [ "x${returntype}" = "xvoid" ]
1589 then
1590 printf "#endif\n"
1591 fi
1592 if [ "x${print_p}" = "x()" ]
1593 then
1594 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1595 elif [ "x${print_p}" = "x0" ]
1596 then
1597 printf " /* skip print of ${macro}, print_p == 0. */\n"
1598 elif [ -n "${print_p}" ]
1599 then
1600 printf " if (${print_p})\n"
1601 printf " fprintf_unfiltered (file,\n"
1602 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1603 printf " ${print});\n"
1604 elif class_is_function_p
1605 then
1606 printf " if (GDB_MULTI_ARCH)\n"
1607 printf " fprintf_unfiltered (file,\n"
1608 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1609 printf " (long) current_gdbarch->${function}\n"
1610 printf " /*${macro} ()*/);\n"
1611 else
1612 printf " fprintf_unfiltered (file,\n"
1613 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1614 printf " ${print});\n"
1615 fi
1616 printf "#endif\n"
1617 done
1618 cat <<EOF
1619 if (current_gdbarch->dump_tdep != NULL)
1620 current_gdbarch->dump_tdep (current_gdbarch, file);
1621 }
1622 EOF
1623
1624
1625 # GET/SET
1626 printf "\n"
1627 cat <<EOF
1628 struct gdbarch_tdep *
1629 gdbarch_tdep (struct gdbarch *gdbarch)
1630 {
1631 if (gdbarch_debug >= 2)
1632 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1633 return gdbarch->tdep;
1634 }
1635 EOF
1636 printf "\n"
1637 function_list | while do_read
1638 do
1639 if class_is_predicate_p
1640 then
1641 printf "\n"
1642 printf "int\n"
1643 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1644 printf "{\n"
1645 printf " gdb_assert (gdbarch != NULL);\n"
1646 if [ -n "${valid_p}" ]
1647 then
1648 printf " return ${valid_p};\n"
1649 else
1650 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1651 fi
1652 printf "}\n"
1653 fi
1654 if class_is_function_p
1655 then
1656 printf "\n"
1657 printf "${returntype}\n"
1658 if [ "x${formal}" = "xvoid" ]
1659 then
1660 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1661 else
1662 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1663 fi
1664 printf "{\n"
1665 printf " gdb_assert (gdbarch != NULL);\n"
1666 printf " if (gdbarch->${function} == 0)\n"
1667 printf " internal_error (__FILE__, __LINE__,\n"
1668 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1669 printf " if (gdbarch_debug >= 2)\n"
1670 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1671 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1672 then
1673 if class_is_multiarch_p
1674 then
1675 params="gdbarch"
1676 else
1677 params=""
1678 fi
1679 else
1680 if class_is_multiarch_p
1681 then
1682 params="gdbarch, ${actual}"
1683 else
1684 params="${actual}"
1685 fi
1686 fi
1687 if [ "x${returntype}" = "xvoid" ]
1688 then
1689 printf " gdbarch->${function} (${params});\n"
1690 else
1691 printf " return gdbarch->${function} (${params});\n"
1692 fi
1693 printf "}\n"
1694 printf "\n"
1695 printf "void\n"
1696 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1697 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1698 printf "{\n"
1699 printf " gdbarch->${function} = ${function};\n"
1700 printf "}\n"
1701 elif class_is_variable_p
1702 then
1703 printf "\n"
1704 printf "${returntype}\n"
1705 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1706 printf "{\n"
1707 printf " gdb_assert (gdbarch != NULL);\n"
1708 if [ "x${invalid_p}" = "x0" ]
1709 then
1710 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1711 elif [ -n "${invalid_p}" ]
1712 then
1713 printf " if (${invalid_p})\n"
1714 printf " internal_error (__FILE__, __LINE__,\n"
1715 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1716 elif [ -n "${predefault}" ]
1717 then
1718 printf " if (gdbarch->${function} == ${predefault})\n"
1719 printf " internal_error (__FILE__, __LINE__,\n"
1720 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1721 fi
1722 printf " if (gdbarch_debug >= 2)\n"
1723 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1724 printf " return gdbarch->${function};\n"
1725 printf "}\n"
1726 printf "\n"
1727 printf "void\n"
1728 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1729 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1730 printf "{\n"
1731 printf " gdbarch->${function} = ${function};\n"
1732 printf "}\n"
1733 elif class_is_info_p
1734 then
1735 printf "\n"
1736 printf "${returntype}\n"
1737 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1738 printf "{\n"
1739 printf " gdb_assert (gdbarch != NULL);\n"
1740 printf " if (gdbarch_debug >= 2)\n"
1741 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1742 printf " return gdbarch->${function};\n"
1743 printf "}\n"
1744 fi
1745 done
1746
1747 # All the trailing guff
1748 cat <<EOF
1749
1750
1751 /* Keep a registry of per-architecture data-pointers required by GDB
1752 modules. */
1753
1754 struct gdbarch_data
1755 {
1756 unsigned index;
1757 int init_p;
1758 gdbarch_data_init_ftype *init;
1759 gdbarch_data_free_ftype *free;
1760 };
1761
1762 struct gdbarch_data_registration
1763 {
1764 struct gdbarch_data *data;
1765 struct gdbarch_data_registration *next;
1766 };
1767
1768 struct gdbarch_data_registry
1769 {
1770 unsigned nr;
1771 struct gdbarch_data_registration *registrations;
1772 };
1773
1774 struct gdbarch_data_registry gdbarch_data_registry =
1775 {
1776 0, NULL,
1777 };
1778
1779 struct gdbarch_data *
1780 register_gdbarch_data (gdbarch_data_init_ftype *init,
1781 gdbarch_data_free_ftype *free)
1782 {
1783 struct gdbarch_data_registration **curr;
1784 /* Append the new registraration. */
1785 for (curr = &gdbarch_data_registry.registrations;
1786 (*curr) != NULL;
1787 curr = &(*curr)->next);
1788 (*curr) = XMALLOC (struct gdbarch_data_registration);
1789 (*curr)->next = NULL;
1790 (*curr)->data = XMALLOC (struct gdbarch_data);
1791 (*curr)->data->index = gdbarch_data_registry.nr++;
1792 (*curr)->data->init = init;
1793 (*curr)->data->init_p = 1;
1794 (*curr)->data->free = free;
1795 return (*curr)->data;
1796 }
1797
1798
1799 /* Create/delete the gdbarch data vector. */
1800
1801 static void
1802 alloc_gdbarch_data (struct gdbarch *gdbarch)
1803 {
1804 gdb_assert (gdbarch->data == NULL);
1805 gdbarch->nr_data = gdbarch_data_registry.nr;
1806 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1807 }
1808
1809 static void
1810 free_gdbarch_data (struct gdbarch *gdbarch)
1811 {
1812 struct gdbarch_data_registration *rego;
1813 gdb_assert (gdbarch->data != NULL);
1814 for (rego = gdbarch_data_registry.registrations;
1815 rego != NULL;
1816 rego = rego->next)
1817 {
1818 struct gdbarch_data *data = rego->data;
1819 gdb_assert (data->index < gdbarch->nr_data);
1820 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1821 {
1822 data->free (gdbarch, gdbarch->data[data->index]);
1823 gdbarch->data[data->index] = NULL;
1824 }
1825 }
1826 xfree (gdbarch->data);
1827 gdbarch->data = NULL;
1828 }
1829
1830
1831 /* Initialize the current value of the specified per-architecture
1832 data-pointer. */
1833
1834 void
1835 set_gdbarch_data (struct gdbarch *gdbarch,
1836 struct gdbarch_data *data,
1837 void *pointer)
1838 {
1839 gdb_assert (data->index < gdbarch->nr_data);
1840 if (gdbarch->data[data->index] != NULL)
1841 {
1842 gdb_assert (data->free != NULL);
1843 data->free (gdbarch, gdbarch->data[data->index]);
1844 }
1845 gdbarch->data[data->index] = pointer;
1846 }
1847
1848 /* Return the current value of the specified per-architecture
1849 data-pointer. */
1850
1851 void *
1852 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1853 {
1854 gdb_assert (data->index < gdbarch->nr_data);
1855 /* The data-pointer isn't initialized, call init() to get a value but
1856 only if the architecture initializaiton has completed. Otherwise
1857 punt - hope that the caller knows what they are doing. */
1858 if (gdbarch->data[data->index] == NULL
1859 && gdbarch->initialized_p)
1860 {
1861 /* Be careful to detect an initialization cycle. */
1862 gdb_assert (data->init_p);
1863 data->init_p = 0;
1864 gdb_assert (data->init != NULL);
1865 gdbarch->data[data->index] = data->init (gdbarch);
1866 data->init_p = 1;
1867 gdb_assert (gdbarch->data[data->index] != NULL);
1868 }
1869 return gdbarch->data[data->index];
1870 }
1871
1872
1873
1874 /* Keep a registry of swapped data required by GDB modules. */
1875
1876 struct gdbarch_swap
1877 {
1878 void *swap;
1879 struct gdbarch_swap_registration *source;
1880 struct gdbarch_swap *next;
1881 };
1882
1883 struct gdbarch_swap_registration
1884 {
1885 void *data;
1886 unsigned long sizeof_data;
1887 gdbarch_swap_ftype *init;
1888 struct gdbarch_swap_registration *next;
1889 };
1890
1891 struct gdbarch_swap_registry
1892 {
1893 int nr;
1894 struct gdbarch_swap_registration *registrations;
1895 };
1896
1897 struct gdbarch_swap_registry gdbarch_swap_registry =
1898 {
1899 0, NULL,
1900 };
1901
1902 void
1903 register_gdbarch_swap (void *data,
1904 unsigned long sizeof_data,
1905 gdbarch_swap_ftype *init)
1906 {
1907 struct gdbarch_swap_registration **rego;
1908 for (rego = &gdbarch_swap_registry.registrations;
1909 (*rego) != NULL;
1910 rego = &(*rego)->next);
1911 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1912 (*rego)->next = NULL;
1913 (*rego)->init = init;
1914 (*rego)->data = data;
1915 (*rego)->sizeof_data = sizeof_data;
1916 }
1917
1918 static void
1919 clear_gdbarch_swap (struct gdbarch *gdbarch)
1920 {
1921 struct gdbarch_swap *curr;
1922 for (curr = gdbarch->swap;
1923 curr != NULL;
1924 curr = curr->next)
1925 {
1926 memset (curr->source->data, 0, curr->source->sizeof_data);
1927 }
1928 }
1929
1930 static void
1931 init_gdbarch_swap (struct gdbarch *gdbarch)
1932 {
1933 struct gdbarch_swap_registration *rego;
1934 struct gdbarch_swap **curr = &gdbarch->swap;
1935 for (rego = gdbarch_swap_registry.registrations;
1936 rego != NULL;
1937 rego = rego->next)
1938 {
1939 if (rego->data != NULL)
1940 {
1941 (*curr) = XMALLOC (struct gdbarch_swap);
1942 (*curr)->source = rego;
1943 (*curr)->swap = xmalloc (rego->sizeof_data);
1944 (*curr)->next = NULL;
1945 curr = &(*curr)->next;
1946 }
1947 if (rego->init != NULL)
1948 rego->init ();
1949 }
1950 }
1951
1952 static void
1953 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1954 {
1955 struct gdbarch_swap *curr;
1956 for (curr = gdbarch->swap;
1957 curr != NULL;
1958 curr = curr->next)
1959 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1960 }
1961
1962 static void
1963 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1964 {
1965 struct gdbarch_swap *curr;
1966 for (curr = gdbarch->swap;
1967 curr != NULL;
1968 curr = curr->next)
1969 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1970 }
1971
1972
1973 /* Keep a registry of the architectures known by GDB. */
1974
1975 struct gdbarch_registration
1976 {
1977 enum bfd_architecture bfd_architecture;
1978 gdbarch_init_ftype *init;
1979 gdbarch_dump_tdep_ftype *dump_tdep;
1980 struct gdbarch_list *arches;
1981 struct gdbarch_registration *next;
1982 };
1983
1984 static struct gdbarch_registration *gdbarch_registry = NULL;
1985
1986 static void
1987 append_name (const char ***buf, int *nr, const char *name)
1988 {
1989 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1990 (*buf)[*nr] = name;
1991 *nr += 1;
1992 }
1993
1994 const char **
1995 gdbarch_printable_names (void)
1996 {
1997 if (GDB_MULTI_ARCH)
1998 {
1999 /* Accumulate a list of names based on the registed list of
2000 architectures. */
2001 enum bfd_architecture a;
2002 int nr_arches = 0;
2003 const char **arches = NULL;
2004 struct gdbarch_registration *rego;
2005 for (rego = gdbarch_registry;
2006 rego != NULL;
2007 rego = rego->next)
2008 {
2009 const struct bfd_arch_info *ap;
2010 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2011 if (ap == NULL)
2012 internal_error (__FILE__, __LINE__,
2013 "gdbarch_architecture_names: multi-arch unknown");
2014 do
2015 {
2016 append_name (&arches, &nr_arches, ap->printable_name);
2017 ap = ap->next;
2018 }
2019 while (ap != NULL);
2020 }
2021 append_name (&arches, &nr_arches, NULL);
2022 return arches;
2023 }
2024 else
2025 /* Just return all the architectures that BFD knows. Assume that
2026 the legacy architecture framework supports them. */
2027 return bfd_arch_list ();
2028 }
2029
2030
2031 void
2032 gdbarch_register (enum bfd_architecture bfd_architecture,
2033 gdbarch_init_ftype *init,
2034 gdbarch_dump_tdep_ftype *dump_tdep)
2035 {
2036 struct gdbarch_registration **curr;
2037 const struct bfd_arch_info *bfd_arch_info;
2038 /* Check that BFD recognizes this architecture */
2039 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2040 if (bfd_arch_info == NULL)
2041 {
2042 internal_error (__FILE__, __LINE__,
2043 "gdbarch: Attempt to register unknown architecture (%d)",
2044 bfd_architecture);
2045 }
2046 /* Check that we haven't seen this architecture before */
2047 for (curr = &gdbarch_registry;
2048 (*curr) != NULL;
2049 curr = &(*curr)->next)
2050 {
2051 if (bfd_architecture == (*curr)->bfd_architecture)
2052 internal_error (__FILE__, __LINE__,
2053 "gdbarch: Duplicate registraration of architecture (%s)",
2054 bfd_arch_info->printable_name);
2055 }
2056 /* log it */
2057 if (gdbarch_debug)
2058 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2059 bfd_arch_info->printable_name,
2060 (long) init);
2061 /* Append it */
2062 (*curr) = XMALLOC (struct gdbarch_registration);
2063 (*curr)->bfd_architecture = bfd_architecture;
2064 (*curr)->init = init;
2065 (*curr)->dump_tdep = dump_tdep;
2066 (*curr)->arches = NULL;
2067 (*curr)->next = NULL;
2068 /* When non- multi-arch, install whatever target dump routine we've
2069 been provided - hopefully that routine has been written correctly
2070 and works regardless of multi-arch. */
2071 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2072 && startup_gdbarch.dump_tdep == NULL)
2073 startup_gdbarch.dump_tdep = dump_tdep;
2074 }
2075
2076 void
2077 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2078 gdbarch_init_ftype *init)
2079 {
2080 gdbarch_register (bfd_architecture, init, NULL);
2081 }
2082
2083
2084 /* Look for an architecture using gdbarch_info. Base search on only
2085 BFD_ARCH_INFO and BYTE_ORDER. */
2086
2087 struct gdbarch_list *
2088 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2089 const struct gdbarch_info *info)
2090 {
2091 for (; arches != NULL; arches = arches->next)
2092 {
2093 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2094 continue;
2095 if (info->byte_order != arches->gdbarch->byte_order)
2096 continue;
2097 return arches;
2098 }
2099 return NULL;
2100 }
2101
2102
2103 /* Update the current architecture. Return ZERO if the update request
2104 failed. */
2105
2106 int
2107 gdbarch_update_p (struct gdbarch_info info)
2108 {
2109 struct gdbarch *new_gdbarch;
2110 struct gdbarch *old_gdbarch;
2111 struct gdbarch_registration *rego;
2112
2113 /* Fill in missing parts of the INFO struct using a number of
2114 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2115
2116 /* \`\`(gdb) set architecture ...'' */
2117 if (info.bfd_arch_info == NULL
2118 && !TARGET_ARCHITECTURE_AUTO)
2119 info.bfd_arch_info = TARGET_ARCHITECTURE;
2120 if (info.bfd_arch_info == NULL
2121 && info.abfd != NULL
2122 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2123 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2124 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2125 if (info.bfd_arch_info == NULL)
2126 info.bfd_arch_info = TARGET_ARCHITECTURE;
2127
2128 /* \`\`(gdb) set byte-order ...'' */
2129 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2130 && !TARGET_BYTE_ORDER_AUTO)
2131 info.byte_order = TARGET_BYTE_ORDER;
2132 /* From the INFO struct. */
2133 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2134 && info.abfd != NULL)
2135 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2136 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2137 : BFD_ENDIAN_UNKNOWN);
2138 /* From the current target. */
2139 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2140 info.byte_order = TARGET_BYTE_ORDER;
2141
2142 /* Must have found some sort of architecture. */
2143 gdb_assert (info.bfd_arch_info != NULL);
2144
2145 if (gdbarch_debug)
2146 {
2147 fprintf_unfiltered (gdb_stdlog,
2148 "gdbarch_update: info.bfd_arch_info %s\n",
2149 (info.bfd_arch_info != NULL
2150 ? info.bfd_arch_info->printable_name
2151 : "(null)"));
2152 fprintf_unfiltered (gdb_stdlog,
2153 "gdbarch_update: info.byte_order %d (%s)\n",
2154 info.byte_order,
2155 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2156 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2157 : "default"));
2158 fprintf_unfiltered (gdb_stdlog,
2159 "gdbarch_update: info.abfd 0x%lx\n",
2160 (long) info.abfd);
2161 fprintf_unfiltered (gdb_stdlog,
2162 "gdbarch_update: info.tdep_info 0x%lx\n",
2163 (long) info.tdep_info);
2164 }
2165
2166 /* Find the target that knows about this architecture. */
2167 for (rego = gdbarch_registry;
2168 rego != NULL;
2169 rego = rego->next)
2170 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2171 break;
2172 if (rego == NULL)
2173 {
2174 if (gdbarch_debug)
2175 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2176 return 0;
2177 }
2178
2179 /* Swap the data belonging to the old target out setting the
2180 installed data to zero. This stops the ->init() function trying
2181 to refer to the previous architecture's global data structures. */
2182 swapout_gdbarch_swap (current_gdbarch);
2183 clear_gdbarch_swap (current_gdbarch);
2184
2185 /* Save the previously selected architecture, setting the global to
2186 NULL. This stops ->init() trying to use the previous
2187 architecture's configuration. The previous architecture may not
2188 even be of the same architecture family. The most recent
2189 architecture of the same family is found at the head of the
2190 rego->arches list. */
2191 old_gdbarch = current_gdbarch;
2192 current_gdbarch = NULL;
2193
2194 /* Ask the target for a replacement architecture. */
2195 new_gdbarch = rego->init (info, rego->arches);
2196
2197 /* Did the target like it? No. Reject the change and revert to the
2198 old architecture. */
2199 if (new_gdbarch == NULL)
2200 {
2201 if (gdbarch_debug)
2202 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2203 swapin_gdbarch_swap (old_gdbarch);
2204 current_gdbarch = old_gdbarch;
2205 return 0;
2206 }
2207
2208 /* Did the architecture change? No. Oops, put the old architecture
2209 back. */
2210 if (old_gdbarch == new_gdbarch)
2211 {
2212 if (gdbarch_debug)
2213 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2214 (long) new_gdbarch,
2215 new_gdbarch->bfd_arch_info->printable_name);
2216 swapin_gdbarch_swap (old_gdbarch);
2217 current_gdbarch = old_gdbarch;
2218 return 1;
2219 }
2220
2221 /* Is this a pre-existing architecture? Yes. Move it to the front
2222 of the list of architectures (keeping the list sorted Most
2223 Recently Used) and then copy it in. */
2224 {
2225 struct gdbarch_list **list;
2226 for (list = &rego->arches;
2227 (*list) != NULL;
2228 list = &(*list)->next)
2229 {
2230 if ((*list)->gdbarch == new_gdbarch)
2231 {
2232 struct gdbarch_list *this;
2233 if (gdbarch_debug)
2234 fprintf_unfiltered (gdb_stdlog,
2235 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2236 (long) new_gdbarch,
2237 new_gdbarch->bfd_arch_info->printable_name);
2238 /* Unlink this. */
2239 this = (*list);
2240 (*list) = this->next;
2241 /* Insert in the front. */
2242 this->next = rego->arches;
2243 rego->arches = this;
2244 /* Copy the new architecture in. */
2245 current_gdbarch = new_gdbarch;
2246 swapin_gdbarch_swap (new_gdbarch);
2247 architecture_changed_event ();
2248 return 1;
2249 }
2250 }
2251 }
2252
2253 /* Prepend this new architecture to the architecture list (keep the
2254 list sorted Most Recently Used). */
2255 {
2256 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2257 this->next = rego->arches;
2258 this->gdbarch = new_gdbarch;
2259 rego->arches = this;
2260 }
2261
2262 /* Switch to this new architecture marking it initialized. */
2263 current_gdbarch = new_gdbarch;
2264 current_gdbarch->initialized_p = 1;
2265 if (gdbarch_debug)
2266 {
2267 fprintf_unfiltered (gdb_stdlog,
2268 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2269 (long) new_gdbarch,
2270 new_gdbarch->bfd_arch_info->printable_name);
2271 }
2272
2273 /* Check that the newly installed architecture is valid. Plug in
2274 any post init values. */
2275 new_gdbarch->dump_tdep = rego->dump_tdep;
2276 verify_gdbarch (new_gdbarch);
2277
2278 /* Initialize the per-architecture memory (swap) areas.
2279 CURRENT_GDBARCH must be update before these modules are
2280 called. */
2281 init_gdbarch_swap (new_gdbarch);
2282
2283 /* Initialize the per-architecture data. CURRENT_GDBARCH
2284 must be updated before these modules are called. */
2285 architecture_changed_event ();
2286
2287 if (gdbarch_debug)
2288 gdbarch_dump (current_gdbarch, gdb_stdlog);
2289
2290 return 1;
2291 }
2292
2293
2294 /* Disassembler */
2295
2296 /* Pointer to the target-dependent disassembly function. */
2297 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2298 disassemble_info tm_print_insn_info;
2299
2300
2301 extern void _initialize_gdbarch (void);
2302
2303 void
2304 _initialize_gdbarch (void)
2305 {
2306 struct cmd_list_element *c;
2307
2308 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2309 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2310 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2311 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2312 tm_print_insn_info.print_address_func = dis_asm_print_address;
2313
2314 add_show_from_set (add_set_cmd ("arch",
2315 class_maintenance,
2316 var_zinteger,
2317 (char *)&gdbarch_debug,
2318 "Set architecture debugging.\\n\\
2319 When non-zero, architecture debugging is enabled.", &setdebuglist),
2320 &showdebuglist);
2321 c = add_set_cmd ("archdebug",
2322 class_maintenance,
2323 var_zinteger,
2324 (char *)&gdbarch_debug,
2325 "Set architecture debugging.\\n\\
2326 When non-zero, architecture debugging is enabled.", &setlist);
2327
2328 deprecate_cmd (c, "set debug arch");
2329 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2330 }
2331 EOF
2332
2333 # close things off
2334 exec 1>&2
2335 #../move-if-change new-gdbarch.c gdbarch.c
2336 compare_new gdbarch.c
This page took 0.082226 seconds and 4 git commands to generate.