c624c8414dc5617a0bcf5155cd09a6cb65b529da
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432 f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433 f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
434 # Function for getting target's idea of a frame pointer. FIXME: GDB's
435 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 # serious shakedown.
437 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 #
439 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
441 #
442 v:2:NUM_REGS:int:num_regs::::0:-1
443 # This macro gives the number of pseudo-registers that live in the
444 # register namespace but do not get fetched or stored on the target.
445 # These pseudo-registers may be aliases for other registers,
446 # combinations of other registers, or they may be computed by GDB.
447 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
455 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
456 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
458 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
461 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
463 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464 # Convert from an sdb register number to an internal gdb register number.
465 # This should be defined in tm.h, if REGISTER_NAMES is not set up
466 # to map one to one onto the sdb register numbers.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
470 v:2:REGISTER_SIZE:int:register_size::::0:-1
471 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
472 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
473 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
474 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
475 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
476 # by REGISTER_TYPE.
477 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
478 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
479 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
480 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
481 # by REGISTER_TYPE.
482 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
483 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
484 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
485 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
486 # by REGISTER_TYPE.
487 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
488 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
489 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
490 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE are all being replaced
491 # by REGISTER_TYPE.
492 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
493 # The methods REGISTER_VIRTUAL_TYPE, MAX_REGISTER_RAW_SIZE,
494 # MAX_REGISTER_VIRTUAL_SIZE, MAX_REGISTER_RAW_SIZE,
495 # REGISTER_VIRTUAL_SIZE and REGISTER_RAW_SIZE have all being replaced
496 # by REGISTER_TYPE.
497 F:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
498 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
499 #
500 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
501 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
502 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
503 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
504 # MAP a GDB RAW register number onto a simulator register number. See
505 # also include/...-sim.h.
506 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
507 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
508 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
509 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
510 # setjmp/longjmp support.
511 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
512 #
513 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
514 # much better but at least they are vaguely consistent). The headers
515 # and body contain convoluted #if/#else sequences for determine how
516 # things should be compiled. Instead of trying to mimic that
517 # behaviour here (and hence entrench it further) gdbarch simply
518 # reqires that these methods be set up from the word go. This also
519 # avoids any potential problems with moving beyond multi-arch partial.
520 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
522 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
523 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
524 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
525 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
526 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
527 # NOTE: cagney/2002-11-24: This function with predicate has a valid
528 # (callable) initial value. As a consequence, even when the predicate
529 # is false, the corresponding function works. This simplifies the
530 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
531 # doesn't need to be modified.
532 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
533 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
534 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
535 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
536 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
537 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
538 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
539 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
540 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
541 #
542 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
543 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
544 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
545 #
546 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
547 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
548 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
549 #
550 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
551 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
552 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
553 #
554 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
555 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
556 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
557 #
558 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
559 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
560 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
561 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
562 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
563 #
564 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
565 #
566 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
567 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
568 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
569 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
570 #
571 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
572 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
573 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
574 #
575 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
576 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
577 #
578 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
579 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
580 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
581 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
582 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
583 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
584 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
585 f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
586 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
587 #
588 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
589 #
590 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
591 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
592 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
593 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
594 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
595 # note, per UNWIND_PC's doco, that while the two have similar
596 # interfaces they have very different underlying implementations.
597 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
598 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
599 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
600 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
601 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
602 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
603 #
604 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
605 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
606 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
607 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
608 # FIXME: kettenis/2003-03-08: This should be replaced by a function
609 # parametrized with (at least) the regcache.
610 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
611 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
612 v:2:PARM_BOUNDARY:int:parm_boundary
613 #
614 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
615 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
616 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
617 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
618 # On some machines there are bits in addresses which are not really
619 # part of the address, but are used by the kernel, the hardware, etc.
620 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
621 # we get a "real" address such as one would find in a symbol table.
622 # This is used only for addresses of instructions, and even then I'm
623 # not sure it's used in all contexts. It exists to deal with there
624 # being a few stray bits in the PC which would mislead us, not as some
625 # sort of generic thing to handle alignment or segmentation (it's
626 # possible it should be in TARGET_READ_PC instead).
627 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
628 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
629 # ADDR_BITS_REMOVE.
630 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
631 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
632 # the target needs software single step. An ISA method to implement it.
633 #
634 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
635 # using the breakpoint system instead of blatting memory directly (as with rs6000).
636 #
637 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
638 # single step. If not, then implement single step using breakpoints.
639 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
640 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
641 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
642
643
644 # For SVR4 shared libraries, each call goes through a small piece of
645 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
646 # to nonzero if we are currently stopped in one of these.
647 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
648
649 # Some systems also have trampoline code for returning from shared libs.
650 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
651
652 # Sigtramp is a routine that the kernel calls (which then calls the
653 # signal handler). On most machines it is a library routine that is
654 # linked into the executable.
655 #
656 # This macro, given a program counter value and the name of the
657 # function in which that PC resides (which can be null if the name is
658 # not known), returns nonzero if the PC and name show that we are in
659 # sigtramp.
660 #
661 # On most machines just see if the name is sigtramp (and if we have
662 # no name, assume we are not in sigtramp).
663 #
664 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
665 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
666 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
667 # own local NAME lookup.
668 #
669 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
670 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
671 # does not.
672 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
673 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
674 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
675 # A target might have problems with watchpoints as soon as the stack
676 # frame of the current function has been destroyed. This mostly happens
677 # as the first action in a funtion's epilogue. in_function_epilogue_p()
678 # is defined to return a non-zero value if either the given addr is one
679 # instruction after the stack destroying instruction up to the trailing
680 # return instruction or if we can figure out that the stack frame has
681 # already been invalidated regardless of the value of addr. Targets
682 # which don't suffer from that problem could just let this functionality
683 # untouched.
684 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
685 # Given a vector of command-line arguments, return a newly allocated
686 # string which, when passed to the create_inferior function, will be
687 # parsed (on Unix systems, by the shell) to yield the same vector.
688 # This function should call error() if the argument vector is not
689 # representable for this target or if this target does not support
690 # command-line arguments.
691 # ARGC is the number of elements in the vector.
692 # ARGV is an array of strings, one per argument.
693 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
694 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
695 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
696 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
697 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
698 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
699 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
700 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
701 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
702 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
703 # Is a register in a group
704 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
705 EOF
706 }
707
708 #
709 # The .log file
710 #
711 exec > new-gdbarch.log
712 function_list | while do_read
713 do
714 cat <<EOF
715 ${class} ${macro}(${actual})
716 ${returntype} ${function} ($formal)${attrib}
717 EOF
718 for r in ${read}
719 do
720 eval echo \"\ \ \ \ ${r}=\${${r}}\"
721 done
722 if class_is_predicate_p && fallback_default_p
723 then
724 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
725 kill $$
726 exit 1
727 fi
728 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
729 then
730 echo "Error: postdefault is useless when invalid_p=0" 1>&2
731 kill $$
732 exit 1
733 fi
734 if class_is_multiarch_p
735 then
736 if class_is_predicate_p ; then :
737 elif test "x${predefault}" = "x"
738 then
739 echo "Error: pure multi-arch function must have a predefault" 1>&2
740 kill $$
741 exit 1
742 fi
743 fi
744 echo ""
745 done
746
747 exec 1>&2
748 compare_new gdbarch.log
749
750
751 copyright ()
752 {
753 cat <<EOF
754 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
755
756 /* Dynamic architecture support for GDB, the GNU debugger.
757 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
758
759 This file is part of GDB.
760
761 This program is free software; you can redistribute it and/or modify
762 it under the terms of the GNU General Public License as published by
763 the Free Software Foundation; either version 2 of the License, or
764 (at your option) any later version.
765
766 This program is distributed in the hope that it will be useful,
767 but WITHOUT ANY WARRANTY; without even the implied warranty of
768 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
769 GNU General Public License for more details.
770
771 You should have received a copy of the GNU General Public License
772 along with this program; if not, write to the Free Software
773 Foundation, Inc., 59 Temple Place - Suite 330,
774 Boston, MA 02111-1307, USA. */
775
776 /* This file was created with the aid of \`\`gdbarch.sh''.
777
778 The Bourne shell script \`\`gdbarch.sh'' creates the files
779 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
780 against the existing \`\`gdbarch.[hc]''. Any differences found
781 being reported.
782
783 If editing this file, please also run gdbarch.sh and merge any
784 changes into that script. Conversely, when making sweeping changes
785 to this file, modifying gdbarch.sh and using its output may prove
786 easier. */
787
788 EOF
789 }
790
791 #
792 # The .h file
793 #
794
795 exec > new-gdbarch.h
796 copyright
797 cat <<EOF
798 #ifndef GDBARCH_H
799 #define GDBARCH_H
800
801 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
802 #if !GDB_MULTI_ARCH
803 /* Pull in function declarations refered to, indirectly, via macros. */
804 #include "inferior.h" /* For unsigned_address_to_pointer(). */
805 #endif
806
807 struct frame_info;
808 struct value;
809 struct objfile;
810 struct minimal_symbol;
811 struct regcache;
812 struct reggroup;
813
814 extern struct gdbarch *current_gdbarch;
815
816
817 /* If any of the following are defined, the target wasn't correctly
818 converted. */
819
820 #if GDB_MULTI_ARCH
821 #if defined (EXTRA_FRAME_INFO)
822 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
823 #endif
824 #endif
825
826 #if GDB_MULTI_ARCH
827 #if defined (FRAME_FIND_SAVED_REGS)
828 #error "FRAME_FIND_SAVED_REGS: replaced by DEPRECATED_FRAME_INIT_SAVED_REGS"
829 #endif
830 #endif
831
832 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
833 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
834 #endif
835 EOF
836
837 # function typedef's
838 printf "\n"
839 printf "\n"
840 printf "/* The following are pre-initialized by GDBARCH. */\n"
841 function_list | while do_read
842 do
843 if class_is_info_p
844 then
845 printf "\n"
846 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
847 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
848 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
850 printf "#endif\n"
851 printf "#if GDB_MULTI_ARCH\n"
852 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
853 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
854 printf "#endif\n"
855 printf "#endif\n"
856 fi
857 done
858
859 # function typedef's
860 printf "\n"
861 printf "\n"
862 printf "/* The following are initialized by the target dependent code. */\n"
863 function_list | while do_read
864 do
865 if [ -n "${comment}" ]
866 then
867 echo "${comment}" | sed \
868 -e '2 s,#,/*,' \
869 -e '3,$ s,#, ,' \
870 -e '$ s,$, */,'
871 fi
872 if class_is_multiarch_p
873 then
874 if class_is_predicate_p
875 then
876 printf "\n"
877 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
878 fi
879 else
880 if class_is_predicate_p
881 then
882 printf "\n"
883 printf "#if defined (${macro})\n"
884 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
885 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
886 printf "#if !defined (${macro}_P)\n"
887 printf "#define ${macro}_P() (1)\n"
888 printf "#endif\n"
889 printf "#endif\n"
890 printf "\n"
891 printf "/* Default predicate for non- multi-arch targets. */\n"
892 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
893 printf "#define ${macro}_P() (0)\n"
894 printf "#endif\n"
895 printf "\n"
896 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
897 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
898 printf "#error \"Non multi-arch definition of ${macro}\"\n"
899 printf "#endif\n"
900 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
901 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
902 printf "#endif\n"
903 fi
904 fi
905 if class_is_variable_p
906 then
907 if fallback_default_p || class_is_predicate_p
908 then
909 printf "\n"
910 printf "/* Default (value) for non- multi-arch platforms. */\n"
911 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
912 echo "#define ${macro} (${fallbackdefault})" \
913 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
914 printf "#endif\n"
915 fi
916 printf "\n"
917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
918 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
919 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
920 printf "#error \"Non multi-arch definition of ${macro}\"\n"
921 printf "#endif\n"
922 if test "${level}" = ""
923 then
924 printf "#if !defined (${macro})\n"
925 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
926 printf "#endif\n"
927 else
928 printf "#if GDB_MULTI_ARCH\n"
929 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
930 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
931 printf "#endif\n"
932 printf "#endif\n"
933 fi
934 fi
935 if class_is_function_p
936 then
937 if class_is_multiarch_p ; then :
938 elif fallback_default_p || class_is_predicate_p
939 then
940 printf "\n"
941 printf "/* Default (function) for non- multi-arch platforms. */\n"
942 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
943 if [ "x${fallbackdefault}" = "x0" ]
944 then
945 if [ "x${actual}" = "x-" ]
946 then
947 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
948 else
949 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
950 fi
951 else
952 # FIXME: Should be passing current_gdbarch through!
953 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
954 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
955 fi
956 printf "#endif\n"
957 fi
958 printf "\n"
959 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
960 then
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
962 elif class_is_multiarch_p
963 then
964 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
965 else
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
967 fi
968 if [ "x${formal}" = "xvoid" ]
969 then
970 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
971 else
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
973 fi
974 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
975 if class_is_multiarch_p ; then :
976 else
977 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
978 printf "#error \"Non multi-arch definition of ${macro}\"\n"
979 printf "#endif\n"
980 printf "#if GDB_MULTI_ARCH\n"
981 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
982 if [ "x${actual}" = "x" ]
983 then
984 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
985 elif [ "x${actual}" = "x-" ]
986 then
987 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
988 else
989 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
990 fi
991 printf "#endif\n"
992 printf "#endif\n"
993 fi
994 fi
995 done
996
997 # close it off
998 cat <<EOF
999
1000 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1001
1002
1003 /* Mechanism for co-ordinating the selection of a specific
1004 architecture.
1005
1006 GDB targets (*-tdep.c) can register an interest in a specific
1007 architecture. Other GDB components can register a need to maintain
1008 per-architecture data.
1009
1010 The mechanisms below ensures that there is only a loose connection
1011 between the set-architecture command and the various GDB
1012 components. Each component can independently register their need
1013 to maintain architecture specific data with gdbarch.
1014
1015 Pragmatics:
1016
1017 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1018 didn't scale.
1019
1020 The more traditional mega-struct containing architecture specific
1021 data for all the various GDB components was also considered. Since
1022 GDB is built from a variable number of (fairly independent)
1023 components it was determined that the global aproach was not
1024 applicable. */
1025
1026
1027 /* Register a new architectural family with GDB.
1028
1029 Register support for the specified ARCHITECTURE with GDB. When
1030 gdbarch determines that the specified architecture has been
1031 selected, the corresponding INIT function is called.
1032
1033 --
1034
1035 The INIT function takes two parameters: INFO which contains the
1036 information available to gdbarch about the (possibly new)
1037 architecture; ARCHES which is a list of the previously created
1038 \`\`struct gdbarch'' for this architecture.
1039
1040 The INFO parameter is, as far as possible, be pre-initialized with
1041 information obtained from INFO.ABFD or the previously selected
1042 architecture.
1043
1044 The ARCHES parameter is a linked list (sorted most recently used)
1045 of all the previously created architures for this architecture
1046 family. The (possibly NULL) ARCHES->gdbarch can used to access
1047 values from the previously selected architecture for this
1048 architecture family. The global \`\`current_gdbarch'' shall not be
1049 used.
1050
1051 The INIT function shall return any of: NULL - indicating that it
1052 doesn't recognize the selected architecture; an existing \`\`struct
1053 gdbarch'' from the ARCHES list - indicating that the new
1054 architecture is just a synonym for an earlier architecture (see
1055 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1056 - that describes the selected architecture (see gdbarch_alloc()).
1057
1058 The DUMP_TDEP function shall print out all target specific values.
1059 Care should be taken to ensure that the function works in both the
1060 multi-arch and non- multi-arch cases. */
1061
1062 struct gdbarch_list
1063 {
1064 struct gdbarch *gdbarch;
1065 struct gdbarch_list *next;
1066 };
1067
1068 struct gdbarch_info
1069 {
1070 /* Use default: NULL (ZERO). */
1071 const struct bfd_arch_info *bfd_arch_info;
1072
1073 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1074 int byte_order;
1075
1076 /* Use default: NULL (ZERO). */
1077 bfd *abfd;
1078
1079 /* Use default: NULL (ZERO). */
1080 struct gdbarch_tdep_info *tdep_info;
1081
1082 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1083 enum gdb_osabi osabi;
1084 };
1085
1086 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1087 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1088
1089 /* DEPRECATED - use gdbarch_register() */
1090 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1091
1092 extern void gdbarch_register (enum bfd_architecture architecture,
1093 gdbarch_init_ftype *,
1094 gdbarch_dump_tdep_ftype *);
1095
1096
1097 /* Return a freshly allocated, NULL terminated, array of the valid
1098 architecture names. Since architectures are registered during the
1099 _initialize phase this function only returns useful information
1100 once initialization has been completed. */
1101
1102 extern const char **gdbarch_printable_names (void);
1103
1104
1105 /* Helper function. Search the list of ARCHES for a GDBARCH that
1106 matches the information provided by INFO. */
1107
1108 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1109
1110
1111 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1112 basic initialization using values obtained from the INFO andTDEP
1113 parameters. set_gdbarch_*() functions are called to complete the
1114 initialization of the object. */
1115
1116 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1117
1118
1119 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1120 It is assumed that the caller freeds the \`\`struct
1121 gdbarch_tdep''. */
1122
1123 extern void gdbarch_free (struct gdbarch *);
1124
1125
1126 /* Helper function. Force an update of the current architecture.
1127
1128 The actual architecture selected is determined by INFO, \`\`(gdb) set
1129 architecture'' et.al., the existing architecture and BFD's default
1130 architecture. INFO should be initialized to zero and then selected
1131 fields should be updated.
1132
1133 Returns non-zero if the update succeeds */
1134
1135 extern int gdbarch_update_p (struct gdbarch_info info);
1136
1137
1138
1139 /* Register per-architecture data-pointer.
1140
1141 Reserve space for a per-architecture data-pointer. An identifier
1142 for the reserved data-pointer is returned. That identifer should
1143 be saved in a local static variable.
1144
1145 The per-architecture data-pointer is either initialized explicitly
1146 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1147 gdbarch_data()). FREE() is called to delete either an existing
1148 data-pointer overridden by set_gdbarch_data() or when the
1149 architecture object is being deleted.
1150
1151 When a previously created architecture is re-selected, the
1152 per-architecture data-pointer for that previous architecture is
1153 restored. INIT() is not re-called.
1154
1155 Multiple registrarants for any architecture are allowed (and
1156 strongly encouraged). */
1157
1158 struct gdbarch_data;
1159
1160 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1161 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1162 void *pointer);
1163 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1164 gdbarch_data_free_ftype *free);
1165 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1166 struct gdbarch_data *data,
1167 void *pointer);
1168
1169 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1170
1171
1172 /* Register per-architecture memory region.
1173
1174 Provide a memory-region swap mechanism. Per-architecture memory
1175 region are created. These memory regions are swapped whenever the
1176 architecture is changed. For a new architecture, the memory region
1177 is initialized with zero (0) and the INIT function is called.
1178
1179 Memory regions are swapped / initialized in the order that they are
1180 registered. NULL DATA and/or INIT values can be specified.
1181
1182 New code should use register_gdbarch_data(). */
1183
1184 typedef void (gdbarch_swap_ftype) (void);
1185 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1186 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1187
1188
1189
1190 /* The target-system-dependent byte order is dynamic */
1191
1192 extern int target_byte_order;
1193 #ifndef TARGET_BYTE_ORDER
1194 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1195 #endif
1196
1197 extern int target_byte_order_auto;
1198 #ifndef TARGET_BYTE_ORDER_AUTO
1199 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1200 #endif
1201
1202
1203
1204 /* The target-system-dependent BFD architecture is dynamic */
1205
1206 extern int target_architecture_auto;
1207 #ifndef TARGET_ARCHITECTURE_AUTO
1208 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1209 #endif
1210
1211 extern const struct bfd_arch_info *target_architecture;
1212 #ifndef TARGET_ARCHITECTURE
1213 #define TARGET_ARCHITECTURE (target_architecture + 0)
1214 #endif
1215
1216
1217 /* The target-system-dependent disassembler is semi-dynamic */
1218
1219 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1220 unsigned int len, disassemble_info *info);
1221
1222 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1223 disassemble_info *info);
1224
1225 extern void dis_asm_print_address (bfd_vma addr,
1226 disassemble_info *info);
1227
1228 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1229 extern disassemble_info tm_print_insn_info;
1230 #ifndef TARGET_PRINT_INSN_INFO
1231 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1232 #endif
1233
1234
1235
1236 /* Set the dynamic target-system-dependent parameters (architecture,
1237 byte-order, ...) using information found in the BFD */
1238
1239 extern void set_gdbarch_from_file (bfd *);
1240
1241
1242 /* Initialize the current architecture to the "first" one we find on
1243 our list. */
1244
1245 extern void initialize_current_architecture (void);
1246
1247 /* For non-multiarched targets, do any initialization of the default
1248 gdbarch object necessary after the _initialize_MODULE functions
1249 have run. */
1250 extern void initialize_non_multiarch (void);
1251
1252 /* gdbarch trace variable */
1253 extern int gdbarch_debug;
1254
1255 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1256
1257 #endif
1258 EOF
1259 exec 1>&2
1260 #../move-if-change new-gdbarch.h gdbarch.h
1261 compare_new gdbarch.h
1262
1263
1264 #
1265 # C file
1266 #
1267
1268 exec > new-gdbarch.c
1269 copyright
1270 cat <<EOF
1271
1272 #include "defs.h"
1273 #include "arch-utils.h"
1274
1275 #if GDB_MULTI_ARCH
1276 #include "gdbcmd.h"
1277 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1278 #else
1279 /* Just include everything in sight so that the every old definition
1280 of macro is visible. */
1281 #include "gdb_string.h"
1282 #include <ctype.h>
1283 #include "symtab.h"
1284 #include "frame.h"
1285 #include "inferior.h"
1286 #include "breakpoint.h"
1287 #include "gdb_wait.h"
1288 #include "gdbcore.h"
1289 #include "gdbcmd.h"
1290 #include "target.h"
1291 #include "gdbthread.h"
1292 #include "annotate.h"
1293 #include "symfile.h" /* for overlay functions */
1294 #include "value.h" /* For old tm.h/nm.h macros. */
1295 #endif
1296 #include "symcat.h"
1297
1298 #include "floatformat.h"
1299
1300 #include "gdb_assert.h"
1301 #include "gdb_string.h"
1302 #include "gdb-events.h"
1303 #include "reggroups.h"
1304 #include "osabi.h"
1305
1306 /* Static function declarations */
1307
1308 static void verify_gdbarch (struct gdbarch *gdbarch);
1309 static void alloc_gdbarch_data (struct gdbarch *);
1310 static void free_gdbarch_data (struct gdbarch *);
1311 static void init_gdbarch_swap (struct gdbarch *);
1312 static void clear_gdbarch_swap (struct gdbarch *);
1313 static void swapout_gdbarch_swap (struct gdbarch *);
1314 static void swapin_gdbarch_swap (struct gdbarch *);
1315
1316 /* Non-zero if we want to trace architecture code. */
1317
1318 #ifndef GDBARCH_DEBUG
1319 #define GDBARCH_DEBUG 0
1320 #endif
1321 int gdbarch_debug = GDBARCH_DEBUG;
1322
1323 EOF
1324
1325 # gdbarch open the gdbarch object
1326 printf "\n"
1327 printf "/* Maintain the struct gdbarch object */\n"
1328 printf "\n"
1329 printf "struct gdbarch\n"
1330 printf "{\n"
1331 printf " /* Has this architecture been fully initialized? */\n"
1332 printf " int initialized_p;\n"
1333 printf " /* basic architectural information */\n"
1334 function_list | while do_read
1335 do
1336 if class_is_info_p
1337 then
1338 printf " ${returntype} ${function};\n"
1339 fi
1340 done
1341 printf "\n"
1342 printf " /* target specific vector. */\n"
1343 printf " struct gdbarch_tdep *tdep;\n"
1344 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1345 printf "\n"
1346 printf " /* per-architecture data-pointers */\n"
1347 printf " unsigned nr_data;\n"
1348 printf " void **data;\n"
1349 printf "\n"
1350 printf " /* per-architecture swap-regions */\n"
1351 printf " struct gdbarch_swap *swap;\n"
1352 printf "\n"
1353 cat <<EOF
1354 /* Multi-arch values.
1355
1356 When extending this structure you must:
1357
1358 Add the field below.
1359
1360 Declare set/get functions and define the corresponding
1361 macro in gdbarch.h.
1362
1363 gdbarch_alloc(): If zero/NULL is not a suitable default,
1364 initialize the new field.
1365
1366 verify_gdbarch(): Confirm that the target updated the field
1367 correctly.
1368
1369 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1370 field is dumped out
1371
1372 \`\`startup_gdbarch()'': Append an initial value to the static
1373 variable (base values on the host's c-type system).
1374
1375 get_gdbarch(): Implement the set/get functions (probably using
1376 the macro's as shortcuts).
1377
1378 */
1379
1380 EOF
1381 function_list | while do_read
1382 do
1383 if class_is_variable_p
1384 then
1385 printf " ${returntype} ${function};\n"
1386 elif class_is_function_p
1387 then
1388 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1389 fi
1390 done
1391 printf "};\n"
1392
1393 # A pre-initialized vector
1394 printf "\n"
1395 printf "\n"
1396 cat <<EOF
1397 /* The default architecture uses host values (for want of a better
1398 choice). */
1399 EOF
1400 printf "\n"
1401 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1402 printf "\n"
1403 printf "struct gdbarch startup_gdbarch =\n"
1404 printf "{\n"
1405 printf " 1, /* Always initialized. */\n"
1406 printf " /* basic architecture information */\n"
1407 function_list | while do_read
1408 do
1409 if class_is_info_p
1410 then
1411 printf " ${staticdefault},\n"
1412 fi
1413 done
1414 cat <<EOF
1415 /* target specific vector and its dump routine */
1416 NULL, NULL,
1417 /*per-architecture data-pointers and swap regions */
1418 0, NULL, NULL,
1419 /* Multi-arch values */
1420 EOF
1421 function_list | while do_read
1422 do
1423 if class_is_function_p || class_is_variable_p
1424 then
1425 printf " ${staticdefault},\n"
1426 fi
1427 done
1428 cat <<EOF
1429 /* startup_gdbarch() */
1430 };
1431
1432 struct gdbarch *current_gdbarch = &startup_gdbarch;
1433
1434 /* Do any initialization needed for a non-multiarch configuration
1435 after the _initialize_MODULE functions have been run. */
1436 void
1437 initialize_non_multiarch (void)
1438 {
1439 alloc_gdbarch_data (&startup_gdbarch);
1440 /* Ensure that all swap areas are zeroed so that they again think
1441 they are starting from scratch. */
1442 clear_gdbarch_swap (&startup_gdbarch);
1443 init_gdbarch_swap (&startup_gdbarch);
1444 }
1445 EOF
1446
1447 # Create a new gdbarch struct
1448 printf "\n"
1449 printf "\n"
1450 cat <<EOF
1451 /* Create a new \`\`struct gdbarch'' based on information provided by
1452 \`\`struct gdbarch_info''. */
1453 EOF
1454 printf "\n"
1455 cat <<EOF
1456 struct gdbarch *
1457 gdbarch_alloc (const struct gdbarch_info *info,
1458 struct gdbarch_tdep *tdep)
1459 {
1460 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1461 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1462 the current local architecture and not the previous global
1463 architecture. This ensures that the new architectures initial
1464 values are not influenced by the previous architecture. Once
1465 everything is parameterised with gdbarch, this will go away. */
1466 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1467 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1468
1469 alloc_gdbarch_data (current_gdbarch);
1470
1471 current_gdbarch->tdep = tdep;
1472 EOF
1473 printf "\n"
1474 function_list | while do_read
1475 do
1476 if class_is_info_p
1477 then
1478 printf " current_gdbarch->${function} = info->${function};\n"
1479 fi
1480 done
1481 printf "\n"
1482 printf " /* Force the explicit initialization of these. */\n"
1483 function_list | while do_read
1484 do
1485 if class_is_function_p || class_is_variable_p
1486 then
1487 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1488 then
1489 printf " current_gdbarch->${function} = ${predefault};\n"
1490 fi
1491 fi
1492 done
1493 cat <<EOF
1494 /* gdbarch_alloc() */
1495
1496 return current_gdbarch;
1497 }
1498 EOF
1499
1500 # Free a gdbarch struct.
1501 printf "\n"
1502 printf "\n"
1503 cat <<EOF
1504 /* Free a gdbarch struct. This should never happen in normal
1505 operation --- once you've created a gdbarch, you keep it around.
1506 However, if an architecture's init function encounters an error
1507 building the structure, it may need to clean up a partially
1508 constructed gdbarch. */
1509
1510 void
1511 gdbarch_free (struct gdbarch *arch)
1512 {
1513 gdb_assert (arch != NULL);
1514 free_gdbarch_data (arch);
1515 xfree (arch);
1516 }
1517 EOF
1518
1519 # verify a new architecture
1520 printf "\n"
1521 printf "\n"
1522 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1523 printf "\n"
1524 cat <<EOF
1525 static void
1526 verify_gdbarch (struct gdbarch *gdbarch)
1527 {
1528 struct ui_file *log;
1529 struct cleanup *cleanups;
1530 long dummy;
1531 char *buf;
1532 /* Only perform sanity checks on a multi-arch target. */
1533 if (!GDB_MULTI_ARCH)
1534 return;
1535 log = mem_fileopen ();
1536 cleanups = make_cleanup_ui_file_delete (log);
1537 /* fundamental */
1538 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1539 fprintf_unfiltered (log, "\n\tbyte-order");
1540 if (gdbarch->bfd_arch_info == NULL)
1541 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1542 /* Check those that need to be defined for the given multi-arch level. */
1543 EOF
1544 function_list | while do_read
1545 do
1546 if class_is_function_p || class_is_variable_p
1547 then
1548 if [ "x${invalid_p}" = "x0" ]
1549 then
1550 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1551 elif class_is_predicate_p
1552 then
1553 printf " /* Skip verify of ${function}, has predicate */\n"
1554 # FIXME: See do_read for potential simplification
1555 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1556 then
1557 printf " if (${invalid_p})\n"
1558 printf " gdbarch->${function} = ${postdefault};\n"
1559 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1560 then
1561 printf " if (gdbarch->${function} == ${predefault})\n"
1562 printf " gdbarch->${function} = ${postdefault};\n"
1563 elif [ -n "${postdefault}" ]
1564 then
1565 printf " if (gdbarch->${function} == 0)\n"
1566 printf " gdbarch->${function} = ${postdefault};\n"
1567 elif [ -n "${invalid_p}" ]
1568 then
1569 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1570 printf " && (${invalid_p}))\n"
1571 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1572 elif [ -n "${predefault}" ]
1573 then
1574 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1575 printf " && (gdbarch->${function} == ${predefault}))\n"
1576 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1577 fi
1578 fi
1579 done
1580 cat <<EOF
1581 buf = ui_file_xstrdup (log, &dummy);
1582 make_cleanup (xfree, buf);
1583 if (strlen (buf) > 0)
1584 internal_error (__FILE__, __LINE__,
1585 "verify_gdbarch: the following are invalid ...%s",
1586 buf);
1587 do_cleanups (cleanups);
1588 }
1589 EOF
1590
1591 # dump the structure
1592 printf "\n"
1593 printf "\n"
1594 cat <<EOF
1595 /* Print out the details of the current architecture. */
1596
1597 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1598 just happens to match the global variable \`\`current_gdbarch''. That
1599 way macros refering to that variable get the local and not the global
1600 version - ulgh. Once everything is parameterised with gdbarch, this
1601 will go away. */
1602
1603 void
1604 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1605 {
1606 fprintf_unfiltered (file,
1607 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1608 GDB_MULTI_ARCH);
1609 EOF
1610 function_list | sort -t: -k 3 | while do_read
1611 do
1612 # First the predicate
1613 if class_is_predicate_p
1614 then
1615 if class_is_multiarch_p
1616 then
1617 printf " if (GDB_MULTI_ARCH)\n"
1618 printf " fprintf_unfiltered (file,\n"
1619 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1620 printf " gdbarch_${function}_p (current_gdbarch));\n"
1621 else
1622 printf "#ifdef ${macro}_P\n"
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1625 printf " \"${macro}_P()\",\n"
1626 printf " XSTRING (${macro}_P ()));\n"
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1629 printf " ${macro}_P ());\n"
1630 printf "#endif\n"
1631 fi
1632 fi
1633 # multiarch functions don't have macros.
1634 if class_is_multiarch_p
1635 then
1636 printf " if (GDB_MULTI_ARCH)\n"
1637 printf " fprintf_unfiltered (file,\n"
1638 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1639 printf " (long) current_gdbarch->${function});\n"
1640 continue
1641 fi
1642 # Print the macro definition.
1643 printf "#ifdef ${macro}\n"
1644 if [ "x${returntype}" = "xvoid" ]
1645 then
1646 printf "#if GDB_MULTI_ARCH\n"
1647 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1648 fi
1649 if class_is_function_p
1650 then
1651 printf " fprintf_unfiltered (file,\n"
1652 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1653 printf " \"${macro}(${actual})\",\n"
1654 printf " XSTRING (${macro} (${actual})));\n"
1655 else
1656 printf " fprintf_unfiltered (file,\n"
1657 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1658 printf " XSTRING (${macro}));\n"
1659 fi
1660 # Print the architecture vector value
1661 if [ "x${returntype}" = "xvoid" ]
1662 then
1663 printf "#endif\n"
1664 fi
1665 if [ "x${print_p}" = "x()" ]
1666 then
1667 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1668 elif [ "x${print_p}" = "x0" ]
1669 then
1670 printf " /* skip print of ${macro}, print_p == 0. */\n"
1671 elif [ -n "${print_p}" ]
1672 then
1673 printf " if (${print_p})\n"
1674 printf " fprintf_unfiltered (file,\n"
1675 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1676 printf " ${print});\n"
1677 elif class_is_function_p
1678 then
1679 printf " if (GDB_MULTI_ARCH)\n"
1680 printf " fprintf_unfiltered (file,\n"
1681 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1682 printf " (long) current_gdbarch->${function}\n"
1683 printf " /*${macro} ()*/);\n"
1684 else
1685 printf " fprintf_unfiltered (file,\n"
1686 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1687 printf " ${print});\n"
1688 fi
1689 printf "#endif\n"
1690 done
1691 cat <<EOF
1692 if (current_gdbarch->dump_tdep != NULL)
1693 current_gdbarch->dump_tdep (current_gdbarch, file);
1694 }
1695 EOF
1696
1697
1698 # GET/SET
1699 printf "\n"
1700 cat <<EOF
1701 struct gdbarch_tdep *
1702 gdbarch_tdep (struct gdbarch *gdbarch)
1703 {
1704 if (gdbarch_debug >= 2)
1705 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1706 return gdbarch->tdep;
1707 }
1708 EOF
1709 printf "\n"
1710 function_list | while do_read
1711 do
1712 if class_is_predicate_p
1713 then
1714 printf "\n"
1715 printf "int\n"
1716 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1717 printf "{\n"
1718 printf " gdb_assert (gdbarch != NULL);\n"
1719 if [ -n "${predicate}" ]
1720 then
1721 printf " return ${predicate};\n"
1722 else
1723 printf " return gdbarch->${function} != 0;\n"
1724 fi
1725 printf "}\n"
1726 fi
1727 if class_is_function_p
1728 then
1729 printf "\n"
1730 printf "${returntype}\n"
1731 if [ "x${formal}" = "xvoid" ]
1732 then
1733 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1734 else
1735 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1736 fi
1737 printf "{\n"
1738 printf " gdb_assert (gdbarch != NULL);\n"
1739 printf " if (gdbarch->${function} == 0)\n"
1740 printf " internal_error (__FILE__, __LINE__,\n"
1741 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1742 if class_is_predicate_p && test -n "${predicate}"
1743 then
1744 # Allow a call to a function with a predicate.
1745 printf " /* Ignore predicate (${predicate}). */\n"
1746 fi
1747 printf " if (gdbarch_debug >= 2)\n"
1748 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1749 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1750 then
1751 if class_is_multiarch_p
1752 then
1753 params="gdbarch"
1754 else
1755 params=""
1756 fi
1757 else
1758 if class_is_multiarch_p
1759 then
1760 params="gdbarch, ${actual}"
1761 else
1762 params="${actual}"
1763 fi
1764 fi
1765 if [ "x${returntype}" = "xvoid" ]
1766 then
1767 printf " gdbarch->${function} (${params});\n"
1768 else
1769 printf " return gdbarch->${function} (${params});\n"
1770 fi
1771 printf "}\n"
1772 printf "\n"
1773 printf "void\n"
1774 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1775 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1776 printf "{\n"
1777 printf " gdbarch->${function} = ${function};\n"
1778 printf "}\n"
1779 elif class_is_variable_p
1780 then
1781 printf "\n"
1782 printf "${returntype}\n"
1783 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1784 printf "{\n"
1785 printf " gdb_assert (gdbarch != NULL);\n"
1786 if [ "x${invalid_p}" = "x0" ]
1787 then
1788 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1789 elif [ -n "${invalid_p}" ]
1790 then
1791 printf " if (${invalid_p})\n"
1792 printf " internal_error (__FILE__, __LINE__,\n"
1793 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1794 elif [ -n "${predefault}" ]
1795 then
1796 printf " if (gdbarch->${function} == ${predefault})\n"
1797 printf " internal_error (__FILE__, __LINE__,\n"
1798 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1799 fi
1800 printf " if (gdbarch_debug >= 2)\n"
1801 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1802 printf " return gdbarch->${function};\n"
1803 printf "}\n"
1804 printf "\n"
1805 printf "void\n"
1806 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1807 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1808 printf "{\n"
1809 printf " gdbarch->${function} = ${function};\n"
1810 printf "}\n"
1811 elif class_is_info_p
1812 then
1813 printf "\n"
1814 printf "${returntype}\n"
1815 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1816 printf "{\n"
1817 printf " gdb_assert (gdbarch != NULL);\n"
1818 printf " if (gdbarch_debug >= 2)\n"
1819 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1820 printf " return gdbarch->${function};\n"
1821 printf "}\n"
1822 fi
1823 done
1824
1825 # All the trailing guff
1826 cat <<EOF
1827
1828
1829 /* Keep a registry of per-architecture data-pointers required by GDB
1830 modules. */
1831
1832 struct gdbarch_data
1833 {
1834 unsigned index;
1835 int init_p;
1836 gdbarch_data_init_ftype *init;
1837 gdbarch_data_free_ftype *free;
1838 };
1839
1840 struct gdbarch_data_registration
1841 {
1842 struct gdbarch_data *data;
1843 struct gdbarch_data_registration *next;
1844 };
1845
1846 struct gdbarch_data_registry
1847 {
1848 unsigned nr;
1849 struct gdbarch_data_registration *registrations;
1850 };
1851
1852 struct gdbarch_data_registry gdbarch_data_registry =
1853 {
1854 0, NULL,
1855 };
1856
1857 struct gdbarch_data *
1858 register_gdbarch_data (gdbarch_data_init_ftype *init,
1859 gdbarch_data_free_ftype *free)
1860 {
1861 struct gdbarch_data_registration **curr;
1862 /* Append the new registraration. */
1863 for (curr = &gdbarch_data_registry.registrations;
1864 (*curr) != NULL;
1865 curr = &(*curr)->next);
1866 (*curr) = XMALLOC (struct gdbarch_data_registration);
1867 (*curr)->next = NULL;
1868 (*curr)->data = XMALLOC (struct gdbarch_data);
1869 (*curr)->data->index = gdbarch_data_registry.nr++;
1870 (*curr)->data->init = init;
1871 (*curr)->data->init_p = 1;
1872 (*curr)->data->free = free;
1873 return (*curr)->data;
1874 }
1875
1876
1877 /* Create/delete the gdbarch data vector. */
1878
1879 static void
1880 alloc_gdbarch_data (struct gdbarch *gdbarch)
1881 {
1882 gdb_assert (gdbarch->data == NULL);
1883 gdbarch->nr_data = gdbarch_data_registry.nr;
1884 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1885 }
1886
1887 static void
1888 free_gdbarch_data (struct gdbarch *gdbarch)
1889 {
1890 struct gdbarch_data_registration *rego;
1891 gdb_assert (gdbarch->data != NULL);
1892 for (rego = gdbarch_data_registry.registrations;
1893 rego != NULL;
1894 rego = rego->next)
1895 {
1896 struct gdbarch_data *data = rego->data;
1897 gdb_assert (data->index < gdbarch->nr_data);
1898 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1899 {
1900 data->free (gdbarch, gdbarch->data[data->index]);
1901 gdbarch->data[data->index] = NULL;
1902 }
1903 }
1904 xfree (gdbarch->data);
1905 gdbarch->data = NULL;
1906 }
1907
1908
1909 /* Initialize the current value of the specified per-architecture
1910 data-pointer. */
1911
1912 void
1913 set_gdbarch_data (struct gdbarch *gdbarch,
1914 struct gdbarch_data *data,
1915 void *pointer)
1916 {
1917 gdb_assert (data->index < gdbarch->nr_data);
1918 if (gdbarch->data[data->index] != NULL)
1919 {
1920 gdb_assert (data->free != NULL);
1921 data->free (gdbarch, gdbarch->data[data->index]);
1922 }
1923 gdbarch->data[data->index] = pointer;
1924 }
1925
1926 /* Return the current value of the specified per-architecture
1927 data-pointer. */
1928
1929 void *
1930 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1931 {
1932 gdb_assert (data->index < gdbarch->nr_data);
1933 /* The data-pointer isn't initialized, call init() to get a value but
1934 only if the architecture initializaiton has completed. Otherwise
1935 punt - hope that the caller knows what they are doing. */
1936 if (gdbarch->data[data->index] == NULL
1937 && gdbarch->initialized_p)
1938 {
1939 /* Be careful to detect an initialization cycle. */
1940 gdb_assert (data->init_p);
1941 data->init_p = 0;
1942 gdb_assert (data->init != NULL);
1943 gdbarch->data[data->index] = data->init (gdbarch);
1944 data->init_p = 1;
1945 gdb_assert (gdbarch->data[data->index] != NULL);
1946 }
1947 return gdbarch->data[data->index];
1948 }
1949
1950
1951
1952 /* Keep a registry of swapped data required by GDB modules. */
1953
1954 struct gdbarch_swap
1955 {
1956 void *swap;
1957 struct gdbarch_swap_registration *source;
1958 struct gdbarch_swap *next;
1959 };
1960
1961 struct gdbarch_swap_registration
1962 {
1963 void *data;
1964 unsigned long sizeof_data;
1965 gdbarch_swap_ftype *init;
1966 struct gdbarch_swap_registration *next;
1967 };
1968
1969 struct gdbarch_swap_registry
1970 {
1971 int nr;
1972 struct gdbarch_swap_registration *registrations;
1973 };
1974
1975 struct gdbarch_swap_registry gdbarch_swap_registry =
1976 {
1977 0, NULL,
1978 };
1979
1980 void
1981 register_gdbarch_swap (void *data,
1982 unsigned long sizeof_data,
1983 gdbarch_swap_ftype *init)
1984 {
1985 struct gdbarch_swap_registration **rego;
1986 for (rego = &gdbarch_swap_registry.registrations;
1987 (*rego) != NULL;
1988 rego = &(*rego)->next);
1989 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1990 (*rego)->next = NULL;
1991 (*rego)->init = init;
1992 (*rego)->data = data;
1993 (*rego)->sizeof_data = sizeof_data;
1994 }
1995
1996 static void
1997 clear_gdbarch_swap (struct gdbarch *gdbarch)
1998 {
1999 struct gdbarch_swap *curr;
2000 for (curr = gdbarch->swap;
2001 curr != NULL;
2002 curr = curr->next)
2003 {
2004 memset (curr->source->data, 0, curr->source->sizeof_data);
2005 }
2006 }
2007
2008 static void
2009 init_gdbarch_swap (struct gdbarch *gdbarch)
2010 {
2011 struct gdbarch_swap_registration *rego;
2012 struct gdbarch_swap **curr = &gdbarch->swap;
2013 for (rego = gdbarch_swap_registry.registrations;
2014 rego != NULL;
2015 rego = rego->next)
2016 {
2017 if (rego->data != NULL)
2018 {
2019 (*curr) = XMALLOC (struct gdbarch_swap);
2020 (*curr)->source = rego;
2021 (*curr)->swap = xmalloc (rego->sizeof_data);
2022 (*curr)->next = NULL;
2023 curr = &(*curr)->next;
2024 }
2025 if (rego->init != NULL)
2026 rego->init ();
2027 }
2028 }
2029
2030 static void
2031 swapout_gdbarch_swap (struct gdbarch *gdbarch)
2032 {
2033 struct gdbarch_swap *curr;
2034 for (curr = gdbarch->swap;
2035 curr != NULL;
2036 curr = curr->next)
2037 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2038 }
2039
2040 static void
2041 swapin_gdbarch_swap (struct gdbarch *gdbarch)
2042 {
2043 struct gdbarch_swap *curr;
2044 for (curr = gdbarch->swap;
2045 curr != NULL;
2046 curr = curr->next)
2047 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2048 }
2049
2050
2051 /* Keep a registry of the architectures known by GDB. */
2052
2053 struct gdbarch_registration
2054 {
2055 enum bfd_architecture bfd_architecture;
2056 gdbarch_init_ftype *init;
2057 gdbarch_dump_tdep_ftype *dump_tdep;
2058 struct gdbarch_list *arches;
2059 struct gdbarch_registration *next;
2060 };
2061
2062 static struct gdbarch_registration *gdbarch_registry = NULL;
2063
2064 static void
2065 append_name (const char ***buf, int *nr, const char *name)
2066 {
2067 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2068 (*buf)[*nr] = name;
2069 *nr += 1;
2070 }
2071
2072 const char **
2073 gdbarch_printable_names (void)
2074 {
2075 if (GDB_MULTI_ARCH)
2076 {
2077 /* Accumulate a list of names based on the registed list of
2078 architectures. */
2079 enum bfd_architecture a;
2080 int nr_arches = 0;
2081 const char **arches = NULL;
2082 struct gdbarch_registration *rego;
2083 for (rego = gdbarch_registry;
2084 rego != NULL;
2085 rego = rego->next)
2086 {
2087 const struct bfd_arch_info *ap;
2088 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2089 if (ap == NULL)
2090 internal_error (__FILE__, __LINE__,
2091 "gdbarch_architecture_names: multi-arch unknown");
2092 do
2093 {
2094 append_name (&arches, &nr_arches, ap->printable_name);
2095 ap = ap->next;
2096 }
2097 while (ap != NULL);
2098 }
2099 append_name (&arches, &nr_arches, NULL);
2100 return arches;
2101 }
2102 else
2103 /* Just return all the architectures that BFD knows. Assume that
2104 the legacy architecture framework supports them. */
2105 return bfd_arch_list ();
2106 }
2107
2108
2109 void
2110 gdbarch_register (enum bfd_architecture bfd_architecture,
2111 gdbarch_init_ftype *init,
2112 gdbarch_dump_tdep_ftype *dump_tdep)
2113 {
2114 struct gdbarch_registration **curr;
2115 const struct bfd_arch_info *bfd_arch_info;
2116 /* Check that BFD recognizes this architecture */
2117 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2118 if (bfd_arch_info == NULL)
2119 {
2120 internal_error (__FILE__, __LINE__,
2121 "gdbarch: Attempt to register unknown architecture (%d)",
2122 bfd_architecture);
2123 }
2124 /* Check that we haven't seen this architecture before */
2125 for (curr = &gdbarch_registry;
2126 (*curr) != NULL;
2127 curr = &(*curr)->next)
2128 {
2129 if (bfd_architecture == (*curr)->bfd_architecture)
2130 internal_error (__FILE__, __LINE__,
2131 "gdbarch: Duplicate registraration of architecture (%s)",
2132 bfd_arch_info->printable_name);
2133 }
2134 /* log it */
2135 if (gdbarch_debug)
2136 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2137 bfd_arch_info->printable_name,
2138 (long) init);
2139 /* Append it */
2140 (*curr) = XMALLOC (struct gdbarch_registration);
2141 (*curr)->bfd_architecture = bfd_architecture;
2142 (*curr)->init = init;
2143 (*curr)->dump_tdep = dump_tdep;
2144 (*curr)->arches = NULL;
2145 (*curr)->next = NULL;
2146 /* When non- multi-arch, install whatever target dump routine we've
2147 been provided - hopefully that routine has been written correctly
2148 and works regardless of multi-arch. */
2149 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2150 && startup_gdbarch.dump_tdep == NULL)
2151 startup_gdbarch.dump_tdep = dump_tdep;
2152 }
2153
2154 void
2155 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2156 gdbarch_init_ftype *init)
2157 {
2158 gdbarch_register (bfd_architecture, init, NULL);
2159 }
2160
2161
2162 /* Look for an architecture using gdbarch_info. Base search on only
2163 BFD_ARCH_INFO and BYTE_ORDER. */
2164
2165 struct gdbarch_list *
2166 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2167 const struct gdbarch_info *info)
2168 {
2169 for (; arches != NULL; arches = arches->next)
2170 {
2171 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2172 continue;
2173 if (info->byte_order != arches->gdbarch->byte_order)
2174 continue;
2175 if (info->osabi != arches->gdbarch->osabi)
2176 continue;
2177 return arches;
2178 }
2179 return NULL;
2180 }
2181
2182
2183 /* Update the current architecture. Return ZERO if the update request
2184 failed. */
2185
2186 int
2187 gdbarch_update_p (struct gdbarch_info info)
2188 {
2189 struct gdbarch *new_gdbarch;
2190 struct gdbarch *old_gdbarch;
2191 struct gdbarch_registration *rego;
2192
2193 /* Fill in missing parts of the INFO struct using a number of
2194 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2195
2196 /* \`\`(gdb) set architecture ...'' */
2197 if (info.bfd_arch_info == NULL
2198 && !TARGET_ARCHITECTURE_AUTO)
2199 info.bfd_arch_info = TARGET_ARCHITECTURE;
2200 if (info.bfd_arch_info == NULL
2201 && info.abfd != NULL
2202 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2203 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2204 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2205 if (info.bfd_arch_info == NULL)
2206 info.bfd_arch_info = TARGET_ARCHITECTURE;
2207
2208 /* \`\`(gdb) set byte-order ...'' */
2209 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2210 && !TARGET_BYTE_ORDER_AUTO)
2211 info.byte_order = TARGET_BYTE_ORDER;
2212 /* From the INFO struct. */
2213 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2214 && info.abfd != NULL)
2215 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2216 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2217 : BFD_ENDIAN_UNKNOWN);
2218 /* From the current target. */
2219 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2220 info.byte_order = TARGET_BYTE_ORDER;
2221
2222 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2223 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2224 info.osabi = gdbarch_lookup_osabi (info.abfd);
2225 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2226 info.osabi = current_gdbarch->osabi;
2227
2228 /* Must have found some sort of architecture. */
2229 gdb_assert (info.bfd_arch_info != NULL);
2230
2231 if (gdbarch_debug)
2232 {
2233 fprintf_unfiltered (gdb_stdlog,
2234 "gdbarch_update: info.bfd_arch_info %s\n",
2235 (info.bfd_arch_info != NULL
2236 ? info.bfd_arch_info->printable_name
2237 : "(null)"));
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_update: info.byte_order %d (%s)\n",
2240 info.byte_order,
2241 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2242 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2243 : "default"));
2244 fprintf_unfiltered (gdb_stdlog,
2245 "gdbarch_update: info.osabi %d (%s)\n",
2246 info.osabi, gdbarch_osabi_name (info.osabi));
2247 fprintf_unfiltered (gdb_stdlog,
2248 "gdbarch_update: info.abfd 0x%lx\n",
2249 (long) info.abfd);
2250 fprintf_unfiltered (gdb_stdlog,
2251 "gdbarch_update: info.tdep_info 0x%lx\n",
2252 (long) info.tdep_info);
2253 }
2254
2255 /* Find the target that knows about this architecture. */
2256 for (rego = gdbarch_registry;
2257 rego != NULL;
2258 rego = rego->next)
2259 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2260 break;
2261 if (rego == NULL)
2262 {
2263 if (gdbarch_debug)
2264 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2265 return 0;
2266 }
2267
2268 /* Swap the data belonging to the old target out setting the
2269 installed data to zero. This stops the ->init() function trying
2270 to refer to the previous architecture's global data structures. */
2271 swapout_gdbarch_swap (current_gdbarch);
2272 clear_gdbarch_swap (current_gdbarch);
2273
2274 /* Save the previously selected architecture, setting the global to
2275 NULL. This stops ->init() trying to use the previous
2276 architecture's configuration. The previous architecture may not
2277 even be of the same architecture family. The most recent
2278 architecture of the same family is found at the head of the
2279 rego->arches list. */
2280 old_gdbarch = current_gdbarch;
2281 current_gdbarch = NULL;
2282
2283 /* Ask the target for a replacement architecture. */
2284 new_gdbarch = rego->init (info, rego->arches);
2285
2286 /* Did the target like it? No. Reject the change and revert to the
2287 old architecture. */
2288 if (new_gdbarch == NULL)
2289 {
2290 if (gdbarch_debug)
2291 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2292 swapin_gdbarch_swap (old_gdbarch);
2293 current_gdbarch = old_gdbarch;
2294 return 0;
2295 }
2296
2297 /* Did the architecture change? No. Oops, put the old architecture
2298 back. */
2299 if (old_gdbarch == new_gdbarch)
2300 {
2301 if (gdbarch_debug)
2302 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2303 (long) new_gdbarch,
2304 new_gdbarch->bfd_arch_info->printable_name);
2305 swapin_gdbarch_swap (old_gdbarch);
2306 current_gdbarch = old_gdbarch;
2307 return 1;
2308 }
2309
2310 /* Is this a pre-existing architecture? Yes. Move it to the front
2311 of the list of architectures (keeping the list sorted Most
2312 Recently Used) and then copy it in. */
2313 {
2314 struct gdbarch_list **list;
2315 for (list = &rego->arches;
2316 (*list) != NULL;
2317 list = &(*list)->next)
2318 {
2319 if ((*list)->gdbarch == new_gdbarch)
2320 {
2321 struct gdbarch_list *this;
2322 if (gdbarch_debug)
2323 fprintf_unfiltered (gdb_stdlog,
2324 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2325 (long) new_gdbarch,
2326 new_gdbarch->bfd_arch_info->printable_name);
2327 /* Unlink this. */
2328 this = (*list);
2329 (*list) = this->next;
2330 /* Insert in the front. */
2331 this->next = rego->arches;
2332 rego->arches = this;
2333 /* Copy the new architecture in. */
2334 current_gdbarch = new_gdbarch;
2335 swapin_gdbarch_swap (new_gdbarch);
2336 architecture_changed_event ();
2337 return 1;
2338 }
2339 }
2340 }
2341
2342 /* Prepend this new architecture to the architecture list (keep the
2343 list sorted Most Recently Used). */
2344 {
2345 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2346 this->next = rego->arches;
2347 this->gdbarch = new_gdbarch;
2348 rego->arches = this;
2349 }
2350
2351 /* Switch to this new architecture marking it initialized. */
2352 current_gdbarch = new_gdbarch;
2353 current_gdbarch->initialized_p = 1;
2354 if (gdbarch_debug)
2355 {
2356 fprintf_unfiltered (gdb_stdlog,
2357 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2358 (long) new_gdbarch,
2359 new_gdbarch->bfd_arch_info->printable_name);
2360 }
2361
2362 /* Check that the newly installed architecture is valid. Plug in
2363 any post init values. */
2364 new_gdbarch->dump_tdep = rego->dump_tdep;
2365 verify_gdbarch (new_gdbarch);
2366
2367 /* Initialize the per-architecture memory (swap) areas.
2368 CURRENT_GDBARCH must be update before these modules are
2369 called. */
2370 init_gdbarch_swap (new_gdbarch);
2371
2372 /* Initialize the per-architecture data. CURRENT_GDBARCH
2373 must be updated before these modules are called. */
2374 architecture_changed_event ();
2375
2376 if (gdbarch_debug)
2377 gdbarch_dump (current_gdbarch, gdb_stdlog);
2378
2379 return 1;
2380 }
2381
2382
2383 /* Disassembler */
2384
2385 /* Pointer to the target-dependent disassembly function. */
2386 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2387 disassemble_info tm_print_insn_info;
2388
2389
2390 extern void _initialize_gdbarch (void);
2391
2392 void
2393 _initialize_gdbarch (void)
2394 {
2395 struct cmd_list_element *c;
2396
2397 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2398 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2399 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2400 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2401 tm_print_insn_info.print_address_func = dis_asm_print_address;
2402
2403 add_show_from_set (add_set_cmd ("arch",
2404 class_maintenance,
2405 var_zinteger,
2406 (char *)&gdbarch_debug,
2407 "Set architecture debugging.\\n\\
2408 When non-zero, architecture debugging is enabled.", &setdebuglist),
2409 &showdebuglist);
2410 c = add_set_cmd ("archdebug",
2411 class_maintenance,
2412 var_zinteger,
2413 (char *)&gdbarch_debug,
2414 "Set architecture debugging.\\n\\
2415 When non-zero, architecture debugging is enabled.", &setlist);
2416
2417 deprecate_cmd (c, "set debug arch");
2418 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2419 }
2420 EOF
2421
2422 # close things off
2423 exec 1>&2
2424 #../move-if-change new-gdbarch.c gdbarch.c
2425 compare_new gdbarch.c
This page took 0.083676 seconds and 4 git commands to generate.