daily update
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2014 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # GDB's standard (or well known) register numbers. These can map onto
450 # a real register or a pseudo (computed) register or not be defined at
451 # all (-1).
452 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
453 v:int:sp_regnum:::-1:-1::0
454 v:int:pc_regnum:::-1:-1::0
455 v:int:ps_regnum:::-1:-1::0
456 v:int:fp0_regnum:::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
461 # Convert from an sdb register number to an internal gdb register number.
462 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
464 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
465 m:const char *:register_name:int regnr:regnr::0
466
467 # Return the type of a register specified by the architecture. Only
468 # the register cache should call this function directly; others should
469 # use "register_type".
470 M:struct type *:register_type:int reg_nr:reg_nr
471
472 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
474 # deprecated_fp_regnum.
475 v:int:deprecated_fp_regnum:::-1:-1::0
476
477 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478 v:int:call_dummy_location::::AT_ENTRY_POINT::0
479 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
480
481 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 # MAP a GDB RAW register number onto a simulator register number. See
485 # also include/...-sim.h.
486 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
487 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
489
490 # Determine the address where a longjmp will land and save this address
491 # in PC. Return nonzero on success.
492 #
493 # FRAME corresponds to the longjmp frame.
494 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
495
496 #
497 v:int:believe_pcc_promotion:::::::
498 #
499 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
500 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
501 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
502 # Construct a value representing the contents of register REGNUM in
503 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
504 # allocate and return a struct value with all value attributes
505 # (but not the value contents) filled in.
506 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
507 #
508 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
510 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
511
512 # Return the return-value convention that will be used by FUNCTION
513 # to return a value of type VALTYPE. FUNCTION may be NULL in which
514 # case the return convention is computed based only on VALTYPE.
515 #
516 # If READBUF is not NULL, extract the return value and save it in this buffer.
517 #
518 # If WRITEBUF is not NULL, it contains a return value which will be
519 # stored into the appropriate register. This can be used when we want
520 # to force the value returned by a function (see the "return" command
521 # for instance).
522 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
523
524 # Return true if the return value of function is stored in the first hidden
525 # parameter. In theory, this feature should be language-dependent, specified
526 # by language and its ABI, such as C++. Unfortunately, compiler may
527 # implement it to a target-dependent feature. So that we need such hook here
528 # to be aware of this in GDB.
529 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
531 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
532 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
533 # On some platforms, a single function may provide multiple entry points,
534 # e.g. one that is used for function-pointer calls and a different one
535 # that is used for direct function calls.
536 # In order to ensure that breakpoints set on the function will trigger
537 # no matter via which entry point the function is entered, a platform
538 # may provide the skip_entrypoint callback. It is called with IP set
539 # to the main entry point of a function (as determined by the symbol table),
540 # and should return the address of the innermost entry point, where the
541 # actual breakpoint needs to be set. Note that skip_entrypoint is used
542 # by GDB common code even when debugging optimized code, where skip_prologue
543 # is not used.
544 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
546 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
547 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
548 # Return the adjusted address and kind to use for Z0/Z1 packets.
549 # KIND is usually the memory length of the breakpoint, but may have a
550 # different target-specific meaning.
551 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
552 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
553 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
555 v:CORE_ADDR:decr_pc_after_break:::0:::0
556
557 # A function can be addressed by either it's "pointer" (possibly a
558 # descriptor address) or "entry point" (first executable instruction).
559 # The method "convert_from_func_ptr_addr" converting the former to the
560 # latter. gdbarch_deprecated_function_start_offset is being used to implement
561 # a simplified subset of that functionality - the function's address
562 # corresponds to the "function pointer" and the function's start
563 # corresponds to the "function entry point" - and hence is redundant.
564
565 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
566
567 # Return the remote protocol register number associated with this
568 # register. Normally the identity mapping.
569 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
570
571 # Fetch the target specific address used to represent a load module.
572 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
573 #
574 v:CORE_ADDR:frame_args_skip:::0:::0
575 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
577 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578 # frame-base. Enable frame-base before frame-unwind.
579 F:int:frame_num_args:struct frame_info *frame:frame
580 #
581 M:CORE_ADDR:frame_align:CORE_ADDR address:address
582 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583 v:int:frame_red_zone_size
584 #
585 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
586 # On some machines there are bits in addresses which are not really
587 # part of the address, but are used by the kernel, the hardware, etc.
588 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
589 # we get a "real" address such as one would find in a symbol table.
590 # This is used only for addresses of instructions, and even then I'm
591 # not sure it's used in all contexts. It exists to deal with there
592 # being a few stray bits in the PC which would mislead us, not as some
593 # sort of generic thing to handle alignment or segmentation (it's
594 # possible it should be in TARGET_READ_PC instead).
595 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
596
597 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
598 # indicates if the target needs software single step. An ISA method to
599 # implement it.
600 #
601 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602 # breakpoints using the breakpoint system instead of blatting memory directly
603 # (as with rs6000).
604 #
605 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606 # target can single step. If not, then implement single step using breakpoints.
607 #
608 # A return value of 1 means that the software_single_step breakpoints
609 # were inserted; 0 means they were not.
610 F:int:software_single_step:struct frame_info *frame:frame
611
612 # Return non-zero if the processor is executing a delay slot and a
613 # further single-step is needed before the instruction finishes.
614 M:int:single_step_through_delay:struct frame_info *frame:frame
615 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
616 # disassembler. Perhaps objdump can handle it?
617 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
619
620
621 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
622 # evaluates non-zero, this is the address where the debugger will place
623 # a step-resume breakpoint to get us past the dynamic linker.
624 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
625 # Some systems also have trampoline code for returning from shared libs.
626 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
627
628 # A target might have problems with watchpoints as soon as the stack
629 # frame of the current function has been destroyed. This mostly happens
630 # as the first action in a funtion's epilogue. in_function_epilogue_p()
631 # is defined to return a non-zero value if either the given addr is one
632 # instruction after the stack destroying instruction up to the trailing
633 # return instruction or if we can figure out that the stack frame has
634 # already been invalidated regardless of the value of addr. Targets
635 # which don't suffer from that problem could just let this functionality
636 # untouched.
637 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
638 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
640 v:int:cannot_step_breakpoint:::0:0::0
641 v:int:have_nonsteppable_watchpoint:::0:0::0
642 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
644
645 # Return the appropriate type_flags for the supplied address class.
646 # This function should return 1 if the address class was recognized and
647 # type_flags was set, zero otherwise.
648 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
649 # Is a register in a group
650 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
651 # Fetch the pointer to the ith function argument.
652 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
653
654 # Iterate over all supported register notes in a core file. For each
655 # supported register note section, the iterator must call CB and pass
656 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
657 # the supported register note sections based on the current register
658 # values. Otherwise it should enumerate all supported register note
659 # sections.
660 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
661
662 # Create core file notes
663 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
664
665 # The elfcore writer hook to use to write Linux prpsinfo notes to core
666 # files. Most Linux architectures use the same prpsinfo32 or
667 # prpsinfo64 layouts, and so won't need to provide this hook, as we
668 # call the Linux generic routines in bfd to write prpsinfo notes by
669 # default.
670 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
671
672 # Find core file memory regions
673 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
674
675 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
676 # core file into buffer READBUF with length LEN. Return the number of bytes read
677 # (zero indicates failure).
678 # failed, otherwise, return the red length of READBUF.
679 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
680
681 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
682 # libraries list from core file into buffer READBUF with length LEN.
683 # Return the number of bytes read (zero indicates failure).
684 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
685
686 # How the core target converts a PTID from a core file to a string.
687 M:char *:core_pid_to_str:ptid_t ptid:ptid
688
689 # BFD target to use when generating a core file.
690 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
691
692 # If the elements of C++ vtables are in-place function descriptors rather
693 # than normal function pointers (which may point to code or a descriptor),
694 # set this to one.
695 v:int:vtable_function_descriptors:::0:0::0
696
697 # Set if the least significant bit of the delta is used instead of the least
698 # significant bit of the pfn for pointers to virtual member functions.
699 v:int:vbit_in_delta:::0:0::0
700
701 # Advance PC to next instruction in order to skip a permanent breakpoint.
702 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
703
704 # The maximum length of an instruction on this architecture in bytes.
705 V:ULONGEST:max_insn_length:::0:0
706
707 # Copy the instruction at FROM to TO, and make any adjustments
708 # necessary to single-step it at that address.
709 #
710 # REGS holds the state the thread's registers will have before
711 # executing the copied instruction; the PC in REGS will refer to FROM,
712 # not the copy at TO. The caller should update it to point at TO later.
713 #
714 # Return a pointer to data of the architecture's choice to be passed
715 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
716 # the instruction's effects have been completely simulated, with the
717 # resulting state written back to REGS.
718 #
719 # For a general explanation of displaced stepping and how GDB uses it,
720 # see the comments in infrun.c.
721 #
722 # The TO area is only guaranteed to have space for
723 # gdbarch_max_insn_length (arch) bytes, so this function must not
724 # write more bytes than that to that area.
725 #
726 # If you do not provide this function, GDB assumes that the
727 # architecture does not support displaced stepping.
728 #
729 # If your architecture doesn't need to adjust instructions before
730 # single-stepping them, consider using simple_displaced_step_copy_insn
731 # here.
732 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
733
734 # Return true if GDB should use hardware single-stepping to execute
735 # the displaced instruction identified by CLOSURE. If false,
736 # GDB will simply restart execution at the displaced instruction
737 # location, and it is up to the target to ensure GDB will receive
738 # control again (e.g. by placing a software breakpoint instruction
739 # into the displaced instruction buffer).
740 #
741 # The default implementation returns false on all targets that
742 # provide a gdbarch_software_single_step routine, and true otherwise.
743 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
744
745 # Fix up the state resulting from successfully single-stepping a
746 # displaced instruction, to give the result we would have gotten from
747 # stepping the instruction in its original location.
748 #
749 # REGS is the register state resulting from single-stepping the
750 # displaced instruction.
751 #
752 # CLOSURE is the result from the matching call to
753 # gdbarch_displaced_step_copy_insn.
754 #
755 # If you provide gdbarch_displaced_step_copy_insn.but not this
756 # function, then GDB assumes that no fixup is needed after
757 # single-stepping the instruction.
758 #
759 # For a general explanation of displaced stepping and how GDB uses it,
760 # see the comments in infrun.c.
761 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
762
763 # Free a closure returned by gdbarch_displaced_step_copy_insn.
764 #
765 # If you provide gdbarch_displaced_step_copy_insn, you must provide
766 # this function as well.
767 #
768 # If your architecture uses closures that don't need to be freed, then
769 # you can use simple_displaced_step_free_closure here.
770 #
771 # For a general explanation of displaced stepping and how GDB uses it,
772 # see the comments in infrun.c.
773 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
774
775 # Return the address of an appropriate place to put displaced
776 # instructions while we step over them. There need only be one such
777 # place, since we're only stepping one thread over a breakpoint at a
778 # time.
779 #
780 # For a general explanation of displaced stepping and how GDB uses it,
781 # see the comments in infrun.c.
782 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
783
784 # Relocate an instruction to execute at a different address. OLDLOC
785 # is the address in the inferior memory where the instruction to
786 # relocate is currently at. On input, TO points to the destination
787 # where we want the instruction to be copied (and possibly adjusted)
788 # to. On output, it points to one past the end of the resulting
789 # instruction(s). The effect of executing the instruction at TO shall
790 # be the same as if executing it at FROM. For example, call
791 # instructions that implicitly push the return address on the stack
792 # should be adjusted to return to the instruction after OLDLOC;
793 # relative branches, and other PC-relative instructions need the
794 # offset adjusted; etc.
795 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
796
797 # Refresh overlay mapped state for section OSECT.
798 F:void:overlay_update:struct obj_section *osect:osect
799
800 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
801
802 # Handle special encoding of static variables in stabs debug info.
803 F:const char *:static_transform_name:const char *name:name
804 # Set if the address in N_SO or N_FUN stabs may be zero.
805 v:int:sofun_address_maybe_missing:::0:0::0
806
807 # Parse the instruction at ADDR storing in the record execution log
808 # the registers REGCACHE and memory ranges that will be affected when
809 # the instruction executes, along with their current values.
810 # Return -1 if something goes wrong, 0 otherwise.
811 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
812
813 # Save process state after a signal.
814 # Return -1 if something goes wrong, 0 otherwise.
815 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
816
817 # Signal translation: translate inferior's signal (target's) number
818 # into GDB's representation. The implementation of this method must
819 # be host independent. IOW, don't rely on symbols of the NAT_FILE
820 # header (the nm-*.h files), the host <signal.h> header, or similar
821 # headers. This is mainly used when cross-debugging core files ---
822 # "Live" targets hide the translation behind the target interface
823 # (target_wait, target_resume, etc.).
824 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
825
826 # Signal translation: translate the GDB's internal signal number into
827 # the inferior's signal (target's) representation. The implementation
828 # of this method must be host independent. IOW, don't rely on symbols
829 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
830 # header, or similar headers.
831 # Return the target signal number if found, or -1 if the GDB internal
832 # signal number is invalid.
833 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
834
835 # Extra signal info inspection.
836 #
837 # Return a type suitable to inspect extra signal information.
838 M:struct type *:get_siginfo_type:void:
839
840 # Record architecture-specific information from the symbol table.
841 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
842
843 # Function for the 'catch syscall' feature.
844
845 # Get architecture-specific system calls information from registers.
846 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
847
848 # SystemTap related fields and functions.
849
850 # A NULL-terminated array of prefixes used to mark an integer constant
851 # on the architecture's assembly.
852 # For example, on x86 integer constants are written as:
853 #
854 # \$10 ;; integer constant 10
855 #
856 # in this case, this prefix would be the character \`\$\'.
857 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
858
859 # A NULL-terminated array of suffixes used to mark an integer constant
860 # on the architecture's assembly.
861 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
862
863 # A NULL-terminated array of prefixes used to mark a register name on
864 # the architecture's assembly.
865 # For example, on x86 the register name is written as:
866 #
867 # \%eax ;; register eax
868 #
869 # in this case, this prefix would be the character \`\%\'.
870 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
871
872 # A NULL-terminated array of suffixes used to mark a register name on
873 # the architecture's assembly.
874 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
875
876 # A NULL-terminated array of prefixes used to mark a register
877 # indirection on the architecture's assembly.
878 # For example, on x86 the register indirection is written as:
879 #
880 # \(\%eax\) ;; indirecting eax
881 #
882 # in this case, this prefix would be the charater \`\(\'.
883 #
884 # Please note that we use the indirection prefix also for register
885 # displacement, e.g., \`4\(\%eax\)\' on x86.
886 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
887
888 # A NULL-terminated array of suffixes used to mark a register
889 # indirection on the architecture's assembly.
890 # For example, on x86 the register indirection is written as:
891 #
892 # \(\%eax\) ;; indirecting eax
893 #
894 # in this case, this prefix would be the charater \`\)\'.
895 #
896 # Please note that we use the indirection suffix also for register
897 # displacement, e.g., \`4\(\%eax\)\' on x86.
898 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
899
900 # Prefix(es) used to name a register using GDB's nomenclature.
901 #
902 # For example, on PPC a register is represented by a number in the assembly
903 # language (e.g., \`10\' is the 10th general-purpose register). However,
904 # inside GDB this same register has an \`r\' appended to its name, so the 10th
905 # register would be represented as \`r10\' internally.
906 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
907
908 # Suffix used to name a register using GDB's nomenclature.
909 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
910
911 # Check if S is a single operand.
912 #
913 # Single operands can be:
914 # \- Literal integers, e.g. \`\$10\' on x86
915 # \- Register access, e.g. \`\%eax\' on x86
916 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
917 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
918 #
919 # This function should check for these patterns on the string
920 # and return 1 if some were found, or zero otherwise. Please try to match
921 # as much info as you can from the string, i.e., if you have to match
922 # something like \`\(\%\', do not match just the \`\(\'.
923 M:int:stap_is_single_operand:const char *s:s
924
925 # Function used to handle a "special case" in the parser.
926 #
927 # A "special case" is considered to be an unknown token, i.e., a token
928 # that the parser does not know how to parse. A good example of special
929 # case would be ARM's register displacement syntax:
930 #
931 # [R0, #4] ;; displacing R0 by 4
932 #
933 # Since the parser assumes that a register displacement is of the form:
934 #
935 # <number> <indirection_prefix> <register_name> <indirection_suffix>
936 #
937 # it means that it will not be able to recognize and parse this odd syntax.
938 # Therefore, we should add a special case function that will handle this token.
939 #
940 # This function should generate the proper expression form of the expression
941 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
942 # and so on). It should also return 1 if the parsing was successful, or zero
943 # if the token was not recognized as a special token (in this case, returning
944 # zero means that the special parser is deferring the parsing to the generic
945 # parser), and should advance the buffer pointer (p->arg).
946 M:int:stap_parse_special_token:struct stap_parse_info *p:p
947
948
949 # True if the list of shared libraries is one and only for all
950 # processes, as opposed to a list of shared libraries per inferior.
951 # This usually means that all processes, although may or may not share
952 # an address space, will see the same set of symbols at the same
953 # addresses.
954 v:int:has_global_solist:::0:0::0
955
956 # On some targets, even though each inferior has its own private
957 # address space, the debug interface takes care of making breakpoints
958 # visible to all address spaces automatically. For such cases,
959 # this property should be set to true.
960 v:int:has_global_breakpoints:::0:0::0
961
962 # True if inferiors share an address space (e.g., uClinux).
963 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
964
965 # True if a fast tracepoint can be set at an address.
966 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
967
968 # Return the "auto" target charset.
969 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
970 # Return the "auto" target wide charset.
971 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
972
973 # If non-empty, this is a file extension that will be opened in place
974 # of the file extension reported by the shared library list.
975 #
976 # This is most useful for toolchains that use a post-linker tool,
977 # where the names of the files run on the target differ in extension
978 # compared to the names of the files GDB should load for debug info.
979 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
980
981 # If true, the target OS has DOS-based file system semantics. That
982 # is, absolute paths include a drive name, and the backslash is
983 # considered a directory separator.
984 v:int:has_dos_based_file_system:::0:0::0
985
986 # Generate bytecodes to collect the return address in a frame.
987 # Since the bytecodes run on the target, possibly with GDB not even
988 # connected, the full unwinding machinery is not available, and
989 # typically this function will issue bytecodes for one or more likely
990 # places that the return address may be found.
991 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
992
993 # Implement the "info proc" command.
994 M:void:info_proc:const char *args, enum info_proc_what what:args, what
995
996 # Implement the "info proc" command for core files. Noe that there
997 # are two "info_proc"-like methods on gdbarch -- one for core files,
998 # one for live targets.
999 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1000
1001 # Iterate over all objfiles in the order that makes the most sense
1002 # for the architecture to make global symbol searches.
1003 #
1004 # CB is a callback function where OBJFILE is the objfile to be searched,
1005 # and CB_DATA a pointer to user-defined data (the same data that is passed
1006 # when calling this gdbarch method). The iteration stops if this function
1007 # returns nonzero.
1008 #
1009 # CB_DATA is a pointer to some user-defined data to be passed to
1010 # the callback.
1011 #
1012 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1013 # inspected when the symbol search was requested.
1014 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1015
1016 # Ravenscar arch-dependent ops.
1017 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1018
1019 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1020 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1021
1022 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1023 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1024
1025 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1026 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1027
1028 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1029 # Return 0 if *READPTR is already at the end of the buffer.
1030 # Return -1 if there is insufficient buffer for a whole entry.
1031 # Return 1 if an entry was read into *TYPEP and *VALP.
1032 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1033 EOF
1034 }
1035
1036 #
1037 # The .log file
1038 #
1039 exec > new-gdbarch.log
1040 function_list | while do_read
1041 do
1042 cat <<EOF
1043 ${class} ${returntype} ${function} ($formal)
1044 EOF
1045 for r in ${read}
1046 do
1047 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1048 done
1049 if class_is_predicate_p && fallback_default_p
1050 then
1051 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1052 kill $$
1053 exit 1
1054 fi
1055 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1056 then
1057 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1058 kill $$
1059 exit 1
1060 fi
1061 if class_is_multiarch_p
1062 then
1063 if class_is_predicate_p ; then :
1064 elif test "x${predefault}" = "x"
1065 then
1066 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1067 kill $$
1068 exit 1
1069 fi
1070 fi
1071 echo ""
1072 done
1073
1074 exec 1>&2
1075 compare_new gdbarch.log
1076
1077
1078 copyright ()
1079 {
1080 cat <<EOF
1081 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1082 /* vi:set ro: */
1083
1084 /* Dynamic architecture support for GDB, the GNU debugger.
1085
1086 Copyright (C) 1998-2014 Free Software Foundation, Inc.
1087
1088 This file is part of GDB.
1089
1090 This program is free software; you can redistribute it and/or modify
1091 it under the terms of the GNU General Public License as published by
1092 the Free Software Foundation; either version 3 of the License, or
1093 (at your option) any later version.
1094
1095 This program is distributed in the hope that it will be useful,
1096 but WITHOUT ANY WARRANTY; without even the implied warranty of
1097 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1098 GNU General Public License for more details.
1099
1100 You should have received a copy of the GNU General Public License
1101 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1102
1103 /* This file was created with the aid of \`\`gdbarch.sh''.
1104
1105 The Bourne shell script \`\`gdbarch.sh'' creates the files
1106 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1107 against the existing \`\`gdbarch.[hc]''. Any differences found
1108 being reported.
1109
1110 If editing this file, please also run gdbarch.sh and merge any
1111 changes into that script. Conversely, when making sweeping changes
1112 to this file, modifying gdbarch.sh and using its output may prove
1113 easier. */
1114
1115 EOF
1116 }
1117
1118 #
1119 # The .h file
1120 #
1121
1122 exec > new-gdbarch.h
1123 copyright
1124 cat <<EOF
1125 #ifndef GDBARCH_H
1126 #define GDBARCH_H
1127
1128 #include "frame.h"
1129
1130 struct floatformat;
1131 struct ui_file;
1132 struct value;
1133 struct objfile;
1134 struct obj_section;
1135 struct minimal_symbol;
1136 struct regcache;
1137 struct reggroup;
1138 struct regset;
1139 struct disassemble_info;
1140 struct target_ops;
1141 struct obstack;
1142 struct bp_target_info;
1143 struct target_desc;
1144 struct displaced_step_closure;
1145 struct core_regset_section;
1146 struct syscall;
1147 struct agent_expr;
1148 struct axs_value;
1149 struct stap_parse_info;
1150 struct ravenscar_arch_ops;
1151 struct elf_internal_linux_prpsinfo;
1152
1153 /* The architecture associated with the inferior through the
1154 connection to the target.
1155
1156 The architecture vector provides some information that is really a
1157 property of the inferior, accessed through a particular target:
1158 ptrace operations; the layout of certain RSP packets; the solib_ops
1159 vector; etc. To differentiate architecture accesses to
1160 per-inferior/target properties from
1161 per-thread/per-frame/per-objfile properties, accesses to
1162 per-inferior/target properties should be made through this
1163 gdbarch. */
1164
1165 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1166 extern struct gdbarch *target_gdbarch (void);
1167
1168 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1169 gdbarch method. */
1170
1171 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1172 (struct objfile *objfile, void *cb_data);
1173
1174 typedef void (iterate_over_regset_sections_cb)
1175 (const char *sect_name, int size, const struct regset *regset,
1176 const char *human_name, void *cb_data);
1177 EOF
1178
1179 # function typedef's
1180 printf "\n"
1181 printf "\n"
1182 printf "/* The following are pre-initialized by GDBARCH. */\n"
1183 function_list | while do_read
1184 do
1185 if class_is_info_p
1186 then
1187 printf "\n"
1188 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1189 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1190 fi
1191 done
1192
1193 # function typedef's
1194 printf "\n"
1195 printf "\n"
1196 printf "/* The following are initialized by the target dependent code. */\n"
1197 function_list | while do_read
1198 do
1199 if [ -n "${comment}" ]
1200 then
1201 echo "${comment}" | sed \
1202 -e '2 s,#,/*,' \
1203 -e '3,$ s,#, ,' \
1204 -e '$ s,$, */,'
1205 fi
1206
1207 if class_is_predicate_p
1208 then
1209 printf "\n"
1210 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1211 fi
1212 if class_is_variable_p
1213 then
1214 printf "\n"
1215 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1216 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1217 fi
1218 if class_is_function_p
1219 then
1220 printf "\n"
1221 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1222 then
1223 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1224 elif class_is_multiarch_p
1225 then
1226 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1227 else
1228 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1229 fi
1230 if [ "x${formal}" = "xvoid" ]
1231 then
1232 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1233 else
1234 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1235 fi
1236 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1237 fi
1238 done
1239
1240 # close it off
1241 cat <<EOF
1242
1243 /* Definition for an unknown syscall, used basically in error-cases. */
1244 #define UNKNOWN_SYSCALL (-1)
1245
1246 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1247
1248
1249 /* Mechanism for co-ordinating the selection of a specific
1250 architecture.
1251
1252 GDB targets (*-tdep.c) can register an interest in a specific
1253 architecture. Other GDB components can register a need to maintain
1254 per-architecture data.
1255
1256 The mechanisms below ensures that there is only a loose connection
1257 between the set-architecture command and the various GDB
1258 components. Each component can independently register their need
1259 to maintain architecture specific data with gdbarch.
1260
1261 Pragmatics:
1262
1263 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1264 didn't scale.
1265
1266 The more traditional mega-struct containing architecture specific
1267 data for all the various GDB components was also considered. Since
1268 GDB is built from a variable number of (fairly independent)
1269 components it was determined that the global aproach was not
1270 applicable. */
1271
1272
1273 /* Register a new architectural family with GDB.
1274
1275 Register support for the specified ARCHITECTURE with GDB. When
1276 gdbarch determines that the specified architecture has been
1277 selected, the corresponding INIT function is called.
1278
1279 --
1280
1281 The INIT function takes two parameters: INFO which contains the
1282 information available to gdbarch about the (possibly new)
1283 architecture; ARCHES which is a list of the previously created
1284 \`\`struct gdbarch'' for this architecture.
1285
1286 The INFO parameter is, as far as possible, be pre-initialized with
1287 information obtained from INFO.ABFD or the global defaults.
1288
1289 The ARCHES parameter is a linked list (sorted most recently used)
1290 of all the previously created architures for this architecture
1291 family. The (possibly NULL) ARCHES->gdbarch can used to access
1292 values from the previously selected architecture for this
1293 architecture family.
1294
1295 The INIT function shall return any of: NULL - indicating that it
1296 doesn't recognize the selected architecture; an existing \`\`struct
1297 gdbarch'' from the ARCHES list - indicating that the new
1298 architecture is just a synonym for an earlier architecture (see
1299 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1300 - that describes the selected architecture (see gdbarch_alloc()).
1301
1302 The DUMP_TDEP function shall print out all target specific values.
1303 Care should be taken to ensure that the function works in both the
1304 multi-arch and non- multi-arch cases. */
1305
1306 struct gdbarch_list
1307 {
1308 struct gdbarch *gdbarch;
1309 struct gdbarch_list *next;
1310 };
1311
1312 struct gdbarch_info
1313 {
1314 /* Use default: NULL (ZERO). */
1315 const struct bfd_arch_info *bfd_arch_info;
1316
1317 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1318 enum bfd_endian byte_order;
1319
1320 enum bfd_endian byte_order_for_code;
1321
1322 /* Use default: NULL (ZERO). */
1323 bfd *abfd;
1324
1325 /* Use default: NULL (ZERO). */
1326 struct gdbarch_tdep_info *tdep_info;
1327
1328 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1329 enum gdb_osabi osabi;
1330
1331 /* Use default: NULL (ZERO). */
1332 const struct target_desc *target_desc;
1333 };
1334
1335 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1336 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1337
1338 /* DEPRECATED - use gdbarch_register() */
1339 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1340
1341 extern void gdbarch_register (enum bfd_architecture architecture,
1342 gdbarch_init_ftype *,
1343 gdbarch_dump_tdep_ftype *);
1344
1345
1346 /* Return a freshly allocated, NULL terminated, array of the valid
1347 architecture names. Since architectures are registered during the
1348 _initialize phase this function only returns useful information
1349 once initialization has been completed. */
1350
1351 extern const char **gdbarch_printable_names (void);
1352
1353
1354 /* Helper function. Search the list of ARCHES for a GDBARCH that
1355 matches the information provided by INFO. */
1356
1357 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1358
1359
1360 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1361 basic initialization using values obtained from the INFO and TDEP
1362 parameters. set_gdbarch_*() functions are called to complete the
1363 initialization of the object. */
1364
1365 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1366
1367
1368 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1369 It is assumed that the caller freeds the \`\`struct
1370 gdbarch_tdep''. */
1371
1372 extern void gdbarch_free (struct gdbarch *);
1373
1374
1375 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1376 obstack. The memory is freed when the corresponding architecture
1377 is also freed. */
1378
1379 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1380 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1381 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1382
1383
1384 /* Helper function. Force an update of the current architecture.
1385
1386 The actual architecture selected is determined by INFO, \`\`(gdb) set
1387 architecture'' et.al., the existing architecture and BFD's default
1388 architecture. INFO should be initialized to zero and then selected
1389 fields should be updated.
1390
1391 Returns non-zero if the update succeeds. */
1392
1393 extern int gdbarch_update_p (struct gdbarch_info info);
1394
1395
1396 /* Helper function. Find an architecture matching info.
1397
1398 INFO should be initialized using gdbarch_info_init, relevant fields
1399 set, and then finished using gdbarch_info_fill.
1400
1401 Returns the corresponding architecture, or NULL if no matching
1402 architecture was found. */
1403
1404 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1405
1406
1407 /* Helper function. Set the target gdbarch to "gdbarch". */
1408
1409 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1410
1411
1412 /* Register per-architecture data-pointer.
1413
1414 Reserve space for a per-architecture data-pointer. An identifier
1415 for the reserved data-pointer is returned. That identifer should
1416 be saved in a local static variable.
1417
1418 Memory for the per-architecture data shall be allocated using
1419 gdbarch_obstack_zalloc. That memory will be deleted when the
1420 corresponding architecture object is deleted.
1421
1422 When a previously created architecture is re-selected, the
1423 per-architecture data-pointer for that previous architecture is
1424 restored. INIT() is not re-called.
1425
1426 Multiple registrarants for any architecture are allowed (and
1427 strongly encouraged). */
1428
1429 struct gdbarch_data;
1430
1431 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1432 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1433 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1434 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1435 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1436 struct gdbarch_data *data,
1437 void *pointer);
1438
1439 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1440
1441
1442 /* Set the dynamic target-system-dependent parameters (architecture,
1443 byte-order, ...) using information found in the BFD. */
1444
1445 extern void set_gdbarch_from_file (bfd *);
1446
1447
1448 /* Initialize the current architecture to the "first" one we find on
1449 our list. */
1450
1451 extern void initialize_current_architecture (void);
1452
1453 /* gdbarch trace variable */
1454 extern unsigned int gdbarch_debug;
1455
1456 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1457
1458 #endif
1459 EOF
1460 exec 1>&2
1461 #../move-if-change new-gdbarch.h gdbarch.h
1462 compare_new gdbarch.h
1463
1464
1465 #
1466 # C file
1467 #
1468
1469 exec > new-gdbarch.c
1470 copyright
1471 cat <<EOF
1472
1473 #include "defs.h"
1474 #include "arch-utils.h"
1475
1476 #include "gdbcmd.h"
1477 #include "inferior.h"
1478 #include "symcat.h"
1479
1480 #include "floatformat.h"
1481 #include "reggroups.h"
1482 #include "osabi.h"
1483 #include "gdb_obstack.h"
1484 #include "observer.h"
1485 #include "regcache.h"
1486 #include "objfiles.h"
1487
1488 /* Static function declarations */
1489
1490 static void alloc_gdbarch_data (struct gdbarch *);
1491
1492 /* Non-zero if we want to trace architecture code. */
1493
1494 #ifndef GDBARCH_DEBUG
1495 #define GDBARCH_DEBUG 0
1496 #endif
1497 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1498 static void
1499 show_gdbarch_debug (struct ui_file *file, int from_tty,
1500 struct cmd_list_element *c, const char *value)
1501 {
1502 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1503 }
1504
1505 static const char *
1506 pformat (const struct floatformat **format)
1507 {
1508 if (format == NULL)
1509 return "(null)";
1510 else
1511 /* Just print out one of them - this is only for diagnostics. */
1512 return format[0]->name;
1513 }
1514
1515 static const char *
1516 pstring (const char *string)
1517 {
1518 if (string == NULL)
1519 return "(null)";
1520 return string;
1521 }
1522
1523 /* Helper function to print a list of strings, represented as "const
1524 char *const *". The list is printed comma-separated. */
1525
1526 static char *
1527 pstring_list (const char *const *list)
1528 {
1529 static char ret[100];
1530 const char *const *p;
1531 size_t offset = 0;
1532
1533 if (list == NULL)
1534 return "(null)";
1535
1536 ret[0] = '\0';
1537 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1538 {
1539 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1540 offset += 2 + s;
1541 }
1542
1543 if (offset > 0)
1544 {
1545 gdb_assert (offset - 2 < sizeof (ret));
1546 ret[offset - 2] = '\0';
1547 }
1548
1549 return ret;
1550 }
1551
1552 EOF
1553
1554 # gdbarch open the gdbarch object
1555 printf "\n"
1556 printf "/* Maintain the struct gdbarch object. */\n"
1557 printf "\n"
1558 printf "struct gdbarch\n"
1559 printf "{\n"
1560 printf " /* Has this architecture been fully initialized? */\n"
1561 printf " int initialized_p;\n"
1562 printf "\n"
1563 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1564 printf " struct obstack *obstack;\n"
1565 printf "\n"
1566 printf " /* basic architectural information. */\n"
1567 function_list | while do_read
1568 do
1569 if class_is_info_p
1570 then
1571 printf " ${returntype} ${function};\n"
1572 fi
1573 done
1574 printf "\n"
1575 printf " /* target specific vector. */\n"
1576 printf " struct gdbarch_tdep *tdep;\n"
1577 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1578 printf "\n"
1579 printf " /* per-architecture data-pointers. */\n"
1580 printf " unsigned nr_data;\n"
1581 printf " void **data;\n"
1582 printf "\n"
1583 cat <<EOF
1584 /* Multi-arch values.
1585
1586 When extending this structure you must:
1587
1588 Add the field below.
1589
1590 Declare set/get functions and define the corresponding
1591 macro in gdbarch.h.
1592
1593 gdbarch_alloc(): If zero/NULL is not a suitable default,
1594 initialize the new field.
1595
1596 verify_gdbarch(): Confirm that the target updated the field
1597 correctly.
1598
1599 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1600 field is dumped out
1601
1602 get_gdbarch(): Implement the set/get functions (probably using
1603 the macro's as shortcuts).
1604
1605 */
1606
1607 EOF
1608 function_list | while do_read
1609 do
1610 if class_is_variable_p
1611 then
1612 printf " ${returntype} ${function};\n"
1613 elif class_is_function_p
1614 then
1615 printf " gdbarch_${function}_ftype *${function};\n"
1616 fi
1617 done
1618 printf "};\n"
1619
1620 # Create a new gdbarch struct
1621 cat <<EOF
1622
1623 /* Create a new \`\`struct gdbarch'' based on information provided by
1624 \`\`struct gdbarch_info''. */
1625 EOF
1626 printf "\n"
1627 cat <<EOF
1628 struct gdbarch *
1629 gdbarch_alloc (const struct gdbarch_info *info,
1630 struct gdbarch_tdep *tdep)
1631 {
1632 struct gdbarch *gdbarch;
1633
1634 /* Create an obstack for allocating all the per-architecture memory,
1635 then use that to allocate the architecture vector. */
1636 struct obstack *obstack = XNEW (struct obstack);
1637 obstack_init (obstack);
1638 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1639 memset (gdbarch, 0, sizeof (*gdbarch));
1640 gdbarch->obstack = obstack;
1641
1642 alloc_gdbarch_data (gdbarch);
1643
1644 gdbarch->tdep = tdep;
1645 EOF
1646 printf "\n"
1647 function_list | while do_read
1648 do
1649 if class_is_info_p
1650 then
1651 printf " gdbarch->${function} = info->${function};\n"
1652 fi
1653 done
1654 printf "\n"
1655 printf " /* Force the explicit initialization of these. */\n"
1656 function_list | while do_read
1657 do
1658 if class_is_function_p || class_is_variable_p
1659 then
1660 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1661 then
1662 printf " gdbarch->${function} = ${predefault};\n"
1663 fi
1664 fi
1665 done
1666 cat <<EOF
1667 /* gdbarch_alloc() */
1668
1669 return gdbarch;
1670 }
1671 EOF
1672
1673 # Free a gdbarch struct.
1674 printf "\n"
1675 printf "\n"
1676 cat <<EOF
1677 /* Allocate extra space using the per-architecture obstack. */
1678
1679 void *
1680 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1681 {
1682 void *data = obstack_alloc (arch->obstack, size);
1683
1684 memset (data, 0, size);
1685 return data;
1686 }
1687
1688
1689 /* Free a gdbarch struct. This should never happen in normal
1690 operation --- once you've created a gdbarch, you keep it around.
1691 However, if an architecture's init function encounters an error
1692 building the structure, it may need to clean up a partially
1693 constructed gdbarch. */
1694
1695 void
1696 gdbarch_free (struct gdbarch *arch)
1697 {
1698 struct obstack *obstack;
1699
1700 gdb_assert (arch != NULL);
1701 gdb_assert (!arch->initialized_p);
1702 obstack = arch->obstack;
1703 obstack_free (obstack, 0); /* Includes the ARCH. */
1704 xfree (obstack);
1705 }
1706 EOF
1707
1708 # verify a new architecture
1709 cat <<EOF
1710
1711
1712 /* Ensure that all values in a GDBARCH are reasonable. */
1713
1714 static void
1715 verify_gdbarch (struct gdbarch *gdbarch)
1716 {
1717 struct ui_file *log;
1718 struct cleanup *cleanups;
1719 long length;
1720 char *buf;
1721
1722 log = mem_fileopen ();
1723 cleanups = make_cleanup_ui_file_delete (log);
1724 /* fundamental */
1725 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1726 fprintf_unfiltered (log, "\n\tbyte-order");
1727 if (gdbarch->bfd_arch_info == NULL)
1728 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1729 /* Check those that need to be defined for the given multi-arch level. */
1730 EOF
1731 function_list | while do_read
1732 do
1733 if class_is_function_p || class_is_variable_p
1734 then
1735 if [ "x${invalid_p}" = "x0" ]
1736 then
1737 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1738 elif class_is_predicate_p
1739 then
1740 printf " /* Skip verify of ${function}, has predicate. */\n"
1741 # FIXME: See do_read for potential simplification
1742 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1743 then
1744 printf " if (${invalid_p})\n"
1745 printf " gdbarch->${function} = ${postdefault};\n"
1746 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1747 then
1748 printf " if (gdbarch->${function} == ${predefault})\n"
1749 printf " gdbarch->${function} = ${postdefault};\n"
1750 elif [ -n "${postdefault}" ]
1751 then
1752 printf " if (gdbarch->${function} == 0)\n"
1753 printf " gdbarch->${function} = ${postdefault};\n"
1754 elif [ -n "${invalid_p}" ]
1755 then
1756 printf " if (${invalid_p})\n"
1757 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1758 elif [ -n "${predefault}" ]
1759 then
1760 printf " if (gdbarch->${function} == ${predefault})\n"
1761 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1762 fi
1763 fi
1764 done
1765 cat <<EOF
1766 buf = ui_file_xstrdup (log, &length);
1767 make_cleanup (xfree, buf);
1768 if (length > 0)
1769 internal_error (__FILE__, __LINE__,
1770 _("verify_gdbarch: the following are invalid ...%s"),
1771 buf);
1772 do_cleanups (cleanups);
1773 }
1774 EOF
1775
1776 # dump the structure
1777 printf "\n"
1778 printf "\n"
1779 cat <<EOF
1780 /* Print out the details of the current architecture. */
1781
1782 void
1783 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1784 {
1785 const char *gdb_nm_file = "<not-defined>";
1786
1787 #if defined (GDB_NM_FILE)
1788 gdb_nm_file = GDB_NM_FILE;
1789 #endif
1790 fprintf_unfiltered (file,
1791 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1792 gdb_nm_file);
1793 EOF
1794 function_list | sort -t: -k 3 | while do_read
1795 do
1796 # First the predicate
1797 if class_is_predicate_p
1798 then
1799 printf " fprintf_unfiltered (file,\n"
1800 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1801 printf " gdbarch_${function}_p (gdbarch));\n"
1802 fi
1803 # Print the corresponding value.
1804 if class_is_function_p
1805 then
1806 printf " fprintf_unfiltered (file,\n"
1807 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1808 printf " host_address_to_string (gdbarch->${function}));\n"
1809 else
1810 # It is a variable
1811 case "${print}:${returntype}" in
1812 :CORE_ADDR )
1813 fmt="%s"
1814 print="core_addr_to_string_nz (gdbarch->${function})"
1815 ;;
1816 :* )
1817 fmt="%s"
1818 print="plongest (gdbarch->${function})"
1819 ;;
1820 * )
1821 fmt="%s"
1822 ;;
1823 esac
1824 printf " fprintf_unfiltered (file,\n"
1825 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1826 printf " ${print});\n"
1827 fi
1828 done
1829 cat <<EOF
1830 if (gdbarch->dump_tdep != NULL)
1831 gdbarch->dump_tdep (gdbarch, file);
1832 }
1833 EOF
1834
1835
1836 # GET/SET
1837 printf "\n"
1838 cat <<EOF
1839 struct gdbarch_tdep *
1840 gdbarch_tdep (struct gdbarch *gdbarch)
1841 {
1842 if (gdbarch_debug >= 2)
1843 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1844 return gdbarch->tdep;
1845 }
1846 EOF
1847 printf "\n"
1848 function_list | while do_read
1849 do
1850 if class_is_predicate_p
1851 then
1852 printf "\n"
1853 printf "int\n"
1854 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1855 printf "{\n"
1856 printf " gdb_assert (gdbarch != NULL);\n"
1857 printf " return ${predicate};\n"
1858 printf "}\n"
1859 fi
1860 if class_is_function_p
1861 then
1862 printf "\n"
1863 printf "${returntype}\n"
1864 if [ "x${formal}" = "xvoid" ]
1865 then
1866 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1867 else
1868 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1869 fi
1870 printf "{\n"
1871 printf " gdb_assert (gdbarch != NULL);\n"
1872 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1873 if class_is_predicate_p && test -n "${predefault}"
1874 then
1875 # Allow a call to a function with a predicate.
1876 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1877 fi
1878 printf " if (gdbarch_debug >= 2)\n"
1879 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1880 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1881 then
1882 if class_is_multiarch_p
1883 then
1884 params="gdbarch"
1885 else
1886 params=""
1887 fi
1888 else
1889 if class_is_multiarch_p
1890 then
1891 params="gdbarch, ${actual}"
1892 else
1893 params="${actual}"
1894 fi
1895 fi
1896 if [ "x${returntype}" = "xvoid" ]
1897 then
1898 printf " gdbarch->${function} (${params});\n"
1899 else
1900 printf " return gdbarch->${function} (${params});\n"
1901 fi
1902 printf "}\n"
1903 printf "\n"
1904 printf "void\n"
1905 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1906 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1907 printf "{\n"
1908 printf " gdbarch->${function} = ${function};\n"
1909 printf "}\n"
1910 elif class_is_variable_p
1911 then
1912 printf "\n"
1913 printf "${returntype}\n"
1914 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1915 printf "{\n"
1916 printf " gdb_assert (gdbarch != NULL);\n"
1917 if [ "x${invalid_p}" = "x0" ]
1918 then
1919 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1920 elif [ -n "${invalid_p}" ]
1921 then
1922 printf " /* Check variable is valid. */\n"
1923 printf " gdb_assert (!(${invalid_p}));\n"
1924 elif [ -n "${predefault}" ]
1925 then
1926 printf " /* Check variable changed from pre-default. */\n"
1927 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1928 fi
1929 printf " if (gdbarch_debug >= 2)\n"
1930 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1931 printf " return gdbarch->${function};\n"
1932 printf "}\n"
1933 printf "\n"
1934 printf "void\n"
1935 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1936 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1937 printf "{\n"
1938 printf " gdbarch->${function} = ${function};\n"
1939 printf "}\n"
1940 elif class_is_info_p
1941 then
1942 printf "\n"
1943 printf "${returntype}\n"
1944 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1945 printf "{\n"
1946 printf " gdb_assert (gdbarch != NULL);\n"
1947 printf " if (gdbarch_debug >= 2)\n"
1948 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1949 printf " return gdbarch->${function};\n"
1950 printf "}\n"
1951 fi
1952 done
1953
1954 # All the trailing guff
1955 cat <<EOF
1956
1957
1958 /* Keep a registry of per-architecture data-pointers required by GDB
1959 modules. */
1960
1961 struct gdbarch_data
1962 {
1963 unsigned index;
1964 int init_p;
1965 gdbarch_data_pre_init_ftype *pre_init;
1966 gdbarch_data_post_init_ftype *post_init;
1967 };
1968
1969 struct gdbarch_data_registration
1970 {
1971 struct gdbarch_data *data;
1972 struct gdbarch_data_registration *next;
1973 };
1974
1975 struct gdbarch_data_registry
1976 {
1977 unsigned nr;
1978 struct gdbarch_data_registration *registrations;
1979 };
1980
1981 struct gdbarch_data_registry gdbarch_data_registry =
1982 {
1983 0, NULL,
1984 };
1985
1986 static struct gdbarch_data *
1987 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1988 gdbarch_data_post_init_ftype *post_init)
1989 {
1990 struct gdbarch_data_registration **curr;
1991
1992 /* Append the new registration. */
1993 for (curr = &gdbarch_data_registry.registrations;
1994 (*curr) != NULL;
1995 curr = &(*curr)->next);
1996 (*curr) = XNEW (struct gdbarch_data_registration);
1997 (*curr)->next = NULL;
1998 (*curr)->data = XNEW (struct gdbarch_data);
1999 (*curr)->data->index = gdbarch_data_registry.nr++;
2000 (*curr)->data->pre_init = pre_init;
2001 (*curr)->data->post_init = post_init;
2002 (*curr)->data->init_p = 1;
2003 return (*curr)->data;
2004 }
2005
2006 struct gdbarch_data *
2007 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2008 {
2009 return gdbarch_data_register (pre_init, NULL);
2010 }
2011
2012 struct gdbarch_data *
2013 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2014 {
2015 return gdbarch_data_register (NULL, post_init);
2016 }
2017
2018 /* Create/delete the gdbarch data vector. */
2019
2020 static void
2021 alloc_gdbarch_data (struct gdbarch *gdbarch)
2022 {
2023 gdb_assert (gdbarch->data == NULL);
2024 gdbarch->nr_data = gdbarch_data_registry.nr;
2025 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2026 }
2027
2028 /* Initialize the current value of the specified per-architecture
2029 data-pointer. */
2030
2031 void
2032 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2033 struct gdbarch_data *data,
2034 void *pointer)
2035 {
2036 gdb_assert (data->index < gdbarch->nr_data);
2037 gdb_assert (gdbarch->data[data->index] == NULL);
2038 gdb_assert (data->pre_init == NULL);
2039 gdbarch->data[data->index] = pointer;
2040 }
2041
2042 /* Return the current value of the specified per-architecture
2043 data-pointer. */
2044
2045 void *
2046 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2047 {
2048 gdb_assert (data->index < gdbarch->nr_data);
2049 if (gdbarch->data[data->index] == NULL)
2050 {
2051 /* The data-pointer isn't initialized, call init() to get a
2052 value. */
2053 if (data->pre_init != NULL)
2054 /* Mid architecture creation: pass just the obstack, and not
2055 the entire architecture, as that way it isn't possible for
2056 pre-init code to refer to undefined architecture
2057 fields. */
2058 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2059 else if (gdbarch->initialized_p
2060 && data->post_init != NULL)
2061 /* Post architecture creation: pass the entire architecture
2062 (as all fields are valid), but be careful to also detect
2063 recursive references. */
2064 {
2065 gdb_assert (data->init_p);
2066 data->init_p = 0;
2067 gdbarch->data[data->index] = data->post_init (gdbarch);
2068 data->init_p = 1;
2069 }
2070 else
2071 /* The architecture initialization hasn't completed - punt -
2072 hope that the caller knows what they are doing. Once
2073 deprecated_set_gdbarch_data has been initialized, this can be
2074 changed to an internal error. */
2075 return NULL;
2076 gdb_assert (gdbarch->data[data->index] != NULL);
2077 }
2078 return gdbarch->data[data->index];
2079 }
2080
2081
2082 /* Keep a registry of the architectures known by GDB. */
2083
2084 struct gdbarch_registration
2085 {
2086 enum bfd_architecture bfd_architecture;
2087 gdbarch_init_ftype *init;
2088 gdbarch_dump_tdep_ftype *dump_tdep;
2089 struct gdbarch_list *arches;
2090 struct gdbarch_registration *next;
2091 };
2092
2093 static struct gdbarch_registration *gdbarch_registry = NULL;
2094
2095 static void
2096 append_name (const char ***buf, int *nr, const char *name)
2097 {
2098 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2099 (*buf)[*nr] = name;
2100 *nr += 1;
2101 }
2102
2103 const char **
2104 gdbarch_printable_names (void)
2105 {
2106 /* Accumulate a list of names based on the registed list of
2107 architectures. */
2108 int nr_arches = 0;
2109 const char **arches = NULL;
2110 struct gdbarch_registration *rego;
2111
2112 for (rego = gdbarch_registry;
2113 rego != NULL;
2114 rego = rego->next)
2115 {
2116 const struct bfd_arch_info *ap;
2117 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2118 if (ap == NULL)
2119 internal_error (__FILE__, __LINE__,
2120 _("gdbarch_architecture_names: multi-arch unknown"));
2121 do
2122 {
2123 append_name (&arches, &nr_arches, ap->printable_name);
2124 ap = ap->next;
2125 }
2126 while (ap != NULL);
2127 }
2128 append_name (&arches, &nr_arches, NULL);
2129 return arches;
2130 }
2131
2132
2133 void
2134 gdbarch_register (enum bfd_architecture bfd_architecture,
2135 gdbarch_init_ftype *init,
2136 gdbarch_dump_tdep_ftype *dump_tdep)
2137 {
2138 struct gdbarch_registration **curr;
2139 const struct bfd_arch_info *bfd_arch_info;
2140
2141 /* Check that BFD recognizes this architecture */
2142 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2143 if (bfd_arch_info == NULL)
2144 {
2145 internal_error (__FILE__, __LINE__,
2146 _("gdbarch: Attempt to register "
2147 "unknown architecture (%d)"),
2148 bfd_architecture);
2149 }
2150 /* Check that we haven't seen this architecture before. */
2151 for (curr = &gdbarch_registry;
2152 (*curr) != NULL;
2153 curr = &(*curr)->next)
2154 {
2155 if (bfd_architecture == (*curr)->bfd_architecture)
2156 internal_error (__FILE__, __LINE__,
2157 _("gdbarch: Duplicate registration "
2158 "of architecture (%s)"),
2159 bfd_arch_info->printable_name);
2160 }
2161 /* log it */
2162 if (gdbarch_debug)
2163 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2164 bfd_arch_info->printable_name,
2165 host_address_to_string (init));
2166 /* Append it */
2167 (*curr) = XNEW (struct gdbarch_registration);
2168 (*curr)->bfd_architecture = bfd_architecture;
2169 (*curr)->init = init;
2170 (*curr)->dump_tdep = dump_tdep;
2171 (*curr)->arches = NULL;
2172 (*curr)->next = NULL;
2173 }
2174
2175 void
2176 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2177 gdbarch_init_ftype *init)
2178 {
2179 gdbarch_register (bfd_architecture, init, NULL);
2180 }
2181
2182
2183 /* Look for an architecture using gdbarch_info. */
2184
2185 struct gdbarch_list *
2186 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2187 const struct gdbarch_info *info)
2188 {
2189 for (; arches != NULL; arches = arches->next)
2190 {
2191 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2192 continue;
2193 if (info->byte_order != arches->gdbarch->byte_order)
2194 continue;
2195 if (info->osabi != arches->gdbarch->osabi)
2196 continue;
2197 if (info->target_desc != arches->gdbarch->target_desc)
2198 continue;
2199 return arches;
2200 }
2201 return NULL;
2202 }
2203
2204
2205 /* Find an architecture that matches the specified INFO. Create a new
2206 architecture if needed. Return that new architecture. */
2207
2208 struct gdbarch *
2209 gdbarch_find_by_info (struct gdbarch_info info)
2210 {
2211 struct gdbarch *new_gdbarch;
2212 struct gdbarch_registration *rego;
2213
2214 /* Fill in missing parts of the INFO struct using a number of
2215 sources: "set ..."; INFOabfd supplied; and the global
2216 defaults. */
2217 gdbarch_info_fill (&info);
2218
2219 /* Must have found some sort of architecture. */
2220 gdb_assert (info.bfd_arch_info != NULL);
2221
2222 if (gdbarch_debug)
2223 {
2224 fprintf_unfiltered (gdb_stdlog,
2225 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2226 (info.bfd_arch_info != NULL
2227 ? info.bfd_arch_info->printable_name
2228 : "(null)"));
2229 fprintf_unfiltered (gdb_stdlog,
2230 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2231 info.byte_order,
2232 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2233 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2234 : "default"));
2235 fprintf_unfiltered (gdb_stdlog,
2236 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2237 info.osabi, gdbarch_osabi_name (info.osabi));
2238 fprintf_unfiltered (gdb_stdlog,
2239 "gdbarch_find_by_info: info.abfd %s\n",
2240 host_address_to_string (info.abfd));
2241 fprintf_unfiltered (gdb_stdlog,
2242 "gdbarch_find_by_info: info.tdep_info %s\n",
2243 host_address_to_string (info.tdep_info));
2244 }
2245
2246 /* Find the tdep code that knows about this architecture. */
2247 for (rego = gdbarch_registry;
2248 rego != NULL;
2249 rego = rego->next)
2250 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2251 break;
2252 if (rego == NULL)
2253 {
2254 if (gdbarch_debug)
2255 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2256 "No matching architecture\n");
2257 return 0;
2258 }
2259
2260 /* Ask the tdep code for an architecture that matches "info". */
2261 new_gdbarch = rego->init (info, rego->arches);
2262
2263 /* Did the tdep code like it? No. Reject the change and revert to
2264 the old architecture. */
2265 if (new_gdbarch == NULL)
2266 {
2267 if (gdbarch_debug)
2268 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2269 "Target rejected architecture\n");
2270 return NULL;
2271 }
2272
2273 /* Is this a pre-existing architecture (as determined by already
2274 being initialized)? Move it to the front of the architecture
2275 list (keeping the list sorted Most Recently Used). */
2276 if (new_gdbarch->initialized_p)
2277 {
2278 struct gdbarch_list **list;
2279 struct gdbarch_list *this;
2280 if (gdbarch_debug)
2281 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2282 "Previous architecture %s (%s) selected\n",
2283 host_address_to_string (new_gdbarch),
2284 new_gdbarch->bfd_arch_info->printable_name);
2285 /* Find the existing arch in the list. */
2286 for (list = &rego->arches;
2287 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2288 list = &(*list)->next);
2289 /* It had better be in the list of architectures. */
2290 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2291 /* Unlink THIS. */
2292 this = (*list);
2293 (*list) = this->next;
2294 /* Insert THIS at the front. */
2295 this->next = rego->arches;
2296 rego->arches = this;
2297 /* Return it. */
2298 return new_gdbarch;
2299 }
2300
2301 /* It's a new architecture. */
2302 if (gdbarch_debug)
2303 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2304 "New architecture %s (%s) selected\n",
2305 host_address_to_string (new_gdbarch),
2306 new_gdbarch->bfd_arch_info->printable_name);
2307
2308 /* Insert the new architecture into the front of the architecture
2309 list (keep the list sorted Most Recently Used). */
2310 {
2311 struct gdbarch_list *this = XNEW (struct gdbarch_list);
2312 this->next = rego->arches;
2313 this->gdbarch = new_gdbarch;
2314 rego->arches = this;
2315 }
2316
2317 /* Check that the newly installed architecture is valid. Plug in
2318 any post init values. */
2319 new_gdbarch->dump_tdep = rego->dump_tdep;
2320 verify_gdbarch (new_gdbarch);
2321 new_gdbarch->initialized_p = 1;
2322
2323 if (gdbarch_debug)
2324 gdbarch_dump (new_gdbarch, gdb_stdlog);
2325
2326 return new_gdbarch;
2327 }
2328
2329 /* Make the specified architecture current. */
2330
2331 void
2332 set_target_gdbarch (struct gdbarch *new_gdbarch)
2333 {
2334 gdb_assert (new_gdbarch != NULL);
2335 gdb_assert (new_gdbarch->initialized_p);
2336 current_inferior ()->gdbarch = new_gdbarch;
2337 observer_notify_architecture_changed (new_gdbarch);
2338 registers_changed ();
2339 }
2340
2341 /* Return the current inferior's arch. */
2342
2343 struct gdbarch *
2344 target_gdbarch (void)
2345 {
2346 return current_inferior ()->gdbarch;
2347 }
2348
2349 extern void _initialize_gdbarch (void);
2350
2351 void
2352 _initialize_gdbarch (void)
2353 {
2354 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2355 Set architecture debugging."), _("\\
2356 Show architecture debugging."), _("\\
2357 When non-zero, architecture debugging is enabled."),
2358 NULL,
2359 show_gdbarch_debug,
2360 &setdebuglist, &showdebuglist);
2361 }
2362 EOF
2363
2364 # close things off
2365 exec 1>&2
2366 #../move-if-change new-gdbarch.c gdbarch.c
2367 compare_new gdbarch.c
This page took 0.084054 seconds and 4 git commands to generate.