2004-06-13 Michael Chastain <mec.gnu@mindspring.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6 # Foundation, Inc.
7 #
8 #
9 # This file is part of GDB.
10 #
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
15 #
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
20 #
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
25 # Make certain that the script is running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
132 fi
133 ;;
134 * )
135 echo "Predicate function ${function} with invalid_p." 1>&2
136 kill $$
137 exit 1
138 ;;
139 esac
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
149 if [ -n "${postdefault}" ]
150 then
151 fallbackdefault="${postdefault}"
152 elif [ -n "${predefault}" ]
153 then
154 fallbackdefault="${predefault}"
155 else
156 fallbackdefault="0"
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
163 fi
164 done
165 if [ -n "${class}" ]
166 then
167 true
168 else
169 false
170 fi
171 }
172
173
174 fallback_default_p ()
175 {
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
178 }
179
180 class_is_variable_p ()
181 {
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
186 }
187
188 class_is_function_p ()
189 {
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194 }
195
196 class_is_multiarch_p ()
197 {
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
202 }
203
204 class_is_predicate_p ()
205 {
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
210 }
211
212 class_is_info_p ()
213 {
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
218 }
219
220
221 # dump out/verify the doco
222 for field in ${read}
223 do
224 case ${field} in
225
226 class ) : ;;
227
228 # # -> line disable
229 # f -> function
230 # hiding a function
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
233 # v -> variable
234 # hiding a variable
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
237 # i -> set from info
238 # hiding something from the ``struct info'' object
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
243
244 level ) : ;;
245
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
249
250 macro ) : ;;
251
252 # The name of the MACRO that this method is to be accessed by.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 attrib ) : ;;
278
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
281
282 staticdefault ) : ;;
283
284 # To help with the GDB startup a static gdbarch object is
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
288
289 # If STATICDEFAULT is empty, zero is used.
290
291 predefault ) : ;;
292
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
297
298 # If PREDEFAULT is empty, zero is used.
299
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
332
333 invalid_p ) : ;;
334
335 # A predicate equation that validates MEMBER. Non-zero is
336 # returned if the code creating the new architecture failed to
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
347
348 # See also PREDEFAULT and POSTDEFAULT.
349
350 fmt ) : ;;
351
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
356 # If FMT is empty, ``%ld'' is used.
357
358 print ) : ;;
359
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
363 # If PRINT is empty, ``(long)'' is used.
364
365 print_p ) : ;;
366
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
370 # () -> Call a custom function to do the dump.
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
373
374 # If PRINT_P is empty, ``1'' is always used.
375
376 description ) : ;;
377
378 # Currently unused.
379
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
383 esac
384 done
385
386
387 function_list ()
388 {
389 # See below (DOCO) for description of each field
390 cat <<EOF
391 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
392 #
393 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
394 #
395 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
396 # Number of bits in a char or unsigned char for the target machine.
397 # Just like CHAR_BIT in <limits.h> but describes the target machine.
398 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
399 #
400 # Number of bits in a short or unsigned short for the target machine.
401 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
402 # Number of bits in an int or unsigned int for the target machine.
403 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
404 # Number of bits in a long or unsigned long for the target machine.
405 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
406 # Number of bits in a long long or unsigned long long for the target
407 # machine.
408 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
409 # Number of bits in a float for the target machine.
410 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
411 # Number of bits in a double for the target machine.
412 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
413 # Number of bits in a long double for the target machine.
414 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
415 # For most targets, a pointer on the target and its representation as an
416 # address in GDB have the same size and "look the same". For such a
417 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418 # / addr_bit will be set from it.
419 #
420 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422 #
423 # ptr_bit is the size of a pointer on the target
424 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
425 # addr_bit is the size of a target address as represented in gdb
426 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
427 # Number of bits in a BFD_VMA for the target object file format.
428 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
429 #
430 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
431 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
432 #
433 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
434 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
435 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
436 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
437 # Function for getting target's idea of a frame pointer. FIXME: GDB's
438 # whole scheme for dealing with "frames" and "frame pointers" needs a
439 # serious shakedown.
440 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
441 #
442 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
444 #
445 v:2:NUM_REGS:int:num_regs::::0:-1
446 # This macro gives the number of pseudo-registers that live in the
447 # register namespace but do not get fetched or stored on the target.
448 # These pseudo-registers may be aliases for other registers,
449 # combinations of other registers, or they may be computed by GDB.
450 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
451
452 # GDB's standard (or well known) register numbers. These can map onto
453 # a real register or a pseudo (computed) register or not be defined at
454 # all (-1).
455 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
456 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
457 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
458 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
459 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
460 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
463 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
465 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466 # Convert from an sdb register number to an internal gdb register number.
467 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
469 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470
471 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
472 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
473 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
475 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476 # from REGISTER_TYPE.
477 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
478 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479 # register offsets computed using just REGISTER_TYPE, this can be
480 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481 # function with predicate has a valid (callable) initial value. As a
482 # consequence, even when the predicate is false, the corresponding
483 # function works. This simplifies the migration process - old code,
484 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
485 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
486 # If all registers have identical raw and virtual sizes and those
487 # sizes agree with the value computed from REGISTER_TYPE,
488 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 # registers.
490 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
491 # If all registers have identical raw and virtual sizes and those
492 # sizes agree with the value computed from REGISTER_TYPE,
493 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 # registers.
495 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
496
497 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
498 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
499 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
500 # SAVE_DUMMY_FRAME_TOS.
501 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
502 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
503 # DEPRECATED_FP_REGNUM.
504 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
505 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506 # DEPRECATED_TARGET_READ_FP.
507 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
508
509 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
510 # replacement for DEPRECATED_PUSH_ARGUMENTS.
511 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
512 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
513 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
514 # Implement PUSH_RETURN_ADDRESS, and then merge in
515 # DEPRECATED_PUSH_RETURN_ADDRESS.
516 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
517 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
518 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
519 # DEPRECATED_REGISTER_SIZE can be deleted.
520 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
521 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
522 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
523
524 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
525 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
526 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
527 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
528 # MAP a GDB RAW register number onto a simulator register number. See
529 # also include/...-sim.h.
530 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
531 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
532 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
533 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
534 # setjmp/longjmp support.
535 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
536 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
537 #
538 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
539 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
540 #
541 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:generic_convert_register_p::0
542 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0
543 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0
544 #
545 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
546 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
547 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
548 #
549 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
550 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
551 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
552
553 # It has been suggested that this, well actually its predecessor,
554 # should take the type/value of the function to be called and not the
555 # return type. This is left as an exercise for the reader.
556
557 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
558
559 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE and
560 # USE_STRUCT_CONVENTION have all been folded into RETURN_VALUE.
561
562 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
563 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
564 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
565 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
566 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
567
568 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
569 # ABI suitable for the implementation of a robust extract
570 # struct-convention return-value address method (the sparc saves the
571 # address in the callers frame). All the other cases so far examined,
572 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
573 # erreneous - the code was incorrectly assuming that the return-value
574 # address, stored in a register, was preserved across the entire
575 # function call.
576
577 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
578 # the ABIs that are still to be analyzed - perhaps this should simply
579 # be deleted. The commented out extract_returned_value_address method
580 # is provided as a starting point for the 32-bit SPARC. It, or
581 # something like it, along with changes to both infcmd.c and stack.c
582 # will be needed for that case to work. NB: It is passed the callers
583 # frame since it is only after the callee has returned that this
584 # function is used.
585
586 #M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
587 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
588
589 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
590 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
591 #
592 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
593 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
594 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
595 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
596 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
597 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
598 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
599 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
600 #
601 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
602 #
603 v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
604 # DEPRECATED_FRAMELESS_FUNCTION_INVOCATION is not needed. The new
605 # frame code works regardless of the type of frame - frameless,
606 # stackless, or normal.
607 F::DEPRECATED_FRAMELESS_FUNCTION_INVOCATION:int:deprecated_frameless_function_invocation:struct frame_info *fi:fi
608 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
609 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
610 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
611 # note, per UNWIND_PC's doco, that while the two have similar
612 # interfaces they have very different underlying implementations.
613 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
614 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
615 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
616 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
617 # frame-base. Enable frame-base before frame-unwind.
618 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
619 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
620 # frame-base. Enable frame-base before frame-unwind.
621 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
622 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
623 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
624 #
625 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
626 # to frame_align and the requirement that methods such as
627 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
628 # alignment.
629 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
630 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
631 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
632 # stabs_argument_has_addr.
633 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
634 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
635 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
636 #
637 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
638 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
639 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
640 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
641 # On some machines there are bits in addresses which are not really
642 # part of the address, but are used by the kernel, the hardware, etc.
643 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
644 # we get a "real" address such as one would find in a symbol table.
645 # This is used only for addresses of instructions, and even then I'm
646 # not sure it's used in all contexts. It exists to deal with there
647 # being a few stray bits in the PC which would mislead us, not as some
648 # sort of generic thing to handle alignment or segmentation (it's
649 # possible it should be in TARGET_READ_PC instead).
650 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
651 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
652 # ADDR_BITS_REMOVE.
653 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
654 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
655 # the target needs software single step. An ISA method to implement it.
656 #
657 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
658 # using the breakpoint system instead of blatting memory directly (as with rs6000).
659 #
660 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
661 # single step. If not, then implement single step using breakpoints.
662 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
663 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
664 # disassembler. Perhaphs objdump can handle it?
665 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
666 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
667
668
669 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
670 # evaluates non-zero, this is the address where the debugger will place
671 # a step-resume breakpoint to get us past the dynamic linker.
672 m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
673 # For SVR4 shared libraries, each call goes through a small piece of
674 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
675 # to nonzero if we are currently stopped in one of these.
676 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
677
678 # Some systems also have trampoline code for returning from shared libs.
679 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
680
681 # A target might have problems with watchpoints as soon as the stack
682 # frame of the current function has been destroyed. This mostly happens
683 # as the first action in a funtion's epilogue. in_function_epilogue_p()
684 # is defined to return a non-zero value if either the given addr is one
685 # instruction after the stack destroying instruction up to the trailing
686 # return instruction or if we can figure out that the stack frame has
687 # already been invalidated regardless of the value of addr. Targets
688 # which don't suffer from that problem could just let this functionality
689 # untouched.
690 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
691 # Given a vector of command-line arguments, return a newly allocated
692 # string which, when passed to the create_inferior function, will be
693 # parsed (on Unix systems, by the shell) to yield the same vector.
694 # This function should call error() if the argument vector is not
695 # representable for this target or if this target does not support
696 # command-line arguments.
697 # ARGC is the number of elements in the vector.
698 # ARGV is an array of strings, one per argument.
699 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
700 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
701 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
702 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
703 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
704 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
705 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
706 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
707 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
708 # Is a register in a group
709 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
710 # Fetch the pointer to the ith function argument.
711 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
712
713 # Return the appropriate register set for a core file section with
714 # name SECT_NAME and size SECT_SIZE.
715 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
716 EOF
717 }
718
719 #
720 # The .log file
721 #
722 exec > new-gdbarch.log
723 function_list | while do_read
724 do
725 cat <<EOF
726 ${class} ${macro}(${actual})
727 ${returntype} ${function} ($formal)${attrib}
728 EOF
729 for r in ${read}
730 do
731 eval echo \"\ \ \ \ ${r}=\${${r}}\"
732 done
733 if class_is_predicate_p && fallback_default_p
734 then
735 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
736 kill $$
737 exit 1
738 fi
739 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
740 then
741 echo "Error: postdefault is useless when invalid_p=0" 1>&2
742 kill $$
743 exit 1
744 fi
745 if class_is_multiarch_p
746 then
747 if class_is_predicate_p ; then :
748 elif test "x${predefault}" = "x"
749 then
750 echo "Error: pure multi-arch function must have a predefault" 1>&2
751 kill $$
752 exit 1
753 fi
754 fi
755 echo ""
756 done
757
758 exec 1>&2
759 compare_new gdbarch.log
760
761
762 copyright ()
763 {
764 cat <<EOF
765 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
766
767 /* Dynamic architecture support for GDB, the GNU debugger.
768
769 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
770 Software Foundation, Inc.
771
772 This file is part of GDB.
773
774 This program is free software; you can redistribute it and/or modify
775 it under the terms of the GNU General Public License as published by
776 the Free Software Foundation; either version 2 of the License, or
777 (at your option) any later version.
778
779 This program is distributed in the hope that it will be useful,
780 but WITHOUT ANY WARRANTY; without even the implied warranty of
781 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
782 GNU General Public License for more details.
783
784 You should have received a copy of the GNU General Public License
785 along with this program; if not, write to the Free Software
786 Foundation, Inc., 59 Temple Place - Suite 330,
787 Boston, MA 02111-1307, USA. */
788
789 /* This file was created with the aid of \`\`gdbarch.sh''.
790
791 The Bourne shell script \`\`gdbarch.sh'' creates the files
792 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
793 against the existing \`\`gdbarch.[hc]''. Any differences found
794 being reported.
795
796 If editing this file, please also run gdbarch.sh and merge any
797 changes into that script. Conversely, when making sweeping changes
798 to this file, modifying gdbarch.sh and using its output may prove
799 easier. */
800
801 EOF
802 }
803
804 #
805 # The .h file
806 #
807
808 exec > new-gdbarch.h
809 copyright
810 cat <<EOF
811 #ifndef GDBARCH_H
812 #define GDBARCH_H
813
814 struct floatformat;
815 struct ui_file;
816 struct frame_info;
817 struct value;
818 struct objfile;
819 struct minimal_symbol;
820 struct regcache;
821 struct reggroup;
822 struct regset;
823 struct disassemble_info;
824 struct target_ops;
825 struct obstack;
826
827 extern struct gdbarch *current_gdbarch;
828
829 /* If any of the following are defined, the target wasn't correctly
830 converted. */
831
832 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
833 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
834 #endif
835 EOF
836
837 # function typedef's
838 printf "\n"
839 printf "\n"
840 printf "/* The following are pre-initialized by GDBARCH. */\n"
841 function_list | while do_read
842 do
843 if class_is_info_p
844 then
845 printf "\n"
846 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
847 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
848 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
850 printf "#endif\n"
851 printf "#if !defined (${macro})\n"
852 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
853 printf "#endif\n"
854 fi
855 done
856
857 # function typedef's
858 printf "\n"
859 printf "\n"
860 printf "/* The following are initialized by the target dependent code. */\n"
861 function_list | while do_read
862 do
863 if [ -n "${comment}" ]
864 then
865 echo "${comment}" | sed \
866 -e '2 s,#,/*,' \
867 -e '3,$ s,#, ,' \
868 -e '$ s,$, */,'
869 fi
870 if class_is_multiarch_p
871 then
872 if class_is_predicate_p
873 then
874 printf "\n"
875 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
876 fi
877 else
878 if class_is_predicate_p
879 then
880 printf "\n"
881 printf "#if defined (${macro})\n"
882 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
883 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
884 printf "#if !defined (${macro}_P)\n"
885 printf "#define ${macro}_P() (1)\n"
886 printf "#endif\n"
887 printf "#endif\n"
888 printf "\n"
889 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
890 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
892 printf "#endif\n"
893 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
894 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
895 printf "#endif\n"
896 fi
897 fi
898 if class_is_variable_p
899 then
900 printf "\n"
901 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
902 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
903 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
904 printf "#error \"Non multi-arch definition of ${macro}\"\n"
905 printf "#endif\n"
906 printf "#if !defined (${macro})\n"
907 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
908 printf "#endif\n"
909 fi
910 if class_is_function_p
911 then
912 printf "\n"
913 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
914 then
915 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
916 elif class_is_multiarch_p
917 then
918 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
919 else
920 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
921 fi
922 if [ "x${formal}" = "xvoid" ]
923 then
924 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
925 else
926 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
927 fi
928 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
929 if class_is_multiarch_p ; then :
930 else
931 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
932 printf "#error \"Non multi-arch definition of ${macro}\"\n"
933 printf "#endif\n"
934 if [ "x${actual}" = "x" ]
935 then
936 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
937 elif [ "x${actual}" = "x-" ]
938 then
939 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
940 else
941 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
942 fi
943 printf "#if !defined (${macro})\n"
944 if [ "x${actual}" = "x" ]
945 then
946 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
947 elif [ "x${actual}" = "x-" ]
948 then
949 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
950 else
951 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
952 fi
953 printf "#endif\n"
954 fi
955 fi
956 done
957
958 # close it off
959 cat <<EOF
960
961 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
962
963
964 /* Mechanism for co-ordinating the selection of a specific
965 architecture.
966
967 GDB targets (*-tdep.c) can register an interest in a specific
968 architecture. Other GDB components can register a need to maintain
969 per-architecture data.
970
971 The mechanisms below ensures that there is only a loose connection
972 between the set-architecture command and the various GDB
973 components. Each component can independently register their need
974 to maintain architecture specific data with gdbarch.
975
976 Pragmatics:
977
978 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
979 didn't scale.
980
981 The more traditional mega-struct containing architecture specific
982 data for all the various GDB components was also considered. Since
983 GDB is built from a variable number of (fairly independent)
984 components it was determined that the global aproach was not
985 applicable. */
986
987
988 /* Register a new architectural family with GDB.
989
990 Register support for the specified ARCHITECTURE with GDB. When
991 gdbarch determines that the specified architecture has been
992 selected, the corresponding INIT function is called.
993
994 --
995
996 The INIT function takes two parameters: INFO which contains the
997 information available to gdbarch about the (possibly new)
998 architecture; ARCHES which is a list of the previously created
999 \`\`struct gdbarch'' for this architecture.
1000
1001 The INFO parameter is, as far as possible, be pre-initialized with
1002 information obtained from INFO.ABFD or the previously selected
1003 architecture.
1004
1005 The ARCHES parameter is a linked list (sorted most recently used)
1006 of all the previously created architures for this architecture
1007 family. The (possibly NULL) ARCHES->gdbarch can used to access
1008 values from the previously selected architecture for this
1009 architecture family. The global \`\`current_gdbarch'' shall not be
1010 used.
1011
1012 The INIT function shall return any of: NULL - indicating that it
1013 doesn't recognize the selected architecture; an existing \`\`struct
1014 gdbarch'' from the ARCHES list - indicating that the new
1015 architecture is just a synonym for an earlier architecture (see
1016 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1017 - that describes the selected architecture (see gdbarch_alloc()).
1018
1019 The DUMP_TDEP function shall print out all target specific values.
1020 Care should be taken to ensure that the function works in both the
1021 multi-arch and non- multi-arch cases. */
1022
1023 struct gdbarch_list
1024 {
1025 struct gdbarch *gdbarch;
1026 struct gdbarch_list *next;
1027 };
1028
1029 struct gdbarch_info
1030 {
1031 /* Use default: NULL (ZERO). */
1032 const struct bfd_arch_info *bfd_arch_info;
1033
1034 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1035 int byte_order;
1036
1037 /* Use default: NULL (ZERO). */
1038 bfd *abfd;
1039
1040 /* Use default: NULL (ZERO). */
1041 struct gdbarch_tdep_info *tdep_info;
1042
1043 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1044 enum gdb_osabi osabi;
1045 };
1046
1047 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1048 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1049
1050 /* DEPRECATED - use gdbarch_register() */
1051 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1052
1053 extern void gdbarch_register (enum bfd_architecture architecture,
1054 gdbarch_init_ftype *,
1055 gdbarch_dump_tdep_ftype *);
1056
1057
1058 /* Return a freshly allocated, NULL terminated, array of the valid
1059 architecture names. Since architectures are registered during the
1060 _initialize phase this function only returns useful information
1061 once initialization has been completed. */
1062
1063 extern const char **gdbarch_printable_names (void);
1064
1065
1066 /* Helper function. Search the list of ARCHES for a GDBARCH that
1067 matches the information provided by INFO. */
1068
1069 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1070
1071
1072 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1073 basic initialization using values obtained from the INFO andTDEP
1074 parameters. set_gdbarch_*() functions are called to complete the
1075 initialization of the object. */
1076
1077 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1078
1079
1080 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1081 It is assumed that the caller freeds the \`\`struct
1082 gdbarch_tdep''. */
1083
1084 extern void gdbarch_free (struct gdbarch *);
1085
1086
1087 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1088 obstack. The memory is freed when the corresponding architecture
1089 is also freed. */
1090
1091 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1092 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1093 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1094
1095
1096 /* Helper function. Force an update of the current architecture.
1097
1098 The actual architecture selected is determined by INFO, \`\`(gdb) set
1099 architecture'' et.al., the existing architecture and BFD's default
1100 architecture. INFO should be initialized to zero and then selected
1101 fields should be updated.
1102
1103 Returns non-zero if the update succeeds */
1104
1105 extern int gdbarch_update_p (struct gdbarch_info info);
1106
1107
1108 /* Helper function. Find an architecture matching info.
1109
1110 INFO should be initialized using gdbarch_info_init, relevant fields
1111 set, and then finished using gdbarch_info_fill.
1112
1113 Returns the corresponding architecture, or NULL if no matching
1114 architecture was found. "current_gdbarch" is not updated. */
1115
1116 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1117
1118
1119 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1120
1121 FIXME: kettenis/20031124: Of the functions that follow, only
1122 gdbarch_from_bfd is supposed to survive. The others will
1123 dissappear since in the future GDB will (hopefully) be truly
1124 multi-arch. However, for now we're still stuck with the concept of
1125 a single active architecture. */
1126
1127 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1128
1129
1130 /* Register per-architecture data-pointer.
1131
1132 Reserve space for a per-architecture data-pointer. An identifier
1133 for the reserved data-pointer is returned. That identifer should
1134 be saved in a local static variable.
1135
1136 Memory for the per-architecture data shall be allocated using
1137 gdbarch_obstack_zalloc. That memory will be deleted when the
1138 corresponding architecture object is deleted.
1139
1140 When a previously created architecture is re-selected, the
1141 per-architecture data-pointer for that previous architecture is
1142 restored. INIT() is not re-called.
1143
1144 Multiple registrarants for any architecture are allowed (and
1145 strongly encouraged). */
1146
1147 struct gdbarch_data;
1148
1149 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1150 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1151 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1152 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1153 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1154 struct gdbarch_data *data,
1155 void *pointer);
1156
1157 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1158
1159
1160
1161 /* Register per-architecture memory region.
1162
1163 Provide a memory-region swap mechanism. Per-architecture memory
1164 region are created. These memory regions are swapped whenever the
1165 architecture is changed. For a new architecture, the memory region
1166 is initialized with zero (0) and the INIT function is called.
1167
1168 Memory regions are swapped / initialized in the order that they are
1169 registered. NULL DATA and/or INIT values can be specified.
1170
1171 New code should use gdbarch_data_register_*(). */
1172
1173 typedef void (gdbarch_swap_ftype) (void);
1174 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1175 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1176
1177
1178
1179 /* Set the dynamic target-system-dependent parameters (architecture,
1180 byte-order, ...) using information found in the BFD */
1181
1182 extern void set_gdbarch_from_file (bfd *);
1183
1184
1185 /* Initialize the current architecture to the "first" one we find on
1186 our list. */
1187
1188 extern void initialize_current_architecture (void);
1189
1190 /* gdbarch trace variable */
1191 extern int gdbarch_debug;
1192
1193 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1194
1195 #endif
1196 EOF
1197 exec 1>&2
1198 #../move-if-change new-gdbarch.h gdbarch.h
1199 compare_new gdbarch.h
1200
1201
1202 #
1203 # C file
1204 #
1205
1206 exec > new-gdbarch.c
1207 copyright
1208 cat <<EOF
1209
1210 #include "defs.h"
1211 #include "arch-utils.h"
1212
1213 #include "gdbcmd.h"
1214 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1215 #include "symcat.h"
1216
1217 #include "floatformat.h"
1218
1219 #include "gdb_assert.h"
1220 #include "gdb_string.h"
1221 #include "gdb-events.h"
1222 #include "reggroups.h"
1223 #include "osabi.h"
1224 #include "gdb_obstack.h"
1225
1226 /* Static function declarations */
1227
1228 static void alloc_gdbarch_data (struct gdbarch *);
1229
1230 /* Non-zero if we want to trace architecture code. */
1231
1232 #ifndef GDBARCH_DEBUG
1233 #define GDBARCH_DEBUG 0
1234 #endif
1235 int gdbarch_debug = GDBARCH_DEBUG;
1236
1237 EOF
1238
1239 # gdbarch open the gdbarch object
1240 printf "\n"
1241 printf "/* Maintain the struct gdbarch object */\n"
1242 printf "\n"
1243 printf "struct gdbarch\n"
1244 printf "{\n"
1245 printf " /* Has this architecture been fully initialized? */\n"
1246 printf " int initialized_p;\n"
1247 printf "\n"
1248 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1249 printf " struct obstack *obstack;\n"
1250 printf "\n"
1251 printf " /* basic architectural information */\n"
1252 function_list | while do_read
1253 do
1254 if class_is_info_p
1255 then
1256 printf " ${returntype} ${function};\n"
1257 fi
1258 done
1259 printf "\n"
1260 printf " /* target specific vector. */\n"
1261 printf " struct gdbarch_tdep *tdep;\n"
1262 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1263 printf "\n"
1264 printf " /* per-architecture data-pointers */\n"
1265 printf " unsigned nr_data;\n"
1266 printf " void **data;\n"
1267 printf "\n"
1268 printf " /* per-architecture swap-regions */\n"
1269 printf " struct gdbarch_swap *swap;\n"
1270 printf "\n"
1271 cat <<EOF
1272 /* Multi-arch values.
1273
1274 When extending this structure you must:
1275
1276 Add the field below.
1277
1278 Declare set/get functions and define the corresponding
1279 macro in gdbarch.h.
1280
1281 gdbarch_alloc(): If zero/NULL is not a suitable default,
1282 initialize the new field.
1283
1284 verify_gdbarch(): Confirm that the target updated the field
1285 correctly.
1286
1287 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1288 field is dumped out
1289
1290 \`\`startup_gdbarch()'': Append an initial value to the static
1291 variable (base values on the host's c-type system).
1292
1293 get_gdbarch(): Implement the set/get functions (probably using
1294 the macro's as shortcuts).
1295
1296 */
1297
1298 EOF
1299 function_list | while do_read
1300 do
1301 if class_is_variable_p
1302 then
1303 printf " ${returntype} ${function};\n"
1304 elif class_is_function_p
1305 then
1306 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1307 fi
1308 done
1309 printf "};\n"
1310
1311 # A pre-initialized vector
1312 printf "\n"
1313 printf "\n"
1314 cat <<EOF
1315 /* The default architecture uses host values (for want of a better
1316 choice). */
1317 EOF
1318 printf "\n"
1319 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1320 printf "\n"
1321 printf "struct gdbarch startup_gdbarch =\n"
1322 printf "{\n"
1323 printf " 1, /* Always initialized. */\n"
1324 printf " NULL, /* The obstack. */\n"
1325 printf " /* basic architecture information */\n"
1326 function_list | while do_read
1327 do
1328 if class_is_info_p
1329 then
1330 printf " ${staticdefault}, /* ${function} */\n"
1331 fi
1332 done
1333 cat <<EOF
1334 /* target specific vector and its dump routine */
1335 NULL, NULL,
1336 /*per-architecture data-pointers and swap regions */
1337 0, NULL, NULL,
1338 /* Multi-arch values */
1339 EOF
1340 function_list | while do_read
1341 do
1342 if class_is_function_p || class_is_variable_p
1343 then
1344 printf " ${staticdefault}, /* ${function} */\n"
1345 fi
1346 done
1347 cat <<EOF
1348 /* startup_gdbarch() */
1349 };
1350
1351 struct gdbarch *current_gdbarch = &startup_gdbarch;
1352 EOF
1353
1354 # Create a new gdbarch struct
1355 cat <<EOF
1356
1357 /* Create a new \`\`struct gdbarch'' based on information provided by
1358 \`\`struct gdbarch_info''. */
1359 EOF
1360 printf "\n"
1361 cat <<EOF
1362 struct gdbarch *
1363 gdbarch_alloc (const struct gdbarch_info *info,
1364 struct gdbarch_tdep *tdep)
1365 {
1366 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1367 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1368 the current local architecture and not the previous global
1369 architecture. This ensures that the new architectures initial
1370 values are not influenced by the previous architecture. Once
1371 everything is parameterised with gdbarch, this will go away. */
1372 struct gdbarch *current_gdbarch;
1373
1374 /* Create an obstack for allocating all the per-architecture memory,
1375 then use that to allocate the architecture vector. */
1376 struct obstack *obstack = XMALLOC (struct obstack);
1377 obstack_init (obstack);
1378 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1379 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1380 current_gdbarch->obstack = obstack;
1381
1382 alloc_gdbarch_data (current_gdbarch);
1383
1384 current_gdbarch->tdep = tdep;
1385 EOF
1386 printf "\n"
1387 function_list | while do_read
1388 do
1389 if class_is_info_p
1390 then
1391 printf " current_gdbarch->${function} = info->${function};\n"
1392 fi
1393 done
1394 printf "\n"
1395 printf " /* Force the explicit initialization of these. */\n"
1396 function_list | while do_read
1397 do
1398 if class_is_function_p || class_is_variable_p
1399 then
1400 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1401 then
1402 printf " current_gdbarch->${function} = ${predefault};\n"
1403 fi
1404 fi
1405 done
1406 cat <<EOF
1407 /* gdbarch_alloc() */
1408
1409 return current_gdbarch;
1410 }
1411 EOF
1412
1413 # Free a gdbarch struct.
1414 printf "\n"
1415 printf "\n"
1416 cat <<EOF
1417 /* Allocate extra space using the per-architecture obstack. */
1418
1419 void *
1420 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1421 {
1422 void *data = obstack_alloc (arch->obstack, size);
1423 memset (data, 0, size);
1424 return data;
1425 }
1426
1427
1428 /* Free a gdbarch struct. This should never happen in normal
1429 operation --- once you've created a gdbarch, you keep it around.
1430 However, if an architecture's init function encounters an error
1431 building the structure, it may need to clean up a partially
1432 constructed gdbarch. */
1433
1434 void
1435 gdbarch_free (struct gdbarch *arch)
1436 {
1437 struct obstack *obstack;
1438 gdb_assert (arch != NULL);
1439 gdb_assert (!arch->initialized_p);
1440 obstack = arch->obstack;
1441 obstack_free (obstack, 0); /* Includes the ARCH. */
1442 xfree (obstack);
1443 }
1444 EOF
1445
1446 # verify a new architecture
1447 cat <<EOF
1448
1449
1450 /* Ensure that all values in a GDBARCH are reasonable. */
1451
1452 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1453 just happens to match the global variable \`\`current_gdbarch''. That
1454 way macros refering to that variable get the local and not the global
1455 version - ulgh. Once everything is parameterised with gdbarch, this
1456 will go away. */
1457
1458 static void
1459 verify_gdbarch (struct gdbarch *current_gdbarch)
1460 {
1461 struct ui_file *log;
1462 struct cleanup *cleanups;
1463 long dummy;
1464 char *buf;
1465 log = mem_fileopen ();
1466 cleanups = make_cleanup_ui_file_delete (log);
1467 /* fundamental */
1468 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1469 fprintf_unfiltered (log, "\n\tbyte-order");
1470 if (current_gdbarch->bfd_arch_info == NULL)
1471 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1472 /* Check those that need to be defined for the given multi-arch level. */
1473 EOF
1474 function_list | while do_read
1475 do
1476 if class_is_function_p || class_is_variable_p
1477 then
1478 if [ "x${invalid_p}" = "x0" ]
1479 then
1480 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1481 elif class_is_predicate_p
1482 then
1483 printf " /* Skip verify of ${function}, has predicate */\n"
1484 # FIXME: See do_read for potential simplification
1485 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1486 then
1487 printf " if (${invalid_p})\n"
1488 printf " current_gdbarch->${function} = ${postdefault};\n"
1489 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1490 then
1491 printf " if (current_gdbarch->${function} == ${predefault})\n"
1492 printf " current_gdbarch->${function} = ${postdefault};\n"
1493 elif [ -n "${postdefault}" ]
1494 then
1495 printf " if (current_gdbarch->${function} == 0)\n"
1496 printf " current_gdbarch->${function} = ${postdefault};\n"
1497 elif [ -n "${invalid_p}" ]
1498 then
1499 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1500 printf " && (${invalid_p}))\n"
1501 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1502 elif [ -n "${predefault}" ]
1503 then
1504 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1505 printf " && (current_gdbarch->${function} == ${predefault}))\n"
1506 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1507 fi
1508 fi
1509 done
1510 cat <<EOF
1511 buf = ui_file_xstrdup (log, &dummy);
1512 make_cleanup (xfree, buf);
1513 if (strlen (buf) > 0)
1514 internal_error (__FILE__, __LINE__,
1515 "verify_gdbarch: the following are invalid ...%s",
1516 buf);
1517 do_cleanups (cleanups);
1518 }
1519 EOF
1520
1521 # dump the structure
1522 printf "\n"
1523 printf "\n"
1524 cat <<EOF
1525 /* Print out the details of the current architecture. */
1526
1527 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1528 just happens to match the global variable \`\`current_gdbarch''. That
1529 way macros refering to that variable get the local and not the global
1530 version - ulgh. Once everything is parameterised with gdbarch, this
1531 will go away. */
1532
1533 void
1534 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1535 {
1536 fprintf_unfiltered (file,
1537 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1538 GDB_MULTI_ARCH);
1539 EOF
1540 function_list | sort -t: -k 3 | while do_read
1541 do
1542 # First the predicate
1543 if class_is_predicate_p
1544 then
1545 if class_is_multiarch_p
1546 then
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1549 printf " gdbarch_${function}_p (current_gdbarch));\n"
1550 else
1551 printf "#ifdef ${macro}_P\n"
1552 printf " fprintf_unfiltered (file,\n"
1553 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1554 printf " \"${macro}_P()\",\n"
1555 printf " XSTRING (${macro}_P ()));\n"
1556 printf " fprintf_unfiltered (file,\n"
1557 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1558 printf " ${macro}_P ());\n"
1559 printf "#endif\n"
1560 fi
1561 fi
1562 # multiarch functions don't have macros.
1563 if class_is_multiarch_p
1564 then
1565 printf " fprintf_unfiltered (file,\n"
1566 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1567 printf " (long) current_gdbarch->${function});\n"
1568 continue
1569 fi
1570 # Print the macro definition.
1571 printf "#ifdef ${macro}\n"
1572 if class_is_function_p
1573 then
1574 printf " fprintf_unfiltered (file,\n"
1575 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1576 printf " \"${macro}(${actual})\",\n"
1577 printf " XSTRING (${macro} (${actual})));\n"
1578 else
1579 printf " fprintf_unfiltered (file,\n"
1580 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1581 printf " XSTRING (${macro}));\n"
1582 fi
1583 if [ "x${print_p}" = "x()" ]
1584 then
1585 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1586 elif [ "x${print_p}" = "x0" ]
1587 then
1588 printf " /* skip print of ${macro}, print_p == 0. */\n"
1589 elif [ -n "${print_p}" ]
1590 then
1591 printf " if (${print_p})\n"
1592 printf " fprintf_unfiltered (file,\n"
1593 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1594 printf " ${print});\n"
1595 elif class_is_function_p
1596 then
1597 printf " fprintf_unfiltered (file,\n"
1598 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1599 printf " (long) current_gdbarch->${function}\n"
1600 printf " /*${macro} ()*/);\n"
1601 else
1602 printf " fprintf_unfiltered (file,\n"
1603 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1604 printf " ${print});\n"
1605 fi
1606 printf "#endif\n"
1607 done
1608 cat <<EOF
1609 if (current_gdbarch->dump_tdep != NULL)
1610 current_gdbarch->dump_tdep (current_gdbarch, file);
1611 }
1612 EOF
1613
1614
1615 # GET/SET
1616 printf "\n"
1617 cat <<EOF
1618 struct gdbarch_tdep *
1619 gdbarch_tdep (struct gdbarch *gdbarch)
1620 {
1621 if (gdbarch_debug >= 2)
1622 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1623 return gdbarch->tdep;
1624 }
1625 EOF
1626 printf "\n"
1627 function_list | while do_read
1628 do
1629 if class_is_predicate_p
1630 then
1631 printf "\n"
1632 printf "int\n"
1633 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1634 printf "{\n"
1635 printf " gdb_assert (gdbarch != NULL);\n"
1636 printf " return ${predicate};\n"
1637 printf "}\n"
1638 fi
1639 if class_is_function_p
1640 then
1641 printf "\n"
1642 printf "${returntype}\n"
1643 if [ "x${formal}" = "xvoid" ]
1644 then
1645 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1646 else
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1648 fi
1649 printf "{\n"
1650 printf " gdb_assert (gdbarch != NULL);\n"
1651 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1652 if class_is_predicate_p && test -n "${predefault}"
1653 then
1654 # Allow a call to a function with a predicate.
1655 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1656 fi
1657 printf " if (gdbarch_debug >= 2)\n"
1658 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1659 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1660 then
1661 if class_is_multiarch_p
1662 then
1663 params="gdbarch"
1664 else
1665 params=""
1666 fi
1667 else
1668 if class_is_multiarch_p
1669 then
1670 params="gdbarch, ${actual}"
1671 else
1672 params="${actual}"
1673 fi
1674 fi
1675 if [ "x${returntype}" = "xvoid" ]
1676 then
1677 printf " gdbarch->${function} (${params});\n"
1678 else
1679 printf " return gdbarch->${function} (${params});\n"
1680 fi
1681 printf "}\n"
1682 printf "\n"
1683 printf "void\n"
1684 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1685 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1686 printf "{\n"
1687 printf " gdbarch->${function} = ${function};\n"
1688 printf "}\n"
1689 elif class_is_variable_p
1690 then
1691 printf "\n"
1692 printf "${returntype}\n"
1693 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1694 printf "{\n"
1695 printf " gdb_assert (gdbarch != NULL);\n"
1696 if [ "x${invalid_p}" = "x0" ]
1697 then
1698 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1699 elif [ -n "${invalid_p}" ]
1700 then
1701 printf " /* Check variable is valid. */\n"
1702 printf " gdb_assert (!(${invalid_p}));\n"
1703 elif [ -n "${predefault}" ]
1704 then
1705 printf " /* Check variable changed from pre-default. */\n"
1706 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1707 fi
1708 printf " if (gdbarch_debug >= 2)\n"
1709 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1710 printf " return gdbarch->${function};\n"
1711 printf "}\n"
1712 printf "\n"
1713 printf "void\n"
1714 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1715 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1716 printf "{\n"
1717 printf " gdbarch->${function} = ${function};\n"
1718 printf "}\n"
1719 elif class_is_info_p
1720 then
1721 printf "\n"
1722 printf "${returntype}\n"
1723 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1724 printf "{\n"
1725 printf " gdb_assert (gdbarch != NULL);\n"
1726 printf " if (gdbarch_debug >= 2)\n"
1727 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1728 printf " return gdbarch->${function};\n"
1729 printf "}\n"
1730 fi
1731 done
1732
1733 # All the trailing guff
1734 cat <<EOF
1735
1736
1737 /* Keep a registry of per-architecture data-pointers required by GDB
1738 modules. */
1739
1740 struct gdbarch_data
1741 {
1742 unsigned index;
1743 int init_p;
1744 gdbarch_data_pre_init_ftype *pre_init;
1745 gdbarch_data_post_init_ftype *post_init;
1746 };
1747
1748 struct gdbarch_data_registration
1749 {
1750 struct gdbarch_data *data;
1751 struct gdbarch_data_registration *next;
1752 };
1753
1754 struct gdbarch_data_registry
1755 {
1756 unsigned nr;
1757 struct gdbarch_data_registration *registrations;
1758 };
1759
1760 struct gdbarch_data_registry gdbarch_data_registry =
1761 {
1762 0, NULL,
1763 };
1764
1765 static struct gdbarch_data *
1766 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1767 gdbarch_data_post_init_ftype *post_init)
1768 {
1769 struct gdbarch_data_registration **curr;
1770 /* Append the new registraration. */
1771 for (curr = &gdbarch_data_registry.registrations;
1772 (*curr) != NULL;
1773 curr = &(*curr)->next);
1774 (*curr) = XMALLOC (struct gdbarch_data_registration);
1775 (*curr)->next = NULL;
1776 (*curr)->data = XMALLOC (struct gdbarch_data);
1777 (*curr)->data->index = gdbarch_data_registry.nr++;
1778 (*curr)->data->pre_init = pre_init;
1779 (*curr)->data->post_init = post_init;
1780 (*curr)->data->init_p = 1;
1781 return (*curr)->data;
1782 }
1783
1784 struct gdbarch_data *
1785 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1786 {
1787 return gdbarch_data_register (pre_init, NULL);
1788 }
1789
1790 struct gdbarch_data *
1791 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1792 {
1793 return gdbarch_data_register (NULL, post_init);
1794 }
1795
1796 /* Create/delete the gdbarch data vector. */
1797
1798 static void
1799 alloc_gdbarch_data (struct gdbarch *gdbarch)
1800 {
1801 gdb_assert (gdbarch->data == NULL);
1802 gdbarch->nr_data = gdbarch_data_registry.nr;
1803 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1804 }
1805
1806 /* Initialize the current value of the specified per-architecture
1807 data-pointer. */
1808
1809 void
1810 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1811 struct gdbarch_data *data,
1812 void *pointer)
1813 {
1814 gdb_assert (data->index < gdbarch->nr_data);
1815 gdb_assert (gdbarch->data[data->index] == NULL);
1816 gdb_assert (data->pre_init == NULL);
1817 gdbarch->data[data->index] = pointer;
1818 }
1819
1820 /* Return the current value of the specified per-architecture
1821 data-pointer. */
1822
1823 void *
1824 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1825 {
1826 gdb_assert (data->index < gdbarch->nr_data);
1827 if (gdbarch->data[data->index] == NULL)
1828 {
1829 /* The data-pointer isn't initialized, call init() to get a
1830 value. */
1831 if (data->pre_init != NULL)
1832 /* Mid architecture creation: pass just the obstack, and not
1833 the entire architecture, as that way it isn't possible for
1834 pre-init code to refer to undefined architecture
1835 fields. */
1836 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1837 else if (gdbarch->initialized_p
1838 && data->post_init != NULL)
1839 /* Post architecture creation: pass the entire architecture
1840 (as all fields are valid), but be careful to also detect
1841 recursive references. */
1842 {
1843 gdb_assert (data->init_p);
1844 data->init_p = 0;
1845 gdbarch->data[data->index] = data->post_init (gdbarch);
1846 data->init_p = 1;
1847 }
1848 else
1849 /* The architecture initialization hasn't completed - punt -
1850 hope that the caller knows what they are doing. Once
1851 deprecated_set_gdbarch_data has been initialized, this can be
1852 changed to an internal error. */
1853 return NULL;
1854 gdb_assert (gdbarch->data[data->index] != NULL);
1855 }
1856 return gdbarch->data[data->index];
1857 }
1858
1859
1860
1861 /* Keep a registry of swapped data required by GDB modules. */
1862
1863 struct gdbarch_swap
1864 {
1865 void *swap;
1866 struct gdbarch_swap_registration *source;
1867 struct gdbarch_swap *next;
1868 };
1869
1870 struct gdbarch_swap_registration
1871 {
1872 void *data;
1873 unsigned long sizeof_data;
1874 gdbarch_swap_ftype *init;
1875 struct gdbarch_swap_registration *next;
1876 };
1877
1878 struct gdbarch_swap_registry
1879 {
1880 int nr;
1881 struct gdbarch_swap_registration *registrations;
1882 };
1883
1884 struct gdbarch_swap_registry gdbarch_swap_registry =
1885 {
1886 0, NULL,
1887 };
1888
1889 void
1890 deprecated_register_gdbarch_swap (void *data,
1891 unsigned long sizeof_data,
1892 gdbarch_swap_ftype *init)
1893 {
1894 struct gdbarch_swap_registration **rego;
1895 for (rego = &gdbarch_swap_registry.registrations;
1896 (*rego) != NULL;
1897 rego = &(*rego)->next);
1898 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1899 (*rego)->next = NULL;
1900 (*rego)->init = init;
1901 (*rego)->data = data;
1902 (*rego)->sizeof_data = sizeof_data;
1903 }
1904
1905 static void
1906 current_gdbarch_swap_init_hack (void)
1907 {
1908 struct gdbarch_swap_registration *rego;
1909 struct gdbarch_swap **curr = &current_gdbarch->swap;
1910 for (rego = gdbarch_swap_registry.registrations;
1911 rego != NULL;
1912 rego = rego->next)
1913 {
1914 if (rego->data != NULL)
1915 {
1916 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1917 struct gdbarch_swap);
1918 (*curr)->source = rego;
1919 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1920 rego->sizeof_data);
1921 (*curr)->next = NULL;
1922 curr = &(*curr)->next;
1923 }
1924 if (rego->init != NULL)
1925 rego->init ();
1926 }
1927 }
1928
1929 static struct gdbarch *
1930 current_gdbarch_swap_out_hack (void)
1931 {
1932 struct gdbarch *old_gdbarch = current_gdbarch;
1933 struct gdbarch_swap *curr;
1934
1935 gdb_assert (old_gdbarch != NULL);
1936 for (curr = old_gdbarch->swap;
1937 curr != NULL;
1938 curr = curr->next)
1939 {
1940 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1941 memset (curr->source->data, 0, curr->source->sizeof_data);
1942 }
1943 current_gdbarch = NULL;
1944 return old_gdbarch;
1945 }
1946
1947 static void
1948 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1949 {
1950 struct gdbarch_swap *curr;
1951
1952 gdb_assert (current_gdbarch == NULL);
1953 for (curr = new_gdbarch->swap;
1954 curr != NULL;
1955 curr = curr->next)
1956 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1957 current_gdbarch = new_gdbarch;
1958 }
1959
1960
1961 /* Keep a registry of the architectures known by GDB. */
1962
1963 struct gdbarch_registration
1964 {
1965 enum bfd_architecture bfd_architecture;
1966 gdbarch_init_ftype *init;
1967 gdbarch_dump_tdep_ftype *dump_tdep;
1968 struct gdbarch_list *arches;
1969 struct gdbarch_registration *next;
1970 };
1971
1972 static struct gdbarch_registration *gdbarch_registry = NULL;
1973
1974 static void
1975 append_name (const char ***buf, int *nr, const char *name)
1976 {
1977 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1978 (*buf)[*nr] = name;
1979 *nr += 1;
1980 }
1981
1982 const char **
1983 gdbarch_printable_names (void)
1984 {
1985 /* Accumulate a list of names based on the registed list of
1986 architectures. */
1987 enum bfd_architecture a;
1988 int nr_arches = 0;
1989 const char **arches = NULL;
1990 struct gdbarch_registration *rego;
1991 for (rego = gdbarch_registry;
1992 rego != NULL;
1993 rego = rego->next)
1994 {
1995 const struct bfd_arch_info *ap;
1996 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1997 if (ap == NULL)
1998 internal_error (__FILE__, __LINE__,
1999 "gdbarch_architecture_names: multi-arch unknown");
2000 do
2001 {
2002 append_name (&arches, &nr_arches, ap->printable_name);
2003 ap = ap->next;
2004 }
2005 while (ap != NULL);
2006 }
2007 append_name (&arches, &nr_arches, NULL);
2008 return arches;
2009 }
2010
2011
2012 void
2013 gdbarch_register (enum bfd_architecture bfd_architecture,
2014 gdbarch_init_ftype *init,
2015 gdbarch_dump_tdep_ftype *dump_tdep)
2016 {
2017 struct gdbarch_registration **curr;
2018 const struct bfd_arch_info *bfd_arch_info;
2019 /* Check that BFD recognizes this architecture */
2020 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2021 if (bfd_arch_info == NULL)
2022 {
2023 internal_error (__FILE__, __LINE__,
2024 "gdbarch: Attempt to register unknown architecture (%d)",
2025 bfd_architecture);
2026 }
2027 /* Check that we haven't seen this architecture before */
2028 for (curr = &gdbarch_registry;
2029 (*curr) != NULL;
2030 curr = &(*curr)->next)
2031 {
2032 if (bfd_architecture == (*curr)->bfd_architecture)
2033 internal_error (__FILE__, __LINE__,
2034 "gdbarch: Duplicate registraration of architecture (%s)",
2035 bfd_arch_info->printable_name);
2036 }
2037 /* log it */
2038 if (gdbarch_debug)
2039 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2040 bfd_arch_info->printable_name,
2041 (long) init);
2042 /* Append it */
2043 (*curr) = XMALLOC (struct gdbarch_registration);
2044 (*curr)->bfd_architecture = bfd_architecture;
2045 (*curr)->init = init;
2046 (*curr)->dump_tdep = dump_tdep;
2047 (*curr)->arches = NULL;
2048 (*curr)->next = NULL;
2049 }
2050
2051 void
2052 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2053 gdbarch_init_ftype *init)
2054 {
2055 gdbarch_register (bfd_architecture, init, NULL);
2056 }
2057
2058
2059 /* Look for an architecture using gdbarch_info. Base search on only
2060 BFD_ARCH_INFO and BYTE_ORDER. */
2061
2062 struct gdbarch_list *
2063 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2064 const struct gdbarch_info *info)
2065 {
2066 for (; arches != NULL; arches = arches->next)
2067 {
2068 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2069 continue;
2070 if (info->byte_order != arches->gdbarch->byte_order)
2071 continue;
2072 if (info->osabi != arches->gdbarch->osabi)
2073 continue;
2074 return arches;
2075 }
2076 return NULL;
2077 }
2078
2079
2080 /* Find an architecture that matches the specified INFO. Create a new
2081 architecture if needed. Return that new architecture. Assumes
2082 that there is no current architecture. */
2083
2084 static struct gdbarch *
2085 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2086 {
2087 struct gdbarch *new_gdbarch;
2088 struct gdbarch_registration *rego;
2089
2090 /* The existing architecture has been swapped out - all this code
2091 works from a clean slate. */
2092 gdb_assert (current_gdbarch == NULL);
2093
2094 /* Fill in missing parts of the INFO struct using a number of
2095 sources: "set ..."; INFOabfd supplied; and the existing
2096 architecture. */
2097 gdbarch_info_fill (old_gdbarch, &info);
2098
2099 /* Must have found some sort of architecture. */
2100 gdb_assert (info.bfd_arch_info != NULL);
2101
2102 if (gdbarch_debug)
2103 {
2104 fprintf_unfiltered (gdb_stdlog,
2105 "find_arch_by_info: info.bfd_arch_info %s\n",
2106 (info.bfd_arch_info != NULL
2107 ? info.bfd_arch_info->printable_name
2108 : "(null)"));
2109 fprintf_unfiltered (gdb_stdlog,
2110 "find_arch_by_info: info.byte_order %d (%s)\n",
2111 info.byte_order,
2112 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2113 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2114 : "default"));
2115 fprintf_unfiltered (gdb_stdlog,
2116 "find_arch_by_info: info.osabi %d (%s)\n",
2117 info.osabi, gdbarch_osabi_name (info.osabi));
2118 fprintf_unfiltered (gdb_stdlog,
2119 "find_arch_by_info: info.abfd 0x%lx\n",
2120 (long) info.abfd);
2121 fprintf_unfiltered (gdb_stdlog,
2122 "find_arch_by_info: info.tdep_info 0x%lx\n",
2123 (long) info.tdep_info);
2124 }
2125
2126 /* Find the tdep code that knows about this architecture. */
2127 for (rego = gdbarch_registry;
2128 rego != NULL;
2129 rego = rego->next)
2130 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2131 break;
2132 if (rego == NULL)
2133 {
2134 if (gdbarch_debug)
2135 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2136 "No matching architecture\n");
2137 return 0;
2138 }
2139
2140 /* Ask the tdep code for an architecture that matches "info". */
2141 new_gdbarch = rego->init (info, rego->arches);
2142
2143 /* Did the tdep code like it? No. Reject the change and revert to
2144 the old architecture. */
2145 if (new_gdbarch == NULL)
2146 {
2147 if (gdbarch_debug)
2148 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2149 "Target rejected architecture\n");
2150 return NULL;
2151 }
2152
2153 /* Is this a pre-existing architecture (as determined by already
2154 being initialized)? Move it to the front of the architecture
2155 list (keeping the list sorted Most Recently Used). */
2156 if (new_gdbarch->initialized_p)
2157 {
2158 struct gdbarch_list **list;
2159 struct gdbarch_list *this;
2160 if (gdbarch_debug)
2161 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2162 "Previous architecture 0x%08lx (%s) selected\n",
2163 (long) new_gdbarch,
2164 new_gdbarch->bfd_arch_info->printable_name);
2165 /* Find the existing arch in the list. */
2166 for (list = &rego->arches;
2167 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2168 list = &(*list)->next);
2169 /* It had better be in the list of architectures. */
2170 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2171 /* Unlink THIS. */
2172 this = (*list);
2173 (*list) = this->next;
2174 /* Insert THIS at the front. */
2175 this->next = rego->arches;
2176 rego->arches = this;
2177 /* Return it. */
2178 return new_gdbarch;
2179 }
2180
2181 /* It's a new architecture. */
2182 if (gdbarch_debug)
2183 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2184 "New architecture 0x%08lx (%s) selected\n",
2185 (long) new_gdbarch,
2186 new_gdbarch->bfd_arch_info->printable_name);
2187
2188 /* Insert the new architecture into the front of the architecture
2189 list (keep the list sorted Most Recently Used). */
2190 {
2191 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2192 this->next = rego->arches;
2193 this->gdbarch = new_gdbarch;
2194 rego->arches = this;
2195 }
2196
2197 /* Check that the newly installed architecture is valid. Plug in
2198 any post init values. */
2199 new_gdbarch->dump_tdep = rego->dump_tdep;
2200 verify_gdbarch (new_gdbarch);
2201 new_gdbarch->initialized_p = 1;
2202
2203 /* Initialize any per-architecture swap areas. This phase requires
2204 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2205 swap the entire architecture out. */
2206 current_gdbarch = new_gdbarch;
2207 current_gdbarch_swap_init_hack ();
2208 current_gdbarch_swap_out_hack ();
2209
2210 if (gdbarch_debug)
2211 gdbarch_dump (new_gdbarch, gdb_stdlog);
2212
2213 return new_gdbarch;
2214 }
2215
2216 struct gdbarch *
2217 gdbarch_find_by_info (struct gdbarch_info info)
2218 {
2219 /* Save the previously selected architecture, setting the global to
2220 NULL. This stops things like gdbarch->init() trying to use the
2221 previous architecture's configuration. The previous architecture
2222 may not even be of the same architecture family. The most recent
2223 architecture of the same family is found at the head of the
2224 rego->arches list. */
2225 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2226
2227 /* Find the specified architecture. */
2228 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2229
2230 /* Restore the existing architecture. */
2231 gdb_assert (current_gdbarch == NULL);
2232 current_gdbarch_swap_in_hack (old_gdbarch);
2233
2234 return new_gdbarch;
2235 }
2236
2237 /* Make the specified architecture current, swapping the existing one
2238 out. */
2239
2240 void
2241 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2242 {
2243 gdb_assert (new_gdbarch != NULL);
2244 gdb_assert (current_gdbarch != NULL);
2245 gdb_assert (new_gdbarch->initialized_p);
2246 current_gdbarch_swap_out_hack ();
2247 current_gdbarch_swap_in_hack (new_gdbarch);
2248 architecture_changed_event ();
2249 }
2250
2251 extern void _initialize_gdbarch (void);
2252
2253 void
2254 _initialize_gdbarch (void)
2255 {
2256 struct cmd_list_element *c;
2257
2258 add_show_from_set (add_set_cmd ("arch",
2259 class_maintenance,
2260 var_zinteger,
2261 (char *)&gdbarch_debug,
2262 "Set architecture debugging.\\n\\
2263 When non-zero, architecture debugging is enabled.", &setdebuglist),
2264 &showdebuglist);
2265 c = add_set_cmd ("archdebug",
2266 class_maintenance,
2267 var_zinteger,
2268 (char *)&gdbarch_debug,
2269 "Set architecture debugging.\\n\\
2270 When non-zero, architecture debugging is enabled.", &setlist);
2271
2272 deprecate_cmd (c, "set debug arch");
2273 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2274 }
2275 EOF
2276
2277 # close things off
2278 exec 1>&2
2279 #../move-if-change new-gdbarch.c gdbarch.c
2280 compare_new gdbarch.c
This page took 0.080057 seconds and 4 git commands to generate.