Move entry for doc/Makefile.in to doc/ChangeLog.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
371 #
372 i::int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394 # Each format describes both the big and little endian layouts (if
395 # useful).
396
397 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
399 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
401 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
402 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
403
404 # For most targets, a pointer on the target and its representation as an
405 # address in GDB have the same size and "look the same". For such a
406 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
407 # / addr_bit will be set from it.
408 #
409 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
410 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
411 # as well.
412 #
413 # ptr_bit is the size of a pointer on the target
414 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
415 # addr_bit is the size of a target address as represented in gdb
416 v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
417 #
418 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
419 v::int:char_signed:::1:-1:1
420 #
421 F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
422 F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
423 # Function for getting target's idea of a frame pointer. FIXME: GDB's
424 # whole scheme for dealing with "frames" and "frame pointers" needs a
425 # serious shakedown.
426 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
427 #
428 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
429 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
430 #
431 v::int:num_regs:::0:-1
432 # This macro gives the number of pseudo-registers that live in the
433 # register namespace but do not get fetched or stored on the target.
434 # These pseudo-registers may be aliases for other registers,
435 # combinations of other registers, or they may be computed by GDB.
436 v::int:num_pseudo_regs:::0:0::0
437
438 # GDB's standard (or well known) register numbers. These can map onto
439 # a real register or a pseudo (computed) register or not be defined at
440 # all (-1).
441 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
442 v:=:int:sp_regnum:::-1:-1::0
443 v:=:int:pc_regnum:::-1:-1::0
444 v:=:int:ps_regnum:::-1:-1::0
445 v:=:int:fp0_regnum:::0:-1::0
446 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
447 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
449 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
450 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
451 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
452 # Convert from an sdb register number to an internal gdb register number.
453 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
454 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
455 f::const char *:register_name:int regnr:regnr
456
457 # Return the type of a register specified by the architecture. Only
458 # the register cache should call this function directly; others should
459 # use "register_type".
460 M::struct type *:register_type:int reg_nr:reg_nr
461
462 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
463 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
464 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
465 # DEPRECATED_FP_REGNUM.
466 v:=:int:deprecated_fp_regnum:::-1:-1::0
467
468 # See gdbint.texinfo. See infcall.c.
469 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
470 # DEPRECATED_REGISTER_SIZE can be deleted.
471 v:=:int:deprecated_register_size
472 v::int:call_dummy_location::::AT_ENTRY_POINT::0
473 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr, regcache
474
475 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
476 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
477 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
478 # MAP a GDB RAW register number onto a simulator register number. See
479 # also include/...-sim.h.
480 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
481 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
482 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
483 # setjmp/longjmp support.
484 F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
485 #
486 v:=:int:believe_pcc_promotion:::::::
487 #
488 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
489 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
490 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
491 # Construct a value representing the contents of register REGNUM in
492 # frame FRAME, interpreted as type TYPE. The routine needs to
493 # allocate and return a struct value with all value attributes
494 # (but not the value contents) filled in.
495 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
496 #
497 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
498 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
499 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
500
501 # It has been suggested that this, well actually its predecessor,
502 # should take the type/value of the function to be called and not the
503 # return type. This is left as an exercise for the reader.
504
505 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
506 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
507 # (via legacy_return_value), when a small struct is involved.
508
509 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
510
511 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
512 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
513 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
514 # RETURN_VALUE.
515
516 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
517 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
518 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
519
520 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
521 # ABI suitable for the implementation of a robust extract
522 # struct-convention return-value address method (the sparc saves the
523 # address in the callers frame). All the other cases so far examined,
524 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
525 # erreneous - the code was incorrectly assuming that the return-value
526 # address, stored in a register, was preserved across the entire
527 # function call.
528
529 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
530 # the ABIs that are still to be analyzed - perhaps this should simply
531 # be deleted. The commented out extract_returned_value_address method
532 # is provided as a starting point for the 32-bit SPARC. It, or
533 # something like it, along with changes to both infcmd.c and stack.c
534 # will be needed for that case to work. NB: It is passed the callers
535 # frame since it is only after the callee has returned that this
536 # function is used.
537
538 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
539 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
540
541 #
542 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
543 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
544 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
545 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
546 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
547 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
548 v::CORE_ADDR:decr_pc_after_break:::0:::0
549
550 # A function can be addressed by either it's "pointer" (possibly a
551 # descriptor address) or "entry point" (first executable instruction).
552 # The method "convert_from_func_ptr_addr" converting the former to the
553 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
554 # a simplified subset of that functionality - the function's address
555 # corresponds to the "function pointer" and the function's start
556 # corresponds to the "function entry point" - and hence is redundant.
557
558 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
559
560 # Return the remote protocol register number associated with this
561 # register. Normally the identity mapping.
562 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
563
564 # Fetch the target specific address used to represent a load module.
565 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
566 #
567 v::CORE_ADDR:frame_args_skip:::0:::0
568 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
569 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
570 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
571 # frame-base. Enable frame-base before frame-unwind.
572 F::int:frame_num_args:struct frame_info *frame:frame
573 #
574 M::CORE_ADDR:frame_align:CORE_ADDR address:address
575 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
576 # stabs_argument_has_addr.
577 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
578 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
579 v::int:frame_red_zone_size
580 #
581 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
582 # On some machines there are bits in addresses which are not really
583 # part of the address, but are used by the kernel, the hardware, etc.
584 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
585 # we get a "real" address such as one would find in a symbol table.
586 # This is used only for addresses of instructions, and even then I'm
587 # not sure it's used in all contexts. It exists to deal with there
588 # being a few stray bits in the PC which would mislead us, not as some
589 # sort of generic thing to handle alignment or segmentation (it's
590 # possible it should be in TARGET_READ_PC instead).
591 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
592 # It is not at all clear why gdbarch_smash_text_address is not folded into
593 # gdbarch_addr_bits_remove.
594 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
595
596 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
597 # indicates if the target needs software single step. An ISA method to
598 # implement it.
599 #
600 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
601 # breakpoints using the breakpoint system instead of blatting memory directly
602 # (as with rs6000).
603 #
604 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
605 # target can single step. If not, then implement single step using breakpoints.
606 #
607 # A return value of 1 means that the software_single_step breakpoints
608 # were inserted; 0 means they were not.
609 F:=:int:software_single_step:struct frame_info *frame:frame
610
611 # Return non-zero if the processor is executing a delay slot and a
612 # further single-step is needed before the instruction finishes.
613 M::int:single_step_through_delay:struct frame_info *frame:frame
614 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
615 # disassembler. Perhaps objdump can handle it?
616 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
617 f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
618
619
620 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
621 # evaluates non-zero, this is the address where the debugger will place
622 # a step-resume breakpoint to get us past the dynamic linker.
623 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
624 # Some systems also have trampoline code for returning from shared libs.
625 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
626
627 # A target might have problems with watchpoints as soon as the stack
628 # frame of the current function has been destroyed. This mostly happens
629 # as the first action in a funtion's epilogue. in_function_epilogue_p()
630 # is defined to return a non-zero value if either the given addr is one
631 # instruction after the stack destroying instruction up to the trailing
632 # return instruction or if we can figure out that the stack frame has
633 # already been invalidated regardless of the value of addr. Targets
634 # which don't suffer from that problem could just let this functionality
635 # untouched.
636 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
637 # Given a vector of command-line arguments, return a newly allocated
638 # string which, when passed to the create_inferior function, will be
639 # parsed (on Unix systems, by the shell) to yield the same vector.
640 # This function should call error() if the argument vector is not
641 # representable for this target or if this target does not support
642 # command-line arguments.
643 # ARGC is the number of elements in the vector.
644 # ARGV is an array of strings, one per argument.
645 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
646 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
647 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
648 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
649 v::int:cannot_step_breakpoint:::0:0::0
650 v::int:have_nonsteppable_watchpoint:::0:0::0
651 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
652 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
653 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
654 # Is a register in a group
655 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
656 # Fetch the pointer to the ith function argument.
657 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
658
659 # Return the appropriate register set for a core file section with
660 # name SECT_NAME and size SECT_SIZE.
661 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
662
663 # If the elements of C++ vtables are in-place function descriptors rather
664 # than normal function pointers (which may point to code or a descriptor),
665 # set this to one.
666 v::int:vtable_function_descriptors:::0:0::0
667
668 # Set if the least significant bit of the delta is used instead of the least
669 # significant bit of the pfn for pointers to virtual member functions.
670 v::int:vbit_in_delta:::0:0::0
671
672 # Advance PC to next instruction in order to skip a permanent breakpoint.
673 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
674
675 # Refresh overlay mapped state for section OSECT.
676 F::void:overlay_update:struct obj_section *osect:osect
677 EOF
678 }
679
680 #
681 # The .log file
682 #
683 exec > new-gdbarch.log
684 function_list | while do_read
685 do
686 cat <<EOF
687 ${class} ${returntype} ${function} ($formal)
688 EOF
689 for r in ${read}
690 do
691 eval echo \"\ \ \ \ ${r}=\${${r}}\"
692 done
693 if class_is_predicate_p && fallback_default_p
694 then
695 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
696 kill $$
697 exit 1
698 fi
699 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
700 then
701 echo "Error: postdefault is useless when invalid_p=0" 1>&2
702 kill $$
703 exit 1
704 fi
705 if class_is_multiarch_p
706 then
707 if class_is_predicate_p ; then :
708 elif test "x${predefault}" = "x"
709 then
710 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
711 kill $$
712 exit 1
713 fi
714 fi
715 echo ""
716 done
717
718 exec 1>&2
719 compare_new gdbarch.log
720
721
722 copyright ()
723 {
724 cat <<EOF
725 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
726
727 /* Dynamic architecture support for GDB, the GNU debugger.
728
729 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
730 Free Software Foundation, Inc.
731
732 This file is part of GDB.
733
734 This program is free software; you can redistribute it and/or modify
735 it under the terms of the GNU General Public License as published by
736 the Free Software Foundation; either version 2 of the License, or
737 (at your option) any later version.
738
739 This program is distributed in the hope that it will be useful,
740 but WITHOUT ANY WARRANTY; without even the implied warranty of
741 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
742 GNU General Public License for more details.
743
744 You should have received a copy of the GNU General Public License
745 along with this program; if not, write to the Free Software
746 Foundation, Inc., 51 Franklin Street, Fifth Floor,
747 Boston, MA 02110-1301, USA. */
748
749 /* This file was created with the aid of \`\`gdbarch.sh''.
750
751 The Bourne shell script \`\`gdbarch.sh'' creates the files
752 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
753 against the existing \`\`gdbarch.[hc]''. Any differences found
754 being reported.
755
756 If editing this file, please also run gdbarch.sh and merge any
757 changes into that script. Conversely, when making sweeping changes
758 to this file, modifying gdbarch.sh and using its output may prove
759 easier. */
760
761 EOF
762 }
763
764 #
765 # The .h file
766 #
767
768 exec > new-gdbarch.h
769 copyright
770 cat <<EOF
771 #ifndef GDBARCH_H
772 #define GDBARCH_H
773
774 struct floatformat;
775 struct ui_file;
776 struct frame_info;
777 struct value;
778 struct objfile;
779 struct obj_section;
780 struct minimal_symbol;
781 struct regcache;
782 struct reggroup;
783 struct regset;
784 struct disassemble_info;
785 struct target_ops;
786 struct obstack;
787 struct bp_target_info;
788 struct target_desc;
789
790 extern struct gdbarch *current_gdbarch;
791 EOF
792
793 # function typedef's
794 printf "\n"
795 printf "\n"
796 printf "/* The following are pre-initialized by GDBARCH. */\n"
797 function_list | while do_read
798 do
799 if class_is_info_p
800 then
801 printf "\n"
802 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
803 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
804 if test -n "${macro}"
805 then
806 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
807 printf "#error \"Non multi-arch definition of ${macro}\"\n"
808 printf "#endif\n"
809 printf "#if !defined (${macro})\n"
810 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
811 printf "#endif\n"
812 fi
813 fi
814 done
815
816 # function typedef's
817 printf "\n"
818 printf "\n"
819 printf "/* The following are initialized by the target dependent code. */\n"
820 function_list | while do_read
821 do
822 if [ -n "${comment}" ]
823 then
824 echo "${comment}" | sed \
825 -e '2 s,#,/*,' \
826 -e '3,$ s,#, ,' \
827 -e '$ s,$, */,'
828 fi
829
830 if class_is_predicate_p
831 then
832 if test -n "${macro}"
833 then
834 printf "\n"
835 printf "#if defined (${macro})\n"
836 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
837 printf "#if !defined (${macro}_P)\n"
838 printf "#define ${macro}_P() (1)\n"
839 printf "#endif\n"
840 printf "#endif\n"
841 fi
842 printf "\n"
843 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
844 if test -n "${macro}"
845 then
846 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
847 printf "#error \"Non multi-arch definition of ${macro}\"\n"
848 printf "#endif\n"
849 printf "#if !defined (${macro}_P)\n"
850 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
851 printf "#endif\n"
852 fi
853 fi
854 if class_is_variable_p
855 then
856 printf "\n"
857 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
858 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
859 if test -n "${macro}"
860 then
861 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
862 printf "#error \"Non multi-arch definition of ${macro}\"\n"
863 printf "#endif\n"
864 printf "#if !defined (${macro})\n"
865 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
866 printf "#endif\n"
867 fi
868 fi
869 if class_is_function_p
870 then
871 printf "\n"
872 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
875 elif class_is_multiarch_p
876 then
877 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
878 else
879 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
880 fi
881 if [ "x${formal}" = "xvoid" ]
882 then
883 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
884 else
885 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
886 fi
887 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
888 if test -n "${macro}"
889 then
890 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
891 printf "#error \"Non multi-arch definition of ${macro}\"\n"
892 printf "#endif\n"
893 if [ "x${actual}" = "x" ]
894 then
895 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
896 elif [ "x${actual}" = "x-" ]
897 then
898 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
899 else
900 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
901 fi
902 printf "#if !defined (${macro})\n"
903 if [ "x${actual}" = "x" ]
904 then
905 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
906 elif [ "x${actual}" = "x-" ]
907 then
908 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
909 else
910 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
911 fi
912 printf "#endif\n"
913 fi
914 fi
915 done
916
917 # close it off
918 cat <<EOF
919
920 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
921
922
923 /* Mechanism for co-ordinating the selection of a specific
924 architecture.
925
926 GDB targets (*-tdep.c) can register an interest in a specific
927 architecture. Other GDB components can register a need to maintain
928 per-architecture data.
929
930 The mechanisms below ensures that there is only a loose connection
931 between the set-architecture command and the various GDB
932 components. Each component can independently register their need
933 to maintain architecture specific data with gdbarch.
934
935 Pragmatics:
936
937 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
938 didn't scale.
939
940 The more traditional mega-struct containing architecture specific
941 data for all the various GDB components was also considered. Since
942 GDB is built from a variable number of (fairly independent)
943 components it was determined that the global aproach was not
944 applicable. */
945
946
947 /* Register a new architectural family with GDB.
948
949 Register support for the specified ARCHITECTURE with GDB. When
950 gdbarch determines that the specified architecture has been
951 selected, the corresponding INIT function is called.
952
953 --
954
955 The INIT function takes two parameters: INFO which contains the
956 information available to gdbarch about the (possibly new)
957 architecture; ARCHES which is a list of the previously created
958 \`\`struct gdbarch'' for this architecture.
959
960 The INFO parameter is, as far as possible, be pre-initialized with
961 information obtained from INFO.ABFD or the global defaults.
962
963 The ARCHES parameter is a linked list (sorted most recently used)
964 of all the previously created architures for this architecture
965 family. The (possibly NULL) ARCHES->gdbarch can used to access
966 values from the previously selected architecture for this
967 architecture family. The global \`\`current_gdbarch'' shall not be
968 used.
969
970 The INIT function shall return any of: NULL - indicating that it
971 doesn't recognize the selected architecture; an existing \`\`struct
972 gdbarch'' from the ARCHES list - indicating that the new
973 architecture is just a synonym for an earlier architecture (see
974 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
975 - that describes the selected architecture (see gdbarch_alloc()).
976
977 The DUMP_TDEP function shall print out all target specific values.
978 Care should be taken to ensure that the function works in both the
979 multi-arch and non- multi-arch cases. */
980
981 struct gdbarch_list
982 {
983 struct gdbarch *gdbarch;
984 struct gdbarch_list *next;
985 };
986
987 struct gdbarch_info
988 {
989 /* Use default: NULL (ZERO). */
990 const struct bfd_arch_info *bfd_arch_info;
991
992 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
993 int byte_order;
994
995 /* Use default: NULL (ZERO). */
996 bfd *abfd;
997
998 /* Use default: NULL (ZERO). */
999 struct gdbarch_tdep_info *tdep_info;
1000
1001 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1002 enum gdb_osabi osabi;
1003
1004 /* Use default: NULL (ZERO). */
1005 const struct target_desc *target_desc;
1006 };
1007
1008 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1009 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1010
1011 /* DEPRECATED - use gdbarch_register() */
1012 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1013
1014 extern void gdbarch_register (enum bfd_architecture architecture,
1015 gdbarch_init_ftype *,
1016 gdbarch_dump_tdep_ftype *);
1017
1018
1019 /* Return a freshly allocated, NULL terminated, array of the valid
1020 architecture names. Since architectures are registered during the
1021 _initialize phase this function only returns useful information
1022 once initialization has been completed. */
1023
1024 extern const char **gdbarch_printable_names (void);
1025
1026
1027 /* Helper function. Search the list of ARCHES for a GDBARCH that
1028 matches the information provided by INFO. */
1029
1030 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1031
1032
1033 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1034 basic initialization using values obtained from the INFO and TDEP
1035 parameters. set_gdbarch_*() functions are called to complete the
1036 initialization of the object. */
1037
1038 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1039
1040
1041 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1042 It is assumed that the caller freeds the \`\`struct
1043 gdbarch_tdep''. */
1044
1045 extern void gdbarch_free (struct gdbarch *);
1046
1047
1048 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1049 obstack. The memory is freed when the corresponding architecture
1050 is also freed. */
1051
1052 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1053 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1054 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1055
1056
1057 /* Helper function. Force an update of the current architecture.
1058
1059 The actual architecture selected is determined by INFO, \`\`(gdb) set
1060 architecture'' et.al., the existing architecture and BFD's default
1061 architecture. INFO should be initialized to zero and then selected
1062 fields should be updated.
1063
1064 Returns non-zero if the update succeeds */
1065
1066 extern int gdbarch_update_p (struct gdbarch_info info);
1067
1068
1069 /* Helper function. Find an architecture matching info.
1070
1071 INFO should be initialized using gdbarch_info_init, relevant fields
1072 set, and then finished using gdbarch_info_fill.
1073
1074 Returns the corresponding architecture, or NULL if no matching
1075 architecture was found. "current_gdbarch" is not updated. */
1076
1077 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1078
1079
1080 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1081
1082 FIXME: kettenis/20031124: Of the functions that follow, only
1083 gdbarch_from_bfd is supposed to survive. The others will
1084 dissappear since in the future GDB will (hopefully) be truly
1085 multi-arch. However, for now we're still stuck with the concept of
1086 a single active architecture. */
1087
1088 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1089
1090
1091 /* Register per-architecture data-pointer.
1092
1093 Reserve space for a per-architecture data-pointer. An identifier
1094 for the reserved data-pointer is returned. That identifer should
1095 be saved in a local static variable.
1096
1097 Memory for the per-architecture data shall be allocated using
1098 gdbarch_obstack_zalloc. That memory will be deleted when the
1099 corresponding architecture object is deleted.
1100
1101 When a previously created architecture is re-selected, the
1102 per-architecture data-pointer for that previous architecture is
1103 restored. INIT() is not re-called.
1104
1105 Multiple registrarants for any architecture are allowed (and
1106 strongly encouraged). */
1107
1108 struct gdbarch_data;
1109
1110 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1111 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1112 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1113 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1114 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1115 struct gdbarch_data *data,
1116 void *pointer);
1117
1118 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1119
1120
1121
1122 /* Register per-architecture memory region.
1123
1124 Provide a memory-region swap mechanism. Per-architecture memory
1125 region are created. These memory regions are swapped whenever the
1126 architecture is changed. For a new architecture, the memory region
1127 is initialized with zero (0) and the INIT function is called.
1128
1129 Memory regions are swapped / initialized in the order that they are
1130 registered. NULL DATA and/or INIT values can be specified.
1131
1132 New code should use gdbarch_data_register_*(). */
1133
1134 typedef void (gdbarch_swap_ftype) (void);
1135 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1136 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1137
1138
1139
1140 /* Set the dynamic target-system-dependent parameters (architecture,
1141 byte-order, ...) using information found in the BFD */
1142
1143 extern void set_gdbarch_from_file (bfd *);
1144
1145
1146 /* Initialize the current architecture to the "first" one we find on
1147 our list. */
1148
1149 extern void initialize_current_architecture (void);
1150
1151 /* gdbarch trace variable */
1152 extern int gdbarch_debug;
1153
1154 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1155
1156 #endif
1157 EOF
1158 exec 1>&2
1159 #../move-if-change new-gdbarch.h gdbarch.h
1160 compare_new gdbarch.h
1161
1162
1163 #
1164 # C file
1165 #
1166
1167 exec > new-gdbarch.c
1168 copyright
1169 cat <<EOF
1170
1171 #include "defs.h"
1172 #include "arch-utils.h"
1173
1174 #include "gdbcmd.h"
1175 #include "inferior.h"
1176 #include "symcat.h"
1177
1178 #include "floatformat.h"
1179
1180 #include "gdb_assert.h"
1181 #include "gdb_string.h"
1182 #include "gdb-events.h"
1183 #include "reggroups.h"
1184 #include "osabi.h"
1185 #include "gdb_obstack.h"
1186
1187 /* Static function declarations */
1188
1189 static void alloc_gdbarch_data (struct gdbarch *);
1190
1191 /* Non-zero if we want to trace architecture code. */
1192
1193 #ifndef GDBARCH_DEBUG
1194 #define GDBARCH_DEBUG 0
1195 #endif
1196 int gdbarch_debug = GDBARCH_DEBUG;
1197 static void
1198 show_gdbarch_debug (struct ui_file *file, int from_tty,
1199 struct cmd_list_element *c, const char *value)
1200 {
1201 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1202 }
1203
1204 static const char *
1205 pformat (const struct floatformat **format)
1206 {
1207 if (format == NULL)
1208 return "(null)";
1209 else
1210 /* Just print out one of them - this is only for diagnostics. */
1211 return format[0]->name;
1212 }
1213
1214 EOF
1215
1216 # gdbarch open the gdbarch object
1217 printf "\n"
1218 printf "/* Maintain the struct gdbarch object */\n"
1219 printf "\n"
1220 printf "struct gdbarch\n"
1221 printf "{\n"
1222 printf " /* Has this architecture been fully initialized? */\n"
1223 printf " int initialized_p;\n"
1224 printf "\n"
1225 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1226 printf " struct obstack *obstack;\n"
1227 printf "\n"
1228 printf " /* basic architectural information */\n"
1229 function_list | while do_read
1230 do
1231 if class_is_info_p
1232 then
1233 printf " ${returntype} ${function};\n"
1234 fi
1235 done
1236 printf "\n"
1237 printf " /* target specific vector. */\n"
1238 printf " struct gdbarch_tdep *tdep;\n"
1239 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1240 printf "\n"
1241 printf " /* per-architecture data-pointers */\n"
1242 printf " unsigned nr_data;\n"
1243 printf " void **data;\n"
1244 printf "\n"
1245 printf " /* per-architecture swap-regions */\n"
1246 printf " struct gdbarch_swap *swap;\n"
1247 printf "\n"
1248 cat <<EOF
1249 /* Multi-arch values.
1250
1251 When extending this structure you must:
1252
1253 Add the field below.
1254
1255 Declare set/get functions and define the corresponding
1256 macro in gdbarch.h.
1257
1258 gdbarch_alloc(): If zero/NULL is not a suitable default,
1259 initialize the new field.
1260
1261 verify_gdbarch(): Confirm that the target updated the field
1262 correctly.
1263
1264 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1265 field is dumped out
1266
1267 \`\`startup_gdbarch()'': Append an initial value to the static
1268 variable (base values on the host's c-type system).
1269
1270 get_gdbarch(): Implement the set/get functions (probably using
1271 the macro's as shortcuts).
1272
1273 */
1274
1275 EOF
1276 function_list | while do_read
1277 do
1278 if class_is_variable_p
1279 then
1280 printf " ${returntype} ${function};\n"
1281 elif class_is_function_p
1282 then
1283 printf " gdbarch_${function}_ftype *${function};\n"
1284 fi
1285 done
1286 printf "};\n"
1287
1288 # A pre-initialized vector
1289 printf "\n"
1290 printf "\n"
1291 cat <<EOF
1292 /* The default architecture uses host values (for want of a better
1293 choice). */
1294 EOF
1295 printf "\n"
1296 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1297 printf "\n"
1298 printf "struct gdbarch startup_gdbarch =\n"
1299 printf "{\n"
1300 printf " 1, /* Always initialized. */\n"
1301 printf " NULL, /* The obstack. */\n"
1302 printf " /* basic architecture information */\n"
1303 function_list | while do_read
1304 do
1305 if class_is_info_p
1306 then
1307 printf " ${staticdefault}, /* ${function} */\n"
1308 fi
1309 done
1310 cat <<EOF
1311 /* target specific vector and its dump routine */
1312 NULL, NULL,
1313 /*per-architecture data-pointers and swap regions */
1314 0, NULL, NULL,
1315 /* Multi-arch values */
1316 EOF
1317 function_list | while do_read
1318 do
1319 if class_is_function_p || class_is_variable_p
1320 then
1321 printf " ${staticdefault}, /* ${function} */\n"
1322 fi
1323 done
1324 cat <<EOF
1325 /* startup_gdbarch() */
1326 };
1327
1328 struct gdbarch *current_gdbarch = &startup_gdbarch;
1329 EOF
1330
1331 # Create a new gdbarch struct
1332 cat <<EOF
1333
1334 /* Create a new \`\`struct gdbarch'' based on information provided by
1335 \`\`struct gdbarch_info''. */
1336 EOF
1337 printf "\n"
1338 cat <<EOF
1339 struct gdbarch *
1340 gdbarch_alloc (const struct gdbarch_info *info,
1341 struct gdbarch_tdep *tdep)
1342 {
1343 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1344 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1345 the current local architecture and not the previous global
1346 architecture. This ensures that the new architectures initial
1347 values are not influenced by the previous architecture. Once
1348 everything is parameterised with gdbarch, this will go away. */
1349 struct gdbarch *current_gdbarch;
1350
1351 /* Create an obstack for allocating all the per-architecture memory,
1352 then use that to allocate the architecture vector. */
1353 struct obstack *obstack = XMALLOC (struct obstack);
1354 obstack_init (obstack);
1355 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1356 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1357 current_gdbarch->obstack = obstack;
1358
1359 alloc_gdbarch_data (current_gdbarch);
1360
1361 current_gdbarch->tdep = tdep;
1362 EOF
1363 printf "\n"
1364 function_list | while do_read
1365 do
1366 if class_is_info_p
1367 then
1368 printf " current_gdbarch->${function} = info->${function};\n"
1369 fi
1370 done
1371 printf "\n"
1372 printf " /* Force the explicit initialization of these. */\n"
1373 function_list | while do_read
1374 do
1375 if class_is_function_p || class_is_variable_p
1376 then
1377 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1378 then
1379 printf " current_gdbarch->${function} = ${predefault};\n"
1380 fi
1381 fi
1382 done
1383 cat <<EOF
1384 /* gdbarch_alloc() */
1385
1386 return current_gdbarch;
1387 }
1388 EOF
1389
1390 # Free a gdbarch struct.
1391 printf "\n"
1392 printf "\n"
1393 cat <<EOF
1394 /* Allocate extra space using the per-architecture obstack. */
1395
1396 void *
1397 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1398 {
1399 void *data = obstack_alloc (arch->obstack, size);
1400 memset (data, 0, size);
1401 return data;
1402 }
1403
1404
1405 /* Free a gdbarch struct. This should never happen in normal
1406 operation --- once you've created a gdbarch, you keep it around.
1407 However, if an architecture's init function encounters an error
1408 building the structure, it may need to clean up a partially
1409 constructed gdbarch. */
1410
1411 void
1412 gdbarch_free (struct gdbarch *arch)
1413 {
1414 struct obstack *obstack;
1415 gdb_assert (arch != NULL);
1416 gdb_assert (!arch->initialized_p);
1417 obstack = arch->obstack;
1418 obstack_free (obstack, 0); /* Includes the ARCH. */
1419 xfree (obstack);
1420 }
1421 EOF
1422
1423 # verify a new architecture
1424 cat <<EOF
1425
1426
1427 /* Ensure that all values in a GDBARCH are reasonable. */
1428
1429 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1430 just happens to match the global variable \`\`current_gdbarch''. That
1431 way macros refering to that variable get the local and not the global
1432 version - ulgh. Once everything is parameterised with gdbarch, this
1433 will go away. */
1434
1435 static void
1436 verify_gdbarch (struct gdbarch *current_gdbarch)
1437 {
1438 struct ui_file *log;
1439 struct cleanup *cleanups;
1440 long dummy;
1441 char *buf;
1442 log = mem_fileopen ();
1443 cleanups = make_cleanup_ui_file_delete (log);
1444 /* fundamental */
1445 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1446 fprintf_unfiltered (log, "\n\tbyte-order");
1447 if (current_gdbarch->bfd_arch_info == NULL)
1448 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1449 /* Check those that need to be defined for the given multi-arch level. */
1450 EOF
1451 function_list | while do_read
1452 do
1453 if class_is_function_p || class_is_variable_p
1454 then
1455 if [ "x${invalid_p}" = "x0" ]
1456 then
1457 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1458 elif class_is_predicate_p
1459 then
1460 printf " /* Skip verify of ${function}, has predicate */\n"
1461 # FIXME: See do_read for potential simplification
1462 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1463 then
1464 printf " if (${invalid_p})\n"
1465 printf " current_gdbarch->${function} = ${postdefault};\n"
1466 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1467 then
1468 printf " if (current_gdbarch->${function} == ${predefault})\n"
1469 printf " current_gdbarch->${function} = ${postdefault};\n"
1470 elif [ -n "${postdefault}" ]
1471 then
1472 printf " if (current_gdbarch->${function} == 0)\n"
1473 printf " current_gdbarch->${function} = ${postdefault};\n"
1474 elif [ -n "${invalid_p}" ]
1475 then
1476 printf " if (${invalid_p})\n"
1477 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1478 elif [ -n "${predefault}" ]
1479 then
1480 printf " if (current_gdbarch->${function} == ${predefault})\n"
1481 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1482 fi
1483 fi
1484 done
1485 cat <<EOF
1486 buf = ui_file_xstrdup (log, &dummy);
1487 make_cleanup (xfree, buf);
1488 if (strlen (buf) > 0)
1489 internal_error (__FILE__, __LINE__,
1490 _("verify_gdbarch: the following are invalid ...%s"),
1491 buf);
1492 do_cleanups (cleanups);
1493 }
1494 EOF
1495
1496 # dump the structure
1497 printf "\n"
1498 printf "\n"
1499 cat <<EOF
1500 /* Print out the details of the current architecture. */
1501
1502 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1503 just happens to match the global variable \`\`current_gdbarch''. That
1504 way macros refering to that variable get the local and not the global
1505 version - ulgh. Once everything is parameterised with gdbarch, this
1506 will go away. */
1507
1508 void
1509 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1510 {
1511 const char *gdb_xm_file = "<not-defined>";
1512 const char *gdb_nm_file = "<not-defined>";
1513 const char *gdb_tm_file = "<not-defined>";
1514 #if defined (GDB_XM_FILE)
1515 gdb_xm_file = GDB_XM_FILE;
1516 #endif
1517 fprintf_unfiltered (file,
1518 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1519 gdb_xm_file);
1520 #if defined (GDB_NM_FILE)
1521 gdb_nm_file = GDB_NM_FILE;
1522 #endif
1523 fprintf_unfiltered (file,
1524 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1525 gdb_nm_file);
1526 #if defined (GDB_TM_FILE)
1527 gdb_tm_file = GDB_TM_FILE;
1528 #endif
1529 fprintf_unfiltered (file,
1530 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1531 gdb_tm_file);
1532 EOF
1533 function_list | sort -t: -k 4 | while do_read
1534 do
1535 # First the predicate
1536 if class_is_predicate_p
1537 then
1538 if test -n "${macro}"
1539 then
1540 printf "#ifdef ${macro}_P\n"
1541 printf " fprintf_unfiltered (file,\n"
1542 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1543 printf " \"${macro}_P()\",\n"
1544 printf " XSTRING (${macro}_P ()));\n"
1545 printf "#endif\n"
1546 fi
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1549 printf " gdbarch_${function}_p (current_gdbarch));\n"
1550 fi
1551 # Print the macro definition.
1552 if test -n "${macro}"
1553 then
1554 printf "#ifdef ${macro}\n"
1555 if class_is_function_p
1556 then
1557 printf " fprintf_unfiltered (file,\n"
1558 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1559 printf " \"${macro}(${actual})\",\n"
1560 printf " XSTRING (${macro} (${actual})));\n"
1561 else
1562 printf " fprintf_unfiltered (file,\n"
1563 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1564 printf " XSTRING (${macro}));\n"
1565 fi
1566 printf "#endif\n"
1567 fi
1568 # Print the corresponding value.
1569 if class_is_function_p
1570 then
1571 printf " fprintf_unfiltered (file,\n"
1572 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1573 printf " (long) current_gdbarch->${function});\n"
1574 else
1575 # It is a variable
1576 case "${print}:${returntype}" in
1577 :CORE_ADDR )
1578 fmt="0x%s"
1579 print="paddr_nz (current_gdbarch->${function})"
1580 ;;
1581 :* )
1582 fmt="%s"
1583 print="paddr_d (current_gdbarch->${function})"
1584 ;;
1585 * )
1586 fmt="%s"
1587 ;;
1588 esac
1589 printf " fprintf_unfiltered (file,\n"
1590 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1591 printf " ${print});\n"
1592 fi
1593 done
1594 cat <<EOF
1595 if (current_gdbarch->dump_tdep != NULL)
1596 current_gdbarch->dump_tdep (current_gdbarch, file);
1597 }
1598 EOF
1599
1600
1601 # GET/SET
1602 printf "\n"
1603 cat <<EOF
1604 struct gdbarch_tdep *
1605 gdbarch_tdep (struct gdbarch *gdbarch)
1606 {
1607 if (gdbarch_debug >= 2)
1608 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1609 return gdbarch->tdep;
1610 }
1611 EOF
1612 printf "\n"
1613 function_list | while do_read
1614 do
1615 if class_is_predicate_p
1616 then
1617 printf "\n"
1618 printf "int\n"
1619 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1620 printf "{\n"
1621 printf " gdb_assert (gdbarch != NULL);\n"
1622 printf " return ${predicate};\n"
1623 printf "}\n"
1624 fi
1625 if class_is_function_p
1626 then
1627 printf "\n"
1628 printf "${returntype}\n"
1629 if [ "x${formal}" = "xvoid" ]
1630 then
1631 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1632 else
1633 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1634 fi
1635 printf "{\n"
1636 printf " gdb_assert (gdbarch != NULL);\n"
1637 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1638 if class_is_predicate_p && test -n "${predefault}"
1639 then
1640 # Allow a call to a function with a predicate.
1641 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1642 fi
1643 printf " if (gdbarch_debug >= 2)\n"
1644 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1645 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1646 then
1647 if class_is_multiarch_p
1648 then
1649 params="gdbarch"
1650 else
1651 params=""
1652 fi
1653 else
1654 if class_is_multiarch_p
1655 then
1656 params="gdbarch, ${actual}"
1657 else
1658 params="${actual}"
1659 fi
1660 fi
1661 if [ "x${returntype}" = "xvoid" ]
1662 then
1663 printf " gdbarch->${function} (${params});\n"
1664 else
1665 printf " return gdbarch->${function} (${params});\n"
1666 fi
1667 printf "}\n"
1668 printf "\n"
1669 printf "void\n"
1670 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1671 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1672 printf "{\n"
1673 printf " gdbarch->${function} = ${function};\n"
1674 printf "}\n"
1675 elif class_is_variable_p
1676 then
1677 printf "\n"
1678 printf "${returntype}\n"
1679 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1680 printf "{\n"
1681 printf " gdb_assert (gdbarch != NULL);\n"
1682 if [ "x${invalid_p}" = "x0" ]
1683 then
1684 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1685 elif [ -n "${invalid_p}" ]
1686 then
1687 printf " /* Check variable is valid. */\n"
1688 printf " gdb_assert (!(${invalid_p}));\n"
1689 elif [ -n "${predefault}" ]
1690 then
1691 printf " /* Check variable changed from pre-default. */\n"
1692 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1693 fi
1694 printf " if (gdbarch_debug >= 2)\n"
1695 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1696 printf " return gdbarch->${function};\n"
1697 printf "}\n"
1698 printf "\n"
1699 printf "void\n"
1700 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1701 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1702 printf "{\n"
1703 printf " gdbarch->${function} = ${function};\n"
1704 printf "}\n"
1705 elif class_is_info_p
1706 then
1707 printf "\n"
1708 printf "${returntype}\n"
1709 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1710 printf "{\n"
1711 printf " gdb_assert (gdbarch != NULL);\n"
1712 printf " if (gdbarch_debug >= 2)\n"
1713 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1714 printf " return gdbarch->${function};\n"
1715 printf "}\n"
1716 fi
1717 done
1718
1719 # All the trailing guff
1720 cat <<EOF
1721
1722
1723 /* Keep a registry of per-architecture data-pointers required by GDB
1724 modules. */
1725
1726 struct gdbarch_data
1727 {
1728 unsigned index;
1729 int init_p;
1730 gdbarch_data_pre_init_ftype *pre_init;
1731 gdbarch_data_post_init_ftype *post_init;
1732 };
1733
1734 struct gdbarch_data_registration
1735 {
1736 struct gdbarch_data *data;
1737 struct gdbarch_data_registration *next;
1738 };
1739
1740 struct gdbarch_data_registry
1741 {
1742 unsigned nr;
1743 struct gdbarch_data_registration *registrations;
1744 };
1745
1746 struct gdbarch_data_registry gdbarch_data_registry =
1747 {
1748 0, NULL,
1749 };
1750
1751 static struct gdbarch_data *
1752 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1753 gdbarch_data_post_init_ftype *post_init)
1754 {
1755 struct gdbarch_data_registration **curr;
1756 /* Append the new registraration. */
1757 for (curr = &gdbarch_data_registry.registrations;
1758 (*curr) != NULL;
1759 curr = &(*curr)->next);
1760 (*curr) = XMALLOC (struct gdbarch_data_registration);
1761 (*curr)->next = NULL;
1762 (*curr)->data = XMALLOC (struct gdbarch_data);
1763 (*curr)->data->index = gdbarch_data_registry.nr++;
1764 (*curr)->data->pre_init = pre_init;
1765 (*curr)->data->post_init = post_init;
1766 (*curr)->data->init_p = 1;
1767 return (*curr)->data;
1768 }
1769
1770 struct gdbarch_data *
1771 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1772 {
1773 return gdbarch_data_register (pre_init, NULL);
1774 }
1775
1776 struct gdbarch_data *
1777 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1778 {
1779 return gdbarch_data_register (NULL, post_init);
1780 }
1781
1782 /* Create/delete the gdbarch data vector. */
1783
1784 static void
1785 alloc_gdbarch_data (struct gdbarch *gdbarch)
1786 {
1787 gdb_assert (gdbarch->data == NULL);
1788 gdbarch->nr_data = gdbarch_data_registry.nr;
1789 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1790 }
1791
1792 /* Initialize the current value of the specified per-architecture
1793 data-pointer. */
1794
1795 void
1796 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1797 struct gdbarch_data *data,
1798 void *pointer)
1799 {
1800 gdb_assert (data->index < gdbarch->nr_data);
1801 gdb_assert (gdbarch->data[data->index] == NULL);
1802 gdb_assert (data->pre_init == NULL);
1803 gdbarch->data[data->index] = pointer;
1804 }
1805
1806 /* Return the current value of the specified per-architecture
1807 data-pointer. */
1808
1809 void *
1810 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1811 {
1812 gdb_assert (data->index < gdbarch->nr_data);
1813 if (gdbarch->data[data->index] == NULL)
1814 {
1815 /* The data-pointer isn't initialized, call init() to get a
1816 value. */
1817 if (data->pre_init != NULL)
1818 /* Mid architecture creation: pass just the obstack, and not
1819 the entire architecture, as that way it isn't possible for
1820 pre-init code to refer to undefined architecture
1821 fields. */
1822 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1823 else if (gdbarch->initialized_p
1824 && data->post_init != NULL)
1825 /* Post architecture creation: pass the entire architecture
1826 (as all fields are valid), but be careful to also detect
1827 recursive references. */
1828 {
1829 gdb_assert (data->init_p);
1830 data->init_p = 0;
1831 gdbarch->data[data->index] = data->post_init (gdbarch);
1832 data->init_p = 1;
1833 }
1834 else
1835 /* The architecture initialization hasn't completed - punt -
1836 hope that the caller knows what they are doing. Once
1837 deprecated_set_gdbarch_data has been initialized, this can be
1838 changed to an internal error. */
1839 return NULL;
1840 gdb_assert (gdbarch->data[data->index] != NULL);
1841 }
1842 return gdbarch->data[data->index];
1843 }
1844
1845
1846
1847 /* Keep a registry of swapped data required by GDB modules. */
1848
1849 struct gdbarch_swap
1850 {
1851 void *swap;
1852 struct gdbarch_swap_registration *source;
1853 struct gdbarch_swap *next;
1854 };
1855
1856 struct gdbarch_swap_registration
1857 {
1858 void *data;
1859 unsigned long sizeof_data;
1860 gdbarch_swap_ftype *init;
1861 struct gdbarch_swap_registration *next;
1862 };
1863
1864 struct gdbarch_swap_registry
1865 {
1866 int nr;
1867 struct gdbarch_swap_registration *registrations;
1868 };
1869
1870 struct gdbarch_swap_registry gdbarch_swap_registry =
1871 {
1872 0, NULL,
1873 };
1874
1875 void
1876 deprecated_register_gdbarch_swap (void *data,
1877 unsigned long sizeof_data,
1878 gdbarch_swap_ftype *init)
1879 {
1880 struct gdbarch_swap_registration **rego;
1881 for (rego = &gdbarch_swap_registry.registrations;
1882 (*rego) != NULL;
1883 rego = &(*rego)->next);
1884 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1885 (*rego)->next = NULL;
1886 (*rego)->init = init;
1887 (*rego)->data = data;
1888 (*rego)->sizeof_data = sizeof_data;
1889 }
1890
1891 static void
1892 current_gdbarch_swap_init_hack (void)
1893 {
1894 struct gdbarch_swap_registration *rego;
1895 struct gdbarch_swap **curr = &current_gdbarch->swap;
1896 for (rego = gdbarch_swap_registry.registrations;
1897 rego != NULL;
1898 rego = rego->next)
1899 {
1900 if (rego->data != NULL)
1901 {
1902 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1903 struct gdbarch_swap);
1904 (*curr)->source = rego;
1905 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1906 rego->sizeof_data);
1907 (*curr)->next = NULL;
1908 curr = &(*curr)->next;
1909 }
1910 if (rego->init != NULL)
1911 rego->init ();
1912 }
1913 }
1914
1915 static struct gdbarch *
1916 current_gdbarch_swap_out_hack (void)
1917 {
1918 struct gdbarch *old_gdbarch = current_gdbarch;
1919 struct gdbarch_swap *curr;
1920
1921 gdb_assert (old_gdbarch != NULL);
1922 for (curr = old_gdbarch->swap;
1923 curr != NULL;
1924 curr = curr->next)
1925 {
1926 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1927 memset (curr->source->data, 0, curr->source->sizeof_data);
1928 }
1929 current_gdbarch = NULL;
1930 return old_gdbarch;
1931 }
1932
1933 static void
1934 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1935 {
1936 struct gdbarch_swap *curr;
1937
1938 gdb_assert (current_gdbarch == NULL);
1939 for (curr = new_gdbarch->swap;
1940 curr != NULL;
1941 curr = curr->next)
1942 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1943 current_gdbarch = new_gdbarch;
1944 }
1945
1946
1947 /* Keep a registry of the architectures known by GDB. */
1948
1949 struct gdbarch_registration
1950 {
1951 enum bfd_architecture bfd_architecture;
1952 gdbarch_init_ftype *init;
1953 gdbarch_dump_tdep_ftype *dump_tdep;
1954 struct gdbarch_list *arches;
1955 struct gdbarch_registration *next;
1956 };
1957
1958 static struct gdbarch_registration *gdbarch_registry = NULL;
1959
1960 static void
1961 append_name (const char ***buf, int *nr, const char *name)
1962 {
1963 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1964 (*buf)[*nr] = name;
1965 *nr += 1;
1966 }
1967
1968 const char **
1969 gdbarch_printable_names (void)
1970 {
1971 /* Accumulate a list of names based on the registed list of
1972 architectures. */
1973 enum bfd_architecture a;
1974 int nr_arches = 0;
1975 const char **arches = NULL;
1976 struct gdbarch_registration *rego;
1977 for (rego = gdbarch_registry;
1978 rego != NULL;
1979 rego = rego->next)
1980 {
1981 const struct bfd_arch_info *ap;
1982 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1983 if (ap == NULL)
1984 internal_error (__FILE__, __LINE__,
1985 _("gdbarch_architecture_names: multi-arch unknown"));
1986 do
1987 {
1988 append_name (&arches, &nr_arches, ap->printable_name);
1989 ap = ap->next;
1990 }
1991 while (ap != NULL);
1992 }
1993 append_name (&arches, &nr_arches, NULL);
1994 return arches;
1995 }
1996
1997
1998 void
1999 gdbarch_register (enum bfd_architecture bfd_architecture,
2000 gdbarch_init_ftype *init,
2001 gdbarch_dump_tdep_ftype *dump_tdep)
2002 {
2003 struct gdbarch_registration **curr;
2004 const struct bfd_arch_info *bfd_arch_info;
2005 /* Check that BFD recognizes this architecture */
2006 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2007 if (bfd_arch_info == NULL)
2008 {
2009 internal_error (__FILE__, __LINE__,
2010 _("gdbarch: Attempt to register unknown architecture (%d)"),
2011 bfd_architecture);
2012 }
2013 /* Check that we haven't seen this architecture before */
2014 for (curr = &gdbarch_registry;
2015 (*curr) != NULL;
2016 curr = &(*curr)->next)
2017 {
2018 if (bfd_architecture == (*curr)->bfd_architecture)
2019 internal_error (__FILE__, __LINE__,
2020 _("gdbarch: Duplicate registraration of architecture (%s)"),
2021 bfd_arch_info->printable_name);
2022 }
2023 /* log it */
2024 if (gdbarch_debug)
2025 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2026 bfd_arch_info->printable_name,
2027 (long) init);
2028 /* Append it */
2029 (*curr) = XMALLOC (struct gdbarch_registration);
2030 (*curr)->bfd_architecture = bfd_architecture;
2031 (*curr)->init = init;
2032 (*curr)->dump_tdep = dump_tdep;
2033 (*curr)->arches = NULL;
2034 (*curr)->next = NULL;
2035 }
2036
2037 void
2038 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2039 gdbarch_init_ftype *init)
2040 {
2041 gdbarch_register (bfd_architecture, init, NULL);
2042 }
2043
2044
2045 /* Look for an architecture using gdbarch_info. */
2046
2047 struct gdbarch_list *
2048 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2049 const struct gdbarch_info *info)
2050 {
2051 for (; arches != NULL; arches = arches->next)
2052 {
2053 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2054 continue;
2055 if (info->byte_order != arches->gdbarch->byte_order)
2056 continue;
2057 if (info->osabi != arches->gdbarch->osabi)
2058 continue;
2059 if (info->target_desc != arches->gdbarch->target_desc)
2060 continue;
2061 return arches;
2062 }
2063 return NULL;
2064 }
2065
2066
2067 /* Find an architecture that matches the specified INFO. Create a new
2068 architecture if needed. Return that new architecture. Assumes
2069 that there is no current architecture. */
2070
2071 static struct gdbarch *
2072 find_arch_by_info (struct gdbarch_info info)
2073 {
2074 struct gdbarch *new_gdbarch;
2075 struct gdbarch_registration *rego;
2076
2077 /* The existing architecture has been swapped out - all this code
2078 works from a clean slate. */
2079 gdb_assert (current_gdbarch == NULL);
2080
2081 /* Fill in missing parts of the INFO struct using a number of
2082 sources: "set ..."; INFOabfd supplied; and the global
2083 defaults. */
2084 gdbarch_info_fill (&info);
2085
2086 /* Must have found some sort of architecture. */
2087 gdb_assert (info.bfd_arch_info != NULL);
2088
2089 if (gdbarch_debug)
2090 {
2091 fprintf_unfiltered (gdb_stdlog,
2092 "find_arch_by_info: info.bfd_arch_info %s\n",
2093 (info.bfd_arch_info != NULL
2094 ? info.bfd_arch_info->printable_name
2095 : "(null)"));
2096 fprintf_unfiltered (gdb_stdlog,
2097 "find_arch_by_info: info.byte_order %d (%s)\n",
2098 info.byte_order,
2099 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2100 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2101 : "default"));
2102 fprintf_unfiltered (gdb_stdlog,
2103 "find_arch_by_info: info.osabi %d (%s)\n",
2104 info.osabi, gdbarch_osabi_name (info.osabi));
2105 fprintf_unfiltered (gdb_stdlog,
2106 "find_arch_by_info: info.abfd 0x%lx\n",
2107 (long) info.abfd);
2108 fprintf_unfiltered (gdb_stdlog,
2109 "find_arch_by_info: info.tdep_info 0x%lx\n",
2110 (long) info.tdep_info);
2111 }
2112
2113 /* Find the tdep code that knows about this architecture. */
2114 for (rego = gdbarch_registry;
2115 rego != NULL;
2116 rego = rego->next)
2117 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2118 break;
2119 if (rego == NULL)
2120 {
2121 if (gdbarch_debug)
2122 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2123 "No matching architecture\n");
2124 return 0;
2125 }
2126
2127 /* Ask the tdep code for an architecture that matches "info". */
2128 new_gdbarch = rego->init (info, rego->arches);
2129
2130 /* Did the tdep code like it? No. Reject the change and revert to
2131 the old architecture. */
2132 if (new_gdbarch == NULL)
2133 {
2134 if (gdbarch_debug)
2135 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2136 "Target rejected architecture\n");
2137 return NULL;
2138 }
2139
2140 /* Is this a pre-existing architecture (as determined by already
2141 being initialized)? Move it to the front of the architecture
2142 list (keeping the list sorted Most Recently Used). */
2143 if (new_gdbarch->initialized_p)
2144 {
2145 struct gdbarch_list **list;
2146 struct gdbarch_list *this;
2147 if (gdbarch_debug)
2148 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2149 "Previous architecture 0x%08lx (%s) selected\n",
2150 (long) new_gdbarch,
2151 new_gdbarch->bfd_arch_info->printable_name);
2152 /* Find the existing arch in the list. */
2153 for (list = &rego->arches;
2154 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2155 list = &(*list)->next);
2156 /* It had better be in the list of architectures. */
2157 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2158 /* Unlink THIS. */
2159 this = (*list);
2160 (*list) = this->next;
2161 /* Insert THIS at the front. */
2162 this->next = rego->arches;
2163 rego->arches = this;
2164 /* Return it. */
2165 return new_gdbarch;
2166 }
2167
2168 /* It's a new architecture. */
2169 if (gdbarch_debug)
2170 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2171 "New architecture 0x%08lx (%s) selected\n",
2172 (long) new_gdbarch,
2173 new_gdbarch->bfd_arch_info->printable_name);
2174
2175 /* Insert the new architecture into the front of the architecture
2176 list (keep the list sorted Most Recently Used). */
2177 {
2178 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2179 this->next = rego->arches;
2180 this->gdbarch = new_gdbarch;
2181 rego->arches = this;
2182 }
2183
2184 /* Check that the newly installed architecture is valid. Plug in
2185 any post init values. */
2186 new_gdbarch->dump_tdep = rego->dump_tdep;
2187 verify_gdbarch (new_gdbarch);
2188 new_gdbarch->initialized_p = 1;
2189
2190 /* Initialize any per-architecture swap areas. This phase requires
2191 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2192 swap the entire architecture out. */
2193 current_gdbarch = new_gdbarch;
2194 current_gdbarch_swap_init_hack ();
2195 current_gdbarch_swap_out_hack ();
2196
2197 if (gdbarch_debug)
2198 gdbarch_dump (new_gdbarch, gdb_stdlog);
2199
2200 return new_gdbarch;
2201 }
2202
2203 struct gdbarch *
2204 gdbarch_find_by_info (struct gdbarch_info info)
2205 {
2206 /* Save the previously selected architecture, setting the global to
2207 NULL. This stops things like gdbarch->init() trying to use the
2208 previous architecture's configuration. The previous architecture
2209 may not even be of the same architecture family. The most recent
2210 architecture of the same family is found at the head of the
2211 rego->arches list. */
2212 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2213
2214 /* Find the specified architecture. */
2215 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2216
2217 /* Restore the existing architecture. */
2218 gdb_assert (current_gdbarch == NULL);
2219 current_gdbarch_swap_in_hack (old_gdbarch);
2220
2221 return new_gdbarch;
2222 }
2223
2224 /* Make the specified architecture current, swapping the existing one
2225 out. */
2226
2227 void
2228 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2229 {
2230 gdb_assert (new_gdbarch != NULL);
2231 gdb_assert (current_gdbarch != NULL);
2232 gdb_assert (new_gdbarch->initialized_p);
2233 current_gdbarch_swap_out_hack ();
2234 current_gdbarch_swap_in_hack (new_gdbarch);
2235 architecture_changed_event ();
2236 reinit_frame_cache ();
2237 }
2238
2239 extern void _initialize_gdbarch (void);
2240
2241 void
2242 _initialize_gdbarch (void)
2243 {
2244 struct cmd_list_element *c;
2245
2246 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2247 Set architecture debugging."), _("\\
2248 Show architecture debugging."), _("\\
2249 When non-zero, architecture debugging is enabled."),
2250 NULL,
2251 show_gdbarch_debug,
2252 &setdebuglist, &showdebuglist);
2253 }
2254 EOF
2255
2256 # close things off
2257 exec 1>&2
2258 #../move-if-change new-gdbarch.c gdbarch.c
2259 compare_new gdbarch.c
This page took 0.082249 seconds and 4 git commands to generate.