cb879da38673c8c9ca8d59b89ae752f9cea32b48
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
117
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
121 "" )
122 if test -n "${predefault}" -a "${predefault}" != "0"
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
125 predicate="gdbarch->${function} != ${predefault}"
126 else
127 # filled in later
128 predicate=""
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p."
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 # Number of bits in a char or unsigned char for the target machine.
391 # Just like CHAR_BIT in <limits.h> but describes the target machine.
392 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
393 #
394 # Number of bits in a short or unsigned short for the target machine.
395 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
396 # Number of bits in an int or unsigned int for the target machine.
397 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
398 # Number of bits in a long or unsigned long for the target machine.
399 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long long or unsigned long long for the target
401 # machine.
402 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
403 # Number of bits in a float for the target machine.
404 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
405 # Number of bits in a double for the target machine.
406 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
407 # Number of bits in a long double for the target machine.
408 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
409 # For most targets, a pointer on the target and its representation as an
410 # address in GDB have the same size and "look the same". For such a
411 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
412 # / addr_bit will be set from it.
413 #
414 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
415 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
416 #
417 # ptr_bit is the size of a pointer on the target
418 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
419 # addr_bit is the size of a target address as represented in gdb
420 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
421 # Number of bits in a BFD_VMA for the target object file format.
422 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
423 #
424 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
425 v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
426 #
427 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
428 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
429 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
430 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
431 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
432 # Function for getting target's idea of a frame pointer. FIXME: GDB's
433 # whole scheme for dealing with "frames" and "frame pointers" needs a
434 # serious shakedown.
435 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
436 #
437 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
438 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
439 #
440 v:2:NUM_REGS:int:num_regs::::0:-1
441 # This macro gives the number of pseudo-registers that live in the
442 # register namespace but do not get fetched or stored on the target.
443 # These pseudo-registers may be aliases for other registers,
444 # combinations of other registers, or they may be computed by GDB.
445 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
446
447 # GDB's standard (or well known) register numbers. These can map onto
448 # a real register or a pseudo (computed) register or not be defined at
449 # all (-1).
450 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
451 v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
452 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
453 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
454 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
455 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
456 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
457 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
458 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
459 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
461 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
462 # Convert from an sdb register number to an internal gdb register number.
463 # This should be defined in tm.h, if REGISTER_NAMES is not set up
464 # to map one to one onto the sdb register numbers.
465 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
466 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
467 f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
468 v:2:REGISTER_SIZE:int:register_size::::0:-1
469 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
470 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
471 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
472 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
473 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
474 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
475 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
476 #
477 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
478 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
479 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
480 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
481 # MAP a GDB RAW register number onto a simulator register number. See
482 # also include/...-sim.h.
483 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
484 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
485 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
486 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
487 # setjmp/longjmp support.
488 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
489 #
490 # Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
491 # much better but at least they are vaguely consistent). The headers
492 # and body contain convoluted #if/#else sequences for determine how
493 # things should be compiled. Instead of trying to mimic that
494 # behaviour here (and hence entrench it further) gdbarch simply
495 # reqires that these methods be set up from the word go. This also
496 # avoids any potential problems with moving beyond multi-arch partial.
497 v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
498 v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
499 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
500 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
501 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
502 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
503 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
504 # NOTE: cagney/2002-11-24: This function with predicate has a valid
505 # (callable) initial value. As a consequence, even when the predicate
506 # is false, the corresponding function works. This simplifies the
507 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
508 # doesn't need to be modified.
509 F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
510 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
511 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
512 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
513 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
514 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
515 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
516 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
517 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
518 #
519 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
520 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
521 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
522 F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
523 #
524 f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
525 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
526 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
527 #
528 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
529 f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
530 f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
531 #
532 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
533 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
534 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
535 #
536 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
537 f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
538 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
539 F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
540 f:2:POP_FRAME:void:pop_frame:void:-:::0
541 #
542 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
543 #
544 f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
545 f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
546 f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
547 f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
548 #
549 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
550 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
551 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
552 #
553 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
554 F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
555 #
556 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
557 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
558 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
559 f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
560 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
561 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
562 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
563 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
564 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
565 #
566 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
567 #
568 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
569 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
570 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
571 # Define a default FRAME_CHAIN_VALID, in the form that is suitable for
572 # most targets. If FRAME_CHAIN_VALID returns zero it means that the
573 # given frame is the outermost one and has no caller.
574 #
575 # XXXX - both default and alternate frame_chain_valid functions are
576 # deprecated. New code should use dummy frames and one of the generic
577 # functions.
578 f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
579 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
580 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
581 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
582 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
583 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
584 #
585 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
586 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
587 v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
588 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
589 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
590 v:2:PARM_BOUNDARY:int:parm_boundary
591 #
592 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:gdbarch->float_format->name
593 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:gdbarch->float_format->name
594 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:gdbarch->float_format->name
595 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
596 # On some machines there are bits in addresses which are not really
597 # part of the address, but are used by the kernel, the hardware, etc.
598 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
599 # we get a "real" address such as one would find in a symbol table.
600 # This is used only for addresses of instructions, and even then I'm
601 # not sure it's used in all contexts. It exists to deal with there
602 # being a few stray bits in the PC which would mislead us, not as some
603 # sort of generic thing to handle alignment or segmentation (it's
604 # possible it should be in TARGET_READ_PC instead).
605 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
606 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
607 # ADDR_BITS_REMOVE.
608 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
609 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
610 # the target needs software single step. An ISA method to implement it.
611 #
612 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
613 # using the breakpoint system instead of blatting memory directly (as with rs6000).
614 #
615 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
616 # single step. If not, then implement single step using breakpoints.
617 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
618 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
619 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
620
621
622 # For SVR4 shared libraries, each call goes through a small piece of
623 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
624 # to nonzero if we are currently stopped in one of these.
625 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
626
627 # Some systems also have trampoline code for returning from shared libs.
628 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
629
630 # Sigtramp is a routine that the kernel calls (which then calls the
631 # signal handler). On most machines it is a library routine that is
632 # linked into the executable.
633 #
634 # This macro, given a program counter value and the name of the
635 # function in which that PC resides (which can be null if the name is
636 # not known), returns nonzero if the PC and name show that we are in
637 # sigtramp.
638 #
639 # On most machines just see if the name is sigtramp (and if we have
640 # no name, assume we are not in sigtramp).
641 #
642 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
643 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
644 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
645 # own local NAME lookup.
646 #
647 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
648 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
649 # does not.
650 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
651 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
652 F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
653 # A target might have problems with watchpoints as soon as the stack
654 # frame of the current function has been destroyed. This mostly happens
655 # as the first action in a funtion's epilogue. in_function_epilogue_p()
656 # is defined to return a non-zero value if either the given addr is one
657 # instruction after the stack destroying instruction up to the trailing
658 # return instruction or if we can figure out that the stack frame has
659 # already been invalidated regardless of the value of addr. Targets
660 # which don't suffer from that problem could just let this functionality
661 # untouched.
662 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
663 # Given a vector of command-line arguments, return a newly allocated
664 # string which, when passed to the create_inferior function, will be
665 # parsed (on Unix systems, by the shell) to yield the same vector.
666 # This function should call error() if the argument vector is not
667 # representable for this target or if this target does not support
668 # command-line arguments.
669 # ARGC is the number of elements in the vector.
670 # ARGV is an array of strings, one per argument.
671 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
672 F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
673 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
674 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
675 v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0
676 v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
677 v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
678 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
679 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:char *:address_class_type_flags_to_name:int type_flags:type_flags:
680 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:char *name, int *type_flags_ptr:name, type_flags_ptr
681 # Is a register in a group
682 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
683 EOF
684 }
685
686 #
687 # The .log file
688 #
689 exec > new-gdbarch.log
690 function_list | while do_read
691 do
692 cat <<EOF
693 ${class} ${macro}(${actual})
694 ${returntype} ${function} ($formal)${attrib}
695 EOF
696 for r in ${read}
697 do
698 eval echo \"\ \ \ \ ${r}=\${${r}}\"
699 done
700 if class_is_predicate_p && fallback_default_p
701 then
702 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
703 kill $$
704 exit 1
705 fi
706 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
707 then
708 echo "Error: postdefault is useless when invalid_p=0" 1>&2
709 kill $$
710 exit 1
711 fi
712 if class_is_multiarch_p
713 then
714 if class_is_predicate_p ; then :
715 elif test "x${predefault}" = "x"
716 then
717 echo "Error: pure multi-arch function must have a predefault" 1>&2
718 kill $$
719 exit 1
720 fi
721 fi
722 echo ""
723 done
724
725 exec 1>&2
726 compare_new gdbarch.log
727
728
729 copyright ()
730 {
731 cat <<EOF
732 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
733
734 /* Dynamic architecture support for GDB, the GNU debugger.
735 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
736
737 This file is part of GDB.
738
739 This program is free software; you can redistribute it and/or modify
740 it under the terms of the GNU General Public License as published by
741 the Free Software Foundation; either version 2 of the License, or
742 (at your option) any later version.
743
744 This program is distributed in the hope that it will be useful,
745 but WITHOUT ANY WARRANTY; without even the implied warranty of
746 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
747 GNU General Public License for more details.
748
749 You should have received a copy of the GNU General Public License
750 along with this program; if not, write to the Free Software
751 Foundation, Inc., 59 Temple Place - Suite 330,
752 Boston, MA 02111-1307, USA. */
753
754 /* This file was created with the aid of \`\`gdbarch.sh''.
755
756 The Bourne shell script \`\`gdbarch.sh'' creates the files
757 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
758 against the existing \`\`gdbarch.[hc]''. Any differences found
759 being reported.
760
761 If editing this file, please also run gdbarch.sh and merge any
762 changes into that script. Conversely, when making sweeping changes
763 to this file, modifying gdbarch.sh and using its output may prove
764 easier. */
765
766 EOF
767 }
768
769 #
770 # The .h file
771 #
772
773 exec > new-gdbarch.h
774 copyright
775 cat <<EOF
776 #ifndef GDBARCH_H
777 #define GDBARCH_H
778
779 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
780 #if !GDB_MULTI_ARCH
781 /* Pull in function declarations refered to, indirectly, via macros. */
782 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
783 #include "inferior.h" /* For unsigned_address_to_pointer(). */
784 #endif
785
786 struct frame_info;
787 struct value;
788 struct objfile;
789 struct minimal_symbol;
790 struct regcache;
791 struct reggroup;
792
793 extern struct gdbarch *current_gdbarch;
794
795
796 /* If any of the following are defined, the target wasn't correctly
797 converted. */
798
799 #if GDB_MULTI_ARCH
800 #if defined (EXTRA_FRAME_INFO)
801 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
802 #endif
803 #endif
804
805 #if GDB_MULTI_ARCH
806 #if defined (FRAME_FIND_SAVED_REGS)
807 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
808 #endif
809 #endif
810
811 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
812 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
813 #endif
814 EOF
815
816 # function typedef's
817 printf "\n"
818 printf "\n"
819 printf "/* The following are pre-initialized by GDBARCH. */\n"
820 function_list | while do_read
821 do
822 if class_is_info_p
823 then
824 printf "\n"
825 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
826 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
827 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
828 printf "#error \"Non multi-arch definition of ${macro}\"\n"
829 printf "#endif\n"
830 printf "#if GDB_MULTI_ARCH\n"
831 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
832 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
833 printf "#endif\n"
834 printf "#endif\n"
835 fi
836 done
837
838 # function typedef's
839 printf "\n"
840 printf "\n"
841 printf "/* The following are initialized by the target dependent code. */\n"
842 function_list | while do_read
843 do
844 if [ -n "${comment}" ]
845 then
846 echo "${comment}" | sed \
847 -e '2 s,#,/*,' \
848 -e '3,$ s,#, ,' \
849 -e '$ s,$, */,'
850 fi
851 if class_is_multiarch_p
852 then
853 if class_is_predicate_p
854 then
855 printf "\n"
856 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
857 fi
858 else
859 if class_is_predicate_p
860 then
861 printf "\n"
862 printf "#if defined (${macro})\n"
863 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
864 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
865 printf "#if !defined (${macro}_P)\n"
866 printf "#define ${macro}_P() (1)\n"
867 printf "#endif\n"
868 printf "#endif\n"
869 printf "\n"
870 printf "/* Default predicate for non- multi-arch targets. */\n"
871 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
872 printf "#define ${macro}_P() (0)\n"
873 printf "#endif\n"
874 printf "\n"
875 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
876 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 printf "#endif\n"
879 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
880 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
881 printf "#endif\n"
882 fi
883 fi
884 if class_is_variable_p
885 then
886 if fallback_default_p || class_is_predicate_p
887 then
888 printf "\n"
889 printf "/* Default (value) for non- multi-arch platforms. */\n"
890 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
891 echo "#define ${macro} (${fallbackdefault})" \
892 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
893 printf "#endif\n"
894 fi
895 printf "\n"
896 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
897 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
898 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
900 printf "#endif\n"
901 printf "#if GDB_MULTI_ARCH\n"
902 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
904 printf "#endif\n"
905 printf "#endif\n"
906 fi
907 if class_is_function_p
908 then
909 if class_is_multiarch_p ; then :
910 elif fallback_default_p || class_is_predicate_p
911 then
912 printf "\n"
913 printf "/* Default (function) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
915 if [ "x${fallbackdefault}" = "x0" ]
916 then
917 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
918 else
919 # FIXME: Should be passing current_gdbarch through!
920 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
921 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
922 fi
923 printf "#endif\n"
924 fi
925 printf "\n"
926 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
927 then
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
929 elif class_is_multiarch_p
930 then
931 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
932 else
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
934 fi
935 if [ "x${formal}" = "xvoid" ]
936 then
937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
938 else
939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
940 fi
941 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
942 if class_is_multiarch_p ; then :
943 else
944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
946 printf "#endif\n"
947 printf "#if GDB_MULTI_ARCH\n"
948 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
949 if [ "x${actual}" = "x" ]
950 then
951 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
952 elif [ "x${actual}" = "x-" ]
953 then
954 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
955 else
956 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
957 fi
958 printf "#endif\n"
959 printf "#endif\n"
960 fi
961 fi
962 done
963
964 # close it off
965 cat <<EOF
966
967 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
968
969
970 /* Mechanism for co-ordinating the selection of a specific
971 architecture.
972
973 GDB targets (*-tdep.c) can register an interest in a specific
974 architecture. Other GDB components can register a need to maintain
975 per-architecture data.
976
977 The mechanisms below ensures that there is only a loose connection
978 between the set-architecture command and the various GDB
979 components. Each component can independently register their need
980 to maintain architecture specific data with gdbarch.
981
982 Pragmatics:
983
984 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
985 didn't scale.
986
987 The more traditional mega-struct containing architecture specific
988 data for all the various GDB components was also considered. Since
989 GDB is built from a variable number of (fairly independent)
990 components it was determined that the global aproach was not
991 applicable. */
992
993
994 /* Register a new architectural family with GDB.
995
996 Register support for the specified ARCHITECTURE with GDB. When
997 gdbarch determines that the specified architecture has been
998 selected, the corresponding INIT function is called.
999
1000 --
1001
1002 The INIT function takes two parameters: INFO which contains the
1003 information available to gdbarch about the (possibly new)
1004 architecture; ARCHES which is a list of the previously created
1005 \`\`struct gdbarch'' for this architecture.
1006
1007 The INFO parameter is, as far as possible, be pre-initialized with
1008 information obtained from INFO.ABFD or the previously selected
1009 architecture.
1010
1011 The ARCHES parameter is a linked list (sorted most recently used)
1012 of all the previously created architures for this architecture
1013 family. The (possibly NULL) ARCHES->gdbarch can used to access
1014 values from the previously selected architecture for this
1015 architecture family. The global \`\`current_gdbarch'' shall not be
1016 used.
1017
1018 The INIT function shall return any of: NULL - indicating that it
1019 doesn't recognize the selected architecture; an existing \`\`struct
1020 gdbarch'' from the ARCHES list - indicating that the new
1021 architecture is just a synonym for an earlier architecture (see
1022 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1023 - that describes the selected architecture (see gdbarch_alloc()).
1024
1025 The DUMP_TDEP function shall print out all target specific values.
1026 Care should be taken to ensure that the function works in both the
1027 multi-arch and non- multi-arch cases. */
1028
1029 struct gdbarch_list
1030 {
1031 struct gdbarch *gdbarch;
1032 struct gdbarch_list *next;
1033 };
1034
1035 struct gdbarch_info
1036 {
1037 /* Use default: NULL (ZERO). */
1038 const struct bfd_arch_info *bfd_arch_info;
1039
1040 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1041 int byte_order;
1042
1043 /* Use default: NULL (ZERO). */
1044 bfd *abfd;
1045
1046 /* Use default: NULL (ZERO). */
1047 struct gdbarch_tdep_info *tdep_info;
1048 };
1049
1050 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1051 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1052
1053 /* DEPRECATED - use gdbarch_register() */
1054 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1055
1056 extern void gdbarch_register (enum bfd_architecture architecture,
1057 gdbarch_init_ftype *,
1058 gdbarch_dump_tdep_ftype *);
1059
1060
1061 /* Return a freshly allocated, NULL terminated, array of the valid
1062 architecture names. Since architectures are registered during the
1063 _initialize phase this function only returns useful information
1064 once initialization has been completed. */
1065
1066 extern const char **gdbarch_printable_names (void);
1067
1068
1069 /* Helper function. Search the list of ARCHES for a GDBARCH that
1070 matches the information provided by INFO. */
1071
1072 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1073
1074
1075 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1076 basic initialization using values obtained from the INFO andTDEP
1077 parameters. set_gdbarch_*() functions are called to complete the
1078 initialization of the object. */
1079
1080 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1081
1082
1083 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1084 It is assumed that the caller freeds the \`\`struct
1085 gdbarch_tdep''. */
1086
1087 extern void gdbarch_free (struct gdbarch *);
1088
1089
1090 /* Helper function. Force an update of the current architecture.
1091
1092 The actual architecture selected is determined by INFO, \`\`(gdb) set
1093 architecture'' et.al., the existing architecture and BFD's default
1094 architecture. INFO should be initialized to zero and then selected
1095 fields should be updated.
1096
1097 Returns non-zero if the update succeeds */
1098
1099 extern int gdbarch_update_p (struct gdbarch_info info);
1100
1101
1102
1103 /* Register per-architecture data-pointer.
1104
1105 Reserve space for a per-architecture data-pointer. An identifier
1106 for the reserved data-pointer is returned. That identifer should
1107 be saved in a local static variable.
1108
1109 The per-architecture data-pointer is either initialized explicitly
1110 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1111 gdbarch_data()). FREE() is called to delete either an existing
1112 data-pointer overridden by set_gdbarch_data() or when the
1113 architecture object is being deleted.
1114
1115 When a previously created architecture is re-selected, the
1116 per-architecture data-pointer for that previous architecture is
1117 restored. INIT() is not re-called.
1118
1119 Multiple registrarants for any architecture are allowed (and
1120 strongly encouraged). */
1121
1122 struct gdbarch_data;
1123
1124 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1125 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1126 void *pointer);
1127 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1128 gdbarch_data_free_ftype *free);
1129 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1130 struct gdbarch_data *data,
1131 void *pointer);
1132
1133 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1134
1135
1136 /* Register per-architecture memory region.
1137
1138 Provide a memory-region swap mechanism. Per-architecture memory
1139 region are created. These memory regions are swapped whenever the
1140 architecture is changed. For a new architecture, the memory region
1141 is initialized with zero (0) and the INIT function is called.
1142
1143 Memory regions are swapped / initialized in the order that they are
1144 registered. NULL DATA and/or INIT values can be specified.
1145
1146 New code should use register_gdbarch_data(). */
1147
1148 typedef void (gdbarch_swap_ftype) (void);
1149 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1150 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1151
1152
1153
1154 /* The target-system-dependent byte order is dynamic */
1155
1156 extern int target_byte_order;
1157 #ifndef TARGET_BYTE_ORDER
1158 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1159 #endif
1160
1161 extern int target_byte_order_auto;
1162 #ifndef TARGET_BYTE_ORDER_AUTO
1163 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1164 #endif
1165
1166
1167
1168 /* The target-system-dependent BFD architecture is dynamic */
1169
1170 extern int target_architecture_auto;
1171 #ifndef TARGET_ARCHITECTURE_AUTO
1172 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1173 #endif
1174
1175 extern const struct bfd_arch_info *target_architecture;
1176 #ifndef TARGET_ARCHITECTURE
1177 #define TARGET_ARCHITECTURE (target_architecture + 0)
1178 #endif
1179
1180
1181 /* The target-system-dependent disassembler is semi-dynamic */
1182
1183 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1184 unsigned int len, disassemble_info *info);
1185
1186 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1187 disassemble_info *info);
1188
1189 extern void dis_asm_print_address (bfd_vma addr,
1190 disassemble_info *info);
1191
1192 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1193 extern disassemble_info tm_print_insn_info;
1194 #ifndef TARGET_PRINT_INSN_INFO
1195 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1196 #endif
1197
1198
1199
1200 /* Set the dynamic target-system-dependent parameters (architecture,
1201 byte-order, ...) using information found in the BFD */
1202
1203 extern void set_gdbarch_from_file (bfd *);
1204
1205
1206 /* Initialize the current architecture to the "first" one we find on
1207 our list. */
1208
1209 extern void initialize_current_architecture (void);
1210
1211 /* For non-multiarched targets, do any initialization of the default
1212 gdbarch object necessary after the _initialize_MODULE functions
1213 have run. */
1214 extern void initialize_non_multiarch (void);
1215
1216 /* gdbarch trace variable */
1217 extern int gdbarch_debug;
1218
1219 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1220
1221 #endif
1222 EOF
1223 exec 1>&2
1224 #../move-if-change new-gdbarch.h gdbarch.h
1225 compare_new gdbarch.h
1226
1227
1228 #
1229 # C file
1230 #
1231
1232 exec > new-gdbarch.c
1233 copyright
1234 cat <<EOF
1235
1236 #include "defs.h"
1237 #include "arch-utils.h"
1238
1239 #if GDB_MULTI_ARCH
1240 #include "gdbcmd.h"
1241 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1242 #else
1243 /* Just include everything in sight so that the every old definition
1244 of macro is visible. */
1245 #include "gdb_string.h"
1246 #include <ctype.h>
1247 #include "symtab.h"
1248 #include "frame.h"
1249 #include "inferior.h"
1250 #include "breakpoint.h"
1251 #include "gdb_wait.h"
1252 #include "gdbcore.h"
1253 #include "gdbcmd.h"
1254 #include "target.h"
1255 #include "gdbthread.h"
1256 #include "annotate.h"
1257 #include "symfile.h" /* for overlay functions */
1258 #include "value.h" /* For old tm.h/nm.h macros. */
1259 #endif
1260 #include "symcat.h"
1261
1262 #include "floatformat.h"
1263
1264 #include "gdb_assert.h"
1265 #include "gdb_string.h"
1266 #include "gdb-events.h"
1267 #include "reggroups.h"
1268
1269 /* Static function declarations */
1270
1271 static void verify_gdbarch (struct gdbarch *gdbarch);
1272 static void alloc_gdbarch_data (struct gdbarch *);
1273 static void free_gdbarch_data (struct gdbarch *);
1274 static void init_gdbarch_swap (struct gdbarch *);
1275 static void clear_gdbarch_swap (struct gdbarch *);
1276 static void swapout_gdbarch_swap (struct gdbarch *);
1277 static void swapin_gdbarch_swap (struct gdbarch *);
1278
1279 /* Non-zero if we want to trace architecture code. */
1280
1281 #ifndef GDBARCH_DEBUG
1282 #define GDBARCH_DEBUG 0
1283 #endif
1284 int gdbarch_debug = GDBARCH_DEBUG;
1285
1286 EOF
1287
1288 # gdbarch open the gdbarch object
1289 printf "\n"
1290 printf "/* Maintain the struct gdbarch object */\n"
1291 printf "\n"
1292 printf "struct gdbarch\n"
1293 printf "{\n"
1294 printf " /* Has this architecture been fully initialized? */\n"
1295 printf " int initialized_p;\n"
1296 printf " /* basic architectural information */\n"
1297 function_list | while do_read
1298 do
1299 if class_is_info_p
1300 then
1301 printf " ${returntype} ${function};\n"
1302 fi
1303 done
1304 printf "\n"
1305 printf " /* target specific vector. */\n"
1306 printf " struct gdbarch_tdep *tdep;\n"
1307 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1308 printf "\n"
1309 printf " /* per-architecture data-pointers */\n"
1310 printf " unsigned nr_data;\n"
1311 printf " void **data;\n"
1312 printf "\n"
1313 printf " /* per-architecture swap-regions */\n"
1314 printf " struct gdbarch_swap *swap;\n"
1315 printf "\n"
1316 cat <<EOF
1317 /* Multi-arch values.
1318
1319 When extending this structure you must:
1320
1321 Add the field below.
1322
1323 Declare set/get functions and define the corresponding
1324 macro in gdbarch.h.
1325
1326 gdbarch_alloc(): If zero/NULL is not a suitable default,
1327 initialize the new field.
1328
1329 verify_gdbarch(): Confirm that the target updated the field
1330 correctly.
1331
1332 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1333 field is dumped out
1334
1335 \`\`startup_gdbarch()'': Append an initial value to the static
1336 variable (base values on the host's c-type system).
1337
1338 get_gdbarch(): Implement the set/get functions (probably using
1339 the macro's as shortcuts).
1340
1341 */
1342
1343 EOF
1344 function_list | while do_read
1345 do
1346 if class_is_variable_p
1347 then
1348 printf " ${returntype} ${function};\n"
1349 elif class_is_function_p
1350 then
1351 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1352 fi
1353 done
1354 printf "};\n"
1355
1356 # A pre-initialized vector
1357 printf "\n"
1358 printf "\n"
1359 cat <<EOF
1360 /* The default architecture uses host values (for want of a better
1361 choice). */
1362 EOF
1363 printf "\n"
1364 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1365 printf "\n"
1366 printf "struct gdbarch startup_gdbarch =\n"
1367 printf "{\n"
1368 printf " 1, /* Always initialized. */\n"
1369 printf " /* basic architecture information */\n"
1370 function_list | while do_read
1371 do
1372 if class_is_info_p
1373 then
1374 printf " ${staticdefault},\n"
1375 fi
1376 done
1377 cat <<EOF
1378 /* target specific vector and its dump routine */
1379 NULL, NULL,
1380 /*per-architecture data-pointers and swap regions */
1381 0, NULL, NULL,
1382 /* Multi-arch values */
1383 EOF
1384 function_list | while do_read
1385 do
1386 if class_is_function_p || class_is_variable_p
1387 then
1388 printf " ${staticdefault},\n"
1389 fi
1390 done
1391 cat <<EOF
1392 /* startup_gdbarch() */
1393 };
1394
1395 struct gdbarch *current_gdbarch = &startup_gdbarch;
1396
1397 /* Do any initialization needed for a non-multiarch configuration
1398 after the _initialize_MODULE functions have been run. */
1399 void
1400 initialize_non_multiarch (void)
1401 {
1402 alloc_gdbarch_data (&startup_gdbarch);
1403 /* Ensure that all swap areas are zeroed so that they again think
1404 they are starting from scratch. */
1405 clear_gdbarch_swap (&startup_gdbarch);
1406 init_gdbarch_swap (&startup_gdbarch);
1407 }
1408 EOF
1409
1410 # Create a new gdbarch struct
1411 printf "\n"
1412 printf "\n"
1413 cat <<EOF
1414 /* Create a new \`\`struct gdbarch'' based on information provided by
1415 \`\`struct gdbarch_info''. */
1416 EOF
1417 printf "\n"
1418 cat <<EOF
1419 struct gdbarch *
1420 gdbarch_alloc (const struct gdbarch_info *info,
1421 struct gdbarch_tdep *tdep)
1422 {
1423 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1424 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1425 the current local architecture and not the previous global
1426 architecture. This ensures that the new architectures initial
1427 values are not influenced by the previous architecture. Once
1428 everything is parameterised with gdbarch, this will go away. */
1429 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1430 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1431
1432 alloc_gdbarch_data (current_gdbarch);
1433
1434 current_gdbarch->tdep = tdep;
1435 EOF
1436 printf "\n"
1437 function_list | while do_read
1438 do
1439 if class_is_info_p
1440 then
1441 printf " current_gdbarch->${function} = info->${function};\n"
1442 fi
1443 done
1444 printf "\n"
1445 printf " /* Force the explicit initialization of these. */\n"
1446 function_list | while do_read
1447 do
1448 if class_is_function_p || class_is_variable_p
1449 then
1450 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1451 then
1452 printf " current_gdbarch->${function} = ${predefault};\n"
1453 fi
1454 fi
1455 done
1456 cat <<EOF
1457 /* gdbarch_alloc() */
1458
1459 return current_gdbarch;
1460 }
1461 EOF
1462
1463 # Free a gdbarch struct.
1464 printf "\n"
1465 printf "\n"
1466 cat <<EOF
1467 /* Free a gdbarch struct. This should never happen in normal
1468 operation --- once you've created a gdbarch, you keep it around.
1469 However, if an architecture's init function encounters an error
1470 building the structure, it may need to clean up a partially
1471 constructed gdbarch. */
1472
1473 void
1474 gdbarch_free (struct gdbarch *arch)
1475 {
1476 gdb_assert (arch != NULL);
1477 free_gdbarch_data (arch);
1478 xfree (arch);
1479 }
1480 EOF
1481
1482 # verify a new architecture
1483 printf "\n"
1484 printf "\n"
1485 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1486 printf "\n"
1487 cat <<EOF
1488 static void
1489 verify_gdbarch (struct gdbarch *gdbarch)
1490 {
1491 struct ui_file *log;
1492 struct cleanup *cleanups;
1493 long dummy;
1494 char *buf;
1495 /* Only perform sanity checks on a multi-arch target. */
1496 if (!GDB_MULTI_ARCH)
1497 return;
1498 log = mem_fileopen ();
1499 cleanups = make_cleanup_ui_file_delete (log);
1500 /* fundamental */
1501 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1502 fprintf_unfiltered (log, "\n\tbyte-order");
1503 if (gdbarch->bfd_arch_info == NULL)
1504 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1505 /* Check those that need to be defined for the given multi-arch level. */
1506 EOF
1507 function_list | while do_read
1508 do
1509 if class_is_function_p || class_is_variable_p
1510 then
1511 if [ "x${invalid_p}" = "x0" ]
1512 then
1513 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1514 elif class_is_predicate_p
1515 then
1516 printf " /* Skip verify of ${function}, has predicate */\n"
1517 # FIXME: See do_read for potential simplification
1518 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1519 then
1520 printf " if (${invalid_p})\n"
1521 printf " gdbarch->${function} = ${postdefault};\n"
1522 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1523 then
1524 printf " if (gdbarch->${function} == ${predefault})\n"
1525 printf " gdbarch->${function} = ${postdefault};\n"
1526 elif [ -n "${postdefault}" ]
1527 then
1528 printf " if (gdbarch->${function} == 0)\n"
1529 printf " gdbarch->${function} = ${postdefault};\n"
1530 elif [ -n "${invalid_p}" ]
1531 then
1532 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1533 printf " && (${invalid_p}))\n"
1534 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1535 elif [ -n "${predefault}" ]
1536 then
1537 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1538 printf " && (gdbarch->${function} == ${predefault}))\n"
1539 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1540 fi
1541 fi
1542 done
1543 cat <<EOF
1544 buf = ui_file_xstrdup (log, &dummy);
1545 make_cleanup (xfree, buf);
1546 if (strlen (buf) > 0)
1547 internal_error (__FILE__, __LINE__,
1548 "verify_gdbarch: the following are invalid ...%s",
1549 buf);
1550 do_cleanups (cleanups);
1551 }
1552 EOF
1553
1554 # dump the structure
1555 printf "\n"
1556 printf "\n"
1557 cat <<EOF
1558 /* Print out the details of the current architecture. */
1559
1560 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1561 just happens to match the global variable \`\`current_gdbarch''. That
1562 way macros refering to that variable get the local and not the global
1563 version - ulgh. Once everything is parameterised with gdbarch, this
1564 will go away. */
1565
1566 void
1567 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1568 {
1569 fprintf_unfiltered (file,
1570 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1571 GDB_MULTI_ARCH);
1572 EOF
1573 function_list | sort -t: -k 3 | while do_read
1574 do
1575 # multiarch functions don't have macros.
1576 if class_is_multiarch_p
1577 then
1578 printf " if (GDB_MULTI_ARCH)\n"
1579 printf " fprintf_unfiltered (file,\n"
1580 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1581 printf " (long) current_gdbarch->${function});\n"
1582 continue
1583 fi
1584 # Print the macro definition.
1585 printf "#ifdef ${macro}\n"
1586 if [ "x${returntype}" = "xvoid" ]
1587 then
1588 printf "#if GDB_MULTI_ARCH\n"
1589 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1590 fi
1591 if class_is_function_p
1592 then
1593 printf " fprintf_unfiltered (file,\n"
1594 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1595 printf " \"${macro}(${actual})\",\n"
1596 printf " XSTRING (${macro} (${actual})));\n"
1597 else
1598 printf " fprintf_unfiltered (file,\n"
1599 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1600 printf " XSTRING (${macro}));\n"
1601 fi
1602 # Print the architecture vector value
1603 if [ "x${returntype}" = "xvoid" ]
1604 then
1605 printf "#endif\n"
1606 fi
1607 if [ "x${print_p}" = "x()" ]
1608 then
1609 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1610 elif [ "x${print_p}" = "x0" ]
1611 then
1612 printf " /* skip print of ${macro}, print_p == 0. */\n"
1613 elif [ -n "${print_p}" ]
1614 then
1615 printf " if (${print_p})\n"
1616 printf " fprintf_unfiltered (file,\n"
1617 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1618 printf " ${print});\n"
1619 elif class_is_function_p
1620 then
1621 printf " if (GDB_MULTI_ARCH)\n"
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1624 printf " (long) current_gdbarch->${function}\n"
1625 printf " /*${macro} ()*/);\n"
1626 else
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1629 printf " ${print});\n"
1630 fi
1631 printf "#endif\n"
1632 done
1633 cat <<EOF
1634 if (current_gdbarch->dump_tdep != NULL)
1635 current_gdbarch->dump_tdep (current_gdbarch, file);
1636 }
1637 EOF
1638
1639
1640 # GET/SET
1641 printf "\n"
1642 cat <<EOF
1643 struct gdbarch_tdep *
1644 gdbarch_tdep (struct gdbarch *gdbarch)
1645 {
1646 if (gdbarch_debug >= 2)
1647 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1648 return gdbarch->tdep;
1649 }
1650 EOF
1651 printf "\n"
1652 function_list | while do_read
1653 do
1654 if class_is_predicate_p
1655 then
1656 printf "\n"
1657 printf "int\n"
1658 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1659 printf "{\n"
1660 printf " gdb_assert (gdbarch != NULL);\n"
1661 if [ -n "${predicate}" ]
1662 then
1663 printf " return ${predicate};\n"
1664 else
1665 printf " return gdbarch->${function} != 0;\n"
1666 fi
1667 printf "}\n"
1668 fi
1669 if class_is_function_p
1670 then
1671 printf "\n"
1672 printf "${returntype}\n"
1673 if [ "x${formal}" = "xvoid" ]
1674 then
1675 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1676 else
1677 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1678 fi
1679 printf "{\n"
1680 printf " gdb_assert (gdbarch != NULL);\n"
1681 printf " if (gdbarch->${function} == 0)\n"
1682 printf " internal_error (__FILE__, __LINE__,\n"
1683 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1684 if class_is_predicate_p && test -n "${predicate}"
1685 then
1686 # Allow a call to a function with a predicate.
1687 printf " /* Ignore predicate (${predicate}). */\n"
1688 fi
1689 printf " if (gdbarch_debug >= 2)\n"
1690 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1691 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1692 then
1693 if class_is_multiarch_p
1694 then
1695 params="gdbarch"
1696 else
1697 params=""
1698 fi
1699 else
1700 if class_is_multiarch_p
1701 then
1702 params="gdbarch, ${actual}"
1703 else
1704 params="${actual}"
1705 fi
1706 fi
1707 if [ "x${returntype}" = "xvoid" ]
1708 then
1709 printf " gdbarch->${function} (${params});\n"
1710 else
1711 printf " return gdbarch->${function} (${params});\n"
1712 fi
1713 printf "}\n"
1714 printf "\n"
1715 printf "void\n"
1716 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1717 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1718 printf "{\n"
1719 printf " gdbarch->${function} = ${function};\n"
1720 printf "}\n"
1721 elif class_is_variable_p
1722 then
1723 printf "\n"
1724 printf "${returntype}\n"
1725 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1726 printf "{\n"
1727 printf " gdb_assert (gdbarch != NULL);\n"
1728 if [ "x${invalid_p}" = "x0" ]
1729 then
1730 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1731 elif [ -n "${invalid_p}" ]
1732 then
1733 printf " if (${invalid_p})\n"
1734 printf " internal_error (__FILE__, __LINE__,\n"
1735 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1736 elif [ -n "${predefault}" ]
1737 then
1738 printf " if (gdbarch->${function} == ${predefault})\n"
1739 printf " internal_error (__FILE__, __LINE__,\n"
1740 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1741 fi
1742 printf " if (gdbarch_debug >= 2)\n"
1743 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1744 printf " return gdbarch->${function};\n"
1745 printf "}\n"
1746 printf "\n"
1747 printf "void\n"
1748 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1749 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1750 printf "{\n"
1751 printf " gdbarch->${function} = ${function};\n"
1752 printf "}\n"
1753 elif class_is_info_p
1754 then
1755 printf "\n"
1756 printf "${returntype}\n"
1757 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1758 printf "{\n"
1759 printf " gdb_assert (gdbarch != NULL);\n"
1760 printf " if (gdbarch_debug >= 2)\n"
1761 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1762 printf " return gdbarch->${function};\n"
1763 printf "}\n"
1764 fi
1765 done
1766
1767 # All the trailing guff
1768 cat <<EOF
1769
1770
1771 /* Keep a registry of per-architecture data-pointers required by GDB
1772 modules. */
1773
1774 struct gdbarch_data
1775 {
1776 unsigned index;
1777 int init_p;
1778 gdbarch_data_init_ftype *init;
1779 gdbarch_data_free_ftype *free;
1780 };
1781
1782 struct gdbarch_data_registration
1783 {
1784 struct gdbarch_data *data;
1785 struct gdbarch_data_registration *next;
1786 };
1787
1788 struct gdbarch_data_registry
1789 {
1790 unsigned nr;
1791 struct gdbarch_data_registration *registrations;
1792 };
1793
1794 struct gdbarch_data_registry gdbarch_data_registry =
1795 {
1796 0, NULL,
1797 };
1798
1799 struct gdbarch_data *
1800 register_gdbarch_data (gdbarch_data_init_ftype *init,
1801 gdbarch_data_free_ftype *free)
1802 {
1803 struct gdbarch_data_registration **curr;
1804 /* Append the new registraration. */
1805 for (curr = &gdbarch_data_registry.registrations;
1806 (*curr) != NULL;
1807 curr = &(*curr)->next);
1808 (*curr) = XMALLOC (struct gdbarch_data_registration);
1809 (*curr)->next = NULL;
1810 (*curr)->data = XMALLOC (struct gdbarch_data);
1811 (*curr)->data->index = gdbarch_data_registry.nr++;
1812 (*curr)->data->init = init;
1813 (*curr)->data->init_p = 1;
1814 (*curr)->data->free = free;
1815 return (*curr)->data;
1816 }
1817
1818
1819 /* Create/delete the gdbarch data vector. */
1820
1821 static void
1822 alloc_gdbarch_data (struct gdbarch *gdbarch)
1823 {
1824 gdb_assert (gdbarch->data == NULL);
1825 gdbarch->nr_data = gdbarch_data_registry.nr;
1826 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1827 }
1828
1829 static void
1830 free_gdbarch_data (struct gdbarch *gdbarch)
1831 {
1832 struct gdbarch_data_registration *rego;
1833 gdb_assert (gdbarch->data != NULL);
1834 for (rego = gdbarch_data_registry.registrations;
1835 rego != NULL;
1836 rego = rego->next)
1837 {
1838 struct gdbarch_data *data = rego->data;
1839 gdb_assert (data->index < gdbarch->nr_data);
1840 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1841 {
1842 data->free (gdbarch, gdbarch->data[data->index]);
1843 gdbarch->data[data->index] = NULL;
1844 }
1845 }
1846 xfree (gdbarch->data);
1847 gdbarch->data = NULL;
1848 }
1849
1850
1851 /* Initialize the current value of the specified per-architecture
1852 data-pointer. */
1853
1854 void
1855 set_gdbarch_data (struct gdbarch *gdbarch,
1856 struct gdbarch_data *data,
1857 void *pointer)
1858 {
1859 gdb_assert (data->index < gdbarch->nr_data);
1860 if (gdbarch->data[data->index] != NULL)
1861 {
1862 gdb_assert (data->free != NULL);
1863 data->free (gdbarch, gdbarch->data[data->index]);
1864 }
1865 gdbarch->data[data->index] = pointer;
1866 }
1867
1868 /* Return the current value of the specified per-architecture
1869 data-pointer. */
1870
1871 void *
1872 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1873 {
1874 gdb_assert (data->index < gdbarch->nr_data);
1875 /* The data-pointer isn't initialized, call init() to get a value but
1876 only if the architecture initializaiton has completed. Otherwise
1877 punt - hope that the caller knows what they are doing. */
1878 if (gdbarch->data[data->index] == NULL
1879 && gdbarch->initialized_p)
1880 {
1881 /* Be careful to detect an initialization cycle. */
1882 gdb_assert (data->init_p);
1883 data->init_p = 0;
1884 gdb_assert (data->init != NULL);
1885 gdbarch->data[data->index] = data->init (gdbarch);
1886 data->init_p = 1;
1887 gdb_assert (gdbarch->data[data->index] != NULL);
1888 }
1889 return gdbarch->data[data->index];
1890 }
1891
1892
1893
1894 /* Keep a registry of swapped data required by GDB modules. */
1895
1896 struct gdbarch_swap
1897 {
1898 void *swap;
1899 struct gdbarch_swap_registration *source;
1900 struct gdbarch_swap *next;
1901 };
1902
1903 struct gdbarch_swap_registration
1904 {
1905 void *data;
1906 unsigned long sizeof_data;
1907 gdbarch_swap_ftype *init;
1908 struct gdbarch_swap_registration *next;
1909 };
1910
1911 struct gdbarch_swap_registry
1912 {
1913 int nr;
1914 struct gdbarch_swap_registration *registrations;
1915 };
1916
1917 struct gdbarch_swap_registry gdbarch_swap_registry =
1918 {
1919 0, NULL,
1920 };
1921
1922 void
1923 register_gdbarch_swap (void *data,
1924 unsigned long sizeof_data,
1925 gdbarch_swap_ftype *init)
1926 {
1927 struct gdbarch_swap_registration **rego;
1928 for (rego = &gdbarch_swap_registry.registrations;
1929 (*rego) != NULL;
1930 rego = &(*rego)->next);
1931 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1932 (*rego)->next = NULL;
1933 (*rego)->init = init;
1934 (*rego)->data = data;
1935 (*rego)->sizeof_data = sizeof_data;
1936 }
1937
1938 static void
1939 clear_gdbarch_swap (struct gdbarch *gdbarch)
1940 {
1941 struct gdbarch_swap *curr;
1942 for (curr = gdbarch->swap;
1943 curr != NULL;
1944 curr = curr->next)
1945 {
1946 memset (curr->source->data, 0, curr->source->sizeof_data);
1947 }
1948 }
1949
1950 static void
1951 init_gdbarch_swap (struct gdbarch *gdbarch)
1952 {
1953 struct gdbarch_swap_registration *rego;
1954 struct gdbarch_swap **curr = &gdbarch->swap;
1955 for (rego = gdbarch_swap_registry.registrations;
1956 rego != NULL;
1957 rego = rego->next)
1958 {
1959 if (rego->data != NULL)
1960 {
1961 (*curr) = XMALLOC (struct gdbarch_swap);
1962 (*curr)->source = rego;
1963 (*curr)->swap = xmalloc (rego->sizeof_data);
1964 (*curr)->next = NULL;
1965 curr = &(*curr)->next;
1966 }
1967 if (rego->init != NULL)
1968 rego->init ();
1969 }
1970 }
1971
1972 static void
1973 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1974 {
1975 struct gdbarch_swap *curr;
1976 for (curr = gdbarch->swap;
1977 curr != NULL;
1978 curr = curr->next)
1979 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1980 }
1981
1982 static void
1983 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1984 {
1985 struct gdbarch_swap *curr;
1986 for (curr = gdbarch->swap;
1987 curr != NULL;
1988 curr = curr->next)
1989 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1990 }
1991
1992
1993 /* Keep a registry of the architectures known by GDB. */
1994
1995 struct gdbarch_registration
1996 {
1997 enum bfd_architecture bfd_architecture;
1998 gdbarch_init_ftype *init;
1999 gdbarch_dump_tdep_ftype *dump_tdep;
2000 struct gdbarch_list *arches;
2001 struct gdbarch_registration *next;
2002 };
2003
2004 static struct gdbarch_registration *gdbarch_registry = NULL;
2005
2006 static void
2007 append_name (const char ***buf, int *nr, const char *name)
2008 {
2009 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2010 (*buf)[*nr] = name;
2011 *nr += 1;
2012 }
2013
2014 const char **
2015 gdbarch_printable_names (void)
2016 {
2017 if (GDB_MULTI_ARCH)
2018 {
2019 /* Accumulate a list of names based on the registed list of
2020 architectures. */
2021 enum bfd_architecture a;
2022 int nr_arches = 0;
2023 const char **arches = NULL;
2024 struct gdbarch_registration *rego;
2025 for (rego = gdbarch_registry;
2026 rego != NULL;
2027 rego = rego->next)
2028 {
2029 const struct bfd_arch_info *ap;
2030 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2031 if (ap == NULL)
2032 internal_error (__FILE__, __LINE__,
2033 "gdbarch_architecture_names: multi-arch unknown");
2034 do
2035 {
2036 append_name (&arches, &nr_arches, ap->printable_name);
2037 ap = ap->next;
2038 }
2039 while (ap != NULL);
2040 }
2041 append_name (&arches, &nr_arches, NULL);
2042 return arches;
2043 }
2044 else
2045 /* Just return all the architectures that BFD knows. Assume that
2046 the legacy architecture framework supports them. */
2047 return bfd_arch_list ();
2048 }
2049
2050
2051 void
2052 gdbarch_register (enum bfd_architecture bfd_architecture,
2053 gdbarch_init_ftype *init,
2054 gdbarch_dump_tdep_ftype *dump_tdep)
2055 {
2056 struct gdbarch_registration **curr;
2057 const struct bfd_arch_info *bfd_arch_info;
2058 /* Check that BFD recognizes this architecture */
2059 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2060 if (bfd_arch_info == NULL)
2061 {
2062 internal_error (__FILE__, __LINE__,
2063 "gdbarch: Attempt to register unknown architecture (%d)",
2064 bfd_architecture);
2065 }
2066 /* Check that we haven't seen this architecture before */
2067 for (curr = &gdbarch_registry;
2068 (*curr) != NULL;
2069 curr = &(*curr)->next)
2070 {
2071 if (bfd_architecture == (*curr)->bfd_architecture)
2072 internal_error (__FILE__, __LINE__,
2073 "gdbarch: Duplicate registraration of architecture (%s)",
2074 bfd_arch_info->printable_name);
2075 }
2076 /* log it */
2077 if (gdbarch_debug)
2078 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2079 bfd_arch_info->printable_name,
2080 (long) init);
2081 /* Append it */
2082 (*curr) = XMALLOC (struct gdbarch_registration);
2083 (*curr)->bfd_architecture = bfd_architecture;
2084 (*curr)->init = init;
2085 (*curr)->dump_tdep = dump_tdep;
2086 (*curr)->arches = NULL;
2087 (*curr)->next = NULL;
2088 /* When non- multi-arch, install whatever target dump routine we've
2089 been provided - hopefully that routine has been written correctly
2090 and works regardless of multi-arch. */
2091 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2092 && startup_gdbarch.dump_tdep == NULL)
2093 startup_gdbarch.dump_tdep = dump_tdep;
2094 }
2095
2096 void
2097 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2098 gdbarch_init_ftype *init)
2099 {
2100 gdbarch_register (bfd_architecture, init, NULL);
2101 }
2102
2103
2104 /* Look for an architecture using gdbarch_info. Base search on only
2105 BFD_ARCH_INFO and BYTE_ORDER. */
2106
2107 struct gdbarch_list *
2108 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2109 const struct gdbarch_info *info)
2110 {
2111 for (; arches != NULL; arches = arches->next)
2112 {
2113 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2114 continue;
2115 if (info->byte_order != arches->gdbarch->byte_order)
2116 continue;
2117 return arches;
2118 }
2119 return NULL;
2120 }
2121
2122
2123 /* Update the current architecture. Return ZERO if the update request
2124 failed. */
2125
2126 int
2127 gdbarch_update_p (struct gdbarch_info info)
2128 {
2129 struct gdbarch *new_gdbarch;
2130 struct gdbarch *old_gdbarch;
2131 struct gdbarch_registration *rego;
2132
2133 /* Fill in missing parts of the INFO struct using a number of
2134 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2135
2136 /* \`\`(gdb) set architecture ...'' */
2137 if (info.bfd_arch_info == NULL
2138 && !TARGET_ARCHITECTURE_AUTO)
2139 info.bfd_arch_info = TARGET_ARCHITECTURE;
2140 if (info.bfd_arch_info == NULL
2141 && info.abfd != NULL
2142 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2143 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2144 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2145 if (info.bfd_arch_info == NULL)
2146 info.bfd_arch_info = TARGET_ARCHITECTURE;
2147
2148 /* \`\`(gdb) set byte-order ...'' */
2149 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2150 && !TARGET_BYTE_ORDER_AUTO)
2151 info.byte_order = TARGET_BYTE_ORDER;
2152 /* From the INFO struct. */
2153 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2154 && info.abfd != NULL)
2155 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2156 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2157 : BFD_ENDIAN_UNKNOWN);
2158 /* From the current target. */
2159 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2160 info.byte_order = TARGET_BYTE_ORDER;
2161
2162 /* Must have found some sort of architecture. */
2163 gdb_assert (info.bfd_arch_info != NULL);
2164
2165 if (gdbarch_debug)
2166 {
2167 fprintf_unfiltered (gdb_stdlog,
2168 "gdbarch_update: info.bfd_arch_info %s\n",
2169 (info.bfd_arch_info != NULL
2170 ? info.bfd_arch_info->printable_name
2171 : "(null)"));
2172 fprintf_unfiltered (gdb_stdlog,
2173 "gdbarch_update: info.byte_order %d (%s)\n",
2174 info.byte_order,
2175 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2176 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2177 : "default"));
2178 fprintf_unfiltered (gdb_stdlog,
2179 "gdbarch_update: info.abfd 0x%lx\n",
2180 (long) info.abfd);
2181 fprintf_unfiltered (gdb_stdlog,
2182 "gdbarch_update: info.tdep_info 0x%lx\n",
2183 (long) info.tdep_info);
2184 }
2185
2186 /* Find the target that knows about this architecture. */
2187 for (rego = gdbarch_registry;
2188 rego != NULL;
2189 rego = rego->next)
2190 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2191 break;
2192 if (rego == NULL)
2193 {
2194 if (gdbarch_debug)
2195 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2196 return 0;
2197 }
2198
2199 /* Swap the data belonging to the old target out setting the
2200 installed data to zero. This stops the ->init() function trying
2201 to refer to the previous architecture's global data structures. */
2202 swapout_gdbarch_swap (current_gdbarch);
2203 clear_gdbarch_swap (current_gdbarch);
2204
2205 /* Save the previously selected architecture, setting the global to
2206 NULL. This stops ->init() trying to use the previous
2207 architecture's configuration. The previous architecture may not
2208 even be of the same architecture family. The most recent
2209 architecture of the same family is found at the head of the
2210 rego->arches list. */
2211 old_gdbarch = current_gdbarch;
2212 current_gdbarch = NULL;
2213
2214 /* Ask the target for a replacement architecture. */
2215 new_gdbarch = rego->init (info, rego->arches);
2216
2217 /* Did the target like it? No. Reject the change and revert to the
2218 old architecture. */
2219 if (new_gdbarch == NULL)
2220 {
2221 if (gdbarch_debug)
2222 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2223 swapin_gdbarch_swap (old_gdbarch);
2224 current_gdbarch = old_gdbarch;
2225 return 0;
2226 }
2227
2228 /* Did the architecture change? No. Oops, put the old architecture
2229 back. */
2230 if (old_gdbarch == new_gdbarch)
2231 {
2232 if (gdbarch_debug)
2233 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2234 (long) new_gdbarch,
2235 new_gdbarch->bfd_arch_info->printable_name);
2236 swapin_gdbarch_swap (old_gdbarch);
2237 current_gdbarch = old_gdbarch;
2238 return 1;
2239 }
2240
2241 /* Is this a pre-existing architecture? Yes. Move it to the front
2242 of the list of architectures (keeping the list sorted Most
2243 Recently Used) and then copy it in. */
2244 {
2245 struct gdbarch_list **list;
2246 for (list = &rego->arches;
2247 (*list) != NULL;
2248 list = &(*list)->next)
2249 {
2250 if ((*list)->gdbarch == new_gdbarch)
2251 {
2252 struct gdbarch_list *this;
2253 if (gdbarch_debug)
2254 fprintf_unfiltered (gdb_stdlog,
2255 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2256 (long) new_gdbarch,
2257 new_gdbarch->bfd_arch_info->printable_name);
2258 /* Unlink this. */
2259 this = (*list);
2260 (*list) = this->next;
2261 /* Insert in the front. */
2262 this->next = rego->arches;
2263 rego->arches = this;
2264 /* Copy the new architecture in. */
2265 current_gdbarch = new_gdbarch;
2266 swapin_gdbarch_swap (new_gdbarch);
2267 architecture_changed_event ();
2268 return 1;
2269 }
2270 }
2271 }
2272
2273 /* Prepend this new architecture to the architecture list (keep the
2274 list sorted Most Recently Used). */
2275 {
2276 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2277 this->next = rego->arches;
2278 this->gdbarch = new_gdbarch;
2279 rego->arches = this;
2280 }
2281
2282 /* Switch to this new architecture marking it initialized. */
2283 current_gdbarch = new_gdbarch;
2284 current_gdbarch->initialized_p = 1;
2285 if (gdbarch_debug)
2286 {
2287 fprintf_unfiltered (gdb_stdlog,
2288 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2289 (long) new_gdbarch,
2290 new_gdbarch->bfd_arch_info->printable_name);
2291 }
2292
2293 /* Check that the newly installed architecture is valid. Plug in
2294 any post init values. */
2295 new_gdbarch->dump_tdep = rego->dump_tdep;
2296 verify_gdbarch (new_gdbarch);
2297
2298 /* Initialize the per-architecture memory (swap) areas.
2299 CURRENT_GDBARCH must be update before these modules are
2300 called. */
2301 init_gdbarch_swap (new_gdbarch);
2302
2303 /* Initialize the per-architecture data. CURRENT_GDBARCH
2304 must be updated before these modules are called. */
2305 architecture_changed_event ();
2306
2307 if (gdbarch_debug)
2308 gdbarch_dump (current_gdbarch, gdb_stdlog);
2309
2310 return 1;
2311 }
2312
2313
2314 /* Disassembler */
2315
2316 /* Pointer to the target-dependent disassembly function. */
2317 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2318 disassemble_info tm_print_insn_info;
2319
2320
2321 extern void _initialize_gdbarch (void);
2322
2323 void
2324 _initialize_gdbarch (void)
2325 {
2326 struct cmd_list_element *c;
2327
2328 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2329 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2330 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2331 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2332 tm_print_insn_info.print_address_func = dis_asm_print_address;
2333
2334 add_show_from_set (add_set_cmd ("arch",
2335 class_maintenance,
2336 var_zinteger,
2337 (char *)&gdbarch_debug,
2338 "Set architecture debugging.\\n\\
2339 When non-zero, architecture debugging is enabled.", &setdebuglist),
2340 &showdebuglist);
2341 c = add_set_cmd ("archdebug",
2342 class_maintenance,
2343 var_zinteger,
2344 (char *)&gdbarch_debug,
2345 "Set architecture debugging.\\n\\
2346 When non-zero, architecture debugging is enabled.", &setlist);
2347
2348 deprecate_cmd (c, "set debug arch");
2349 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2350 }
2351 EOF
2352
2353 # close things off
2354 exec 1>&2
2355 #../move-if-change new-gdbarch.c gdbarch.c
2356 compare_new gdbarch.c
This page took 0.096515 seconds and 3 git commands to generate.