* elfread.c (elf_symtab_read): Allocate correct number of tail
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 # Replace DEPRECATED_NPC_REGNUM with an implementation of WRITE_PC
457 # that updates PC, NPC and even NNPC.
458 v:2:DEPRECATED_NPC_REGNUM:int:deprecated_npc_regnum::::0:-1::0
459 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
460 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
462 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
463 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
464 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
465 # Convert from an sdb register number to an internal gdb register number.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
473 F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
597 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
598 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
599
600 # It has been suggested that this, well actually its predecessor,
601 # should take the type/value of the function to be called and not the
602 # return type. This is left as an exercise for the reader.
603
604 M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, const void *inval, void *outval:valtype, regcache, inval, outval
605
606 # The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
607 # STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
608 # into RETURN_VALUE. For the moment do not try to fold in
609 # EXTRACT_STRUCT_VALUE_ADDRESS as, dependant on the ABI, the debug
610 # info, and the level of effort, it may well be possible to find the
611 # address of a structure being return on the stack. Someone else can
612 # make that change.
613
614 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
615 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
616 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
617 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
618 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
619 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
620
621 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
622 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
623 #
624 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
625 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
626 #
627 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
628 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
629 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
630 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
631 M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
632 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
633 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
634 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
635 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
636 #
637 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
638 #
639 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
640 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
641 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
642 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
643 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
644 # note, per UNWIND_PC's doco, that while the two have similar
645 # interfaces they have very different underlying implementations.
646 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
647 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
648 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
649 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
650 # frame-base. Enable frame-base before frame-unwind.
651 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
652 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
653 # frame-base. Enable frame-base before frame-unwind.
654 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
655 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
656 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
657 #
658 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
659 # to frame_align and the requirement that methods such as
660 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
661 # alignment.
662 F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
663 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
664 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
665 # stabs_argument_has_addr.
666 F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
667 m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
668 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
669 v:2:PARM_BOUNDARY:int:parm_boundary
670 #
671 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
672 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
673 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
674 m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
675 # On some machines there are bits in addresses which are not really
676 # part of the address, but are used by the kernel, the hardware, etc.
677 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
678 # we get a "real" address such as one would find in a symbol table.
679 # This is used only for addresses of instructions, and even then I'm
680 # not sure it's used in all contexts. It exists to deal with there
681 # being a few stray bits in the PC which would mislead us, not as some
682 # sort of generic thing to handle alignment or segmentation (it's
683 # possible it should be in TARGET_READ_PC instead).
684 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
685 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
686 # ADDR_BITS_REMOVE.
687 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
688 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
689 # the target needs software single step. An ISA method to implement it.
690 #
691 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
692 # using the breakpoint system instead of blatting memory directly (as with rs6000).
693 #
694 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
695 # single step. If not, then implement single step using breakpoints.
696 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
697 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
698 # disassembler. Perhaphs objdump can handle it?
699 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
700 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
701
702
703 # For SVR4 shared libraries, each call goes through a small piece of
704 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
705 # to nonzero if we are currently stopped in one of these.
706 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
707
708 # Some systems also have trampoline code for returning from shared libs.
709 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
710
711 # Sigtramp is a routine that the kernel calls (which then calls the
712 # signal handler). On most machines it is a library routine that is
713 # linked into the executable.
714 #
715 # This macro, given a program counter value and the name of the
716 # function in which that PC resides (which can be null if the name is
717 # not known), returns nonzero if the PC and name show that we are in
718 # sigtramp.
719 #
720 # On most machines just see if the name is sigtramp (and if we have
721 # no name, assume we are not in sigtramp).
722 #
723 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
724 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
725 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
726 # own local NAME lookup.
727 #
728 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
729 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
730 # does not.
731 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
732 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
733 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
734 # A target might have problems with watchpoints as soon as the stack
735 # frame of the current function has been destroyed. This mostly happens
736 # as the first action in a funtion's epilogue. in_function_epilogue_p()
737 # is defined to return a non-zero value if either the given addr is one
738 # instruction after the stack destroying instruction up to the trailing
739 # return instruction or if we can figure out that the stack frame has
740 # already been invalidated regardless of the value of addr. Targets
741 # which don't suffer from that problem could just let this functionality
742 # untouched.
743 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
744 # Given a vector of command-line arguments, return a newly allocated
745 # string which, when passed to the create_inferior function, will be
746 # parsed (on Unix systems, by the shell) to yield the same vector.
747 # This function should call error() if the argument vector is not
748 # representable for this target or if this target does not support
749 # command-line arguments.
750 # ARGC is the number of elements in the vector.
751 # ARGV is an array of strings, one per argument.
752 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
753 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
754 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
755 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
756 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
757 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
758 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
759 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
760 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
761 # Is a register in a group
762 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
763 # Fetch the pointer to the ith function argument.
764 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
765
766 # Return the appropriate register set for a core file section with
767 # name SECT_NAME and size SECT_SIZE.
768 M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
769 EOF
770 }
771
772 #
773 # The .log file
774 #
775 exec > new-gdbarch.log
776 function_list | while do_read
777 do
778 cat <<EOF
779 ${class} ${macro}(${actual})
780 ${returntype} ${function} ($formal)${attrib}
781 EOF
782 for r in ${read}
783 do
784 eval echo \"\ \ \ \ ${r}=\${${r}}\"
785 done
786 if class_is_predicate_p && fallback_default_p
787 then
788 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
789 kill $$
790 exit 1
791 fi
792 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
793 then
794 echo "Error: postdefault is useless when invalid_p=0" 1>&2
795 kill $$
796 exit 1
797 fi
798 if class_is_multiarch_p
799 then
800 if class_is_predicate_p ; then :
801 elif test "x${predefault}" = "x"
802 then
803 echo "Error: pure multi-arch function must have a predefault" 1>&2
804 kill $$
805 exit 1
806 fi
807 fi
808 echo ""
809 done
810
811 exec 1>&2
812 compare_new gdbarch.log
813
814
815 copyright ()
816 {
817 cat <<EOF
818 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
819
820 /* Dynamic architecture support for GDB, the GNU debugger.
821 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
822
823 This file is part of GDB.
824
825 This program is free software; you can redistribute it and/or modify
826 it under the terms of the GNU General Public License as published by
827 the Free Software Foundation; either version 2 of the License, or
828 (at your option) any later version.
829
830 This program is distributed in the hope that it will be useful,
831 but WITHOUT ANY WARRANTY; without even the implied warranty of
832 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
833 GNU General Public License for more details.
834
835 You should have received a copy of the GNU General Public License
836 along with this program; if not, write to the Free Software
837 Foundation, Inc., 59 Temple Place - Suite 330,
838 Boston, MA 02111-1307, USA. */
839
840 /* This file was created with the aid of \`\`gdbarch.sh''.
841
842 The Bourne shell script \`\`gdbarch.sh'' creates the files
843 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
844 against the existing \`\`gdbarch.[hc]''. Any differences found
845 being reported.
846
847 If editing this file, please also run gdbarch.sh and merge any
848 changes into that script. Conversely, when making sweeping changes
849 to this file, modifying gdbarch.sh and using its output may prove
850 easier. */
851
852 EOF
853 }
854
855 #
856 # The .h file
857 #
858
859 exec > new-gdbarch.h
860 copyright
861 cat <<EOF
862 #ifndef GDBARCH_H
863 #define GDBARCH_H
864
865 struct floatformat;
866 struct ui_file;
867 struct frame_info;
868 struct value;
869 struct objfile;
870 struct minimal_symbol;
871 struct regcache;
872 struct reggroup;
873 struct regset;
874 struct disassemble_info;
875 struct target_ops;
876
877 extern struct gdbarch *current_gdbarch;
878
879
880 /* If any of the following are defined, the target wasn't correctly
881 converted. */
882
883 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
884 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
885 #endif
886 EOF
887
888 # function typedef's
889 printf "\n"
890 printf "\n"
891 printf "/* The following are pre-initialized by GDBARCH. */\n"
892 function_list | while do_read
893 do
894 if class_is_info_p
895 then
896 printf "\n"
897 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
898 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
899 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
900 printf "#error \"Non multi-arch definition of ${macro}\"\n"
901 printf "#endif\n"
902 printf "#if !defined (${macro})\n"
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
904 printf "#endif\n"
905 fi
906 done
907
908 # function typedef's
909 printf "\n"
910 printf "\n"
911 printf "/* The following are initialized by the target dependent code. */\n"
912 function_list | while do_read
913 do
914 if [ -n "${comment}" ]
915 then
916 echo "${comment}" | sed \
917 -e '2 s,#,/*,' \
918 -e '3,$ s,#, ,' \
919 -e '$ s,$, */,'
920 fi
921 if class_is_multiarch_p
922 then
923 if class_is_predicate_p
924 then
925 printf "\n"
926 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
927 fi
928 else
929 if class_is_predicate_p
930 then
931 printf "\n"
932 printf "#if defined (${macro})\n"
933 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
934 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
935 printf "#if !defined (${macro}_P)\n"
936 printf "#define ${macro}_P() (1)\n"
937 printf "#endif\n"
938 printf "#endif\n"
939 printf "\n"
940 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
941 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
942 printf "#error \"Non multi-arch definition of ${macro}\"\n"
943 printf "#endif\n"
944 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
945 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
946 printf "#endif\n"
947 fi
948 fi
949 if class_is_variable_p
950 then
951 printf "\n"
952 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
953 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
954 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
955 printf "#error \"Non multi-arch definition of ${macro}\"\n"
956 printf "#endif\n"
957 printf "#if !defined (${macro})\n"
958 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
959 printf "#endif\n"
960 fi
961 if class_is_function_p
962 then
963 printf "\n"
964 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
965 then
966 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
967 elif class_is_multiarch_p
968 then
969 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
970 else
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
972 fi
973 if [ "x${formal}" = "xvoid" ]
974 then
975 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
976 else
977 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
978 fi
979 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
980 if class_is_multiarch_p ; then :
981 else
982 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
983 printf "#error \"Non multi-arch definition of ${macro}\"\n"
984 printf "#endif\n"
985 if [ "x${actual}" = "x" ]
986 then
987 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
988 elif [ "x${actual}" = "x-" ]
989 then
990 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
991 else
992 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
993 fi
994 printf "#if !defined (${macro})\n"
995 if [ "x${actual}" = "x" ]
996 then
997 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
998 elif [ "x${actual}" = "x-" ]
999 then
1000 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1001 else
1002 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1003 fi
1004 printf "#endif\n"
1005 fi
1006 fi
1007 done
1008
1009 # close it off
1010 cat <<EOF
1011
1012 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1013
1014
1015 /* Mechanism for co-ordinating the selection of a specific
1016 architecture.
1017
1018 GDB targets (*-tdep.c) can register an interest in a specific
1019 architecture. Other GDB components can register a need to maintain
1020 per-architecture data.
1021
1022 The mechanisms below ensures that there is only a loose connection
1023 between the set-architecture command and the various GDB
1024 components. Each component can independently register their need
1025 to maintain architecture specific data with gdbarch.
1026
1027 Pragmatics:
1028
1029 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1030 didn't scale.
1031
1032 The more traditional mega-struct containing architecture specific
1033 data for all the various GDB components was also considered. Since
1034 GDB is built from a variable number of (fairly independent)
1035 components it was determined that the global aproach was not
1036 applicable. */
1037
1038
1039 /* Register a new architectural family with GDB.
1040
1041 Register support for the specified ARCHITECTURE with GDB. When
1042 gdbarch determines that the specified architecture has been
1043 selected, the corresponding INIT function is called.
1044
1045 --
1046
1047 The INIT function takes two parameters: INFO which contains the
1048 information available to gdbarch about the (possibly new)
1049 architecture; ARCHES which is a list of the previously created
1050 \`\`struct gdbarch'' for this architecture.
1051
1052 The INFO parameter is, as far as possible, be pre-initialized with
1053 information obtained from INFO.ABFD or the previously selected
1054 architecture.
1055
1056 The ARCHES parameter is a linked list (sorted most recently used)
1057 of all the previously created architures for this architecture
1058 family. The (possibly NULL) ARCHES->gdbarch can used to access
1059 values from the previously selected architecture for this
1060 architecture family. The global \`\`current_gdbarch'' shall not be
1061 used.
1062
1063 The INIT function shall return any of: NULL - indicating that it
1064 doesn't recognize the selected architecture; an existing \`\`struct
1065 gdbarch'' from the ARCHES list - indicating that the new
1066 architecture is just a synonym for an earlier architecture (see
1067 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1068 - that describes the selected architecture (see gdbarch_alloc()).
1069
1070 The DUMP_TDEP function shall print out all target specific values.
1071 Care should be taken to ensure that the function works in both the
1072 multi-arch and non- multi-arch cases. */
1073
1074 struct gdbarch_list
1075 {
1076 struct gdbarch *gdbarch;
1077 struct gdbarch_list *next;
1078 };
1079
1080 struct gdbarch_info
1081 {
1082 /* Use default: NULL (ZERO). */
1083 const struct bfd_arch_info *bfd_arch_info;
1084
1085 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1086 int byte_order;
1087
1088 /* Use default: NULL (ZERO). */
1089 bfd *abfd;
1090
1091 /* Use default: NULL (ZERO). */
1092 struct gdbarch_tdep_info *tdep_info;
1093
1094 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1095 enum gdb_osabi osabi;
1096 };
1097
1098 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1099 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1100
1101 /* DEPRECATED - use gdbarch_register() */
1102 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1103
1104 extern void gdbarch_register (enum bfd_architecture architecture,
1105 gdbarch_init_ftype *,
1106 gdbarch_dump_tdep_ftype *);
1107
1108
1109 /* Return a freshly allocated, NULL terminated, array of the valid
1110 architecture names. Since architectures are registered during the
1111 _initialize phase this function only returns useful information
1112 once initialization has been completed. */
1113
1114 extern const char **gdbarch_printable_names (void);
1115
1116
1117 /* Helper function. Search the list of ARCHES for a GDBARCH that
1118 matches the information provided by INFO. */
1119
1120 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1121
1122
1123 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1124 basic initialization using values obtained from the INFO andTDEP
1125 parameters. set_gdbarch_*() functions are called to complete the
1126 initialization of the object. */
1127
1128 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1129
1130
1131 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1132 It is assumed that the caller freeds the \`\`struct
1133 gdbarch_tdep''. */
1134
1135 extern void gdbarch_free (struct gdbarch *);
1136
1137
1138 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1139 obstack. The memory is freed when the corresponding architecture
1140 is also freed. */
1141
1142 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1143 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1144 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1145
1146
1147 /* Helper function. Force an update of the current architecture.
1148
1149 The actual architecture selected is determined by INFO, \`\`(gdb) set
1150 architecture'' et.al., the existing architecture and BFD's default
1151 architecture. INFO should be initialized to zero and then selected
1152 fields should be updated.
1153
1154 Returns non-zero if the update succeeds */
1155
1156 extern int gdbarch_update_p (struct gdbarch_info info);
1157
1158
1159
1160 /* Register per-architecture data-pointer.
1161
1162 Reserve space for a per-architecture data-pointer. An identifier
1163 for the reserved data-pointer is returned. That identifer should
1164 be saved in a local static variable.
1165
1166 The per-architecture data-pointer is either initialized explicitly
1167 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1168 gdbarch_data()).
1169
1170 Memory for the per-architecture data shall be allocated using
1171 gdbarch_obstack_zalloc. That memory will be deleted when the
1172 corresponding architecture object is deleted.
1173
1174 When a previously created architecture is re-selected, the
1175 per-architecture data-pointer for that previous architecture is
1176 restored. INIT() is not re-called.
1177
1178 Multiple registrarants for any architecture are allowed (and
1179 strongly encouraged). */
1180
1181 struct gdbarch_data;
1182
1183 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1184 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1185 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1186 struct gdbarch_data *data,
1187 void *pointer);
1188
1189 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1190
1191
1192 /* Register per-architecture memory region.
1193
1194 Provide a memory-region swap mechanism. Per-architecture memory
1195 region are created. These memory regions are swapped whenever the
1196 architecture is changed. For a new architecture, the memory region
1197 is initialized with zero (0) and the INIT function is called.
1198
1199 Memory regions are swapped / initialized in the order that they are
1200 registered. NULL DATA and/or INIT values can be specified.
1201
1202 New code should use register_gdbarch_data(). */
1203
1204 typedef void (gdbarch_swap_ftype) (void);
1205 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1206 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1207
1208
1209
1210 /* The target-system-dependent byte order is dynamic */
1211
1212 extern int target_byte_order;
1213 #ifndef TARGET_BYTE_ORDER
1214 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1215 #endif
1216
1217 extern int target_byte_order_auto;
1218 #ifndef TARGET_BYTE_ORDER_AUTO
1219 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1220 #endif
1221
1222
1223
1224 /* The target-system-dependent BFD architecture is dynamic */
1225
1226 extern int target_architecture_auto;
1227 #ifndef TARGET_ARCHITECTURE_AUTO
1228 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1229 #endif
1230
1231 extern const struct bfd_arch_info *target_architecture;
1232 #ifndef TARGET_ARCHITECTURE
1233 #define TARGET_ARCHITECTURE (target_architecture + 0)
1234 #endif
1235
1236
1237 /* Set the dynamic target-system-dependent parameters (architecture,
1238 byte-order, ...) using information found in the BFD */
1239
1240 extern void set_gdbarch_from_file (bfd *);
1241
1242
1243 /* Initialize the current architecture to the "first" one we find on
1244 our list. */
1245
1246 extern void initialize_current_architecture (void);
1247
1248 /* For non-multiarched targets, do any initialization of the default
1249 gdbarch object necessary after the _initialize_MODULE functions
1250 have run. */
1251 extern void initialize_non_multiarch (void);
1252
1253 /* gdbarch trace variable */
1254 extern int gdbarch_debug;
1255
1256 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1257
1258 #endif
1259 EOF
1260 exec 1>&2
1261 #../move-if-change new-gdbarch.h gdbarch.h
1262 compare_new gdbarch.h
1263
1264
1265 #
1266 # C file
1267 #
1268
1269 exec > new-gdbarch.c
1270 copyright
1271 cat <<EOF
1272
1273 #include "defs.h"
1274 #include "arch-utils.h"
1275
1276 #include "gdbcmd.h"
1277 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1278 #include "symcat.h"
1279
1280 #include "floatformat.h"
1281
1282 #include "gdb_assert.h"
1283 #include "gdb_string.h"
1284 #include "gdb-events.h"
1285 #include "reggroups.h"
1286 #include "osabi.h"
1287 #include "symfile.h" /* For entry_point_address. */
1288 #include "gdb_obstack.h"
1289
1290 /* Static function declarations */
1291
1292 static void verify_gdbarch (struct gdbarch *gdbarch);
1293 static void alloc_gdbarch_data (struct gdbarch *);
1294 static void init_gdbarch_swap (struct gdbarch *);
1295 static void clear_gdbarch_swap (struct gdbarch *);
1296 static void swapout_gdbarch_swap (struct gdbarch *);
1297 static void swapin_gdbarch_swap (struct gdbarch *);
1298
1299 /* Non-zero if we want to trace architecture code. */
1300
1301 #ifndef GDBARCH_DEBUG
1302 #define GDBARCH_DEBUG 0
1303 #endif
1304 int gdbarch_debug = GDBARCH_DEBUG;
1305
1306 EOF
1307
1308 # gdbarch open the gdbarch object
1309 printf "\n"
1310 printf "/* Maintain the struct gdbarch object */\n"
1311 printf "\n"
1312 printf "struct gdbarch\n"
1313 printf "{\n"
1314 printf " /* Has this architecture been fully initialized? */\n"
1315 printf " int initialized_p;\n"
1316 printf "\n"
1317 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1318 printf " struct obstack *obstack;\n"
1319 printf "\n"
1320 printf " /* basic architectural information */\n"
1321 function_list | while do_read
1322 do
1323 if class_is_info_p
1324 then
1325 printf " ${returntype} ${function};\n"
1326 fi
1327 done
1328 printf "\n"
1329 printf " /* target specific vector. */\n"
1330 printf " struct gdbarch_tdep *tdep;\n"
1331 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1332 printf "\n"
1333 printf " /* per-architecture data-pointers */\n"
1334 printf " unsigned nr_data;\n"
1335 printf " void **data;\n"
1336 printf "\n"
1337 printf " /* per-architecture swap-regions */\n"
1338 printf " struct gdbarch_swap *swap;\n"
1339 printf "\n"
1340 cat <<EOF
1341 /* Multi-arch values.
1342
1343 When extending this structure you must:
1344
1345 Add the field below.
1346
1347 Declare set/get functions and define the corresponding
1348 macro in gdbarch.h.
1349
1350 gdbarch_alloc(): If zero/NULL is not a suitable default,
1351 initialize the new field.
1352
1353 verify_gdbarch(): Confirm that the target updated the field
1354 correctly.
1355
1356 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1357 field is dumped out
1358
1359 \`\`startup_gdbarch()'': Append an initial value to the static
1360 variable (base values on the host's c-type system).
1361
1362 get_gdbarch(): Implement the set/get functions (probably using
1363 the macro's as shortcuts).
1364
1365 */
1366
1367 EOF
1368 function_list | while do_read
1369 do
1370 if class_is_variable_p
1371 then
1372 printf " ${returntype} ${function};\n"
1373 elif class_is_function_p
1374 then
1375 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1376 fi
1377 done
1378 printf "};\n"
1379
1380 # A pre-initialized vector
1381 printf "\n"
1382 printf "\n"
1383 cat <<EOF
1384 /* The default architecture uses host values (for want of a better
1385 choice). */
1386 EOF
1387 printf "\n"
1388 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1389 printf "\n"
1390 printf "struct gdbarch startup_gdbarch =\n"
1391 printf "{\n"
1392 printf " 1, /* Always initialized. */\n"
1393 printf " NULL, /* The obstack. */\n"
1394 printf " /* basic architecture information */\n"
1395 function_list | while do_read
1396 do
1397 if class_is_info_p
1398 then
1399 printf " ${staticdefault}, /* ${function} */\n"
1400 fi
1401 done
1402 cat <<EOF
1403 /* target specific vector and its dump routine */
1404 NULL, NULL,
1405 /*per-architecture data-pointers and swap regions */
1406 0, NULL, NULL,
1407 /* Multi-arch values */
1408 EOF
1409 function_list | while do_read
1410 do
1411 if class_is_function_p || class_is_variable_p
1412 then
1413 printf " ${staticdefault}, /* ${function} */\n"
1414 fi
1415 done
1416 cat <<EOF
1417 /* startup_gdbarch() */
1418 };
1419
1420 struct gdbarch *current_gdbarch = &startup_gdbarch;
1421
1422 /* Do any initialization needed for a non-multiarch configuration
1423 after the _initialize_MODULE functions have been run. */
1424 void
1425 initialize_non_multiarch (void)
1426 {
1427 alloc_gdbarch_data (&startup_gdbarch);
1428 /* Ensure that all swap areas are zeroed so that they again think
1429 they are starting from scratch. */
1430 clear_gdbarch_swap (&startup_gdbarch);
1431 init_gdbarch_swap (&startup_gdbarch);
1432 }
1433 EOF
1434
1435 # Create a new gdbarch struct
1436 printf "\n"
1437 printf "\n"
1438 cat <<EOF
1439 /* Create a new \`\`struct gdbarch'' based on information provided by
1440 \`\`struct gdbarch_info''. */
1441 EOF
1442 printf "\n"
1443 cat <<EOF
1444 struct gdbarch *
1445 gdbarch_alloc (const struct gdbarch_info *info,
1446 struct gdbarch_tdep *tdep)
1447 {
1448 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1449 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1450 the current local architecture and not the previous global
1451 architecture. This ensures that the new architectures initial
1452 values are not influenced by the previous architecture. Once
1453 everything is parameterised with gdbarch, this will go away. */
1454 struct gdbarch *current_gdbarch;
1455
1456 /* Create an obstack for allocating all the per-architecture memory,
1457 then use that to allocate the architecture vector. */
1458 struct obstack *obstack = XMALLOC (struct obstack);
1459 obstack_init (obstack);
1460 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1461 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1462 current_gdbarch->obstack = obstack;
1463
1464 alloc_gdbarch_data (current_gdbarch);
1465
1466 current_gdbarch->tdep = tdep;
1467 EOF
1468 printf "\n"
1469 function_list | while do_read
1470 do
1471 if class_is_info_p
1472 then
1473 printf " current_gdbarch->${function} = info->${function};\n"
1474 fi
1475 done
1476 printf "\n"
1477 printf " /* Force the explicit initialization of these. */\n"
1478 function_list | while do_read
1479 do
1480 if class_is_function_p || class_is_variable_p
1481 then
1482 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1483 then
1484 printf " current_gdbarch->${function} = ${predefault};\n"
1485 fi
1486 fi
1487 done
1488 cat <<EOF
1489 /* gdbarch_alloc() */
1490
1491 return current_gdbarch;
1492 }
1493 EOF
1494
1495 # Free a gdbarch struct.
1496 printf "\n"
1497 printf "\n"
1498 cat <<EOF
1499 /* Allocate extra space using the per-architecture obstack. */
1500
1501 void *
1502 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1503 {
1504 void *data = obstack_alloc (arch->obstack, size);
1505 memset (data, 0, size);
1506 return data;
1507 }
1508
1509
1510 /* Free a gdbarch struct. This should never happen in normal
1511 operation --- once you've created a gdbarch, you keep it around.
1512 However, if an architecture's init function encounters an error
1513 building the structure, it may need to clean up a partially
1514 constructed gdbarch. */
1515
1516 void
1517 gdbarch_free (struct gdbarch *arch)
1518 {
1519 struct obstack *obstack;
1520 gdb_assert (arch != NULL);
1521 gdb_assert (!arch->initialized_p);
1522 obstack = arch->obstack;
1523 obstack_free (obstack, 0); /* Includes the ARCH. */
1524 xfree (obstack);
1525 }
1526 EOF
1527
1528 # verify a new architecture
1529 printf "\n"
1530 printf "\n"
1531 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1532 printf "\n"
1533 cat <<EOF
1534 static void
1535 verify_gdbarch (struct gdbarch *gdbarch)
1536 {
1537 struct ui_file *log;
1538 struct cleanup *cleanups;
1539 long dummy;
1540 char *buf;
1541 log = mem_fileopen ();
1542 cleanups = make_cleanup_ui_file_delete (log);
1543 /* fundamental */
1544 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1545 fprintf_unfiltered (log, "\n\tbyte-order");
1546 if (gdbarch->bfd_arch_info == NULL)
1547 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1548 /* Check those that need to be defined for the given multi-arch level. */
1549 EOF
1550 function_list | while do_read
1551 do
1552 if class_is_function_p || class_is_variable_p
1553 then
1554 if [ "x${invalid_p}" = "x0" ]
1555 then
1556 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1557 elif class_is_predicate_p
1558 then
1559 printf " /* Skip verify of ${function}, has predicate */\n"
1560 # FIXME: See do_read for potential simplification
1561 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1562 then
1563 printf " if (${invalid_p})\n"
1564 printf " gdbarch->${function} = ${postdefault};\n"
1565 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1566 then
1567 printf " if (gdbarch->${function} == ${predefault})\n"
1568 printf " gdbarch->${function} = ${postdefault};\n"
1569 elif [ -n "${postdefault}" ]
1570 then
1571 printf " if (gdbarch->${function} == 0)\n"
1572 printf " gdbarch->${function} = ${postdefault};\n"
1573 elif [ -n "${invalid_p}" ]
1574 then
1575 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1576 printf " && (${invalid_p}))\n"
1577 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1578 elif [ -n "${predefault}" ]
1579 then
1580 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1581 printf " && (gdbarch->${function} == ${predefault}))\n"
1582 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1583 fi
1584 fi
1585 done
1586 cat <<EOF
1587 buf = ui_file_xstrdup (log, &dummy);
1588 make_cleanup (xfree, buf);
1589 if (strlen (buf) > 0)
1590 internal_error (__FILE__, __LINE__,
1591 "verify_gdbarch: the following are invalid ...%s",
1592 buf);
1593 do_cleanups (cleanups);
1594 }
1595 EOF
1596
1597 # dump the structure
1598 printf "\n"
1599 printf "\n"
1600 cat <<EOF
1601 /* Print out the details of the current architecture. */
1602
1603 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1604 just happens to match the global variable \`\`current_gdbarch''. That
1605 way macros refering to that variable get the local and not the global
1606 version - ulgh. Once everything is parameterised with gdbarch, this
1607 will go away. */
1608
1609 void
1610 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1611 {
1612 fprintf_unfiltered (file,
1613 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1614 GDB_MULTI_ARCH);
1615 EOF
1616 function_list | sort -t: -k 3 | while do_read
1617 do
1618 # First the predicate
1619 if class_is_predicate_p
1620 then
1621 if class_is_multiarch_p
1622 then
1623 printf " fprintf_unfiltered (file,\n"
1624 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1625 printf " gdbarch_${function}_p (current_gdbarch));\n"
1626 else
1627 printf "#ifdef ${macro}_P\n"
1628 printf " fprintf_unfiltered (file,\n"
1629 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1630 printf " \"${macro}_P()\",\n"
1631 printf " XSTRING (${macro}_P ()));\n"
1632 printf " fprintf_unfiltered (file,\n"
1633 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1634 printf " ${macro}_P ());\n"
1635 printf "#endif\n"
1636 fi
1637 fi
1638 # multiarch functions don't have macros.
1639 if class_is_multiarch_p
1640 then
1641 printf " fprintf_unfiltered (file,\n"
1642 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1643 printf " (long) current_gdbarch->${function});\n"
1644 continue
1645 fi
1646 # Print the macro definition.
1647 printf "#ifdef ${macro}\n"
1648 if class_is_function_p
1649 then
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1652 printf " \"${macro}(${actual})\",\n"
1653 printf " XSTRING (${macro} (${actual})));\n"
1654 else
1655 printf " fprintf_unfiltered (file,\n"
1656 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1657 printf " XSTRING (${macro}));\n"
1658 fi
1659 if [ "x${print_p}" = "x()" ]
1660 then
1661 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1662 elif [ "x${print_p}" = "x0" ]
1663 then
1664 printf " /* skip print of ${macro}, print_p == 0. */\n"
1665 elif [ -n "${print_p}" ]
1666 then
1667 printf " if (${print_p})\n"
1668 printf " fprintf_unfiltered (file,\n"
1669 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1670 printf " ${print});\n"
1671 elif class_is_function_p
1672 then
1673 printf " fprintf_unfiltered (file,\n"
1674 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1675 printf " (long) current_gdbarch->${function}\n"
1676 printf " /*${macro} ()*/);\n"
1677 else
1678 printf " fprintf_unfiltered (file,\n"
1679 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1680 printf " ${print});\n"
1681 fi
1682 printf "#endif\n"
1683 done
1684 cat <<EOF
1685 if (current_gdbarch->dump_tdep != NULL)
1686 current_gdbarch->dump_tdep (current_gdbarch, file);
1687 }
1688 EOF
1689
1690
1691 # GET/SET
1692 printf "\n"
1693 cat <<EOF
1694 struct gdbarch_tdep *
1695 gdbarch_tdep (struct gdbarch *gdbarch)
1696 {
1697 if (gdbarch_debug >= 2)
1698 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1699 return gdbarch->tdep;
1700 }
1701 EOF
1702 printf "\n"
1703 function_list | while do_read
1704 do
1705 if class_is_predicate_p
1706 then
1707 printf "\n"
1708 printf "int\n"
1709 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1710 printf "{\n"
1711 printf " gdb_assert (gdbarch != NULL);\n"
1712 printf " return ${predicate};\n"
1713 printf "}\n"
1714 fi
1715 if class_is_function_p
1716 then
1717 printf "\n"
1718 printf "${returntype}\n"
1719 if [ "x${formal}" = "xvoid" ]
1720 then
1721 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1722 else
1723 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1724 fi
1725 printf "{\n"
1726 printf " gdb_assert (gdbarch != NULL);\n"
1727 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1728 if class_is_predicate_p && test -n "${predefault}"
1729 then
1730 # Allow a call to a function with a predicate.
1731 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1732 fi
1733 printf " if (gdbarch_debug >= 2)\n"
1734 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1735 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1736 then
1737 if class_is_multiarch_p
1738 then
1739 params="gdbarch"
1740 else
1741 params=""
1742 fi
1743 else
1744 if class_is_multiarch_p
1745 then
1746 params="gdbarch, ${actual}"
1747 else
1748 params="${actual}"
1749 fi
1750 fi
1751 if [ "x${returntype}" = "xvoid" ]
1752 then
1753 printf " gdbarch->${function} (${params});\n"
1754 else
1755 printf " return gdbarch->${function} (${params});\n"
1756 fi
1757 printf "}\n"
1758 printf "\n"
1759 printf "void\n"
1760 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1761 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1762 printf "{\n"
1763 printf " gdbarch->${function} = ${function};\n"
1764 printf "}\n"
1765 elif class_is_variable_p
1766 then
1767 printf "\n"
1768 printf "${returntype}\n"
1769 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1770 printf "{\n"
1771 printf " gdb_assert (gdbarch != NULL);\n"
1772 if [ "x${invalid_p}" = "x0" ]
1773 then
1774 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1775 elif [ -n "${invalid_p}" ]
1776 then
1777 printf " /* Check variable is valid. */\n"
1778 printf " gdb_assert (!(${invalid_p}));\n"
1779 elif [ -n "${predefault}" ]
1780 then
1781 printf " /* Check variable changed from pre-default. */\n"
1782 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1783 fi
1784 printf " if (gdbarch_debug >= 2)\n"
1785 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1786 printf " return gdbarch->${function};\n"
1787 printf "}\n"
1788 printf "\n"
1789 printf "void\n"
1790 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1791 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1792 printf "{\n"
1793 printf " gdbarch->${function} = ${function};\n"
1794 printf "}\n"
1795 elif class_is_info_p
1796 then
1797 printf "\n"
1798 printf "${returntype}\n"
1799 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1800 printf "{\n"
1801 printf " gdb_assert (gdbarch != NULL);\n"
1802 printf " if (gdbarch_debug >= 2)\n"
1803 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1804 printf " return gdbarch->${function};\n"
1805 printf "}\n"
1806 fi
1807 done
1808
1809 # All the trailing guff
1810 cat <<EOF
1811
1812
1813 /* Keep a registry of per-architecture data-pointers required by GDB
1814 modules. */
1815
1816 struct gdbarch_data
1817 {
1818 unsigned index;
1819 int init_p;
1820 gdbarch_data_init_ftype *init;
1821 };
1822
1823 struct gdbarch_data_registration
1824 {
1825 struct gdbarch_data *data;
1826 struct gdbarch_data_registration *next;
1827 };
1828
1829 struct gdbarch_data_registry
1830 {
1831 unsigned nr;
1832 struct gdbarch_data_registration *registrations;
1833 };
1834
1835 struct gdbarch_data_registry gdbarch_data_registry =
1836 {
1837 0, NULL,
1838 };
1839
1840 struct gdbarch_data *
1841 register_gdbarch_data (gdbarch_data_init_ftype *init)
1842 {
1843 struct gdbarch_data_registration **curr;
1844 /* Append the new registraration. */
1845 for (curr = &gdbarch_data_registry.registrations;
1846 (*curr) != NULL;
1847 curr = &(*curr)->next);
1848 (*curr) = XMALLOC (struct gdbarch_data_registration);
1849 (*curr)->next = NULL;
1850 (*curr)->data = XMALLOC (struct gdbarch_data);
1851 (*curr)->data->index = gdbarch_data_registry.nr++;
1852 (*curr)->data->init = init;
1853 (*curr)->data->init_p = 1;
1854 return (*curr)->data;
1855 }
1856
1857
1858 /* Create/delete the gdbarch data vector. */
1859
1860 static void
1861 alloc_gdbarch_data (struct gdbarch *gdbarch)
1862 {
1863 gdb_assert (gdbarch->data == NULL);
1864 gdbarch->nr_data = gdbarch_data_registry.nr;
1865 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1866 }
1867
1868 /* Initialize the current value of the specified per-architecture
1869 data-pointer. */
1870
1871 void
1872 set_gdbarch_data (struct gdbarch *gdbarch,
1873 struct gdbarch_data *data,
1874 void *pointer)
1875 {
1876 gdb_assert (data->index < gdbarch->nr_data);
1877 gdb_assert (gdbarch->data[data->index] == NULL);
1878 gdbarch->data[data->index] = pointer;
1879 }
1880
1881 /* Return the current value of the specified per-architecture
1882 data-pointer. */
1883
1884 void *
1885 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1886 {
1887 gdb_assert (data->index < gdbarch->nr_data);
1888 /* The data-pointer isn't initialized, call init() to get a value but
1889 only if the architecture initializaiton has completed. Otherwise
1890 punt - hope that the caller knows what they are doing. */
1891 if (gdbarch->data[data->index] == NULL
1892 && gdbarch->initialized_p)
1893 {
1894 /* Be careful to detect an initialization cycle. */
1895 gdb_assert (data->init_p);
1896 data->init_p = 0;
1897 gdb_assert (data->init != NULL);
1898 gdbarch->data[data->index] = data->init (gdbarch);
1899 data->init_p = 1;
1900 gdb_assert (gdbarch->data[data->index] != NULL);
1901 }
1902 return gdbarch->data[data->index];
1903 }
1904
1905
1906
1907 /* Keep a registry of swapped data required by GDB modules. */
1908
1909 struct gdbarch_swap
1910 {
1911 void *swap;
1912 struct gdbarch_swap_registration *source;
1913 struct gdbarch_swap *next;
1914 };
1915
1916 struct gdbarch_swap_registration
1917 {
1918 void *data;
1919 unsigned long sizeof_data;
1920 gdbarch_swap_ftype *init;
1921 struct gdbarch_swap_registration *next;
1922 };
1923
1924 struct gdbarch_swap_registry
1925 {
1926 int nr;
1927 struct gdbarch_swap_registration *registrations;
1928 };
1929
1930 struct gdbarch_swap_registry gdbarch_swap_registry =
1931 {
1932 0, NULL,
1933 };
1934
1935 void
1936 register_gdbarch_swap (void *data,
1937 unsigned long sizeof_data,
1938 gdbarch_swap_ftype *init)
1939 {
1940 struct gdbarch_swap_registration **rego;
1941 for (rego = &gdbarch_swap_registry.registrations;
1942 (*rego) != NULL;
1943 rego = &(*rego)->next);
1944 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1945 (*rego)->next = NULL;
1946 (*rego)->init = init;
1947 (*rego)->data = data;
1948 (*rego)->sizeof_data = sizeof_data;
1949 }
1950
1951 static void
1952 clear_gdbarch_swap (struct gdbarch *gdbarch)
1953 {
1954 struct gdbarch_swap *curr;
1955 for (curr = gdbarch->swap;
1956 curr != NULL;
1957 curr = curr->next)
1958 {
1959 memset (curr->source->data, 0, curr->source->sizeof_data);
1960 }
1961 }
1962
1963 static void
1964 init_gdbarch_swap (struct gdbarch *gdbarch)
1965 {
1966 struct gdbarch_swap_registration *rego;
1967 struct gdbarch_swap **curr = &gdbarch->swap;
1968 for (rego = gdbarch_swap_registry.registrations;
1969 rego != NULL;
1970 rego = rego->next)
1971 {
1972 if (rego->data != NULL)
1973 {
1974 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1975 (*curr)->source = rego;
1976 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1977 (*curr)->next = NULL;
1978 curr = &(*curr)->next;
1979 }
1980 if (rego->init != NULL)
1981 rego->init ();
1982 }
1983 }
1984
1985 static void
1986 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1987 {
1988 struct gdbarch_swap *curr;
1989 for (curr = gdbarch->swap;
1990 curr != NULL;
1991 curr = curr->next)
1992 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1993 }
1994
1995 static void
1996 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1997 {
1998 struct gdbarch_swap *curr;
1999 for (curr = gdbarch->swap;
2000 curr != NULL;
2001 curr = curr->next)
2002 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2003 }
2004
2005
2006 /* Keep a registry of the architectures known by GDB. */
2007
2008 struct gdbarch_registration
2009 {
2010 enum bfd_architecture bfd_architecture;
2011 gdbarch_init_ftype *init;
2012 gdbarch_dump_tdep_ftype *dump_tdep;
2013 struct gdbarch_list *arches;
2014 struct gdbarch_registration *next;
2015 };
2016
2017 static struct gdbarch_registration *gdbarch_registry = NULL;
2018
2019 static void
2020 append_name (const char ***buf, int *nr, const char *name)
2021 {
2022 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2023 (*buf)[*nr] = name;
2024 *nr += 1;
2025 }
2026
2027 const char **
2028 gdbarch_printable_names (void)
2029 {
2030 /* Accumulate a list of names based on the registed list of
2031 architectures. */
2032 enum bfd_architecture a;
2033 int nr_arches = 0;
2034 const char **arches = NULL;
2035 struct gdbarch_registration *rego;
2036 for (rego = gdbarch_registry;
2037 rego != NULL;
2038 rego = rego->next)
2039 {
2040 const struct bfd_arch_info *ap;
2041 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2042 if (ap == NULL)
2043 internal_error (__FILE__, __LINE__,
2044 "gdbarch_architecture_names: multi-arch unknown");
2045 do
2046 {
2047 append_name (&arches, &nr_arches, ap->printable_name);
2048 ap = ap->next;
2049 }
2050 while (ap != NULL);
2051 }
2052 append_name (&arches, &nr_arches, NULL);
2053 return arches;
2054 }
2055
2056
2057 void
2058 gdbarch_register (enum bfd_architecture bfd_architecture,
2059 gdbarch_init_ftype *init,
2060 gdbarch_dump_tdep_ftype *dump_tdep)
2061 {
2062 struct gdbarch_registration **curr;
2063 const struct bfd_arch_info *bfd_arch_info;
2064 /* Check that BFD recognizes this architecture */
2065 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2066 if (bfd_arch_info == NULL)
2067 {
2068 internal_error (__FILE__, __LINE__,
2069 "gdbarch: Attempt to register unknown architecture (%d)",
2070 bfd_architecture);
2071 }
2072 /* Check that we haven't seen this architecture before */
2073 for (curr = &gdbarch_registry;
2074 (*curr) != NULL;
2075 curr = &(*curr)->next)
2076 {
2077 if (bfd_architecture == (*curr)->bfd_architecture)
2078 internal_error (__FILE__, __LINE__,
2079 "gdbarch: Duplicate registraration of architecture (%s)",
2080 bfd_arch_info->printable_name);
2081 }
2082 /* log it */
2083 if (gdbarch_debug)
2084 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2085 bfd_arch_info->printable_name,
2086 (long) init);
2087 /* Append it */
2088 (*curr) = XMALLOC (struct gdbarch_registration);
2089 (*curr)->bfd_architecture = bfd_architecture;
2090 (*curr)->init = init;
2091 (*curr)->dump_tdep = dump_tdep;
2092 (*curr)->arches = NULL;
2093 (*curr)->next = NULL;
2094 }
2095
2096 void
2097 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2098 gdbarch_init_ftype *init)
2099 {
2100 gdbarch_register (bfd_architecture, init, NULL);
2101 }
2102
2103
2104 /* Look for an architecture using gdbarch_info. Base search on only
2105 BFD_ARCH_INFO and BYTE_ORDER. */
2106
2107 struct gdbarch_list *
2108 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2109 const struct gdbarch_info *info)
2110 {
2111 for (; arches != NULL; arches = arches->next)
2112 {
2113 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2114 continue;
2115 if (info->byte_order != arches->gdbarch->byte_order)
2116 continue;
2117 if (info->osabi != arches->gdbarch->osabi)
2118 continue;
2119 return arches;
2120 }
2121 return NULL;
2122 }
2123
2124
2125 /* Update the current architecture. Return ZERO if the update request
2126 failed. */
2127
2128 int
2129 gdbarch_update_p (struct gdbarch_info info)
2130 {
2131 struct gdbarch *new_gdbarch;
2132 struct gdbarch *old_gdbarch;
2133 struct gdbarch_registration *rego;
2134
2135 /* Fill in missing parts of the INFO struct using a number of
2136 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2137
2138 /* \`\`(gdb) set architecture ...'' */
2139 if (info.bfd_arch_info == NULL
2140 && !TARGET_ARCHITECTURE_AUTO)
2141 info.bfd_arch_info = TARGET_ARCHITECTURE;
2142 if (info.bfd_arch_info == NULL
2143 && info.abfd != NULL
2144 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2145 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2146 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2147 if (info.bfd_arch_info == NULL)
2148 info.bfd_arch_info = TARGET_ARCHITECTURE;
2149
2150 /* \`\`(gdb) set byte-order ...'' */
2151 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2152 && !TARGET_BYTE_ORDER_AUTO)
2153 info.byte_order = TARGET_BYTE_ORDER;
2154 /* From the INFO struct. */
2155 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2156 && info.abfd != NULL)
2157 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2158 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2159 : BFD_ENDIAN_UNKNOWN);
2160 /* From the current target. */
2161 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2162 info.byte_order = TARGET_BYTE_ORDER;
2163
2164 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2165 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2166 info.osabi = gdbarch_lookup_osabi (info.abfd);
2167 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2168 info.osabi = current_gdbarch->osabi;
2169
2170 /* Must have found some sort of architecture. */
2171 gdb_assert (info.bfd_arch_info != NULL);
2172
2173 if (gdbarch_debug)
2174 {
2175 fprintf_unfiltered (gdb_stdlog,
2176 "gdbarch_update: info.bfd_arch_info %s\n",
2177 (info.bfd_arch_info != NULL
2178 ? info.bfd_arch_info->printable_name
2179 : "(null)"));
2180 fprintf_unfiltered (gdb_stdlog,
2181 "gdbarch_update: info.byte_order %d (%s)\n",
2182 info.byte_order,
2183 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2184 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2185 : "default"));
2186 fprintf_unfiltered (gdb_stdlog,
2187 "gdbarch_update: info.osabi %d (%s)\n",
2188 info.osabi, gdbarch_osabi_name (info.osabi));
2189 fprintf_unfiltered (gdb_stdlog,
2190 "gdbarch_update: info.abfd 0x%lx\n",
2191 (long) info.abfd);
2192 fprintf_unfiltered (gdb_stdlog,
2193 "gdbarch_update: info.tdep_info 0x%lx\n",
2194 (long) info.tdep_info);
2195 }
2196
2197 /* Find the target that knows about this architecture. */
2198 for (rego = gdbarch_registry;
2199 rego != NULL;
2200 rego = rego->next)
2201 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2202 break;
2203 if (rego == NULL)
2204 {
2205 if (gdbarch_debug)
2206 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2207 return 0;
2208 }
2209
2210 /* Swap the data belonging to the old target out setting the
2211 installed data to zero. This stops the ->init() function trying
2212 to refer to the previous architecture's global data structures. */
2213 swapout_gdbarch_swap (current_gdbarch);
2214 clear_gdbarch_swap (current_gdbarch);
2215
2216 /* Save the previously selected architecture, setting the global to
2217 NULL. This stops ->init() trying to use the previous
2218 architecture's configuration. The previous architecture may not
2219 even be of the same architecture family. The most recent
2220 architecture of the same family is found at the head of the
2221 rego->arches list. */
2222 old_gdbarch = current_gdbarch;
2223 current_gdbarch = NULL;
2224
2225 /* Ask the target for a replacement architecture. */
2226 new_gdbarch = rego->init (info, rego->arches);
2227
2228 /* Did the target like it? No. Reject the change and revert to the
2229 old architecture. */
2230 if (new_gdbarch == NULL)
2231 {
2232 if (gdbarch_debug)
2233 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2234 swapin_gdbarch_swap (old_gdbarch);
2235 current_gdbarch = old_gdbarch;
2236 return 0;
2237 }
2238
2239 /* Did the architecture change? No. Oops, put the old architecture
2240 back. */
2241 if (old_gdbarch == new_gdbarch)
2242 {
2243 if (gdbarch_debug)
2244 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2245 (long) new_gdbarch,
2246 new_gdbarch->bfd_arch_info->printable_name);
2247 swapin_gdbarch_swap (old_gdbarch);
2248 current_gdbarch = old_gdbarch;
2249 return 1;
2250 }
2251
2252 /* Is this a pre-existing architecture? Yes. Move it to the front
2253 of the list of architectures (keeping the list sorted Most
2254 Recently Used) and then copy it in. */
2255 {
2256 struct gdbarch_list **list;
2257 for (list = &rego->arches;
2258 (*list) != NULL;
2259 list = &(*list)->next)
2260 {
2261 if ((*list)->gdbarch == new_gdbarch)
2262 {
2263 struct gdbarch_list *this;
2264 if (gdbarch_debug)
2265 fprintf_unfiltered (gdb_stdlog,
2266 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2267 (long) new_gdbarch,
2268 new_gdbarch->bfd_arch_info->printable_name);
2269 /* Unlink this. */
2270 this = (*list);
2271 (*list) = this->next;
2272 /* Insert in the front. */
2273 this->next = rego->arches;
2274 rego->arches = this;
2275 /* Copy the new architecture in. */
2276 current_gdbarch = new_gdbarch;
2277 swapin_gdbarch_swap (new_gdbarch);
2278 architecture_changed_event ();
2279 return 1;
2280 }
2281 }
2282 }
2283
2284 /* Prepend this new architecture to the architecture list (keep the
2285 list sorted Most Recently Used). */
2286 {
2287 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2288 this->next = rego->arches;
2289 this->gdbarch = new_gdbarch;
2290 rego->arches = this;
2291 }
2292
2293 /* Switch to this new architecture marking it initialized. */
2294 current_gdbarch = new_gdbarch;
2295 current_gdbarch->initialized_p = 1;
2296 if (gdbarch_debug)
2297 {
2298 fprintf_unfiltered (gdb_stdlog,
2299 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2300 (long) new_gdbarch,
2301 new_gdbarch->bfd_arch_info->printable_name);
2302 }
2303
2304 /* Check that the newly installed architecture is valid. Plug in
2305 any post init values. */
2306 new_gdbarch->dump_tdep = rego->dump_tdep;
2307 verify_gdbarch (new_gdbarch);
2308
2309 /* Initialize the per-architecture memory (swap) areas.
2310 CURRENT_GDBARCH must be update before these modules are
2311 called. */
2312 init_gdbarch_swap (new_gdbarch);
2313
2314 /* Initialize the per-architecture data. CURRENT_GDBARCH
2315 must be updated before these modules are called. */
2316 architecture_changed_event ();
2317
2318 if (gdbarch_debug)
2319 gdbarch_dump (current_gdbarch, gdb_stdlog);
2320
2321 return 1;
2322 }
2323
2324
2325 extern void _initialize_gdbarch (void);
2326
2327 void
2328 _initialize_gdbarch (void)
2329 {
2330 struct cmd_list_element *c;
2331
2332 add_show_from_set (add_set_cmd ("arch",
2333 class_maintenance,
2334 var_zinteger,
2335 (char *)&gdbarch_debug,
2336 "Set architecture debugging.\\n\\
2337 When non-zero, architecture debugging is enabled.", &setdebuglist),
2338 &showdebuglist);
2339 c = add_set_cmd ("archdebug",
2340 class_maintenance,
2341 var_zinteger,
2342 (char *)&gdbarch_debug,
2343 "Set architecture debugging.\\n\\
2344 When non-zero, architecture debugging is enabled.", &setlist);
2345
2346 deprecate_cmd (c, "set debug arch");
2347 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2348 }
2349 EOF
2350
2351 # close things off
2352 exec 1>&2
2353 #../move-if-change new-gdbarch.c gdbarch.c
2354 compare_new gdbarch.c
This page took 0.085585 seconds and 4 git commands to generate.