* remote-vx.c (net_wait): Fix typo from PIDGET change.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault="0"
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 # Function for getting target's idea of a frame pointer. FIXME: GDB's
392 # whole scheme for dealing with "frames" and "frame pointers" needs a
393 # serious shakedown.
394 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
395 #
396 M:::void:register_read:int regnum, char *buf:regnum, buf:
397 M:::void:register_write:int regnum, char *buf:regnum, buf:
398 #
399 v:2:NUM_REGS:int:num_regs::::0:-1
400 # This macro gives the number of pseudo-registers that live in the
401 # register namespace but do not get fetched or stored on the target.
402 # These pseudo-registers may be aliases for other registers,
403 # combinations of other registers, or they may be computed by GDB.
404 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405 v:2:SP_REGNUM:int:sp_regnum::::0:-1
406 v:2:FP_REGNUM:int:fp_regnum::::0:-1
407 v:2:PC_REGNUM:int:pc_regnum::::0:-1
408 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
414 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
416 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417 # Convert from an sdb register number to an internal gdb register number.
418 # This should be defined in tm.h, if REGISTER_NAMES is not set up
419 # to map one to one onto the sdb register numbers.
420 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423 v:2:REGISTER_SIZE:int:register_size::::0:-1
424 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432 # MAP a GDB RAW register number onto a simulator register number. See
433 # also include/...-sim.h.
434 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
438 #
439 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
455 #
456 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
460 #
461 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be updated. Typically it will be defined on a per-architecture
466 # basis.
467 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be set or stored. Typically it will be defined on a
470 # per-architecture basis.
471 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
472 #
473 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
475 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
476 #
477 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
478 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
479 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
480 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
481 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
482 f:2:POP_FRAME:void:pop_frame:void:-:::0
483 #
484 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
485 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
486 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
487 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
488 #
489 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
490 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
491 #
492 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
493 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
494 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
495 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
496 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
497 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
498 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
499 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
500 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
501 #
502 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
503 #
504 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
505 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
506 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
507 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
508 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
509 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
510 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
511 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
512 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
513 #
514 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
515 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
516 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
517 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
518 v:2:PARM_BOUNDARY:int:parm_boundary
519 #
520 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
521 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
522 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
523 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
524 # On some machines there are bits in addresses which are not really
525 # part of the address, but are used by the kernel, the hardware, etc.
526 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
527 # we get a "real" address such as one would find in a symbol table.
528 # This is used only for addresses of instructions, and even then I'm
529 # not sure it's used in all contexts. It exists to deal with there
530 # being a few stray bits in the PC which would mislead us, not as some
531 # sort of generic thing to handle alignment or segmentation (it's
532 # possible it should be in TARGET_READ_PC instead).
533 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
534 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
535 # the target needs software single step. An ISA method to implement it.
536 #
537 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
538 # using the breakpoint system instead of blatting memory directly (as with rs6000).
539 #
540 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
541 # single step. If not, then implement single step using breakpoints.
542 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
543 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
544 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
545 EOF
546 }
547
548 #
549 # The .log file
550 #
551 exec > new-gdbarch.log
552 function_list | while do_read
553 do
554 cat <<EOF
555 ${class} ${macro}(${actual})
556 ${returntype} ${function} ($formal)${attrib}
557 EOF
558 for r in ${read}
559 do
560 eval echo \"\ \ \ \ ${r}=\${${r}}\"
561 done
562 # #fallbackdefault=${fallbackdefault}
563 # #valid_p=${valid_p}
564 #EOF
565 if class_is_predicate_p && fallback_default_p
566 then
567 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
568 kill $$
569 exit 1
570 fi
571 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
572 then
573 echo "Error: postdefault is useless when invalid_p=0" 1>&2
574 kill $$
575 exit 1
576 fi
577 echo ""
578 done
579
580 exec 1>&2
581 compare_new gdbarch.log
582
583
584 copyright ()
585 {
586 cat <<EOF
587 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
588
589 /* Dynamic architecture support for GDB, the GNU debugger.
590 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
591
592 This file is part of GDB.
593
594 This program is free software; you can redistribute it and/or modify
595 it under the terms of the GNU General Public License as published by
596 the Free Software Foundation; either version 2 of the License, or
597 (at your option) any later version.
598
599 This program is distributed in the hope that it will be useful,
600 but WITHOUT ANY WARRANTY; without even the implied warranty of
601 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
602 GNU General Public License for more details.
603
604 You should have received a copy of the GNU General Public License
605 along with this program; if not, write to the Free Software
606 Foundation, Inc., 59 Temple Place - Suite 330,
607 Boston, MA 02111-1307, USA. */
608
609 /* This file was created with the aid of \`\`gdbarch.sh''.
610
611 The Bourne shell script \`\`gdbarch.sh'' creates the files
612 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
613 against the existing \`\`gdbarch.[hc]''. Any differences found
614 being reported.
615
616 If editing this file, please also run gdbarch.sh and merge any
617 changes into that script. Conversely, when making sweeping changes
618 to this file, modifying gdbarch.sh and using its output may prove
619 easier. */
620
621 EOF
622 }
623
624 #
625 # The .h file
626 #
627
628 exec > new-gdbarch.h
629 copyright
630 cat <<EOF
631 #ifndef GDBARCH_H
632 #define GDBARCH_H
633
634 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
635 #if !GDB_MULTI_ARCH
636 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
637 #endif
638
639 struct frame_info;
640 struct value;
641
642
643 extern struct gdbarch *current_gdbarch;
644
645
646 /* If any of the following are defined, the target wasn't correctly
647 converted. */
648
649 #if GDB_MULTI_ARCH
650 #if defined (EXTRA_FRAME_INFO)
651 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
652 #endif
653 #endif
654
655 #if GDB_MULTI_ARCH
656 #if defined (FRAME_FIND_SAVED_REGS)
657 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
658 #endif
659 #endif
660
661 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
662 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
663 #endif
664 EOF
665
666 # function typedef's
667 printf "\n"
668 printf "\n"
669 printf "/* The following are pre-initialized by GDBARCH. */\n"
670 function_list | while do_read
671 do
672 if class_is_info_p
673 then
674 printf "\n"
675 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
676 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
677 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
678 printf "#error \"Non multi-arch definition of ${macro}\"\n"
679 printf "#endif\n"
680 printf "#if GDB_MULTI_ARCH\n"
681 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
682 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
683 printf "#endif\n"
684 printf "#endif\n"
685 fi
686 done
687
688 # function typedef's
689 printf "\n"
690 printf "\n"
691 printf "/* The following are initialized by the target dependent code. */\n"
692 function_list | while do_read
693 do
694 if [ -n "${comment}" ]
695 then
696 echo "${comment}" | sed \
697 -e '2 s,#,/*,' \
698 -e '3,$ s,#, ,' \
699 -e '$ s,$, */,'
700 fi
701 if class_is_multiarch_p
702 then
703 if class_is_predicate_p
704 then
705 printf "\n"
706 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
707 fi
708 else
709 if class_is_predicate_p
710 then
711 printf "\n"
712 printf "#if defined (${macro})\n"
713 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
714 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
715 printf "#if !defined (${macro}_P)\n"
716 printf "#define ${macro}_P() (1)\n"
717 printf "#endif\n"
718 printf "#endif\n"
719 printf "\n"
720 printf "/* Default predicate for non- multi-arch targets. */\n"
721 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
722 printf "#define ${macro}_P() (0)\n"
723 printf "#endif\n"
724 printf "\n"
725 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
726 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
727 printf "#error \"Non multi-arch definition of ${macro}\"\n"
728 printf "#endif\n"
729 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
730 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
731 printf "#endif\n"
732 fi
733 fi
734 if class_is_variable_p
735 then
736 if fallback_default_p || class_is_predicate_p
737 then
738 printf "\n"
739 printf "/* Default (value) for non- multi-arch platforms. */\n"
740 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
741 echo "#define ${macro} (${fallbackdefault})" \
742 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
743 printf "#endif\n"
744 fi
745 printf "\n"
746 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
747 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
748 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
749 printf "#error \"Non multi-arch definition of ${macro}\"\n"
750 printf "#endif\n"
751 printf "#if GDB_MULTI_ARCH\n"
752 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
753 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
754 printf "#endif\n"
755 printf "#endif\n"
756 fi
757 if class_is_function_p
758 then
759 if class_is_multiarch_p ; then :
760 elif fallback_default_p || class_is_predicate_p
761 then
762 printf "\n"
763 printf "/* Default (function) for non- multi-arch platforms. */\n"
764 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
765 if [ "x${fallbackdefault}" = "x0" ]
766 then
767 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
768 else
769 # FIXME: Should be passing current_gdbarch through!
770 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
771 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
772 fi
773 printf "#endif\n"
774 fi
775 printf "\n"
776 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
777 then
778 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
779 elif class_is_multiarch_p
780 then
781 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
782 else
783 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
784 fi
785 if [ "x${formal}" = "xvoid" ]
786 then
787 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
788 else
789 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
790 fi
791 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
792 if class_is_multiarch_p ; then :
793 else
794 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
795 printf "#error \"Non multi-arch definition of ${macro}\"\n"
796 printf "#endif\n"
797 printf "#if GDB_MULTI_ARCH\n"
798 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
799 if [ "x${actual}" = "x" ]
800 then
801 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
802 elif [ "x${actual}" = "x-" ]
803 then
804 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
805 else
806 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
807 fi
808 printf "#endif\n"
809 printf "#endif\n"
810 fi
811 fi
812 done
813
814 # close it off
815 cat <<EOF
816
817 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
818
819
820 /* Mechanism for co-ordinating the selection of a specific
821 architecture.
822
823 GDB targets (*-tdep.c) can register an interest in a specific
824 architecture. Other GDB components can register a need to maintain
825 per-architecture data.
826
827 The mechanisms below ensures that there is only a loose connection
828 between the set-architecture command and the various GDB
829 components. Each component can independently register their need
830 to maintain architecture specific data with gdbarch.
831
832 Pragmatics:
833
834 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
835 didn't scale.
836
837 The more traditional mega-struct containing architecture specific
838 data for all the various GDB components was also considered. Since
839 GDB is built from a variable number of (fairly independent)
840 components it was determined that the global aproach was not
841 applicable. */
842
843
844 /* Register a new architectural family with GDB.
845
846 Register support for the specified ARCHITECTURE with GDB. When
847 gdbarch determines that the specified architecture has been
848 selected, the corresponding INIT function is called.
849
850 --
851
852 The INIT function takes two parameters: INFO which contains the
853 information available to gdbarch about the (possibly new)
854 architecture; ARCHES which is a list of the previously created
855 \`\`struct gdbarch'' for this architecture.
856
857 The INIT function parameter INFO shall, as far as possible, be
858 pre-initialized with information obtained from INFO.ABFD or
859 previously selected architecture (if similar). INIT shall ensure
860 that the INFO.BYTE_ORDER is non-zero.
861
862 The INIT function shall return any of: NULL - indicating that it
863 doesn't recognize the selected architecture; an existing \`\`struct
864 gdbarch'' from the ARCHES list - indicating that the new
865 architecture is just a synonym for an earlier architecture (see
866 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
867 - that describes the selected architecture (see gdbarch_alloc()).
868
869 The DUMP_TDEP function shall print out all target specific values.
870 Care should be taken to ensure that the function works in both the
871 multi-arch and non- multi-arch cases. */
872
873 struct gdbarch_list
874 {
875 struct gdbarch *gdbarch;
876 struct gdbarch_list *next;
877 };
878
879 struct gdbarch_info
880 {
881 /* Use default: NULL (ZERO). */
882 const struct bfd_arch_info *bfd_arch_info;
883
884 /* Use default: 0 (ZERO). */
885 int byte_order;
886
887 /* Use default: NULL (ZERO). */
888 bfd *abfd;
889
890 /* Use default: NULL (ZERO). */
891 struct gdbarch_tdep_info *tdep_info;
892 };
893
894 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
895 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
896
897 /* DEPRECATED - use gdbarch_register() */
898 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
899
900 extern void gdbarch_register (enum bfd_architecture architecture,
901 gdbarch_init_ftype *,
902 gdbarch_dump_tdep_ftype *);
903
904
905 /* Return a freshly allocated, NULL terminated, array of the valid
906 architecture names. Since architectures are registered during the
907 _initialize phase this function only returns useful information
908 once initialization has been completed. */
909
910 extern const char **gdbarch_printable_names (void);
911
912
913 /* Helper function. Search the list of ARCHES for a GDBARCH that
914 matches the information provided by INFO. */
915
916 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
917
918
919 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
920 basic initialization using values obtained from the INFO andTDEP
921 parameters. set_gdbarch_*() functions are called to complete the
922 initialization of the object. */
923
924 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
925
926
927 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
928 It is assumed that the caller freeds the \`\`struct
929 gdbarch_tdep''. */
930
931 extern void gdbarch_free (struct gdbarch *);
932
933
934 /* Helper function. Force an update of the current architecture.
935
936 The actual architecture selected is determined by INFO, \`\`(gdb) set
937 architecture'' et.al., the existing architecture and BFD's default
938 architecture. INFO should be initialized to zero and then selected
939 fields should be updated.
940
941 Returns non-zero if the update succeeds */
942
943 extern int gdbarch_update_p (struct gdbarch_info info);
944
945
946
947 /* Register per-architecture data-pointer.
948
949 Reserve space for a per-architecture data-pointer. An identifier
950 for the reserved data-pointer is returned. That identifer should
951 be saved in a local static variable.
952
953 The per-architecture data-pointer can be initialized in one of two
954 ways: The value can be set explicitly using a call to
955 set_gdbarch_data(); the value can be set implicitly using the value
956 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
957 called after the basic architecture vector has been created.
958
959 When a previously created architecture is re-selected, the
960 per-architecture data-pointer for that previous architecture is
961 restored. INIT() is not called.
962
963 During initialization, multiple assignments of the data-pointer are
964 allowed, non-NULL values are deleted by calling FREE(). If the
965 architecture is deleted using gdbarch_free() all non-NULL data
966 pointers are also deleted using FREE().
967
968 Multiple registrarants for any architecture are allowed (and
969 strongly encouraged). */
970
971 struct gdbarch_data;
972
973 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
974 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
975 void *pointer);
976 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
977 gdbarch_data_free_ftype *free);
978 extern void set_gdbarch_data (struct gdbarch *gdbarch,
979 struct gdbarch_data *data,
980 void *pointer);
981
982 extern void *gdbarch_data (struct gdbarch_data*);
983
984
985 /* Register per-architecture memory region.
986
987 Provide a memory-region swap mechanism. Per-architecture memory
988 region are created. These memory regions are swapped whenever the
989 architecture is changed. For a new architecture, the memory region
990 is initialized with zero (0) and the INIT function is called.
991
992 Memory regions are swapped / initialized in the order that they are
993 registered. NULL DATA and/or INIT values can be specified.
994
995 New code should use register_gdbarch_data(). */
996
997 typedef void (gdbarch_swap_ftype) (void);
998 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
999 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1000
1001
1002
1003 /* The target-system-dependent byte order is dynamic */
1004
1005 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1006 is selectable at runtime. The user can use the \`\`set endian''
1007 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1008 target_byte_order should be auto-detected (from the program image
1009 say). */
1010
1011 #if GDB_MULTI_ARCH
1012 /* Multi-arch GDB is always bi-endian. */
1013 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1014 #endif
1015
1016 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1017 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1018 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1019 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1020 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1021 #else
1022 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1023 #endif
1024 #endif
1025
1026 extern int target_byte_order;
1027 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1028 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1029 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1030 #undef TARGET_BYTE_ORDER
1031 #endif
1032 #ifndef TARGET_BYTE_ORDER
1033 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1034 #endif
1035
1036 extern int target_byte_order_auto;
1037 #ifndef TARGET_BYTE_ORDER_AUTO
1038 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1039 #endif
1040
1041
1042
1043 /* The target-system-dependent BFD architecture is dynamic */
1044
1045 extern int target_architecture_auto;
1046 #ifndef TARGET_ARCHITECTURE_AUTO
1047 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1048 #endif
1049
1050 extern const struct bfd_arch_info *target_architecture;
1051 #ifndef TARGET_ARCHITECTURE
1052 #define TARGET_ARCHITECTURE (target_architecture + 0)
1053 #endif
1054
1055
1056 /* The target-system-dependent disassembler is semi-dynamic */
1057
1058 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1059 unsigned int len, disassemble_info *info);
1060
1061 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1062 disassemble_info *info);
1063
1064 extern void dis_asm_print_address (bfd_vma addr,
1065 disassemble_info *info);
1066
1067 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1068 extern disassemble_info tm_print_insn_info;
1069 #ifndef TARGET_PRINT_INSN_INFO
1070 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1071 #endif
1072
1073
1074
1075 /* Set the dynamic target-system-dependent parameters (architecture,
1076 byte-order, ...) using information found in the BFD */
1077
1078 extern void set_gdbarch_from_file (bfd *);
1079
1080
1081 /* Initialize the current architecture to the "first" one we find on
1082 our list. */
1083
1084 extern void initialize_current_architecture (void);
1085
1086 /* For non-multiarched targets, do any initialization of the default
1087 gdbarch object necessary after the _initialize_MODULE functions
1088 have run. */
1089 extern void initialize_non_multiarch ();
1090
1091 /* gdbarch trace variable */
1092 extern int gdbarch_debug;
1093
1094 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1095
1096 #endif
1097 EOF
1098 exec 1>&2
1099 #../move-if-change new-gdbarch.h gdbarch.h
1100 compare_new gdbarch.h
1101
1102
1103 #
1104 # C file
1105 #
1106
1107 exec > new-gdbarch.c
1108 copyright
1109 cat <<EOF
1110
1111 #include "defs.h"
1112 #include "arch-utils.h"
1113
1114 #if GDB_MULTI_ARCH
1115 #include "gdbcmd.h"
1116 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1117 #else
1118 /* Just include everything in sight so that the every old definition
1119 of macro is visible. */
1120 #include "gdb_string.h"
1121 #include <ctype.h>
1122 #include "symtab.h"
1123 #include "frame.h"
1124 #include "inferior.h"
1125 #include "breakpoint.h"
1126 #include "gdb_wait.h"
1127 #include "gdbcore.h"
1128 #include "gdbcmd.h"
1129 #include "target.h"
1130 #include "gdbthread.h"
1131 #include "annotate.h"
1132 #include "symfile.h" /* for overlay functions */
1133 #include "value.h" /* For old tm.h/nm.h macros. */
1134 #endif
1135 #include "symcat.h"
1136
1137 #include "floatformat.h"
1138
1139 #include "gdb_assert.h"
1140 #include "gdb-events.h"
1141
1142 /* Static function declarations */
1143
1144 static void verify_gdbarch (struct gdbarch *gdbarch);
1145 static void alloc_gdbarch_data (struct gdbarch *);
1146 static void init_gdbarch_data (struct gdbarch *);
1147 static void free_gdbarch_data (struct gdbarch *);
1148 static void init_gdbarch_swap (struct gdbarch *);
1149 static void swapout_gdbarch_swap (struct gdbarch *);
1150 static void swapin_gdbarch_swap (struct gdbarch *);
1151
1152 /* Convenience macro for allocting typesafe memory. */
1153
1154 #ifndef XMALLOC
1155 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1156 #endif
1157
1158
1159 /* Non-zero if we want to trace architecture code. */
1160
1161 #ifndef GDBARCH_DEBUG
1162 #define GDBARCH_DEBUG 0
1163 #endif
1164 int gdbarch_debug = GDBARCH_DEBUG;
1165
1166 EOF
1167
1168 # gdbarch open the gdbarch object
1169 printf "\n"
1170 printf "/* Maintain the struct gdbarch object */\n"
1171 printf "\n"
1172 printf "struct gdbarch\n"
1173 printf "{\n"
1174 printf " /* basic architectural information */\n"
1175 function_list | while do_read
1176 do
1177 if class_is_info_p
1178 then
1179 printf " ${returntype} ${function};\n"
1180 fi
1181 done
1182 printf "\n"
1183 printf " /* target specific vector. */\n"
1184 printf " struct gdbarch_tdep *tdep;\n"
1185 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1186 printf "\n"
1187 printf " /* per-architecture data-pointers */\n"
1188 printf " unsigned nr_data;\n"
1189 printf " void **data;\n"
1190 printf "\n"
1191 printf " /* per-architecture swap-regions */\n"
1192 printf " struct gdbarch_swap *swap;\n"
1193 printf "\n"
1194 cat <<EOF
1195 /* Multi-arch values.
1196
1197 When extending this structure you must:
1198
1199 Add the field below.
1200
1201 Declare set/get functions and define the corresponding
1202 macro in gdbarch.h.
1203
1204 gdbarch_alloc(): If zero/NULL is not a suitable default,
1205 initialize the new field.
1206
1207 verify_gdbarch(): Confirm that the target updated the field
1208 correctly.
1209
1210 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1211 field is dumped out
1212
1213 \`\`startup_gdbarch()'': Append an initial value to the static
1214 variable (base values on the host's c-type system).
1215
1216 get_gdbarch(): Implement the set/get functions (probably using
1217 the macro's as shortcuts).
1218
1219 */
1220
1221 EOF
1222 function_list | while do_read
1223 do
1224 if class_is_variable_p
1225 then
1226 printf " ${returntype} ${function};\n"
1227 elif class_is_function_p
1228 then
1229 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1230 fi
1231 done
1232 printf "};\n"
1233
1234 # A pre-initialized vector
1235 printf "\n"
1236 printf "\n"
1237 cat <<EOF
1238 /* The default architecture uses host values (for want of a better
1239 choice). */
1240 EOF
1241 printf "\n"
1242 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1243 printf "\n"
1244 printf "struct gdbarch startup_gdbarch =\n"
1245 printf "{\n"
1246 printf " /* basic architecture information */\n"
1247 function_list | while do_read
1248 do
1249 if class_is_info_p
1250 then
1251 printf " ${staticdefault},\n"
1252 fi
1253 done
1254 cat <<EOF
1255 /* target specific vector and its dump routine */
1256 NULL, NULL,
1257 /*per-architecture data-pointers and swap regions */
1258 0, NULL, NULL,
1259 /* Multi-arch values */
1260 EOF
1261 function_list | while do_read
1262 do
1263 if class_is_function_p || class_is_variable_p
1264 then
1265 printf " ${staticdefault},\n"
1266 fi
1267 done
1268 cat <<EOF
1269 /* startup_gdbarch() */
1270 };
1271
1272 struct gdbarch *current_gdbarch = &startup_gdbarch;
1273
1274 /* Do any initialization needed for a non-multiarch configuration
1275 after the _initialize_MODULE functions have been run. */
1276 void
1277 initialize_non_multiarch ()
1278 {
1279 alloc_gdbarch_data (&startup_gdbarch);
1280 init_gdbarch_data (&startup_gdbarch);
1281 }
1282 EOF
1283
1284 # Create a new gdbarch struct
1285 printf "\n"
1286 printf "\n"
1287 cat <<EOF
1288 /* Create a new \`\`struct gdbarch'' based on information provided by
1289 \`\`struct gdbarch_info''. */
1290 EOF
1291 printf "\n"
1292 cat <<EOF
1293 struct gdbarch *
1294 gdbarch_alloc (const struct gdbarch_info *info,
1295 struct gdbarch_tdep *tdep)
1296 {
1297 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1298 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1299 the current local architecture and not the previous global
1300 architecture. This ensures that the new architectures initial
1301 values are not influenced by the previous architecture. Once
1302 everything is parameterised with gdbarch, this will go away. */
1303 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1304 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1305
1306 alloc_gdbarch_data (current_gdbarch);
1307
1308 current_gdbarch->tdep = tdep;
1309 EOF
1310 printf "\n"
1311 function_list | while do_read
1312 do
1313 if class_is_info_p
1314 then
1315 printf " current_gdbarch->${function} = info->${function};\n"
1316 fi
1317 done
1318 printf "\n"
1319 printf " /* Force the explicit initialization of these. */\n"
1320 function_list | while do_read
1321 do
1322 if class_is_function_p || class_is_variable_p
1323 then
1324 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1325 then
1326 printf " current_gdbarch->${function} = ${predefault};\n"
1327 fi
1328 fi
1329 done
1330 cat <<EOF
1331 /* gdbarch_alloc() */
1332
1333 return current_gdbarch;
1334 }
1335 EOF
1336
1337 # Free a gdbarch struct.
1338 printf "\n"
1339 printf "\n"
1340 cat <<EOF
1341 /* Free a gdbarch struct. This should never happen in normal
1342 operation --- once you've created a gdbarch, you keep it around.
1343 However, if an architecture's init function encounters an error
1344 building the structure, it may need to clean up a partially
1345 constructed gdbarch. */
1346
1347 void
1348 gdbarch_free (struct gdbarch *arch)
1349 {
1350 gdb_assert (arch != NULL);
1351 free_gdbarch_data (arch);
1352 xfree (arch);
1353 }
1354 EOF
1355
1356 # verify a new architecture
1357 printf "\n"
1358 printf "\n"
1359 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1360 printf "\n"
1361 cat <<EOF
1362 static void
1363 verify_gdbarch (struct gdbarch *gdbarch)
1364 {
1365 /* Only perform sanity checks on a multi-arch target. */
1366 if (!GDB_MULTI_ARCH)
1367 return;
1368 /* fundamental */
1369 if (gdbarch->byte_order == 0)
1370 internal_error (__FILE__, __LINE__,
1371 "verify_gdbarch: byte-order unset");
1372 if (gdbarch->bfd_arch_info == NULL)
1373 internal_error (__FILE__, __LINE__,
1374 "verify_gdbarch: bfd_arch_info unset");
1375 /* Check those that need to be defined for the given multi-arch level. */
1376 EOF
1377 function_list | while do_read
1378 do
1379 if class_is_function_p || class_is_variable_p
1380 then
1381 if [ "x${invalid_p}" = "x0" ]
1382 then
1383 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1384 elif class_is_predicate_p
1385 then
1386 printf " /* Skip verify of ${function}, has predicate */\n"
1387 # FIXME: See do_read for potential simplification
1388 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1389 then
1390 printf " if (${invalid_p})\n"
1391 printf " gdbarch->${function} = ${postdefault};\n"
1392 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1393 then
1394 printf " if (gdbarch->${function} == ${predefault})\n"
1395 printf " gdbarch->${function} = ${postdefault};\n"
1396 elif [ -n "${postdefault}" ]
1397 then
1398 printf " if (gdbarch->${function} == 0)\n"
1399 printf " gdbarch->${function} = ${postdefault};\n"
1400 elif [ -n "${invalid_p}" ]
1401 then
1402 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1403 printf " && (${invalid_p}))\n"
1404 printf " internal_error (__FILE__, __LINE__,\n"
1405 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1406 elif [ -n "${predefault}" ]
1407 then
1408 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1409 printf " && (gdbarch->${function} == ${predefault}))\n"
1410 printf " internal_error (__FILE__, __LINE__,\n"
1411 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1412 fi
1413 fi
1414 done
1415 cat <<EOF
1416 }
1417 EOF
1418
1419 # dump the structure
1420 printf "\n"
1421 printf "\n"
1422 cat <<EOF
1423 /* Print out the details of the current architecture. */
1424
1425 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1426 just happens to match the global variable \`\`current_gdbarch''. That
1427 way macros refering to that variable get the local and not the global
1428 version - ulgh. Once everything is parameterised with gdbarch, this
1429 will go away. */
1430
1431 void
1432 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1433 {
1434 fprintf_unfiltered (file,
1435 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1436 GDB_MULTI_ARCH);
1437 EOF
1438 function_list | sort -t: +2 | while do_read
1439 do
1440 # multiarch functions don't have macros.
1441 if class_is_multiarch_p
1442 then
1443 printf " if (GDB_MULTI_ARCH)\n"
1444 printf " fprintf_unfiltered (file,\n"
1445 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1446 printf " (long) current_gdbarch->${function});\n"
1447 continue
1448 fi
1449 printf "#ifdef ${macro}\n"
1450 if [ "x${returntype}" = "xvoid" ]
1451 then
1452 printf "#if GDB_MULTI_ARCH\n"
1453 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1454 fi
1455 if class_is_function_p
1456 then
1457 printf " fprintf_unfiltered (file,\n"
1458 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1459 printf " \"${macro}(${actual})\",\n"
1460 printf " XSTRING (${macro} (${actual})));\n"
1461 else
1462 printf " fprintf_unfiltered (file,\n"
1463 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1464 printf " XSTRING (${macro}));\n"
1465 fi
1466 if [ "x${returntype}" = "xvoid" ]
1467 then
1468 printf "#endif\n"
1469 fi
1470 if [ "x${print_p}" = "x()" ]
1471 then
1472 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1473 elif [ "x${print_p}" = "x0" ]
1474 then
1475 printf " /* skip print of ${macro}, print_p == 0. */\n"
1476 elif [ -n "${print_p}" ]
1477 then
1478 printf " if (${print_p})\n"
1479 printf " fprintf_unfiltered (file,\n"
1480 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1481 printf " ${print});\n"
1482 elif class_is_function_p
1483 then
1484 printf " if (GDB_MULTI_ARCH)\n"
1485 printf " fprintf_unfiltered (file,\n"
1486 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1487 printf " (long) current_gdbarch->${function}\n"
1488 printf " /*${macro} ()*/);\n"
1489 else
1490 printf " fprintf_unfiltered (file,\n"
1491 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1492 printf " ${print});\n"
1493 fi
1494 printf "#endif\n"
1495 done
1496 cat <<EOF
1497 if (current_gdbarch->dump_tdep != NULL)
1498 current_gdbarch->dump_tdep (current_gdbarch, file);
1499 }
1500 EOF
1501
1502
1503 # GET/SET
1504 printf "\n"
1505 cat <<EOF
1506 struct gdbarch_tdep *
1507 gdbarch_tdep (struct gdbarch *gdbarch)
1508 {
1509 if (gdbarch_debug >= 2)
1510 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1511 return gdbarch->tdep;
1512 }
1513 EOF
1514 printf "\n"
1515 function_list | while do_read
1516 do
1517 if class_is_predicate_p
1518 then
1519 printf "\n"
1520 printf "int\n"
1521 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1522 printf "{\n"
1523 if [ -n "${valid_p}" ]
1524 then
1525 printf " return ${valid_p};\n"
1526 else
1527 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1528 fi
1529 printf "}\n"
1530 fi
1531 if class_is_function_p
1532 then
1533 printf "\n"
1534 printf "${returntype}\n"
1535 if [ "x${formal}" = "xvoid" ]
1536 then
1537 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1538 else
1539 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1540 fi
1541 printf "{\n"
1542 printf " if (gdbarch->${function} == 0)\n"
1543 printf " internal_error (__FILE__, __LINE__,\n"
1544 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1545 printf " if (gdbarch_debug >= 2)\n"
1546 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1547 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1548 then
1549 if class_is_multiarch_p
1550 then
1551 params="gdbarch"
1552 else
1553 params=""
1554 fi
1555 else
1556 if class_is_multiarch_p
1557 then
1558 params="gdbarch, ${actual}"
1559 else
1560 params="${actual}"
1561 fi
1562 fi
1563 if [ "x${returntype}" = "xvoid" ]
1564 then
1565 printf " gdbarch->${function} (${params});\n"
1566 else
1567 printf " return gdbarch->${function} (${params});\n"
1568 fi
1569 printf "}\n"
1570 printf "\n"
1571 printf "void\n"
1572 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1573 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1574 printf "{\n"
1575 printf " gdbarch->${function} = ${function};\n"
1576 printf "}\n"
1577 elif class_is_variable_p
1578 then
1579 printf "\n"
1580 printf "${returntype}\n"
1581 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1582 printf "{\n"
1583 if [ "x${invalid_p}" = "x0" ]
1584 then
1585 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1586 elif [ -n "${invalid_p}" ]
1587 then
1588 printf " if (${invalid_p})\n"
1589 printf " internal_error (__FILE__, __LINE__,\n"
1590 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1591 elif [ -n "${predefault}" ]
1592 then
1593 printf " if (gdbarch->${function} == ${predefault})\n"
1594 printf " internal_error (__FILE__, __LINE__,\n"
1595 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1596 fi
1597 printf " if (gdbarch_debug >= 2)\n"
1598 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1599 printf " return gdbarch->${function};\n"
1600 printf "}\n"
1601 printf "\n"
1602 printf "void\n"
1603 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1604 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1605 printf "{\n"
1606 printf " gdbarch->${function} = ${function};\n"
1607 printf "}\n"
1608 elif class_is_info_p
1609 then
1610 printf "\n"
1611 printf "${returntype}\n"
1612 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1613 printf "{\n"
1614 printf " if (gdbarch_debug >= 2)\n"
1615 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1616 printf " return gdbarch->${function};\n"
1617 printf "}\n"
1618 fi
1619 done
1620
1621 # All the trailing guff
1622 cat <<EOF
1623
1624
1625 /* Keep a registry of per-architecture data-pointers required by GDB
1626 modules. */
1627
1628 struct gdbarch_data
1629 {
1630 unsigned index;
1631 gdbarch_data_init_ftype *init;
1632 gdbarch_data_free_ftype *free;
1633 };
1634
1635 struct gdbarch_data_registration
1636 {
1637 struct gdbarch_data *data;
1638 struct gdbarch_data_registration *next;
1639 };
1640
1641 struct gdbarch_data_registry
1642 {
1643 unsigned nr;
1644 struct gdbarch_data_registration *registrations;
1645 };
1646
1647 struct gdbarch_data_registry gdbarch_data_registry =
1648 {
1649 0, NULL,
1650 };
1651
1652 struct gdbarch_data *
1653 register_gdbarch_data (gdbarch_data_init_ftype *init,
1654 gdbarch_data_free_ftype *free)
1655 {
1656 struct gdbarch_data_registration **curr;
1657 for (curr = &gdbarch_data_registry.registrations;
1658 (*curr) != NULL;
1659 curr = &(*curr)->next);
1660 (*curr) = XMALLOC (struct gdbarch_data_registration);
1661 (*curr)->next = NULL;
1662 (*curr)->data = XMALLOC (struct gdbarch_data);
1663 (*curr)->data->index = gdbarch_data_registry.nr++;
1664 (*curr)->data->init = init;
1665 (*curr)->data->free = free;
1666 return (*curr)->data;
1667 }
1668
1669
1670 /* Walk through all the registered users initializing each in turn. */
1671
1672 static void
1673 init_gdbarch_data (struct gdbarch *gdbarch)
1674 {
1675 struct gdbarch_data_registration *rego;
1676 for (rego = gdbarch_data_registry.registrations;
1677 rego != NULL;
1678 rego = rego->next)
1679 {
1680 struct gdbarch_data *data = rego->data;
1681 gdb_assert (data->index < gdbarch->nr_data);
1682 if (data->init != NULL)
1683 {
1684 void *pointer = data->init (gdbarch);
1685 set_gdbarch_data (gdbarch, data, pointer);
1686 }
1687 }
1688 }
1689
1690 /* Create/delete the gdbarch data vector. */
1691
1692 static void
1693 alloc_gdbarch_data (struct gdbarch *gdbarch)
1694 {
1695 gdb_assert (gdbarch->data == NULL);
1696 gdbarch->nr_data = gdbarch_data_registry.nr;
1697 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1698 }
1699
1700 static void
1701 free_gdbarch_data (struct gdbarch *gdbarch)
1702 {
1703 struct gdbarch_data_registration *rego;
1704 gdb_assert (gdbarch->data != NULL);
1705 for (rego = gdbarch_data_registry.registrations;
1706 rego != NULL;
1707 rego = rego->next)
1708 {
1709 struct gdbarch_data *data = rego->data;
1710 gdb_assert (data->index < gdbarch->nr_data);
1711 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1712 {
1713 data->free (gdbarch, gdbarch->data[data->index]);
1714 gdbarch->data[data->index] = NULL;
1715 }
1716 }
1717 xfree (gdbarch->data);
1718 gdbarch->data = NULL;
1719 }
1720
1721
1722 /* Initialize the current value of thee specified per-architecture
1723 data-pointer. */
1724
1725 void
1726 set_gdbarch_data (struct gdbarch *gdbarch,
1727 struct gdbarch_data *data,
1728 void *pointer)
1729 {
1730 gdb_assert (data->index < gdbarch->nr_data);
1731 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1732 data->free (gdbarch, gdbarch->data[data->index]);
1733 gdbarch->data[data->index] = pointer;
1734 }
1735
1736 /* Return the current value of the specified per-architecture
1737 data-pointer. */
1738
1739 void *
1740 gdbarch_data (struct gdbarch_data *data)
1741 {
1742 gdb_assert (data->index < current_gdbarch->nr_data);
1743 return current_gdbarch->data[data->index];
1744 }
1745
1746
1747
1748 /* Keep a registry of swapped data required by GDB modules. */
1749
1750 struct gdbarch_swap
1751 {
1752 void *swap;
1753 struct gdbarch_swap_registration *source;
1754 struct gdbarch_swap *next;
1755 };
1756
1757 struct gdbarch_swap_registration
1758 {
1759 void *data;
1760 unsigned long sizeof_data;
1761 gdbarch_swap_ftype *init;
1762 struct gdbarch_swap_registration *next;
1763 };
1764
1765 struct gdbarch_swap_registry
1766 {
1767 int nr;
1768 struct gdbarch_swap_registration *registrations;
1769 };
1770
1771 struct gdbarch_swap_registry gdbarch_swap_registry =
1772 {
1773 0, NULL,
1774 };
1775
1776 void
1777 register_gdbarch_swap (void *data,
1778 unsigned long sizeof_data,
1779 gdbarch_swap_ftype *init)
1780 {
1781 struct gdbarch_swap_registration **rego;
1782 for (rego = &gdbarch_swap_registry.registrations;
1783 (*rego) != NULL;
1784 rego = &(*rego)->next);
1785 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1786 (*rego)->next = NULL;
1787 (*rego)->init = init;
1788 (*rego)->data = data;
1789 (*rego)->sizeof_data = sizeof_data;
1790 }
1791
1792
1793 static void
1794 init_gdbarch_swap (struct gdbarch *gdbarch)
1795 {
1796 struct gdbarch_swap_registration *rego;
1797 struct gdbarch_swap **curr = &gdbarch->swap;
1798 for (rego = gdbarch_swap_registry.registrations;
1799 rego != NULL;
1800 rego = rego->next)
1801 {
1802 if (rego->data != NULL)
1803 {
1804 (*curr) = XMALLOC (struct gdbarch_swap);
1805 (*curr)->source = rego;
1806 (*curr)->swap = xmalloc (rego->sizeof_data);
1807 (*curr)->next = NULL;
1808 memset (rego->data, 0, rego->sizeof_data);
1809 curr = &(*curr)->next;
1810 }
1811 if (rego->init != NULL)
1812 rego->init ();
1813 }
1814 }
1815
1816 static void
1817 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1818 {
1819 struct gdbarch_swap *curr;
1820 for (curr = gdbarch->swap;
1821 curr != NULL;
1822 curr = curr->next)
1823 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1824 }
1825
1826 static void
1827 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1828 {
1829 struct gdbarch_swap *curr;
1830 for (curr = gdbarch->swap;
1831 curr != NULL;
1832 curr = curr->next)
1833 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1834 }
1835
1836
1837 /* Keep a registry of the architectures known by GDB. */
1838
1839 struct gdbarch_registration
1840 {
1841 enum bfd_architecture bfd_architecture;
1842 gdbarch_init_ftype *init;
1843 gdbarch_dump_tdep_ftype *dump_tdep;
1844 struct gdbarch_list *arches;
1845 struct gdbarch_registration *next;
1846 };
1847
1848 static struct gdbarch_registration *gdbarch_registry = NULL;
1849
1850 static void
1851 append_name (const char ***buf, int *nr, const char *name)
1852 {
1853 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1854 (*buf)[*nr] = name;
1855 *nr += 1;
1856 }
1857
1858 const char **
1859 gdbarch_printable_names (void)
1860 {
1861 if (GDB_MULTI_ARCH)
1862 {
1863 /* Accumulate a list of names based on the registed list of
1864 architectures. */
1865 enum bfd_architecture a;
1866 int nr_arches = 0;
1867 const char **arches = NULL;
1868 struct gdbarch_registration *rego;
1869 for (rego = gdbarch_registry;
1870 rego != NULL;
1871 rego = rego->next)
1872 {
1873 const struct bfd_arch_info *ap;
1874 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1875 if (ap == NULL)
1876 internal_error (__FILE__, __LINE__,
1877 "gdbarch_architecture_names: multi-arch unknown");
1878 do
1879 {
1880 append_name (&arches, &nr_arches, ap->printable_name);
1881 ap = ap->next;
1882 }
1883 while (ap != NULL);
1884 }
1885 append_name (&arches, &nr_arches, NULL);
1886 return arches;
1887 }
1888 else
1889 /* Just return all the architectures that BFD knows. Assume that
1890 the legacy architecture framework supports them. */
1891 return bfd_arch_list ();
1892 }
1893
1894
1895 void
1896 gdbarch_register (enum bfd_architecture bfd_architecture,
1897 gdbarch_init_ftype *init,
1898 gdbarch_dump_tdep_ftype *dump_tdep)
1899 {
1900 struct gdbarch_registration **curr;
1901 const struct bfd_arch_info *bfd_arch_info;
1902 /* Check that BFD recognizes this architecture */
1903 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1904 if (bfd_arch_info == NULL)
1905 {
1906 internal_error (__FILE__, __LINE__,
1907 "gdbarch: Attempt to register unknown architecture (%d)",
1908 bfd_architecture);
1909 }
1910 /* Check that we haven't seen this architecture before */
1911 for (curr = &gdbarch_registry;
1912 (*curr) != NULL;
1913 curr = &(*curr)->next)
1914 {
1915 if (bfd_architecture == (*curr)->bfd_architecture)
1916 internal_error (__FILE__, __LINE__,
1917 "gdbarch: Duplicate registraration of architecture (%s)",
1918 bfd_arch_info->printable_name);
1919 }
1920 /* log it */
1921 if (gdbarch_debug)
1922 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1923 bfd_arch_info->printable_name,
1924 (long) init);
1925 /* Append it */
1926 (*curr) = XMALLOC (struct gdbarch_registration);
1927 (*curr)->bfd_architecture = bfd_architecture;
1928 (*curr)->init = init;
1929 (*curr)->dump_tdep = dump_tdep;
1930 (*curr)->arches = NULL;
1931 (*curr)->next = NULL;
1932 /* When non- multi-arch, install whatever target dump routine we've
1933 been provided - hopefully that routine has been written correctly
1934 and works regardless of multi-arch. */
1935 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1936 && startup_gdbarch.dump_tdep == NULL)
1937 startup_gdbarch.dump_tdep = dump_tdep;
1938 }
1939
1940 void
1941 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1942 gdbarch_init_ftype *init)
1943 {
1944 gdbarch_register (bfd_architecture, init, NULL);
1945 }
1946
1947
1948 /* Look for an architecture using gdbarch_info. Base search on only
1949 BFD_ARCH_INFO and BYTE_ORDER. */
1950
1951 struct gdbarch_list *
1952 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1953 const struct gdbarch_info *info)
1954 {
1955 for (; arches != NULL; arches = arches->next)
1956 {
1957 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1958 continue;
1959 if (info->byte_order != arches->gdbarch->byte_order)
1960 continue;
1961 return arches;
1962 }
1963 return NULL;
1964 }
1965
1966
1967 /* Update the current architecture. Return ZERO if the update request
1968 failed. */
1969
1970 int
1971 gdbarch_update_p (struct gdbarch_info info)
1972 {
1973 struct gdbarch *new_gdbarch;
1974 struct gdbarch_list **list;
1975 struct gdbarch_registration *rego;
1976
1977 /* Fill in missing parts of the INFO struct using a number of
1978 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1979
1980 /* \`\`(gdb) set architecture ...'' */
1981 if (info.bfd_arch_info == NULL
1982 && !TARGET_ARCHITECTURE_AUTO)
1983 info.bfd_arch_info = TARGET_ARCHITECTURE;
1984 if (info.bfd_arch_info == NULL
1985 && info.abfd != NULL
1986 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1987 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1988 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1989 if (info.bfd_arch_info == NULL)
1990 info.bfd_arch_info = TARGET_ARCHITECTURE;
1991
1992 /* \`\`(gdb) set byte-order ...'' */
1993 if (info.byte_order == 0
1994 && !TARGET_BYTE_ORDER_AUTO)
1995 info.byte_order = TARGET_BYTE_ORDER;
1996 /* From the INFO struct. */
1997 if (info.byte_order == 0
1998 && info.abfd != NULL)
1999 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
2000 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
2001 : 0);
2002 /* From the current target. */
2003 if (info.byte_order == 0)
2004 info.byte_order = TARGET_BYTE_ORDER;
2005
2006 /* Must have found some sort of architecture. */
2007 gdb_assert (info.bfd_arch_info != NULL);
2008
2009 if (gdbarch_debug)
2010 {
2011 fprintf_unfiltered (gdb_stdlog,
2012 "gdbarch_update: info.bfd_arch_info %s\n",
2013 (info.bfd_arch_info != NULL
2014 ? info.bfd_arch_info->printable_name
2015 : "(null)"));
2016 fprintf_unfiltered (gdb_stdlog,
2017 "gdbarch_update: info.byte_order %d (%s)\n",
2018 info.byte_order,
2019 (info.byte_order == BIG_ENDIAN ? "big"
2020 : info.byte_order == LITTLE_ENDIAN ? "little"
2021 : "default"));
2022 fprintf_unfiltered (gdb_stdlog,
2023 "gdbarch_update: info.abfd 0x%lx\n",
2024 (long) info.abfd);
2025 fprintf_unfiltered (gdb_stdlog,
2026 "gdbarch_update: info.tdep_info 0x%lx\n",
2027 (long) info.tdep_info);
2028 }
2029
2030 /* Find the target that knows about this architecture. */
2031 for (rego = gdbarch_registry;
2032 rego != NULL;
2033 rego = rego->next)
2034 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2035 break;
2036 if (rego == NULL)
2037 {
2038 if (gdbarch_debug)
2039 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2040 return 0;
2041 }
2042
2043 /* Ask the target for a replacement architecture. */
2044 new_gdbarch = rego->init (info, rego->arches);
2045
2046 /* Did the target like it? No. Reject the change. */
2047 if (new_gdbarch == NULL)
2048 {
2049 if (gdbarch_debug)
2050 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2051 return 0;
2052 }
2053
2054 /* Did the architecture change? No. Do nothing. */
2055 if (current_gdbarch == new_gdbarch)
2056 {
2057 if (gdbarch_debug)
2058 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2059 (long) new_gdbarch,
2060 new_gdbarch->bfd_arch_info->printable_name);
2061 return 1;
2062 }
2063
2064 /* Swap all data belonging to the old target out */
2065 swapout_gdbarch_swap (current_gdbarch);
2066
2067 /* Is this a pre-existing architecture? Yes. Swap it in. */
2068 for (list = &rego->arches;
2069 (*list) != NULL;
2070 list = &(*list)->next)
2071 {
2072 if ((*list)->gdbarch == new_gdbarch)
2073 {
2074 if (gdbarch_debug)
2075 fprintf_unfiltered (gdb_stdlog,
2076 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2077 (long) new_gdbarch,
2078 new_gdbarch->bfd_arch_info->printable_name);
2079 current_gdbarch = new_gdbarch;
2080 swapin_gdbarch_swap (new_gdbarch);
2081 architecture_changed_event ();
2082 return 1;
2083 }
2084 }
2085
2086 /* Append this new architecture to this targets list. */
2087 (*list) = XMALLOC (struct gdbarch_list);
2088 (*list)->next = NULL;
2089 (*list)->gdbarch = new_gdbarch;
2090
2091 /* Switch to this new architecture. Dump it out. */
2092 current_gdbarch = new_gdbarch;
2093 if (gdbarch_debug)
2094 {
2095 fprintf_unfiltered (gdb_stdlog,
2096 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2097 (long) new_gdbarch,
2098 new_gdbarch->bfd_arch_info->printable_name);
2099 }
2100
2101 /* Check that the newly installed architecture is valid. Plug in
2102 any post init values. */
2103 new_gdbarch->dump_tdep = rego->dump_tdep;
2104 verify_gdbarch (new_gdbarch);
2105
2106 /* Initialize the per-architecture memory (swap) areas.
2107 CURRENT_GDBARCH must be update before these modules are
2108 called. */
2109 init_gdbarch_swap (new_gdbarch);
2110
2111 /* Initialize the per-architecture data-pointer of all parties that
2112 registered an interest in this architecture. CURRENT_GDBARCH
2113 must be updated before these modules are called. */
2114 init_gdbarch_data (new_gdbarch);
2115 architecture_changed_event ();
2116
2117 if (gdbarch_debug)
2118 gdbarch_dump (current_gdbarch, gdb_stdlog);
2119
2120 return 1;
2121 }
2122
2123
2124 /* Disassembler */
2125
2126 /* Pointer to the target-dependent disassembly function. */
2127 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2128 disassemble_info tm_print_insn_info;
2129
2130
2131 extern void _initialize_gdbarch (void);
2132
2133 void
2134 _initialize_gdbarch (void)
2135 {
2136 struct cmd_list_element *c;
2137
2138 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2139 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2140 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2141 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2142 tm_print_insn_info.print_address_func = dis_asm_print_address;
2143
2144 add_show_from_set (add_set_cmd ("arch",
2145 class_maintenance,
2146 var_zinteger,
2147 (char *)&gdbarch_debug,
2148 "Set architecture debugging.\\n\\
2149 When non-zero, architecture debugging is enabled.", &setdebuglist),
2150 &showdebuglist);
2151 c = add_set_cmd ("archdebug",
2152 class_maintenance,
2153 var_zinteger,
2154 (char *)&gdbarch_debug,
2155 "Set architecture debugging.\\n\\
2156 When non-zero, architecture debugging is enabled.", &setlist);
2157
2158 deprecate_cmd (c, "set debug arch");
2159 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2160 }
2161 EOF
2162
2163 # close things off
2164 exec 1>&2
2165 #../move-if-change new-gdbarch.c gdbarch.c
2166 compare_new gdbarch.c
This page took 0.077339 seconds and 4 git commands to generate.