*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 compare_new ()
23 {
24 file=$1
25 if test ! -r ${file}
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
28 elif diff -c ${file} new-${file}
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34 }
35
36
37 # Format of the input table
38 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
39
40 do_read ()
41 {
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
50 then
51 continue
52 elif expr "${line}" : "#" > /dev/null
53 then
54 comment="${comment}
55 ${line}"
56 else
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
64 eval read ${read} <<EOF
65 ${line}
66 EOF
67 IFS="${OFS}"
68
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
79 test "${staticdefault}" || staticdefault=0
80 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
81 # multi-arch defaults.
82 # test "${predefault}" || predefault=0
83 test "${fmt}" || fmt="%ld"
84 test "${print}" || print="(long) ${macro}"
85 case "${invalid_p}" in
86 0 ) valid_p=1 ;;
87 "" )
88 if [ -n "${predefault}" ]
89 then
90 #invalid_p="gdbarch->${function} == ${predefault}"
91 valid_p="gdbarch->${function} != ${predefault}"
92 else
93 #invalid_p="gdbarch->${function} == 0"
94 valid_p="gdbarch->${function} != 0"
95 fi
96 ;;
97 * ) valid_p="!(${invalid_p})"
98 esac
99
100 # PREDEFAULT is a valid fallback definition of MEMBER when
101 # multi-arch is not enabled. This ensures that the
102 # default value, when multi-arch is the same as the
103 # default value when not multi-arch. POSTDEFAULT is
104 # always a valid definition of MEMBER as this again
105 # ensures consistency.
106
107 if [ -n "${postdefault}" ]
108 then
109 fallbackdefault="${postdefault}"
110 elif [ -n "${predefault}" ]
111 then
112 fallbackdefault="${predefault}"
113 else
114 fallbackdefault="0"
115 fi
116
117 #NOT YET: See gdbarch.log for basic verification of
118 # database
119
120 break
121 fi
122 done
123 if [ -n "${class}" ]
124 then
125 true
126 else
127 false
128 fi
129 }
130
131
132 fallback_default_p ()
133 {
134 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
135 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
136 }
137
138 class_is_variable_p ()
139 {
140 case "${class}" in
141 *v* | *V* ) true ;;
142 * ) false ;;
143 esac
144 }
145
146 class_is_function_p ()
147 {
148 case "${class}" in
149 *f* | *F* | *m* | *M* ) true ;;
150 * ) false ;;
151 esac
152 }
153
154 class_is_multiarch_p ()
155 {
156 case "${class}" in
157 *m* | *M* ) true ;;
158 * ) false ;;
159 esac
160 }
161
162 class_is_predicate_p ()
163 {
164 case "${class}" in
165 *F* | *V* | *M* ) true ;;
166 * ) false ;;
167 esac
168 }
169
170 class_is_info_p ()
171 {
172 case "${class}" in
173 *i* ) true ;;
174 * ) false ;;
175 esac
176 }
177
178
179 # dump out/verify the doco
180 for field in ${read}
181 do
182 case ${field} in
183
184 class ) : ;;
185
186 # # -> line disable
187 # f -> function
188 # hiding a function
189 # F -> function + predicate
190 # hiding a function + predicate to test function validity
191 # v -> variable
192 # hiding a variable
193 # V -> variable + predicate
194 # hiding a variable + predicate to test variables validity
195 # i -> set from info
196 # hiding something from the ``struct info'' object
197 # m -> multi-arch function
198 # hiding a multi-arch function (parameterised with the architecture)
199 # M -> multi-arch function + predicate
200 # hiding a multi-arch function + predicate to test function validity
201
202 level ) : ;;
203
204 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
205 # LEVEL is a predicate on checking that a given method is
206 # initialized (using INVALID_P).
207
208 macro ) : ;;
209
210 # The name of the MACRO that this method is to be accessed by.
211
212 returntype ) : ;;
213
214 # For functions, the return type; for variables, the data type
215
216 function ) : ;;
217
218 # For functions, the member function name; for variables, the
219 # variable name. Member function names are always prefixed with
220 # ``gdbarch_'' for name-space purity.
221
222 formal ) : ;;
223
224 # The formal argument list. It is assumed that the formal
225 # argument list includes the actual name of each list element.
226 # A function with no arguments shall have ``void'' as the
227 # formal argument list.
228
229 actual ) : ;;
230
231 # The list of actual arguments. The arguments specified shall
232 # match the FORMAL list given above. Functions with out
233 # arguments leave this blank.
234
235 attrib ) : ;;
236
237 # Any GCC attributes that should be attached to the function
238 # declaration. At present this field is unused.
239
240 staticdefault ) : ;;
241
242 # To help with the GDB startup a static gdbarch object is
243 # created. STATICDEFAULT is the value to insert into that
244 # static gdbarch object. Since this a static object only
245 # simple expressions can be used.
246
247 # If STATICDEFAULT is empty, zero is used.
248
249 predefault ) : ;;
250
251 # An initial value to assign to MEMBER of the freshly
252 # malloc()ed gdbarch object. After initialization, the
253 # freshly malloc()ed object is passed to the target
254 # architecture code for further updates.
255
256 # If PREDEFAULT is empty, zero is used.
257
258 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
259 # INVALID_P are specified, PREDEFAULT will be used as the
260 # default for the non- multi-arch target.
261
262 # A zero PREDEFAULT function will force the fallback to call
263 # internal_error().
264
265 # Variable declarations can refer to ``gdbarch'' which will
266 # contain the current architecture. Care should be taken.
267
268 postdefault ) : ;;
269
270 # A value to assign to MEMBER of the new gdbarch object should
271 # the target architecture code fail to change the PREDEFAULT
272 # value.
273
274 # If POSTDEFAULT is empty, no post update is performed.
275
276 # If both INVALID_P and POSTDEFAULT are non-empty then
277 # INVALID_P will be used to determine if MEMBER should be
278 # changed to POSTDEFAULT.
279
280 # If a non-empty POSTDEFAULT and a zero INVALID_P are
281 # specified, POSTDEFAULT will be used as the default for the
282 # non- multi-arch target (regardless of the value of
283 # PREDEFAULT).
284
285 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
286
287 # Variable declarations can refer to ``gdbarch'' which will
288 # contain the current architecture. Care should be taken.
289
290 invalid_p ) : ;;
291
292 # A predicate equation that validates MEMBER. Non-zero is
293 # returned if the code creating the new architecture failed to
294 # initialize MEMBER or the initialized the member is invalid.
295 # If POSTDEFAULT is non-empty then MEMBER will be updated to
296 # that value. If POSTDEFAULT is empty then internal_error()
297 # is called.
298
299 # If INVALID_P is empty, a check that MEMBER is no longer
300 # equal to PREDEFAULT is used.
301
302 # The expression ``0'' disables the INVALID_P check making
303 # PREDEFAULT a legitimate value.
304
305 # See also PREDEFAULT and POSTDEFAULT.
306
307 fmt ) : ;;
308
309 # printf style format string that can be used to print out the
310 # MEMBER. Sometimes "%s" is useful. For functions, this is
311 # ignored and the function address is printed.
312
313 # If FMT is empty, ``%ld'' is used.
314
315 print ) : ;;
316
317 # An optional equation that casts MEMBER to a value suitable
318 # for formatting by FMT.
319
320 # If PRINT is empty, ``(long)'' is used.
321
322 print_p ) : ;;
323
324 # An optional indicator for any predicte to wrap around the
325 # print member code.
326
327 # () -> Call a custom function to do the dump.
328 # exp -> Wrap print up in ``if (${print_p}) ...
329 # ``'' -> No predicate
330
331 # If PRINT_P is empty, ``1'' is always used.
332
333 description ) : ;;
334
335 # Currently unused.
336
337 *) exit 1;;
338 esac
339 done
340
341
342 function_list ()
343 {
344 # See below (DOCO) for description of each field
345 cat <<EOF
346 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
347 #
348 i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
349 # Number of bits in a char or unsigned char for the target machine.
350 # Just like CHAR_BIT in <limits.h> but describes the target machine.
351 # v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
352 #
353 # Number of bits in a short or unsigned short for the target machine.
354 v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
355 # Number of bits in an int or unsigned int for the target machine.
356 v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
357 # Number of bits in a long or unsigned long for the target machine.
358 v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long long or unsigned long long for the target
360 # machine.
361 v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
362 # Number of bits in a float for the target machine.
363 v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
364 # Number of bits in a double for the target machine.
365 v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
366 # Number of bits in a long double for the target machine.
367 v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):2*TARGET_DOUBLE_BIT::0
368 # For most targets, a pointer on the target and its representation as an
369 # address in GDB have the same size and "look the same". For such a
370 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
371 # / addr_bit will be set from it.
372 #
373 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
374 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
375 #
376 # ptr_bit is the size of a pointer on the target
377 v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
378 # addr_bit is the size of a target address as represented in gdb
379 v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
380 # Number of bits in a BFD_VMA for the target object file format.
381 v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
382 #
383 v::IEEE_FLOAT:int:ieee_float::::0:0::0:::
384 #
385 f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
386 f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
387 f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
388 f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
389 f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
390 f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
391 # Function for getting target's idea of a frame pointer. FIXME: GDB's
392 # whole scheme for dealing with "frames" and "frame pointers" needs a
393 # serious shakedown.
394 f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
395 #
396 M:::void:register_read:int regnum, char *buf:regnum, buf:
397 M:::void:register_write:int regnum, char *buf:regnum, buf:
398 #
399 v:2:NUM_REGS:int:num_regs::::0:-1
400 # This macro gives the number of pseudo-registers that live in the
401 # register namespace but do not get fetched or stored on the target.
402 # These pseudo-registers may be aliases for other registers,
403 # combinations of other registers, or they may be computed by GDB.
404 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
405 v:2:SP_REGNUM:int:sp_regnum::::0:-1
406 v:2:FP_REGNUM:int:fp_regnum::::0:-1
407 v:2:PC_REGNUM:int:pc_regnum::::0:-1
408 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
409 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
410 v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
411 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
412 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
413 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
414 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
415 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
416 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
417 # Convert from an sdb register number to an internal gdb register number.
418 # This should be defined in tm.h, if REGISTER_NAMES is not set up
419 # to map one to one onto the sdb register numbers.
420 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
421 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
422 f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
423 v:2:REGISTER_SIZE:int:register_size::::0:-1
424 v:2:REGISTER_BYTES:int:register_bytes::::0:-1
425 f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
426 f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
427 v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
428 f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
429 v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
430 f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
431 f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
432 # MAP a GDB RAW register number onto a simulator register number. See
433 # also include/...-sim.h.
434 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
435 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
436 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
437 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
438 #
439 v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
440 v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
441 f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
442 v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
443 v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
444 v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
445 v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
446 f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
447 v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
448 v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
449 v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
450 v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
451 v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
452 f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
453 f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
454 f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
455 #
456 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
457 v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
458 f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
459 f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
460 #
461 f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
462 f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
463 f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
464 # This function is called when the value of a pseudo-register needs to
465 # be updated. Typically it will be defined on a per-architecture
466 # basis.
467 f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
468 # This function is called when the value of a pseudo-register needs to
469 # be set or stored. Typically it will be defined on a
470 # per-architecture basis.
471 f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
472 #
473 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
474 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
475 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
476 #
477 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
478 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
479 f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
480 f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
481 f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
482 f:2:POP_FRAME:void:pop_frame:void:-:::0
483 #
484 f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
485 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
486 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
487 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
488 #
489 f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
490 f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
491 #
492 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
493 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
494 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
495 f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
496 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
497 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
498 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
499 f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
500 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
501 #
502 f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
503 #
504 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
505 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
506 f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
507 f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
508 f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
509 f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
510 f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
511 f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
512 f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
513 #
514 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
515 v:1:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
516 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
517 F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
518 v:2:PARM_BOUNDARY:int:parm_boundary
519 #
520 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
521 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
522 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
523 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
524 # On some machines there are bits in addresses which are not really
525 # part of the address, but are used by the kernel, the hardware, etc.
526 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
527 # we get a "real" address such as one would find in a symbol table.
528 # This is used only for addresses of instructions, and even then I'm
529 # not sure it's used in all contexts. It exists to deal with there
530 # being a few stray bits in the PC which would mislead us, not as some
531 # sort of generic thing to handle alignment or segmentation (it's
532 # possible it should be in TARGET_READ_PC instead).
533 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
534 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
535 # the target needs software single step. An ISA method to implement it.
536 #
537 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
538 # using the breakpoint system instead of blatting memory directly (as with rs6000).
539 #
540 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
541 # single step. If not, then implement single step using breakpoints.
542 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
543 f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
544 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
545 # For SVR4 shared libraries, each call goes through a small piece of
546 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
547 # to nonzero if we are current stopped in one of these.
548 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
549 EOF
550 }
551
552 #
553 # The .log file
554 #
555 exec > new-gdbarch.log
556 function_list | while do_read
557 do
558 cat <<EOF
559 ${class} ${macro}(${actual})
560 ${returntype} ${function} ($formal)${attrib}
561 EOF
562 for r in ${read}
563 do
564 eval echo \"\ \ \ \ ${r}=\${${r}}\"
565 done
566 # #fallbackdefault=${fallbackdefault}
567 # #valid_p=${valid_p}
568 #EOF
569 if class_is_predicate_p && fallback_default_p
570 then
571 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
572 kill $$
573 exit 1
574 fi
575 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
576 then
577 echo "Error: postdefault is useless when invalid_p=0" 1>&2
578 kill $$
579 exit 1
580 fi
581 echo ""
582 done
583
584 exec 1>&2
585 compare_new gdbarch.log
586
587
588 copyright ()
589 {
590 cat <<EOF
591 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
592
593 /* Dynamic architecture support for GDB, the GNU debugger.
594 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
595
596 This file is part of GDB.
597
598 This program is free software; you can redistribute it and/or modify
599 it under the terms of the GNU General Public License as published by
600 the Free Software Foundation; either version 2 of the License, or
601 (at your option) any later version.
602
603 This program is distributed in the hope that it will be useful,
604 but WITHOUT ANY WARRANTY; without even the implied warranty of
605 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
606 GNU General Public License for more details.
607
608 You should have received a copy of the GNU General Public License
609 along with this program; if not, write to the Free Software
610 Foundation, Inc., 59 Temple Place - Suite 330,
611 Boston, MA 02111-1307, USA. */
612
613 /* This file was created with the aid of \`\`gdbarch.sh''.
614
615 The Bourne shell script \`\`gdbarch.sh'' creates the files
616 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
617 against the existing \`\`gdbarch.[hc]''. Any differences found
618 being reported.
619
620 If editing this file, please also run gdbarch.sh and merge any
621 changes into that script. Conversely, when making sweeping changes
622 to this file, modifying gdbarch.sh and using its output may prove
623 easier. */
624
625 EOF
626 }
627
628 #
629 # The .h file
630 #
631
632 exec > new-gdbarch.h
633 copyright
634 cat <<EOF
635 #ifndef GDBARCH_H
636 #define GDBARCH_H
637
638 #include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
639 #if !GDB_MULTI_ARCH
640 #include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
641 #endif
642
643 struct frame_info;
644 struct value;
645
646
647 extern struct gdbarch *current_gdbarch;
648
649
650 /* If any of the following are defined, the target wasn't correctly
651 converted. */
652
653 #if GDB_MULTI_ARCH
654 #if defined (EXTRA_FRAME_INFO)
655 #error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
656 #endif
657 #endif
658
659 #if GDB_MULTI_ARCH
660 #if defined (FRAME_FIND_SAVED_REGS)
661 #error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
662 #endif
663 #endif
664
665 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
666 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
667 #endif
668 EOF
669
670 # function typedef's
671 printf "\n"
672 printf "\n"
673 printf "/* The following are pre-initialized by GDBARCH. */\n"
674 function_list | while do_read
675 do
676 if class_is_info_p
677 then
678 printf "\n"
679 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
680 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
681 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
682 printf "#error \"Non multi-arch definition of ${macro}\"\n"
683 printf "#endif\n"
684 printf "#if GDB_MULTI_ARCH\n"
685 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
686 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
687 printf "#endif\n"
688 printf "#endif\n"
689 fi
690 done
691
692 # function typedef's
693 printf "\n"
694 printf "\n"
695 printf "/* The following are initialized by the target dependent code. */\n"
696 function_list | while do_read
697 do
698 if [ -n "${comment}" ]
699 then
700 echo "${comment}" | sed \
701 -e '2 s,#,/*,' \
702 -e '3,$ s,#, ,' \
703 -e '$ s,$, */,'
704 fi
705 if class_is_multiarch_p
706 then
707 if class_is_predicate_p
708 then
709 printf "\n"
710 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
711 fi
712 else
713 if class_is_predicate_p
714 then
715 printf "\n"
716 printf "#if defined (${macro})\n"
717 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
718 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
719 printf "#if !defined (${macro}_P)\n"
720 printf "#define ${macro}_P() (1)\n"
721 printf "#endif\n"
722 printf "#endif\n"
723 printf "\n"
724 printf "/* Default predicate for non- multi-arch targets. */\n"
725 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
726 printf "#define ${macro}_P() (0)\n"
727 printf "#endif\n"
728 printf "\n"
729 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
730 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro}_P)\n"
731 printf "#error \"Non multi-arch definition of ${macro}\"\n"
732 printf "#endif\n"
733 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)\n"
734 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
735 printf "#endif\n"
736 fi
737 fi
738 if class_is_variable_p
739 then
740 if fallback_default_p || class_is_predicate_p
741 then
742 printf "\n"
743 printf "/* Default (value) for non- multi-arch platforms. */\n"
744 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
745 echo "#define ${macro} (${fallbackdefault})" \
746 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
747 printf "#endif\n"
748 fi
749 printf "\n"
750 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
751 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
752 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
753 printf "#error \"Non multi-arch definition of ${macro}\"\n"
754 printf "#endif\n"
755 printf "#if GDB_MULTI_ARCH\n"
756 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
757 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
758 printf "#endif\n"
759 printf "#endif\n"
760 fi
761 if class_is_function_p
762 then
763 if class_is_multiarch_p ; then :
764 elif fallback_default_p || class_is_predicate_p
765 then
766 printf "\n"
767 printf "/* Default (function) for non- multi-arch platforms. */\n"
768 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
769 if [ "x${fallbackdefault}" = "x0" ]
770 then
771 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
772 else
773 # FIXME: Should be passing current_gdbarch through!
774 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
775 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
776 fi
777 printf "#endif\n"
778 fi
779 printf "\n"
780 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
781 then
782 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
783 elif class_is_multiarch_p
784 then
785 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
786 else
787 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
788 fi
789 if [ "x${formal}" = "xvoid" ]
790 then
791 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
792 else
793 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
794 fi
795 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
796 if class_is_multiarch_p ; then :
797 else
798 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
799 printf "#error \"Non multi-arch definition of ${macro}\"\n"
800 printf "#endif\n"
801 printf "#if GDB_MULTI_ARCH\n"
802 printf "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})\n"
803 if [ "x${actual}" = "x" ]
804 then
805 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
806 elif [ "x${actual}" = "x-" ]
807 then
808 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
809 else
810 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
811 fi
812 printf "#endif\n"
813 printf "#endif\n"
814 fi
815 fi
816 done
817
818 # close it off
819 cat <<EOF
820
821 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
822
823
824 /* Mechanism for co-ordinating the selection of a specific
825 architecture.
826
827 GDB targets (*-tdep.c) can register an interest in a specific
828 architecture. Other GDB components can register a need to maintain
829 per-architecture data.
830
831 The mechanisms below ensures that there is only a loose connection
832 between the set-architecture command and the various GDB
833 components. Each component can independently register their need
834 to maintain architecture specific data with gdbarch.
835
836 Pragmatics:
837
838 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
839 didn't scale.
840
841 The more traditional mega-struct containing architecture specific
842 data for all the various GDB components was also considered. Since
843 GDB is built from a variable number of (fairly independent)
844 components it was determined that the global aproach was not
845 applicable. */
846
847
848 /* Register a new architectural family with GDB.
849
850 Register support for the specified ARCHITECTURE with GDB. When
851 gdbarch determines that the specified architecture has been
852 selected, the corresponding INIT function is called.
853
854 --
855
856 The INIT function takes two parameters: INFO which contains the
857 information available to gdbarch about the (possibly new)
858 architecture; ARCHES which is a list of the previously created
859 \`\`struct gdbarch'' for this architecture.
860
861 The INIT function parameter INFO shall, as far as possible, be
862 pre-initialized with information obtained from INFO.ABFD or
863 previously selected architecture (if similar). INIT shall ensure
864 that the INFO.BYTE_ORDER is non-zero.
865
866 The INIT function shall return any of: NULL - indicating that it
867 doesn't recognize the selected architecture; an existing \`\`struct
868 gdbarch'' from the ARCHES list - indicating that the new
869 architecture is just a synonym for an earlier architecture (see
870 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
871 - that describes the selected architecture (see gdbarch_alloc()).
872
873 The DUMP_TDEP function shall print out all target specific values.
874 Care should be taken to ensure that the function works in both the
875 multi-arch and non- multi-arch cases. */
876
877 struct gdbarch_list
878 {
879 struct gdbarch *gdbarch;
880 struct gdbarch_list *next;
881 };
882
883 struct gdbarch_info
884 {
885 /* Use default: NULL (ZERO). */
886 const struct bfd_arch_info *bfd_arch_info;
887
888 /* Use default: 0 (ZERO). */
889 int byte_order;
890
891 /* Use default: NULL (ZERO). */
892 bfd *abfd;
893
894 /* Use default: NULL (ZERO). */
895 struct gdbarch_tdep_info *tdep_info;
896 };
897
898 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
899 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
900
901 /* DEPRECATED - use gdbarch_register() */
902 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
903
904 extern void gdbarch_register (enum bfd_architecture architecture,
905 gdbarch_init_ftype *,
906 gdbarch_dump_tdep_ftype *);
907
908
909 /* Return a freshly allocated, NULL terminated, array of the valid
910 architecture names. Since architectures are registered during the
911 _initialize phase this function only returns useful information
912 once initialization has been completed. */
913
914 extern const char **gdbarch_printable_names (void);
915
916
917 /* Helper function. Search the list of ARCHES for a GDBARCH that
918 matches the information provided by INFO. */
919
920 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
921
922
923 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
924 basic initialization using values obtained from the INFO andTDEP
925 parameters. set_gdbarch_*() functions are called to complete the
926 initialization of the object. */
927
928 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
929
930
931 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
932 It is assumed that the caller freeds the \`\`struct
933 gdbarch_tdep''. */
934
935 extern void gdbarch_free (struct gdbarch *);
936
937
938 /* Helper function. Force an update of the current architecture.
939
940 The actual architecture selected is determined by INFO, \`\`(gdb) set
941 architecture'' et.al., the existing architecture and BFD's default
942 architecture. INFO should be initialized to zero and then selected
943 fields should be updated.
944
945 Returns non-zero if the update succeeds */
946
947 extern int gdbarch_update_p (struct gdbarch_info info);
948
949
950
951 /* Register per-architecture data-pointer.
952
953 Reserve space for a per-architecture data-pointer. An identifier
954 for the reserved data-pointer is returned. That identifer should
955 be saved in a local static variable.
956
957 The per-architecture data-pointer can be initialized in one of two
958 ways: The value can be set explicitly using a call to
959 set_gdbarch_data(); the value can be set implicitly using the value
960 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
961 called after the basic architecture vector has been created.
962
963 When a previously created architecture is re-selected, the
964 per-architecture data-pointer for that previous architecture is
965 restored. INIT() is not called.
966
967 During initialization, multiple assignments of the data-pointer are
968 allowed, non-NULL values are deleted by calling FREE(). If the
969 architecture is deleted using gdbarch_free() all non-NULL data
970 pointers are also deleted using FREE().
971
972 Multiple registrarants for any architecture are allowed (and
973 strongly encouraged). */
974
975 struct gdbarch_data;
976
977 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
978 typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
979 void *pointer);
980 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
981 gdbarch_data_free_ftype *free);
982 extern void set_gdbarch_data (struct gdbarch *gdbarch,
983 struct gdbarch_data *data,
984 void *pointer);
985
986 extern void *gdbarch_data (struct gdbarch_data*);
987
988
989 /* Register per-architecture memory region.
990
991 Provide a memory-region swap mechanism. Per-architecture memory
992 region are created. These memory regions are swapped whenever the
993 architecture is changed. For a new architecture, the memory region
994 is initialized with zero (0) and the INIT function is called.
995
996 Memory regions are swapped / initialized in the order that they are
997 registered. NULL DATA and/or INIT values can be specified.
998
999 New code should use register_gdbarch_data(). */
1000
1001 typedef void (gdbarch_swap_ftype) (void);
1002 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1003 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1004
1005
1006
1007 /* The target-system-dependent byte order is dynamic */
1008
1009 /* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
1010 is selectable at runtime. The user can use the \`\`set endian''
1011 command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
1012 target_byte_order should be auto-detected (from the program image
1013 say). */
1014
1015 #if GDB_MULTI_ARCH
1016 /* Multi-arch GDB is always bi-endian. */
1017 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1018 #endif
1019
1020 #ifndef TARGET_BYTE_ORDER_SELECTABLE_P
1021 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
1022 when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
1023 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1024 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
1025 #else
1026 #define TARGET_BYTE_ORDER_SELECTABLE_P 0
1027 #endif
1028 #endif
1029
1030 extern int target_byte_order;
1031 #ifdef TARGET_BYTE_ORDER_SELECTABLE
1032 /* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
1033 and expect defs.h to re-define TARGET_BYTE_ORDER. */
1034 #undef TARGET_BYTE_ORDER
1035 #endif
1036 #ifndef TARGET_BYTE_ORDER
1037 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1038 #endif
1039
1040 extern int target_byte_order_auto;
1041 #ifndef TARGET_BYTE_ORDER_AUTO
1042 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1043 #endif
1044
1045
1046
1047 /* The target-system-dependent BFD architecture is dynamic */
1048
1049 extern int target_architecture_auto;
1050 #ifndef TARGET_ARCHITECTURE_AUTO
1051 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1052 #endif
1053
1054 extern const struct bfd_arch_info *target_architecture;
1055 #ifndef TARGET_ARCHITECTURE
1056 #define TARGET_ARCHITECTURE (target_architecture + 0)
1057 #endif
1058
1059
1060 /* The target-system-dependent disassembler is semi-dynamic */
1061
1062 extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1063 unsigned int len, disassemble_info *info);
1064
1065 extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1066 disassemble_info *info);
1067
1068 extern void dis_asm_print_address (bfd_vma addr,
1069 disassemble_info *info);
1070
1071 extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1072 extern disassemble_info tm_print_insn_info;
1073 #ifndef TARGET_PRINT_INSN_INFO
1074 #define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1075 #endif
1076
1077
1078
1079 /* Set the dynamic target-system-dependent parameters (architecture,
1080 byte-order, ...) using information found in the BFD */
1081
1082 extern void set_gdbarch_from_file (bfd *);
1083
1084
1085 /* Initialize the current architecture to the "first" one we find on
1086 our list. */
1087
1088 extern void initialize_current_architecture (void);
1089
1090 /* For non-multiarched targets, do any initialization of the default
1091 gdbarch object necessary after the _initialize_MODULE functions
1092 have run. */
1093 extern void initialize_non_multiarch ();
1094
1095 /* gdbarch trace variable */
1096 extern int gdbarch_debug;
1097
1098 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1099
1100 #endif
1101 EOF
1102 exec 1>&2
1103 #../move-if-change new-gdbarch.h gdbarch.h
1104 compare_new gdbarch.h
1105
1106
1107 #
1108 # C file
1109 #
1110
1111 exec > new-gdbarch.c
1112 copyright
1113 cat <<EOF
1114
1115 #include "defs.h"
1116 #include "arch-utils.h"
1117
1118 #if GDB_MULTI_ARCH
1119 #include "gdbcmd.h"
1120 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1121 #else
1122 /* Just include everything in sight so that the every old definition
1123 of macro is visible. */
1124 #include "gdb_string.h"
1125 #include <ctype.h>
1126 #include "symtab.h"
1127 #include "frame.h"
1128 #include "inferior.h"
1129 #include "breakpoint.h"
1130 #include "gdb_wait.h"
1131 #include "gdbcore.h"
1132 #include "gdbcmd.h"
1133 #include "target.h"
1134 #include "gdbthread.h"
1135 #include "annotate.h"
1136 #include "symfile.h" /* for overlay functions */
1137 #include "value.h" /* For old tm.h/nm.h macros. */
1138 #endif
1139 #include "symcat.h"
1140
1141 #include "floatformat.h"
1142
1143 #include "gdb_assert.h"
1144 #include "gdb-events.h"
1145
1146 /* Static function declarations */
1147
1148 static void verify_gdbarch (struct gdbarch *gdbarch);
1149 static void alloc_gdbarch_data (struct gdbarch *);
1150 static void init_gdbarch_data (struct gdbarch *);
1151 static void free_gdbarch_data (struct gdbarch *);
1152 static void init_gdbarch_swap (struct gdbarch *);
1153 static void swapout_gdbarch_swap (struct gdbarch *);
1154 static void swapin_gdbarch_swap (struct gdbarch *);
1155
1156 /* Convenience macro for allocting typesafe memory. */
1157
1158 #ifndef XMALLOC
1159 #define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1160 #endif
1161
1162
1163 /* Non-zero if we want to trace architecture code. */
1164
1165 #ifndef GDBARCH_DEBUG
1166 #define GDBARCH_DEBUG 0
1167 #endif
1168 int gdbarch_debug = GDBARCH_DEBUG;
1169
1170 EOF
1171
1172 # gdbarch open the gdbarch object
1173 printf "\n"
1174 printf "/* Maintain the struct gdbarch object */\n"
1175 printf "\n"
1176 printf "struct gdbarch\n"
1177 printf "{\n"
1178 printf " /* basic architectural information */\n"
1179 function_list | while do_read
1180 do
1181 if class_is_info_p
1182 then
1183 printf " ${returntype} ${function};\n"
1184 fi
1185 done
1186 printf "\n"
1187 printf " /* target specific vector. */\n"
1188 printf " struct gdbarch_tdep *tdep;\n"
1189 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1190 printf "\n"
1191 printf " /* per-architecture data-pointers */\n"
1192 printf " unsigned nr_data;\n"
1193 printf " void **data;\n"
1194 printf "\n"
1195 printf " /* per-architecture swap-regions */\n"
1196 printf " struct gdbarch_swap *swap;\n"
1197 printf "\n"
1198 cat <<EOF
1199 /* Multi-arch values.
1200
1201 When extending this structure you must:
1202
1203 Add the field below.
1204
1205 Declare set/get functions and define the corresponding
1206 macro in gdbarch.h.
1207
1208 gdbarch_alloc(): If zero/NULL is not a suitable default,
1209 initialize the new field.
1210
1211 verify_gdbarch(): Confirm that the target updated the field
1212 correctly.
1213
1214 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1215 field is dumped out
1216
1217 \`\`startup_gdbarch()'': Append an initial value to the static
1218 variable (base values on the host's c-type system).
1219
1220 get_gdbarch(): Implement the set/get functions (probably using
1221 the macro's as shortcuts).
1222
1223 */
1224
1225 EOF
1226 function_list | while do_read
1227 do
1228 if class_is_variable_p
1229 then
1230 printf " ${returntype} ${function};\n"
1231 elif class_is_function_p
1232 then
1233 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1234 fi
1235 done
1236 printf "};\n"
1237
1238 # A pre-initialized vector
1239 printf "\n"
1240 printf "\n"
1241 cat <<EOF
1242 /* The default architecture uses host values (for want of a better
1243 choice). */
1244 EOF
1245 printf "\n"
1246 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1247 printf "\n"
1248 printf "struct gdbarch startup_gdbarch =\n"
1249 printf "{\n"
1250 printf " /* basic architecture information */\n"
1251 function_list | while do_read
1252 do
1253 if class_is_info_p
1254 then
1255 printf " ${staticdefault},\n"
1256 fi
1257 done
1258 cat <<EOF
1259 /* target specific vector and its dump routine */
1260 NULL, NULL,
1261 /*per-architecture data-pointers and swap regions */
1262 0, NULL, NULL,
1263 /* Multi-arch values */
1264 EOF
1265 function_list | while do_read
1266 do
1267 if class_is_function_p || class_is_variable_p
1268 then
1269 printf " ${staticdefault},\n"
1270 fi
1271 done
1272 cat <<EOF
1273 /* startup_gdbarch() */
1274 };
1275
1276 struct gdbarch *current_gdbarch = &startup_gdbarch;
1277
1278 /* Do any initialization needed for a non-multiarch configuration
1279 after the _initialize_MODULE functions have been run. */
1280 void
1281 initialize_non_multiarch ()
1282 {
1283 alloc_gdbarch_data (&startup_gdbarch);
1284 init_gdbarch_data (&startup_gdbarch);
1285 }
1286 EOF
1287
1288 # Create a new gdbarch struct
1289 printf "\n"
1290 printf "\n"
1291 cat <<EOF
1292 /* Create a new \`\`struct gdbarch'' based on information provided by
1293 \`\`struct gdbarch_info''. */
1294 EOF
1295 printf "\n"
1296 cat <<EOF
1297 struct gdbarch *
1298 gdbarch_alloc (const struct gdbarch_info *info,
1299 struct gdbarch_tdep *tdep)
1300 {
1301 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1302 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1303 the current local architecture and not the previous global
1304 architecture. This ensures that the new architectures initial
1305 values are not influenced by the previous architecture. Once
1306 everything is parameterised with gdbarch, this will go away. */
1307 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1308 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1309
1310 alloc_gdbarch_data (current_gdbarch);
1311
1312 current_gdbarch->tdep = tdep;
1313 EOF
1314 printf "\n"
1315 function_list | while do_read
1316 do
1317 if class_is_info_p
1318 then
1319 printf " current_gdbarch->${function} = info->${function};\n"
1320 fi
1321 done
1322 printf "\n"
1323 printf " /* Force the explicit initialization of these. */\n"
1324 function_list | while do_read
1325 do
1326 if class_is_function_p || class_is_variable_p
1327 then
1328 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1329 then
1330 printf " current_gdbarch->${function} = ${predefault};\n"
1331 fi
1332 fi
1333 done
1334 cat <<EOF
1335 /* gdbarch_alloc() */
1336
1337 return current_gdbarch;
1338 }
1339 EOF
1340
1341 # Free a gdbarch struct.
1342 printf "\n"
1343 printf "\n"
1344 cat <<EOF
1345 /* Free a gdbarch struct. This should never happen in normal
1346 operation --- once you've created a gdbarch, you keep it around.
1347 However, if an architecture's init function encounters an error
1348 building the structure, it may need to clean up a partially
1349 constructed gdbarch. */
1350
1351 void
1352 gdbarch_free (struct gdbarch *arch)
1353 {
1354 gdb_assert (arch != NULL);
1355 free_gdbarch_data (arch);
1356 xfree (arch);
1357 }
1358 EOF
1359
1360 # verify a new architecture
1361 printf "\n"
1362 printf "\n"
1363 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1364 printf "\n"
1365 cat <<EOF
1366 static void
1367 verify_gdbarch (struct gdbarch *gdbarch)
1368 {
1369 /* Only perform sanity checks on a multi-arch target. */
1370 if (!GDB_MULTI_ARCH)
1371 return;
1372 /* fundamental */
1373 if (gdbarch->byte_order == 0)
1374 internal_error (__FILE__, __LINE__,
1375 "verify_gdbarch: byte-order unset");
1376 if (gdbarch->bfd_arch_info == NULL)
1377 internal_error (__FILE__, __LINE__,
1378 "verify_gdbarch: bfd_arch_info unset");
1379 /* Check those that need to be defined for the given multi-arch level. */
1380 EOF
1381 function_list | while do_read
1382 do
1383 if class_is_function_p || class_is_variable_p
1384 then
1385 if [ "x${invalid_p}" = "x0" ]
1386 then
1387 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1388 elif class_is_predicate_p
1389 then
1390 printf " /* Skip verify of ${function}, has predicate */\n"
1391 # FIXME: See do_read for potential simplification
1392 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1393 then
1394 printf " if (${invalid_p})\n"
1395 printf " gdbarch->${function} = ${postdefault};\n"
1396 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1397 then
1398 printf " if (gdbarch->${function} == ${predefault})\n"
1399 printf " gdbarch->${function} = ${postdefault};\n"
1400 elif [ -n "${postdefault}" ]
1401 then
1402 printf " if (gdbarch->${function} == 0)\n"
1403 printf " gdbarch->${function} = ${postdefault};\n"
1404 elif [ -n "${invalid_p}" ]
1405 then
1406 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1407 printf " && (${invalid_p}))\n"
1408 printf " internal_error (__FILE__, __LINE__,\n"
1409 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1410 elif [ -n "${predefault}" ]
1411 then
1412 printf " if ((GDB_MULTI_ARCH >= ${level})\n"
1413 printf " && (gdbarch->${function} == ${predefault}))\n"
1414 printf " internal_error (__FILE__, __LINE__,\n"
1415 printf " \"gdbarch: verify_gdbarch: ${function} invalid\");\n"
1416 fi
1417 fi
1418 done
1419 cat <<EOF
1420 }
1421 EOF
1422
1423 # dump the structure
1424 printf "\n"
1425 printf "\n"
1426 cat <<EOF
1427 /* Print out the details of the current architecture. */
1428
1429 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1430 just happens to match the global variable \`\`current_gdbarch''. That
1431 way macros refering to that variable get the local and not the global
1432 version - ulgh. Once everything is parameterised with gdbarch, this
1433 will go away. */
1434
1435 void
1436 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1437 {
1438 fprintf_unfiltered (file,
1439 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1440 GDB_MULTI_ARCH);
1441 EOF
1442 function_list | sort -t: +2 | while do_read
1443 do
1444 # multiarch functions don't have macros.
1445 if class_is_multiarch_p
1446 then
1447 printf " if (GDB_MULTI_ARCH)\n"
1448 printf " fprintf_unfiltered (file,\n"
1449 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1450 printf " (long) current_gdbarch->${function});\n"
1451 continue
1452 fi
1453 printf "#ifdef ${macro}\n"
1454 if [ "x${returntype}" = "xvoid" ]
1455 then
1456 printf "#if GDB_MULTI_ARCH\n"
1457 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
1458 fi
1459 if class_is_function_p
1460 then
1461 printf " fprintf_unfiltered (file,\n"
1462 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1463 printf " \"${macro}(${actual})\",\n"
1464 printf " XSTRING (${macro} (${actual})));\n"
1465 else
1466 printf " fprintf_unfiltered (file,\n"
1467 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1468 printf " XSTRING (${macro}));\n"
1469 fi
1470 if [ "x${returntype}" = "xvoid" ]
1471 then
1472 printf "#endif\n"
1473 fi
1474 if [ "x${print_p}" = "x()" ]
1475 then
1476 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1477 elif [ "x${print_p}" = "x0" ]
1478 then
1479 printf " /* skip print of ${macro}, print_p == 0. */\n"
1480 elif [ -n "${print_p}" ]
1481 then
1482 printf " if (${print_p})\n"
1483 printf " fprintf_unfiltered (file,\n"
1484 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1485 printf " ${print});\n"
1486 elif class_is_function_p
1487 then
1488 printf " if (GDB_MULTI_ARCH)\n"
1489 printf " fprintf_unfiltered (file,\n"
1490 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1491 printf " (long) current_gdbarch->${function}\n"
1492 printf " /*${macro} ()*/);\n"
1493 else
1494 printf " fprintf_unfiltered (file,\n"
1495 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1496 printf " ${print});\n"
1497 fi
1498 printf "#endif\n"
1499 done
1500 cat <<EOF
1501 if (current_gdbarch->dump_tdep != NULL)
1502 current_gdbarch->dump_tdep (current_gdbarch, file);
1503 }
1504 EOF
1505
1506
1507 # GET/SET
1508 printf "\n"
1509 cat <<EOF
1510 struct gdbarch_tdep *
1511 gdbarch_tdep (struct gdbarch *gdbarch)
1512 {
1513 if (gdbarch_debug >= 2)
1514 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1515 return gdbarch->tdep;
1516 }
1517 EOF
1518 printf "\n"
1519 function_list | while do_read
1520 do
1521 if class_is_predicate_p
1522 then
1523 printf "\n"
1524 printf "int\n"
1525 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1526 printf "{\n"
1527 if [ -n "${valid_p}" ]
1528 then
1529 printf " return ${valid_p};\n"
1530 else
1531 printf "#error \"gdbarch_${function}_p: not defined\"\n"
1532 fi
1533 printf "}\n"
1534 fi
1535 if class_is_function_p
1536 then
1537 printf "\n"
1538 printf "${returntype}\n"
1539 if [ "x${formal}" = "xvoid" ]
1540 then
1541 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1542 else
1543 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1544 fi
1545 printf "{\n"
1546 printf " if (gdbarch->${function} == 0)\n"
1547 printf " internal_error (__FILE__, __LINE__,\n"
1548 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1549 printf " if (gdbarch_debug >= 2)\n"
1550 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1551 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1552 then
1553 if class_is_multiarch_p
1554 then
1555 params="gdbarch"
1556 else
1557 params=""
1558 fi
1559 else
1560 if class_is_multiarch_p
1561 then
1562 params="gdbarch, ${actual}"
1563 else
1564 params="${actual}"
1565 fi
1566 fi
1567 if [ "x${returntype}" = "xvoid" ]
1568 then
1569 printf " gdbarch->${function} (${params});\n"
1570 else
1571 printf " return gdbarch->${function} (${params});\n"
1572 fi
1573 printf "}\n"
1574 printf "\n"
1575 printf "void\n"
1576 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1577 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1578 printf "{\n"
1579 printf " gdbarch->${function} = ${function};\n"
1580 printf "}\n"
1581 elif class_is_variable_p
1582 then
1583 printf "\n"
1584 printf "${returntype}\n"
1585 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1586 printf "{\n"
1587 if [ "x${invalid_p}" = "x0" ]
1588 then
1589 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1590 elif [ -n "${invalid_p}" ]
1591 then
1592 printf " if (${invalid_p})\n"
1593 printf " internal_error (__FILE__, __LINE__,\n"
1594 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1595 elif [ -n "${predefault}" ]
1596 then
1597 printf " if (gdbarch->${function} == ${predefault})\n"
1598 printf " internal_error (__FILE__, __LINE__,\n"
1599 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
1600 fi
1601 printf " if (gdbarch_debug >= 2)\n"
1602 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1603 printf " return gdbarch->${function};\n"
1604 printf "}\n"
1605 printf "\n"
1606 printf "void\n"
1607 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1608 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1609 printf "{\n"
1610 printf " gdbarch->${function} = ${function};\n"
1611 printf "}\n"
1612 elif class_is_info_p
1613 then
1614 printf "\n"
1615 printf "${returntype}\n"
1616 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1617 printf "{\n"
1618 printf " if (gdbarch_debug >= 2)\n"
1619 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1620 printf " return gdbarch->${function};\n"
1621 printf "}\n"
1622 fi
1623 done
1624
1625 # All the trailing guff
1626 cat <<EOF
1627
1628
1629 /* Keep a registry of per-architecture data-pointers required by GDB
1630 modules. */
1631
1632 struct gdbarch_data
1633 {
1634 unsigned index;
1635 gdbarch_data_init_ftype *init;
1636 gdbarch_data_free_ftype *free;
1637 };
1638
1639 struct gdbarch_data_registration
1640 {
1641 struct gdbarch_data *data;
1642 struct gdbarch_data_registration *next;
1643 };
1644
1645 struct gdbarch_data_registry
1646 {
1647 unsigned nr;
1648 struct gdbarch_data_registration *registrations;
1649 };
1650
1651 struct gdbarch_data_registry gdbarch_data_registry =
1652 {
1653 0, NULL,
1654 };
1655
1656 struct gdbarch_data *
1657 register_gdbarch_data (gdbarch_data_init_ftype *init,
1658 gdbarch_data_free_ftype *free)
1659 {
1660 struct gdbarch_data_registration **curr;
1661 for (curr = &gdbarch_data_registry.registrations;
1662 (*curr) != NULL;
1663 curr = &(*curr)->next);
1664 (*curr) = XMALLOC (struct gdbarch_data_registration);
1665 (*curr)->next = NULL;
1666 (*curr)->data = XMALLOC (struct gdbarch_data);
1667 (*curr)->data->index = gdbarch_data_registry.nr++;
1668 (*curr)->data->init = init;
1669 (*curr)->data->free = free;
1670 return (*curr)->data;
1671 }
1672
1673
1674 /* Walk through all the registered users initializing each in turn. */
1675
1676 static void
1677 init_gdbarch_data (struct gdbarch *gdbarch)
1678 {
1679 struct gdbarch_data_registration *rego;
1680 for (rego = gdbarch_data_registry.registrations;
1681 rego != NULL;
1682 rego = rego->next)
1683 {
1684 struct gdbarch_data *data = rego->data;
1685 gdb_assert (data->index < gdbarch->nr_data);
1686 if (data->init != NULL)
1687 {
1688 void *pointer = data->init (gdbarch);
1689 set_gdbarch_data (gdbarch, data, pointer);
1690 }
1691 }
1692 }
1693
1694 /* Create/delete the gdbarch data vector. */
1695
1696 static void
1697 alloc_gdbarch_data (struct gdbarch *gdbarch)
1698 {
1699 gdb_assert (gdbarch->data == NULL);
1700 gdbarch->nr_data = gdbarch_data_registry.nr;
1701 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1702 }
1703
1704 static void
1705 free_gdbarch_data (struct gdbarch *gdbarch)
1706 {
1707 struct gdbarch_data_registration *rego;
1708 gdb_assert (gdbarch->data != NULL);
1709 for (rego = gdbarch_data_registry.registrations;
1710 rego != NULL;
1711 rego = rego->next)
1712 {
1713 struct gdbarch_data *data = rego->data;
1714 gdb_assert (data->index < gdbarch->nr_data);
1715 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1716 {
1717 data->free (gdbarch, gdbarch->data[data->index]);
1718 gdbarch->data[data->index] = NULL;
1719 }
1720 }
1721 xfree (gdbarch->data);
1722 gdbarch->data = NULL;
1723 }
1724
1725
1726 /* Initialize the current value of thee specified per-architecture
1727 data-pointer. */
1728
1729 void
1730 set_gdbarch_data (struct gdbarch *gdbarch,
1731 struct gdbarch_data *data,
1732 void *pointer)
1733 {
1734 gdb_assert (data->index < gdbarch->nr_data);
1735 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1736 data->free (gdbarch, gdbarch->data[data->index]);
1737 gdbarch->data[data->index] = pointer;
1738 }
1739
1740 /* Return the current value of the specified per-architecture
1741 data-pointer. */
1742
1743 void *
1744 gdbarch_data (struct gdbarch_data *data)
1745 {
1746 gdb_assert (data->index < current_gdbarch->nr_data);
1747 return current_gdbarch->data[data->index];
1748 }
1749
1750
1751
1752 /* Keep a registry of swapped data required by GDB modules. */
1753
1754 struct gdbarch_swap
1755 {
1756 void *swap;
1757 struct gdbarch_swap_registration *source;
1758 struct gdbarch_swap *next;
1759 };
1760
1761 struct gdbarch_swap_registration
1762 {
1763 void *data;
1764 unsigned long sizeof_data;
1765 gdbarch_swap_ftype *init;
1766 struct gdbarch_swap_registration *next;
1767 };
1768
1769 struct gdbarch_swap_registry
1770 {
1771 int nr;
1772 struct gdbarch_swap_registration *registrations;
1773 };
1774
1775 struct gdbarch_swap_registry gdbarch_swap_registry =
1776 {
1777 0, NULL,
1778 };
1779
1780 void
1781 register_gdbarch_swap (void *data,
1782 unsigned long sizeof_data,
1783 gdbarch_swap_ftype *init)
1784 {
1785 struct gdbarch_swap_registration **rego;
1786 for (rego = &gdbarch_swap_registry.registrations;
1787 (*rego) != NULL;
1788 rego = &(*rego)->next);
1789 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1790 (*rego)->next = NULL;
1791 (*rego)->init = init;
1792 (*rego)->data = data;
1793 (*rego)->sizeof_data = sizeof_data;
1794 }
1795
1796
1797 static void
1798 init_gdbarch_swap (struct gdbarch *gdbarch)
1799 {
1800 struct gdbarch_swap_registration *rego;
1801 struct gdbarch_swap **curr = &gdbarch->swap;
1802 for (rego = gdbarch_swap_registry.registrations;
1803 rego != NULL;
1804 rego = rego->next)
1805 {
1806 if (rego->data != NULL)
1807 {
1808 (*curr) = XMALLOC (struct gdbarch_swap);
1809 (*curr)->source = rego;
1810 (*curr)->swap = xmalloc (rego->sizeof_data);
1811 (*curr)->next = NULL;
1812 memset (rego->data, 0, rego->sizeof_data);
1813 curr = &(*curr)->next;
1814 }
1815 if (rego->init != NULL)
1816 rego->init ();
1817 }
1818 }
1819
1820 static void
1821 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1822 {
1823 struct gdbarch_swap *curr;
1824 for (curr = gdbarch->swap;
1825 curr != NULL;
1826 curr = curr->next)
1827 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1828 }
1829
1830 static void
1831 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1832 {
1833 struct gdbarch_swap *curr;
1834 for (curr = gdbarch->swap;
1835 curr != NULL;
1836 curr = curr->next)
1837 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1838 }
1839
1840
1841 /* Keep a registry of the architectures known by GDB. */
1842
1843 struct gdbarch_registration
1844 {
1845 enum bfd_architecture bfd_architecture;
1846 gdbarch_init_ftype *init;
1847 gdbarch_dump_tdep_ftype *dump_tdep;
1848 struct gdbarch_list *arches;
1849 struct gdbarch_registration *next;
1850 };
1851
1852 static struct gdbarch_registration *gdbarch_registry = NULL;
1853
1854 static void
1855 append_name (const char ***buf, int *nr, const char *name)
1856 {
1857 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1858 (*buf)[*nr] = name;
1859 *nr += 1;
1860 }
1861
1862 const char **
1863 gdbarch_printable_names (void)
1864 {
1865 if (GDB_MULTI_ARCH)
1866 {
1867 /* Accumulate a list of names based on the registed list of
1868 architectures. */
1869 enum bfd_architecture a;
1870 int nr_arches = 0;
1871 const char **arches = NULL;
1872 struct gdbarch_registration *rego;
1873 for (rego = gdbarch_registry;
1874 rego != NULL;
1875 rego = rego->next)
1876 {
1877 const struct bfd_arch_info *ap;
1878 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1879 if (ap == NULL)
1880 internal_error (__FILE__, __LINE__,
1881 "gdbarch_architecture_names: multi-arch unknown");
1882 do
1883 {
1884 append_name (&arches, &nr_arches, ap->printable_name);
1885 ap = ap->next;
1886 }
1887 while (ap != NULL);
1888 }
1889 append_name (&arches, &nr_arches, NULL);
1890 return arches;
1891 }
1892 else
1893 /* Just return all the architectures that BFD knows. Assume that
1894 the legacy architecture framework supports them. */
1895 return bfd_arch_list ();
1896 }
1897
1898
1899 void
1900 gdbarch_register (enum bfd_architecture bfd_architecture,
1901 gdbarch_init_ftype *init,
1902 gdbarch_dump_tdep_ftype *dump_tdep)
1903 {
1904 struct gdbarch_registration **curr;
1905 const struct bfd_arch_info *bfd_arch_info;
1906 /* Check that BFD recognizes this architecture */
1907 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1908 if (bfd_arch_info == NULL)
1909 {
1910 internal_error (__FILE__, __LINE__,
1911 "gdbarch: Attempt to register unknown architecture (%d)",
1912 bfd_architecture);
1913 }
1914 /* Check that we haven't seen this architecture before */
1915 for (curr = &gdbarch_registry;
1916 (*curr) != NULL;
1917 curr = &(*curr)->next)
1918 {
1919 if (bfd_architecture == (*curr)->bfd_architecture)
1920 internal_error (__FILE__, __LINE__,
1921 "gdbarch: Duplicate registraration of architecture (%s)",
1922 bfd_arch_info->printable_name);
1923 }
1924 /* log it */
1925 if (gdbarch_debug)
1926 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1927 bfd_arch_info->printable_name,
1928 (long) init);
1929 /* Append it */
1930 (*curr) = XMALLOC (struct gdbarch_registration);
1931 (*curr)->bfd_architecture = bfd_architecture;
1932 (*curr)->init = init;
1933 (*curr)->dump_tdep = dump_tdep;
1934 (*curr)->arches = NULL;
1935 (*curr)->next = NULL;
1936 /* When non- multi-arch, install whatever target dump routine we've
1937 been provided - hopefully that routine has been written correctly
1938 and works regardless of multi-arch. */
1939 if (!GDB_MULTI_ARCH && dump_tdep != NULL
1940 && startup_gdbarch.dump_tdep == NULL)
1941 startup_gdbarch.dump_tdep = dump_tdep;
1942 }
1943
1944 void
1945 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1946 gdbarch_init_ftype *init)
1947 {
1948 gdbarch_register (bfd_architecture, init, NULL);
1949 }
1950
1951
1952 /* Look for an architecture using gdbarch_info. Base search on only
1953 BFD_ARCH_INFO and BYTE_ORDER. */
1954
1955 struct gdbarch_list *
1956 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1957 const struct gdbarch_info *info)
1958 {
1959 for (; arches != NULL; arches = arches->next)
1960 {
1961 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1962 continue;
1963 if (info->byte_order != arches->gdbarch->byte_order)
1964 continue;
1965 return arches;
1966 }
1967 return NULL;
1968 }
1969
1970
1971 /* Update the current architecture. Return ZERO if the update request
1972 failed. */
1973
1974 int
1975 gdbarch_update_p (struct gdbarch_info info)
1976 {
1977 struct gdbarch *new_gdbarch;
1978 struct gdbarch_list **list;
1979 struct gdbarch_registration *rego;
1980
1981 /* Fill in missing parts of the INFO struct using a number of
1982 sources: \`\`set ...''; INFOabfd supplied; existing target. */
1983
1984 /* \`\`(gdb) set architecture ...'' */
1985 if (info.bfd_arch_info == NULL
1986 && !TARGET_ARCHITECTURE_AUTO)
1987 info.bfd_arch_info = TARGET_ARCHITECTURE;
1988 if (info.bfd_arch_info == NULL
1989 && info.abfd != NULL
1990 && bfd_get_arch (info.abfd) != bfd_arch_unknown
1991 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
1992 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
1993 if (info.bfd_arch_info == NULL)
1994 info.bfd_arch_info = TARGET_ARCHITECTURE;
1995
1996 /* \`\`(gdb) set byte-order ...'' */
1997 if (info.byte_order == 0
1998 && !TARGET_BYTE_ORDER_AUTO)
1999 info.byte_order = TARGET_BYTE_ORDER;
2000 /* From the INFO struct. */
2001 if (info.byte_order == 0
2002 && info.abfd != NULL)
2003 info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
2004 : bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
2005 : 0);
2006 /* From the current target. */
2007 if (info.byte_order == 0)
2008 info.byte_order = TARGET_BYTE_ORDER;
2009
2010 /* Must have found some sort of architecture. */
2011 gdb_assert (info.bfd_arch_info != NULL);
2012
2013 if (gdbarch_debug)
2014 {
2015 fprintf_unfiltered (gdb_stdlog,
2016 "gdbarch_update: info.bfd_arch_info %s\n",
2017 (info.bfd_arch_info != NULL
2018 ? info.bfd_arch_info->printable_name
2019 : "(null)"));
2020 fprintf_unfiltered (gdb_stdlog,
2021 "gdbarch_update: info.byte_order %d (%s)\n",
2022 info.byte_order,
2023 (info.byte_order == BIG_ENDIAN ? "big"
2024 : info.byte_order == LITTLE_ENDIAN ? "little"
2025 : "default"));
2026 fprintf_unfiltered (gdb_stdlog,
2027 "gdbarch_update: info.abfd 0x%lx\n",
2028 (long) info.abfd);
2029 fprintf_unfiltered (gdb_stdlog,
2030 "gdbarch_update: info.tdep_info 0x%lx\n",
2031 (long) info.tdep_info);
2032 }
2033
2034 /* Find the target that knows about this architecture. */
2035 for (rego = gdbarch_registry;
2036 rego != NULL;
2037 rego = rego->next)
2038 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2039 break;
2040 if (rego == NULL)
2041 {
2042 if (gdbarch_debug)
2043 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2044 return 0;
2045 }
2046
2047 /* Ask the target for a replacement architecture. */
2048 new_gdbarch = rego->init (info, rego->arches);
2049
2050 /* Did the target like it? No. Reject the change. */
2051 if (new_gdbarch == NULL)
2052 {
2053 if (gdbarch_debug)
2054 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2055 return 0;
2056 }
2057
2058 /* Did the architecture change? No. Do nothing. */
2059 if (current_gdbarch == new_gdbarch)
2060 {
2061 if (gdbarch_debug)
2062 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2063 (long) new_gdbarch,
2064 new_gdbarch->bfd_arch_info->printable_name);
2065 return 1;
2066 }
2067
2068 /* Swap all data belonging to the old target out */
2069 swapout_gdbarch_swap (current_gdbarch);
2070
2071 /* Is this a pre-existing architecture? Yes. Swap it in. */
2072 for (list = &rego->arches;
2073 (*list) != NULL;
2074 list = &(*list)->next)
2075 {
2076 if ((*list)->gdbarch == new_gdbarch)
2077 {
2078 if (gdbarch_debug)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
2081 (long) new_gdbarch,
2082 new_gdbarch->bfd_arch_info->printable_name);
2083 current_gdbarch = new_gdbarch;
2084 swapin_gdbarch_swap (new_gdbarch);
2085 architecture_changed_event ();
2086 return 1;
2087 }
2088 }
2089
2090 /* Append this new architecture to this targets list. */
2091 (*list) = XMALLOC (struct gdbarch_list);
2092 (*list)->next = NULL;
2093 (*list)->gdbarch = new_gdbarch;
2094
2095 /* Switch to this new architecture. Dump it out. */
2096 current_gdbarch = new_gdbarch;
2097 if (gdbarch_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog,
2100 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2101 (long) new_gdbarch,
2102 new_gdbarch->bfd_arch_info->printable_name);
2103 }
2104
2105 /* Check that the newly installed architecture is valid. Plug in
2106 any post init values. */
2107 new_gdbarch->dump_tdep = rego->dump_tdep;
2108 verify_gdbarch (new_gdbarch);
2109
2110 /* Initialize the per-architecture memory (swap) areas.
2111 CURRENT_GDBARCH must be update before these modules are
2112 called. */
2113 init_gdbarch_swap (new_gdbarch);
2114
2115 /* Initialize the per-architecture data-pointer of all parties that
2116 registered an interest in this architecture. CURRENT_GDBARCH
2117 must be updated before these modules are called. */
2118 init_gdbarch_data (new_gdbarch);
2119 architecture_changed_event ();
2120
2121 if (gdbarch_debug)
2122 gdbarch_dump (current_gdbarch, gdb_stdlog);
2123
2124 return 1;
2125 }
2126
2127
2128 /* Disassembler */
2129
2130 /* Pointer to the target-dependent disassembly function. */
2131 int (*tm_print_insn) (bfd_vma, disassemble_info *);
2132 disassemble_info tm_print_insn_info;
2133
2134
2135 extern void _initialize_gdbarch (void);
2136
2137 void
2138 _initialize_gdbarch (void)
2139 {
2140 struct cmd_list_element *c;
2141
2142 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2143 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2144 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2145 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2146 tm_print_insn_info.print_address_func = dis_asm_print_address;
2147
2148 add_show_from_set (add_set_cmd ("arch",
2149 class_maintenance,
2150 var_zinteger,
2151 (char *)&gdbarch_debug,
2152 "Set architecture debugging.\\n\\
2153 When non-zero, architecture debugging is enabled.", &setdebuglist),
2154 &showdebuglist);
2155 c = add_set_cmd ("archdebug",
2156 class_maintenance,
2157 var_zinteger,
2158 (char *)&gdbarch_debug,
2159 "Set architecture debugging.\\n\\
2160 When non-zero, architecture debugging is enabled.", &setlist);
2161
2162 deprecate_cmd (c, "set debug arch");
2163 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2164 }
2165 EOF
2166
2167 # close things off
2168 exec 1>&2
2169 #../move-if-change new-gdbarch.c gdbarch.c
2170 compare_new gdbarch.c
This page took 0.085155 seconds and 4 git commands to generate.