2003-09-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 #
6 # This file is part of GDB.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
22 # Make certain that the script is running in an internationalized
23 # environment.
24 LANG=c ; export LANG
25 LC_ALL=c ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
114
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
118 "" )
119 if test -n "${predefault}"
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
129 fi
130 ;;
131 * )
132 echo "Predicate function ${function} with invalid_p." 1>&2
133 kill $$
134 exit 1
135 ;;
136 esac
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
146 if [ -n "${postdefault}" ]
147 then
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
150 then
151 fallbackdefault="${predefault}"
152 else
153 fallbackdefault="0"
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
160 fi
161 done
162 if [ -n "${class}" ]
163 then
164 true
165 else
166 false
167 fi
168 }
169
170
171 fallback_default_p ()
172 {
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
175 }
176
177 class_is_variable_p ()
178 {
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
183 }
184
185 class_is_function_p ()
186 {
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191 }
192
193 class_is_multiarch_p ()
194 {
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
199 }
200
201 class_is_predicate_p ()
202 {
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
207 }
208
209 class_is_info_p ()
210 {
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
215 }
216
217
218 # dump out/verify the doco
219 for field in ${read}
220 do
221 case ${field} in
222
223 class ) : ;;
224
225 # # -> line disable
226 # f -> function
227 # hiding a function
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
230 # v -> variable
231 # hiding a variable
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
234 # i -> set from info
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
240
241 level ) : ;;
242
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
246
247 macro ) : ;;
248
249 # The name of the MACRO that this method is to be accessed by.
250
251 returntype ) : ;;
252
253 # For functions, the return type; for variables, the data type
254
255 function ) : ;;
256
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
260
261 formal ) : ;;
262
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
267
268 actual ) : ;;
269
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
273
274 attrib ) : ;;
275
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
328
329 invalid_p ) : ;;
330
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
343
344 # See also PREDEFAULT and POSTDEFAULT.
345
346 fmt ) : ;;
347
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
352 # If FMT is empty, ``%ld'' is used.
353
354 print ) : ;;
355
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
359 # If PRINT is empty, ``(long)'' is used.
360
361 print_p ) : ;;
362
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
369
370 # If PRINT_P is empty, ``1'' is always used.
371
372 description ) : ;;
373
374 # Currently unused.
375
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
379 esac
380 done
381
382
383 function_list ()
384 {
385 # See below (DOCO) for description of each field
386 cat <<EOF
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
388 #
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
390 #
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
395 #
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
403 # machine.
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
415 #
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418 #
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
425 #
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
428 #
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
435 # serious shakedown.
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
437 #
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
440 #
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
447
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
450 # all (-1).
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
469
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488 # registers.
489 F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493 # registers.
494 F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
501
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
573 #
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
577 #
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
587 #
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
591 #
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
595 #
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
600 #
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
605 #
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
609 #
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
612 #
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621 #
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
623 #
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
642 #
643 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp
644 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
645 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
646 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
647 v:2:PARM_BOUNDARY:int:parm_boundary
648 #
649 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
650 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
651 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
652 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
653 # On some machines there are bits in addresses which are not really
654 # part of the address, but are used by the kernel, the hardware, etc.
655 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
656 # we get a "real" address such as one would find in a symbol table.
657 # This is used only for addresses of instructions, and even then I'm
658 # not sure it's used in all contexts. It exists to deal with there
659 # being a few stray bits in the PC which would mislead us, not as some
660 # sort of generic thing to handle alignment or segmentation (it's
661 # possible it should be in TARGET_READ_PC instead).
662 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
663 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
664 # ADDR_BITS_REMOVE.
665 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
666 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
667 # the target needs software single step. An ISA method to implement it.
668 #
669 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
670 # using the breakpoint system instead of blatting memory directly (as with rs6000).
671 #
672 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
673 # single step. If not, then implement single step using breakpoints.
674 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
675 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
676 # disassembler. Perhaphs objdump can handle it?
677 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
678 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
679
680
681 # For SVR4 shared libraries, each call goes through a small piece of
682 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
683 # to nonzero if we are currently stopped in one of these.
684 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
685
686 # Some systems also have trampoline code for returning from shared libs.
687 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
688
689 # Sigtramp is a routine that the kernel calls (which then calls the
690 # signal handler). On most machines it is a library routine that is
691 # linked into the executable.
692 #
693 # This macro, given a program counter value and the name of the
694 # function in which that PC resides (which can be null if the name is
695 # not known), returns nonzero if the PC and name show that we are in
696 # sigtramp.
697 #
698 # On most machines just see if the name is sigtramp (and if we have
699 # no name, assume we are not in sigtramp).
700 #
701 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
702 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
703 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
704 # own local NAME lookup.
705 #
706 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
707 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
708 # does not.
709 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
710 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
711 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
712 # A target might have problems with watchpoints as soon as the stack
713 # frame of the current function has been destroyed. This mostly happens
714 # as the first action in a funtion's epilogue. in_function_epilogue_p()
715 # is defined to return a non-zero value if either the given addr is one
716 # instruction after the stack destroying instruction up to the trailing
717 # return instruction or if we can figure out that the stack frame has
718 # already been invalidated regardless of the value of addr. Targets
719 # which don't suffer from that problem could just let this functionality
720 # untouched.
721 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
722 # Given a vector of command-line arguments, return a newly allocated
723 # string which, when passed to the create_inferior function, will be
724 # parsed (on Unix systems, by the shell) to yield the same vector.
725 # This function should call error() if the argument vector is not
726 # representable for this target or if this target does not support
727 # command-line arguments.
728 # ARGC is the number of elements in the vector.
729 # ARGV is an array of strings, one per argument.
730 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
731 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
732 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
733 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
734 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
735 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
736 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
737 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
738 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
739 # Is a register in a group
740 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
741 # Fetch the pointer to the ith function argument.
742 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
743 EOF
744 }
745
746 #
747 # The .log file
748 #
749 exec > new-gdbarch.log
750 function_list | while do_read
751 do
752 cat <<EOF
753 ${class} ${macro}(${actual})
754 ${returntype} ${function} ($formal)${attrib}
755 EOF
756 for r in ${read}
757 do
758 eval echo \"\ \ \ \ ${r}=\${${r}}\"
759 done
760 if class_is_predicate_p && fallback_default_p
761 then
762 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
763 kill $$
764 exit 1
765 fi
766 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
767 then
768 echo "Error: postdefault is useless when invalid_p=0" 1>&2
769 kill $$
770 exit 1
771 fi
772 if class_is_multiarch_p
773 then
774 if class_is_predicate_p ; then :
775 elif test "x${predefault}" = "x"
776 then
777 echo "Error: pure multi-arch function must have a predefault" 1>&2
778 kill $$
779 exit 1
780 fi
781 fi
782 echo ""
783 done
784
785 exec 1>&2
786 compare_new gdbarch.log
787
788
789 copyright ()
790 {
791 cat <<EOF
792 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
793
794 /* Dynamic architecture support for GDB, the GNU debugger.
795 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
796
797 This file is part of GDB.
798
799 This program is free software; you can redistribute it and/or modify
800 it under the terms of the GNU General Public License as published by
801 the Free Software Foundation; either version 2 of the License, or
802 (at your option) any later version.
803
804 This program is distributed in the hope that it will be useful,
805 but WITHOUT ANY WARRANTY; without even the implied warranty of
806 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
807 GNU General Public License for more details.
808
809 You should have received a copy of the GNU General Public License
810 along with this program; if not, write to the Free Software
811 Foundation, Inc., 59 Temple Place - Suite 330,
812 Boston, MA 02111-1307, USA. */
813
814 /* This file was created with the aid of \`\`gdbarch.sh''.
815
816 The Bourne shell script \`\`gdbarch.sh'' creates the files
817 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
818 against the existing \`\`gdbarch.[hc]''. Any differences found
819 being reported.
820
821 If editing this file, please also run gdbarch.sh and merge any
822 changes into that script. Conversely, when making sweeping changes
823 to this file, modifying gdbarch.sh and using its output may prove
824 easier. */
825
826 EOF
827 }
828
829 #
830 # The .h file
831 #
832
833 exec > new-gdbarch.h
834 copyright
835 cat <<EOF
836 #ifndef GDBARCH_H
837 #define GDBARCH_H
838
839 struct floatformat;
840 struct ui_file;
841 struct frame_info;
842 struct value;
843 struct objfile;
844 struct minimal_symbol;
845 struct regcache;
846 struct reggroup;
847 struct disassemble_info;
848
849 extern struct gdbarch *current_gdbarch;
850
851
852 /* If any of the following are defined, the target wasn't correctly
853 converted. */
854
855 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
856 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
857 #endif
858 EOF
859
860 # function typedef's
861 printf "\n"
862 printf "\n"
863 printf "/* The following are pre-initialized by GDBARCH. */\n"
864 function_list | while do_read
865 do
866 if class_is_info_p
867 then
868 printf "\n"
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
872 printf "#error \"Non multi-arch definition of ${macro}\"\n"
873 printf "#endif\n"
874 printf "#if !defined (${macro})\n"
875 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
876 printf "#endif\n"
877 fi
878 done
879
880 # function typedef's
881 printf "\n"
882 printf "\n"
883 printf "/* The following are initialized by the target dependent code. */\n"
884 function_list | while do_read
885 do
886 if [ -n "${comment}" ]
887 then
888 echo "${comment}" | sed \
889 -e '2 s,#,/*,' \
890 -e '3,$ s,#, ,' \
891 -e '$ s,$, */,'
892 fi
893 if class_is_multiarch_p
894 then
895 if class_is_predicate_p
896 then
897 printf "\n"
898 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
899 fi
900 else
901 if class_is_predicate_p
902 then
903 printf "\n"
904 printf "#if defined (${macro})\n"
905 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
906 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
907 printf "#if !defined (${macro}_P)\n"
908 printf "#define ${macro}_P() (1)\n"
909 printf "#endif\n"
910 printf "#endif\n"
911 printf "\n"
912 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
913 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
914 printf "#error \"Non multi-arch definition of ${macro}\"\n"
915 printf "#endif\n"
916 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
917 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
918 printf "#endif\n"
919 fi
920 fi
921 if class_is_variable_p
922 then
923 printf "\n"
924 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
925 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
926 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
927 printf "#error \"Non multi-arch definition of ${macro}\"\n"
928 printf "#endif\n"
929 printf "#if !defined (${macro})\n"
930 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
931 printf "#endif\n"
932 fi
933 if class_is_function_p
934 then
935 printf "\n"
936 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
937 then
938 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
939 elif class_is_multiarch_p
940 then
941 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
942 else
943 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
944 fi
945 if [ "x${formal}" = "xvoid" ]
946 then
947 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
948 else
949 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
950 fi
951 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
952 if class_is_multiarch_p ; then :
953 else
954 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
955 printf "#error \"Non multi-arch definition of ${macro}\"\n"
956 printf "#endif\n"
957 if [ "x${actual}" = "x" ]
958 then
959 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
960 elif [ "x${actual}" = "x-" ]
961 then
962 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
963 else
964 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
965 fi
966 printf "#if !defined (${macro})\n"
967 if [ "x${actual}" = "x" ]
968 then
969 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
970 elif [ "x${actual}" = "x-" ]
971 then
972 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
973 else
974 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
975 fi
976 printf "#endif\n"
977 fi
978 fi
979 done
980
981 # close it off
982 cat <<EOF
983
984 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
985
986
987 /* Mechanism for co-ordinating the selection of a specific
988 architecture.
989
990 GDB targets (*-tdep.c) can register an interest in a specific
991 architecture. Other GDB components can register a need to maintain
992 per-architecture data.
993
994 The mechanisms below ensures that there is only a loose connection
995 between the set-architecture command and the various GDB
996 components. Each component can independently register their need
997 to maintain architecture specific data with gdbarch.
998
999 Pragmatics:
1000
1001 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1002 didn't scale.
1003
1004 The more traditional mega-struct containing architecture specific
1005 data for all the various GDB components was also considered. Since
1006 GDB is built from a variable number of (fairly independent)
1007 components it was determined that the global aproach was not
1008 applicable. */
1009
1010
1011 /* Register a new architectural family with GDB.
1012
1013 Register support for the specified ARCHITECTURE with GDB. When
1014 gdbarch determines that the specified architecture has been
1015 selected, the corresponding INIT function is called.
1016
1017 --
1018
1019 The INIT function takes two parameters: INFO which contains the
1020 information available to gdbarch about the (possibly new)
1021 architecture; ARCHES which is a list of the previously created
1022 \`\`struct gdbarch'' for this architecture.
1023
1024 The INFO parameter is, as far as possible, be pre-initialized with
1025 information obtained from INFO.ABFD or the previously selected
1026 architecture.
1027
1028 The ARCHES parameter is a linked list (sorted most recently used)
1029 of all the previously created architures for this architecture
1030 family. The (possibly NULL) ARCHES->gdbarch can used to access
1031 values from the previously selected architecture for this
1032 architecture family. The global \`\`current_gdbarch'' shall not be
1033 used.
1034
1035 The INIT function shall return any of: NULL - indicating that it
1036 doesn't recognize the selected architecture; an existing \`\`struct
1037 gdbarch'' from the ARCHES list - indicating that the new
1038 architecture is just a synonym for an earlier architecture (see
1039 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1040 - that describes the selected architecture (see gdbarch_alloc()).
1041
1042 The DUMP_TDEP function shall print out all target specific values.
1043 Care should be taken to ensure that the function works in both the
1044 multi-arch and non- multi-arch cases. */
1045
1046 struct gdbarch_list
1047 {
1048 struct gdbarch *gdbarch;
1049 struct gdbarch_list *next;
1050 };
1051
1052 struct gdbarch_info
1053 {
1054 /* Use default: NULL (ZERO). */
1055 const struct bfd_arch_info *bfd_arch_info;
1056
1057 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1058 int byte_order;
1059
1060 /* Use default: NULL (ZERO). */
1061 bfd *abfd;
1062
1063 /* Use default: NULL (ZERO). */
1064 struct gdbarch_tdep_info *tdep_info;
1065
1066 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1067 enum gdb_osabi osabi;
1068 };
1069
1070 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1071 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1072
1073 /* DEPRECATED - use gdbarch_register() */
1074 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1075
1076 extern void gdbarch_register (enum bfd_architecture architecture,
1077 gdbarch_init_ftype *,
1078 gdbarch_dump_tdep_ftype *);
1079
1080
1081 /* Return a freshly allocated, NULL terminated, array of the valid
1082 architecture names. Since architectures are registered during the
1083 _initialize phase this function only returns useful information
1084 once initialization has been completed. */
1085
1086 extern const char **gdbarch_printable_names (void);
1087
1088
1089 /* Helper function. Search the list of ARCHES for a GDBARCH that
1090 matches the information provided by INFO. */
1091
1092 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1093
1094
1095 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1096 basic initialization using values obtained from the INFO andTDEP
1097 parameters. set_gdbarch_*() functions are called to complete the
1098 initialization of the object. */
1099
1100 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1101
1102
1103 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1104 It is assumed that the caller freeds the \`\`struct
1105 gdbarch_tdep''. */
1106
1107 extern void gdbarch_free (struct gdbarch *);
1108
1109
1110 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1111 obstack. The memory is freed when the corresponding architecture
1112 is also freed. */
1113
1114 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1115 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1116 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1117
1118
1119 /* Helper function. Force an update of the current architecture.
1120
1121 The actual architecture selected is determined by INFO, \`\`(gdb) set
1122 architecture'' et.al., the existing architecture and BFD's default
1123 architecture. INFO should be initialized to zero and then selected
1124 fields should be updated.
1125
1126 Returns non-zero if the update succeeds */
1127
1128 extern int gdbarch_update_p (struct gdbarch_info info);
1129
1130
1131
1132 /* Register per-architecture data-pointer.
1133
1134 Reserve space for a per-architecture data-pointer. An identifier
1135 for the reserved data-pointer is returned. That identifer should
1136 be saved in a local static variable.
1137
1138 The per-architecture data-pointer is either initialized explicitly
1139 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1140 gdbarch_data()).
1141
1142 Memory for the per-architecture data shall be allocated using
1143 gdbarch_obstack_zalloc. That memory will be deleted when the
1144 corresponding architecture object is deleted.
1145
1146 When a previously created architecture is re-selected, the
1147 per-architecture data-pointer for that previous architecture is
1148 restored. INIT() is not re-called.
1149
1150 Multiple registrarants for any architecture are allowed (and
1151 strongly encouraged). */
1152
1153 struct gdbarch_data;
1154
1155 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1156 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1157 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1158 struct gdbarch_data *data,
1159 void *pointer);
1160
1161 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1162
1163
1164 /* Register per-architecture memory region.
1165
1166 Provide a memory-region swap mechanism. Per-architecture memory
1167 region are created. These memory regions are swapped whenever the
1168 architecture is changed. For a new architecture, the memory region
1169 is initialized with zero (0) and the INIT function is called.
1170
1171 Memory regions are swapped / initialized in the order that they are
1172 registered. NULL DATA and/or INIT values can be specified.
1173
1174 New code should use register_gdbarch_data(). */
1175
1176 typedef void (gdbarch_swap_ftype) (void);
1177 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1178 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1179
1180
1181
1182 /* The target-system-dependent byte order is dynamic */
1183
1184 extern int target_byte_order;
1185 #ifndef TARGET_BYTE_ORDER
1186 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1187 #endif
1188
1189 extern int target_byte_order_auto;
1190 #ifndef TARGET_BYTE_ORDER_AUTO
1191 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1192 #endif
1193
1194
1195
1196 /* The target-system-dependent BFD architecture is dynamic */
1197
1198 extern int target_architecture_auto;
1199 #ifndef TARGET_ARCHITECTURE_AUTO
1200 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1201 #endif
1202
1203 extern const struct bfd_arch_info *target_architecture;
1204 #ifndef TARGET_ARCHITECTURE
1205 #define TARGET_ARCHITECTURE (target_architecture + 0)
1206 #endif
1207
1208
1209 /* Set the dynamic target-system-dependent parameters (architecture,
1210 byte-order, ...) using information found in the BFD */
1211
1212 extern void set_gdbarch_from_file (bfd *);
1213
1214
1215 /* Initialize the current architecture to the "first" one we find on
1216 our list. */
1217
1218 extern void initialize_current_architecture (void);
1219
1220 /* For non-multiarched targets, do any initialization of the default
1221 gdbarch object necessary after the _initialize_MODULE functions
1222 have run. */
1223 extern void initialize_non_multiarch (void);
1224
1225 /* gdbarch trace variable */
1226 extern int gdbarch_debug;
1227
1228 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1229
1230 #endif
1231 EOF
1232 exec 1>&2
1233 #../move-if-change new-gdbarch.h gdbarch.h
1234 compare_new gdbarch.h
1235
1236
1237 #
1238 # C file
1239 #
1240
1241 exec > new-gdbarch.c
1242 copyright
1243 cat <<EOF
1244
1245 #include "defs.h"
1246 #include "arch-utils.h"
1247
1248 #include "gdbcmd.h"
1249 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1250 #include "symcat.h"
1251
1252 #include "floatformat.h"
1253
1254 #include "gdb_assert.h"
1255 #include "gdb_string.h"
1256 #include "gdb-events.h"
1257 #include "reggroups.h"
1258 #include "osabi.h"
1259 #include "symfile.h" /* For entry_point_address. */
1260 #include "gdb_obstack.h"
1261
1262 /* Static function declarations */
1263
1264 static void verify_gdbarch (struct gdbarch *gdbarch);
1265 static void alloc_gdbarch_data (struct gdbarch *);
1266 static void init_gdbarch_swap (struct gdbarch *);
1267 static void clear_gdbarch_swap (struct gdbarch *);
1268 static void swapout_gdbarch_swap (struct gdbarch *);
1269 static void swapin_gdbarch_swap (struct gdbarch *);
1270
1271 /* Non-zero if we want to trace architecture code. */
1272
1273 #ifndef GDBARCH_DEBUG
1274 #define GDBARCH_DEBUG 0
1275 #endif
1276 int gdbarch_debug = GDBARCH_DEBUG;
1277
1278 EOF
1279
1280 # gdbarch open the gdbarch object
1281 printf "\n"
1282 printf "/* Maintain the struct gdbarch object */\n"
1283 printf "\n"
1284 printf "struct gdbarch\n"
1285 printf "{\n"
1286 printf " /* Has this architecture been fully initialized? */\n"
1287 printf " int initialized_p;\n"
1288 printf "\n"
1289 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1290 printf " struct obstack *obstack;\n"
1291 printf "\n"
1292 printf " /* basic architectural information */\n"
1293 function_list | while do_read
1294 do
1295 if class_is_info_p
1296 then
1297 printf " ${returntype} ${function};\n"
1298 fi
1299 done
1300 printf "\n"
1301 printf " /* target specific vector. */\n"
1302 printf " struct gdbarch_tdep *tdep;\n"
1303 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1304 printf "\n"
1305 printf " /* per-architecture data-pointers */\n"
1306 printf " unsigned nr_data;\n"
1307 printf " void **data;\n"
1308 printf "\n"
1309 printf " /* per-architecture swap-regions */\n"
1310 printf " struct gdbarch_swap *swap;\n"
1311 printf "\n"
1312 cat <<EOF
1313 /* Multi-arch values.
1314
1315 When extending this structure you must:
1316
1317 Add the field below.
1318
1319 Declare set/get functions and define the corresponding
1320 macro in gdbarch.h.
1321
1322 gdbarch_alloc(): If zero/NULL is not a suitable default,
1323 initialize the new field.
1324
1325 verify_gdbarch(): Confirm that the target updated the field
1326 correctly.
1327
1328 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1329 field is dumped out
1330
1331 \`\`startup_gdbarch()'': Append an initial value to the static
1332 variable (base values on the host's c-type system).
1333
1334 get_gdbarch(): Implement the set/get functions (probably using
1335 the macro's as shortcuts).
1336
1337 */
1338
1339 EOF
1340 function_list | while do_read
1341 do
1342 if class_is_variable_p
1343 then
1344 printf " ${returntype} ${function};\n"
1345 elif class_is_function_p
1346 then
1347 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1348 fi
1349 done
1350 printf "};\n"
1351
1352 # A pre-initialized vector
1353 printf "\n"
1354 printf "\n"
1355 cat <<EOF
1356 /* The default architecture uses host values (for want of a better
1357 choice). */
1358 EOF
1359 printf "\n"
1360 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1361 printf "\n"
1362 printf "struct gdbarch startup_gdbarch =\n"
1363 printf "{\n"
1364 printf " 1, /* Always initialized. */\n"
1365 printf " NULL, /* The obstack. */\n"
1366 printf " /* basic architecture information */\n"
1367 function_list | while do_read
1368 do
1369 if class_is_info_p
1370 then
1371 printf " ${staticdefault}, /* ${function} */\n"
1372 fi
1373 done
1374 cat <<EOF
1375 /* target specific vector and its dump routine */
1376 NULL, NULL,
1377 /*per-architecture data-pointers and swap regions */
1378 0, NULL, NULL,
1379 /* Multi-arch values */
1380 EOF
1381 function_list | while do_read
1382 do
1383 if class_is_function_p || class_is_variable_p
1384 then
1385 printf " ${staticdefault}, /* ${function} */\n"
1386 fi
1387 done
1388 cat <<EOF
1389 /* startup_gdbarch() */
1390 };
1391
1392 struct gdbarch *current_gdbarch = &startup_gdbarch;
1393
1394 /* Do any initialization needed for a non-multiarch configuration
1395 after the _initialize_MODULE functions have been run. */
1396 void
1397 initialize_non_multiarch (void)
1398 {
1399 alloc_gdbarch_data (&startup_gdbarch);
1400 /* Ensure that all swap areas are zeroed so that they again think
1401 they are starting from scratch. */
1402 clear_gdbarch_swap (&startup_gdbarch);
1403 init_gdbarch_swap (&startup_gdbarch);
1404 }
1405 EOF
1406
1407 # Create a new gdbarch struct
1408 printf "\n"
1409 printf "\n"
1410 cat <<EOF
1411 /* Create a new \`\`struct gdbarch'' based on information provided by
1412 \`\`struct gdbarch_info''. */
1413 EOF
1414 printf "\n"
1415 cat <<EOF
1416 struct gdbarch *
1417 gdbarch_alloc (const struct gdbarch_info *info,
1418 struct gdbarch_tdep *tdep)
1419 {
1420 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1421 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1422 the current local architecture and not the previous global
1423 architecture. This ensures that the new architectures initial
1424 values are not influenced by the previous architecture. Once
1425 everything is parameterised with gdbarch, this will go away. */
1426 struct gdbarch *current_gdbarch;
1427
1428 /* Create an obstack for allocating all the per-architecture memory,
1429 then use that to allocate the architecture vector. */
1430 struct obstack *obstack = XMALLOC (struct obstack);
1431 obstack_init (obstack);
1432 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1433 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1434 current_gdbarch->obstack = obstack;
1435
1436 alloc_gdbarch_data (current_gdbarch);
1437
1438 current_gdbarch->tdep = tdep;
1439 EOF
1440 printf "\n"
1441 function_list | while do_read
1442 do
1443 if class_is_info_p
1444 then
1445 printf " current_gdbarch->${function} = info->${function};\n"
1446 fi
1447 done
1448 printf "\n"
1449 printf " /* Force the explicit initialization of these. */\n"
1450 function_list | while do_read
1451 do
1452 if class_is_function_p || class_is_variable_p
1453 then
1454 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1455 then
1456 printf " current_gdbarch->${function} = ${predefault};\n"
1457 fi
1458 fi
1459 done
1460 cat <<EOF
1461 /* gdbarch_alloc() */
1462
1463 return current_gdbarch;
1464 }
1465 EOF
1466
1467 # Free a gdbarch struct.
1468 printf "\n"
1469 printf "\n"
1470 cat <<EOF
1471 /* Allocate extra space using the per-architecture obstack. */
1472
1473 void *
1474 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1475 {
1476 void *data = obstack_alloc (arch->obstack, size);
1477 memset (data, 0, size);
1478 return data;
1479 }
1480
1481
1482 /* Free a gdbarch struct. This should never happen in normal
1483 operation --- once you've created a gdbarch, you keep it around.
1484 However, if an architecture's init function encounters an error
1485 building the structure, it may need to clean up a partially
1486 constructed gdbarch. */
1487
1488 void
1489 gdbarch_free (struct gdbarch *arch)
1490 {
1491 struct obstack *obstack;
1492 gdb_assert (arch != NULL);
1493 gdb_assert (!arch->initialized_p);
1494 obstack = arch->obstack;
1495 obstack_free (obstack, 0); /* Includes the ARCH. */
1496 xfree (obstack);
1497 }
1498 EOF
1499
1500 # verify a new architecture
1501 printf "\n"
1502 printf "\n"
1503 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1504 printf "\n"
1505 cat <<EOF
1506 static void
1507 verify_gdbarch (struct gdbarch *gdbarch)
1508 {
1509 struct ui_file *log;
1510 struct cleanup *cleanups;
1511 long dummy;
1512 char *buf;
1513 log = mem_fileopen ();
1514 cleanups = make_cleanup_ui_file_delete (log);
1515 /* fundamental */
1516 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1517 fprintf_unfiltered (log, "\n\tbyte-order");
1518 if (gdbarch->bfd_arch_info == NULL)
1519 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1520 /* Check those that need to be defined for the given multi-arch level. */
1521 EOF
1522 function_list | while do_read
1523 do
1524 if class_is_function_p || class_is_variable_p
1525 then
1526 if [ "x${invalid_p}" = "x0" ]
1527 then
1528 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1529 elif class_is_predicate_p
1530 then
1531 printf " /* Skip verify of ${function}, has predicate */\n"
1532 # FIXME: See do_read for potential simplification
1533 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1534 then
1535 printf " if (${invalid_p})\n"
1536 printf " gdbarch->${function} = ${postdefault};\n"
1537 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1538 then
1539 printf " if (gdbarch->${function} == ${predefault})\n"
1540 printf " gdbarch->${function} = ${postdefault};\n"
1541 elif [ -n "${postdefault}" ]
1542 then
1543 printf " if (gdbarch->${function} == 0)\n"
1544 printf " gdbarch->${function} = ${postdefault};\n"
1545 elif [ -n "${invalid_p}" ]
1546 then
1547 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1548 printf " && (${invalid_p}))\n"
1549 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1550 elif [ -n "${predefault}" ]
1551 then
1552 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1553 printf " && (gdbarch->${function} == ${predefault}))\n"
1554 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1555 fi
1556 fi
1557 done
1558 cat <<EOF
1559 buf = ui_file_xstrdup (log, &dummy);
1560 make_cleanup (xfree, buf);
1561 if (strlen (buf) > 0)
1562 internal_error (__FILE__, __LINE__,
1563 "verify_gdbarch: the following are invalid ...%s",
1564 buf);
1565 do_cleanups (cleanups);
1566 }
1567 EOF
1568
1569 # dump the structure
1570 printf "\n"
1571 printf "\n"
1572 cat <<EOF
1573 /* Print out the details of the current architecture. */
1574
1575 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1576 just happens to match the global variable \`\`current_gdbarch''. That
1577 way macros refering to that variable get the local and not the global
1578 version - ulgh. Once everything is parameterised with gdbarch, this
1579 will go away. */
1580
1581 void
1582 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1583 {
1584 fprintf_unfiltered (file,
1585 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1586 GDB_MULTI_ARCH);
1587 EOF
1588 function_list | sort -t: -k 3 | while do_read
1589 do
1590 # First the predicate
1591 if class_is_predicate_p
1592 then
1593 if class_is_multiarch_p
1594 then
1595 printf " fprintf_unfiltered (file,\n"
1596 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1597 printf " gdbarch_${function}_p (current_gdbarch));\n"
1598 else
1599 printf "#ifdef ${macro}_P\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1602 printf " \"${macro}_P()\",\n"
1603 printf " XSTRING (${macro}_P ()));\n"
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1606 printf " ${macro}_P ());\n"
1607 printf "#endif\n"
1608 fi
1609 fi
1610 # multiarch functions don't have macros.
1611 if class_is_multiarch_p
1612 then
1613 printf " fprintf_unfiltered (file,\n"
1614 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1615 printf " (long) current_gdbarch->${function});\n"
1616 continue
1617 fi
1618 # Print the macro definition.
1619 printf "#ifdef ${macro}\n"
1620 if class_is_function_p
1621 then
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1624 printf " \"${macro}(${actual})\",\n"
1625 printf " XSTRING (${macro} (${actual})));\n"
1626 else
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1629 printf " XSTRING (${macro}));\n"
1630 fi
1631 if [ "x${print_p}" = "x()" ]
1632 then
1633 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1634 elif [ "x${print_p}" = "x0" ]
1635 then
1636 printf " /* skip print of ${macro}, print_p == 0. */\n"
1637 elif [ -n "${print_p}" ]
1638 then
1639 printf " if (${print_p})\n"
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1642 printf " ${print});\n"
1643 elif class_is_function_p
1644 then
1645 printf " fprintf_unfiltered (file,\n"
1646 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1647 printf " (long) current_gdbarch->${function}\n"
1648 printf " /*${macro} ()*/);\n"
1649 else
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1652 printf " ${print});\n"
1653 fi
1654 printf "#endif\n"
1655 done
1656 cat <<EOF
1657 if (current_gdbarch->dump_tdep != NULL)
1658 current_gdbarch->dump_tdep (current_gdbarch, file);
1659 }
1660 EOF
1661
1662
1663 # GET/SET
1664 printf "\n"
1665 cat <<EOF
1666 struct gdbarch_tdep *
1667 gdbarch_tdep (struct gdbarch *gdbarch)
1668 {
1669 if (gdbarch_debug >= 2)
1670 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1671 return gdbarch->tdep;
1672 }
1673 EOF
1674 printf "\n"
1675 function_list | while do_read
1676 do
1677 if class_is_predicate_p
1678 then
1679 printf "\n"
1680 printf "int\n"
1681 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1682 printf "{\n"
1683 printf " gdb_assert (gdbarch != NULL);\n"
1684 printf " return ${predicate};\n"
1685 printf "}\n"
1686 fi
1687 if class_is_function_p
1688 then
1689 printf "\n"
1690 printf "${returntype}\n"
1691 if [ "x${formal}" = "xvoid" ]
1692 then
1693 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1694 else
1695 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1696 fi
1697 printf "{\n"
1698 printf " gdb_assert (gdbarch != NULL);\n"
1699 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1700 if class_is_predicate_p && test -n "${predefault}"
1701 then
1702 # Allow a call to a function with a predicate.
1703 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1704 fi
1705 printf " if (gdbarch_debug >= 2)\n"
1706 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1707 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1708 then
1709 if class_is_multiarch_p
1710 then
1711 params="gdbarch"
1712 else
1713 params=""
1714 fi
1715 else
1716 if class_is_multiarch_p
1717 then
1718 params="gdbarch, ${actual}"
1719 else
1720 params="${actual}"
1721 fi
1722 fi
1723 if [ "x${returntype}" = "xvoid" ]
1724 then
1725 printf " gdbarch->${function} (${params});\n"
1726 else
1727 printf " return gdbarch->${function} (${params});\n"
1728 fi
1729 printf "}\n"
1730 printf "\n"
1731 printf "void\n"
1732 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1733 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1734 printf "{\n"
1735 printf " gdbarch->${function} = ${function};\n"
1736 printf "}\n"
1737 elif class_is_variable_p
1738 then
1739 printf "\n"
1740 printf "${returntype}\n"
1741 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1742 printf "{\n"
1743 printf " gdb_assert (gdbarch != NULL);\n"
1744 if [ "x${invalid_p}" = "x0" ]
1745 then
1746 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1747 elif [ -n "${invalid_p}" ]
1748 then
1749 printf " /* Check variable is valid. */\n"
1750 printf " gdb_assert (!(${invalid_p}));\n"
1751 elif [ -n "${predefault}" ]
1752 then
1753 printf " /* Check variable changed from pre-default. */\n"
1754 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1755 fi
1756 printf " if (gdbarch_debug >= 2)\n"
1757 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1758 printf " return gdbarch->${function};\n"
1759 printf "}\n"
1760 printf "\n"
1761 printf "void\n"
1762 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1763 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1764 printf "{\n"
1765 printf " gdbarch->${function} = ${function};\n"
1766 printf "}\n"
1767 elif class_is_info_p
1768 then
1769 printf "\n"
1770 printf "${returntype}\n"
1771 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1772 printf "{\n"
1773 printf " gdb_assert (gdbarch != NULL);\n"
1774 printf " if (gdbarch_debug >= 2)\n"
1775 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1776 printf " return gdbarch->${function};\n"
1777 printf "}\n"
1778 fi
1779 done
1780
1781 # All the trailing guff
1782 cat <<EOF
1783
1784
1785 /* Keep a registry of per-architecture data-pointers required by GDB
1786 modules. */
1787
1788 struct gdbarch_data
1789 {
1790 unsigned index;
1791 int init_p;
1792 gdbarch_data_init_ftype *init;
1793 };
1794
1795 struct gdbarch_data_registration
1796 {
1797 struct gdbarch_data *data;
1798 struct gdbarch_data_registration *next;
1799 };
1800
1801 struct gdbarch_data_registry
1802 {
1803 unsigned nr;
1804 struct gdbarch_data_registration *registrations;
1805 };
1806
1807 struct gdbarch_data_registry gdbarch_data_registry =
1808 {
1809 0, NULL,
1810 };
1811
1812 struct gdbarch_data *
1813 register_gdbarch_data (gdbarch_data_init_ftype *init)
1814 {
1815 struct gdbarch_data_registration **curr;
1816 /* Append the new registraration. */
1817 for (curr = &gdbarch_data_registry.registrations;
1818 (*curr) != NULL;
1819 curr = &(*curr)->next);
1820 (*curr) = XMALLOC (struct gdbarch_data_registration);
1821 (*curr)->next = NULL;
1822 (*curr)->data = XMALLOC (struct gdbarch_data);
1823 (*curr)->data->index = gdbarch_data_registry.nr++;
1824 (*curr)->data->init = init;
1825 (*curr)->data->init_p = 1;
1826 return (*curr)->data;
1827 }
1828
1829
1830 /* Create/delete the gdbarch data vector. */
1831
1832 static void
1833 alloc_gdbarch_data (struct gdbarch *gdbarch)
1834 {
1835 gdb_assert (gdbarch->data == NULL);
1836 gdbarch->nr_data = gdbarch_data_registry.nr;
1837 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1838 }
1839
1840 /* Initialize the current value of the specified per-architecture
1841 data-pointer. */
1842
1843 void
1844 set_gdbarch_data (struct gdbarch *gdbarch,
1845 struct gdbarch_data *data,
1846 void *pointer)
1847 {
1848 gdb_assert (data->index < gdbarch->nr_data);
1849 gdb_assert (gdbarch->data[data->index] == NULL);
1850 gdbarch->data[data->index] = pointer;
1851 }
1852
1853 /* Return the current value of the specified per-architecture
1854 data-pointer. */
1855
1856 void *
1857 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1858 {
1859 gdb_assert (data->index < gdbarch->nr_data);
1860 /* The data-pointer isn't initialized, call init() to get a value but
1861 only if the architecture initializaiton has completed. Otherwise
1862 punt - hope that the caller knows what they are doing. */
1863 if (gdbarch->data[data->index] == NULL
1864 && gdbarch->initialized_p)
1865 {
1866 /* Be careful to detect an initialization cycle. */
1867 gdb_assert (data->init_p);
1868 data->init_p = 0;
1869 gdb_assert (data->init != NULL);
1870 gdbarch->data[data->index] = data->init (gdbarch);
1871 data->init_p = 1;
1872 gdb_assert (gdbarch->data[data->index] != NULL);
1873 }
1874 return gdbarch->data[data->index];
1875 }
1876
1877
1878
1879 /* Keep a registry of swapped data required by GDB modules. */
1880
1881 struct gdbarch_swap
1882 {
1883 void *swap;
1884 struct gdbarch_swap_registration *source;
1885 struct gdbarch_swap *next;
1886 };
1887
1888 struct gdbarch_swap_registration
1889 {
1890 void *data;
1891 unsigned long sizeof_data;
1892 gdbarch_swap_ftype *init;
1893 struct gdbarch_swap_registration *next;
1894 };
1895
1896 struct gdbarch_swap_registry
1897 {
1898 int nr;
1899 struct gdbarch_swap_registration *registrations;
1900 };
1901
1902 struct gdbarch_swap_registry gdbarch_swap_registry =
1903 {
1904 0, NULL,
1905 };
1906
1907 void
1908 register_gdbarch_swap (void *data,
1909 unsigned long sizeof_data,
1910 gdbarch_swap_ftype *init)
1911 {
1912 struct gdbarch_swap_registration **rego;
1913 for (rego = &gdbarch_swap_registry.registrations;
1914 (*rego) != NULL;
1915 rego = &(*rego)->next);
1916 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1917 (*rego)->next = NULL;
1918 (*rego)->init = init;
1919 (*rego)->data = data;
1920 (*rego)->sizeof_data = sizeof_data;
1921 }
1922
1923 static void
1924 clear_gdbarch_swap (struct gdbarch *gdbarch)
1925 {
1926 struct gdbarch_swap *curr;
1927 for (curr = gdbarch->swap;
1928 curr != NULL;
1929 curr = curr->next)
1930 {
1931 memset (curr->source->data, 0, curr->source->sizeof_data);
1932 }
1933 }
1934
1935 static void
1936 init_gdbarch_swap (struct gdbarch *gdbarch)
1937 {
1938 struct gdbarch_swap_registration *rego;
1939 struct gdbarch_swap **curr = &gdbarch->swap;
1940 for (rego = gdbarch_swap_registry.registrations;
1941 rego != NULL;
1942 rego = rego->next)
1943 {
1944 if (rego->data != NULL)
1945 {
1946 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1947 (*curr)->source = rego;
1948 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1949 (*curr)->next = NULL;
1950 curr = &(*curr)->next;
1951 }
1952 if (rego->init != NULL)
1953 rego->init ();
1954 }
1955 }
1956
1957 static void
1958 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1959 {
1960 struct gdbarch_swap *curr;
1961 for (curr = gdbarch->swap;
1962 curr != NULL;
1963 curr = curr->next)
1964 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1965 }
1966
1967 static void
1968 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1969 {
1970 struct gdbarch_swap *curr;
1971 for (curr = gdbarch->swap;
1972 curr != NULL;
1973 curr = curr->next)
1974 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1975 }
1976
1977
1978 /* Keep a registry of the architectures known by GDB. */
1979
1980 struct gdbarch_registration
1981 {
1982 enum bfd_architecture bfd_architecture;
1983 gdbarch_init_ftype *init;
1984 gdbarch_dump_tdep_ftype *dump_tdep;
1985 struct gdbarch_list *arches;
1986 struct gdbarch_registration *next;
1987 };
1988
1989 static struct gdbarch_registration *gdbarch_registry = NULL;
1990
1991 static void
1992 append_name (const char ***buf, int *nr, const char *name)
1993 {
1994 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1995 (*buf)[*nr] = name;
1996 *nr += 1;
1997 }
1998
1999 const char **
2000 gdbarch_printable_names (void)
2001 {
2002 /* Accumulate a list of names based on the registed list of
2003 architectures. */
2004 enum bfd_architecture a;
2005 int nr_arches = 0;
2006 const char **arches = NULL;
2007 struct gdbarch_registration *rego;
2008 for (rego = gdbarch_registry;
2009 rego != NULL;
2010 rego = rego->next)
2011 {
2012 const struct bfd_arch_info *ap;
2013 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2014 if (ap == NULL)
2015 internal_error (__FILE__, __LINE__,
2016 "gdbarch_architecture_names: multi-arch unknown");
2017 do
2018 {
2019 append_name (&arches, &nr_arches, ap->printable_name);
2020 ap = ap->next;
2021 }
2022 while (ap != NULL);
2023 }
2024 append_name (&arches, &nr_arches, NULL);
2025 return arches;
2026 }
2027
2028
2029 void
2030 gdbarch_register (enum bfd_architecture bfd_architecture,
2031 gdbarch_init_ftype *init,
2032 gdbarch_dump_tdep_ftype *dump_tdep)
2033 {
2034 struct gdbarch_registration **curr;
2035 const struct bfd_arch_info *bfd_arch_info;
2036 /* Check that BFD recognizes this architecture */
2037 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2038 if (bfd_arch_info == NULL)
2039 {
2040 internal_error (__FILE__, __LINE__,
2041 "gdbarch: Attempt to register unknown architecture (%d)",
2042 bfd_architecture);
2043 }
2044 /* Check that we haven't seen this architecture before */
2045 for (curr = &gdbarch_registry;
2046 (*curr) != NULL;
2047 curr = &(*curr)->next)
2048 {
2049 if (bfd_architecture == (*curr)->bfd_architecture)
2050 internal_error (__FILE__, __LINE__,
2051 "gdbarch: Duplicate registraration of architecture (%s)",
2052 bfd_arch_info->printable_name);
2053 }
2054 /* log it */
2055 if (gdbarch_debug)
2056 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2057 bfd_arch_info->printable_name,
2058 (long) init);
2059 /* Append it */
2060 (*curr) = XMALLOC (struct gdbarch_registration);
2061 (*curr)->bfd_architecture = bfd_architecture;
2062 (*curr)->init = init;
2063 (*curr)->dump_tdep = dump_tdep;
2064 (*curr)->arches = NULL;
2065 (*curr)->next = NULL;
2066 }
2067
2068 void
2069 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2070 gdbarch_init_ftype *init)
2071 {
2072 gdbarch_register (bfd_architecture, init, NULL);
2073 }
2074
2075
2076 /* Look for an architecture using gdbarch_info. Base search on only
2077 BFD_ARCH_INFO and BYTE_ORDER. */
2078
2079 struct gdbarch_list *
2080 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2081 const struct gdbarch_info *info)
2082 {
2083 for (; arches != NULL; arches = arches->next)
2084 {
2085 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2086 continue;
2087 if (info->byte_order != arches->gdbarch->byte_order)
2088 continue;
2089 if (info->osabi != arches->gdbarch->osabi)
2090 continue;
2091 return arches;
2092 }
2093 return NULL;
2094 }
2095
2096
2097 /* Update the current architecture. Return ZERO if the update request
2098 failed. */
2099
2100 int
2101 gdbarch_update_p (struct gdbarch_info info)
2102 {
2103 struct gdbarch *new_gdbarch;
2104 struct gdbarch *old_gdbarch;
2105 struct gdbarch_registration *rego;
2106
2107 /* Fill in missing parts of the INFO struct using a number of
2108 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2109
2110 /* \`\`(gdb) set architecture ...'' */
2111 if (info.bfd_arch_info == NULL
2112 && !TARGET_ARCHITECTURE_AUTO)
2113 info.bfd_arch_info = TARGET_ARCHITECTURE;
2114 if (info.bfd_arch_info == NULL
2115 && info.abfd != NULL
2116 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2117 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2118 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2119 if (info.bfd_arch_info == NULL)
2120 info.bfd_arch_info = TARGET_ARCHITECTURE;
2121
2122 /* \`\`(gdb) set byte-order ...'' */
2123 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2124 && !TARGET_BYTE_ORDER_AUTO)
2125 info.byte_order = TARGET_BYTE_ORDER;
2126 /* From the INFO struct. */
2127 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2128 && info.abfd != NULL)
2129 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2130 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2131 : BFD_ENDIAN_UNKNOWN);
2132 /* From the current target. */
2133 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2134 info.byte_order = TARGET_BYTE_ORDER;
2135
2136 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2137 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2138 info.osabi = gdbarch_lookup_osabi (info.abfd);
2139 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2140 info.osabi = current_gdbarch->osabi;
2141
2142 /* Must have found some sort of architecture. */
2143 gdb_assert (info.bfd_arch_info != NULL);
2144
2145 if (gdbarch_debug)
2146 {
2147 fprintf_unfiltered (gdb_stdlog,
2148 "gdbarch_update: info.bfd_arch_info %s\n",
2149 (info.bfd_arch_info != NULL
2150 ? info.bfd_arch_info->printable_name
2151 : "(null)"));
2152 fprintf_unfiltered (gdb_stdlog,
2153 "gdbarch_update: info.byte_order %d (%s)\n",
2154 info.byte_order,
2155 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2156 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2157 : "default"));
2158 fprintf_unfiltered (gdb_stdlog,
2159 "gdbarch_update: info.osabi %d (%s)\n",
2160 info.osabi, gdbarch_osabi_name (info.osabi));
2161 fprintf_unfiltered (gdb_stdlog,
2162 "gdbarch_update: info.abfd 0x%lx\n",
2163 (long) info.abfd);
2164 fprintf_unfiltered (gdb_stdlog,
2165 "gdbarch_update: info.tdep_info 0x%lx\n",
2166 (long) info.tdep_info);
2167 }
2168
2169 /* Find the target that knows about this architecture. */
2170 for (rego = gdbarch_registry;
2171 rego != NULL;
2172 rego = rego->next)
2173 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2174 break;
2175 if (rego == NULL)
2176 {
2177 if (gdbarch_debug)
2178 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2179 return 0;
2180 }
2181
2182 /* Swap the data belonging to the old target out setting the
2183 installed data to zero. This stops the ->init() function trying
2184 to refer to the previous architecture's global data structures. */
2185 swapout_gdbarch_swap (current_gdbarch);
2186 clear_gdbarch_swap (current_gdbarch);
2187
2188 /* Save the previously selected architecture, setting the global to
2189 NULL. This stops ->init() trying to use the previous
2190 architecture's configuration. The previous architecture may not
2191 even be of the same architecture family. The most recent
2192 architecture of the same family is found at the head of the
2193 rego->arches list. */
2194 old_gdbarch = current_gdbarch;
2195 current_gdbarch = NULL;
2196
2197 /* Ask the target for a replacement architecture. */
2198 new_gdbarch = rego->init (info, rego->arches);
2199
2200 /* Did the target like it? No. Reject the change and revert to the
2201 old architecture. */
2202 if (new_gdbarch == NULL)
2203 {
2204 if (gdbarch_debug)
2205 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2206 swapin_gdbarch_swap (old_gdbarch);
2207 current_gdbarch = old_gdbarch;
2208 return 0;
2209 }
2210
2211 /* Did the architecture change? No. Oops, put the old architecture
2212 back. */
2213 if (old_gdbarch == new_gdbarch)
2214 {
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2217 (long) new_gdbarch,
2218 new_gdbarch->bfd_arch_info->printable_name);
2219 swapin_gdbarch_swap (old_gdbarch);
2220 current_gdbarch = old_gdbarch;
2221 return 1;
2222 }
2223
2224 /* Is this a pre-existing architecture? Yes. Move it to the front
2225 of the list of architectures (keeping the list sorted Most
2226 Recently Used) and then copy it in. */
2227 {
2228 struct gdbarch_list **list;
2229 for (list = &rego->arches;
2230 (*list) != NULL;
2231 list = &(*list)->next)
2232 {
2233 if ((*list)->gdbarch == new_gdbarch)
2234 {
2235 struct gdbarch_list *this;
2236 if (gdbarch_debug)
2237 fprintf_unfiltered (gdb_stdlog,
2238 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2239 (long) new_gdbarch,
2240 new_gdbarch->bfd_arch_info->printable_name);
2241 /* Unlink this. */
2242 this = (*list);
2243 (*list) = this->next;
2244 /* Insert in the front. */
2245 this->next = rego->arches;
2246 rego->arches = this;
2247 /* Copy the new architecture in. */
2248 current_gdbarch = new_gdbarch;
2249 swapin_gdbarch_swap (new_gdbarch);
2250 architecture_changed_event ();
2251 return 1;
2252 }
2253 }
2254 }
2255
2256 /* Prepend this new architecture to the architecture list (keep the
2257 list sorted Most Recently Used). */
2258 {
2259 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2260 this->next = rego->arches;
2261 this->gdbarch = new_gdbarch;
2262 rego->arches = this;
2263 }
2264
2265 /* Switch to this new architecture marking it initialized. */
2266 current_gdbarch = new_gdbarch;
2267 current_gdbarch->initialized_p = 1;
2268 if (gdbarch_debug)
2269 {
2270 fprintf_unfiltered (gdb_stdlog,
2271 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2272 (long) new_gdbarch,
2273 new_gdbarch->bfd_arch_info->printable_name);
2274 }
2275
2276 /* Check that the newly installed architecture is valid. Plug in
2277 any post init values. */
2278 new_gdbarch->dump_tdep = rego->dump_tdep;
2279 verify_gdbarch (new_gdbarch);
2280
2281 /* Initialize the per-architecture memory (swap) areas.
2282 CURRENT_GDBARCH must be update before these modules are
2283 called. */
2284 init_gdbarch_swap (new_gdbarch);
2285
2286 /* Initialize the per-architecture data. CURRENT_GDBARCH
2287 must be updated before these modules are called. */
2288 architecture_changed_event ();
2289
2290 if (gdbarch_debug)
2291 gdbarch_dump (current_gdbarch, gdb_stdlog);
2292
2293 return 1;
2294 }
2295
2296
2297 extern void _initialize_gdbarch (void);
2298
2299 void
2300 _initialize_gdbarch (void)
2301 {
2302 struct cmd_list_element *c;
2303
2304 add_show_from_set (add_set_cmd ("arch",
2305 class_maintenance,
2306 var_zinteger,
2307 (char *)&gdbarch_debug,
2308 "Set architecture debugging.\\n\\
2309 When non-zero, architecture debugging is enabled.", &setdebuglist),
2310 &showdebuglist);
2311 c = add_set_cmd ("archdebug",
2312 class_maintenance,
2313 var_zinteger,
2314 (char *)&gdbarch_debug,
2315 "Set architecture debugging.\\n\\
2316 When non-zero, architecture debugging is enabled.", &setlist);
2317
2318 deprecate_cmd (c, "set debug arch");
2319 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2320 }
2321 EOF
2322
2323 # close things off
2324 exec 1>&2
2325 #../move-if-change new-gdbarch.c gdbarch.c
2326 compare_new gdbarch.c
This page took 0.083418 seconds and 4 git commands to generate.