* gdbarch.sh (info_proc): New callback.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2012 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
56 then
57 continue
58 elif expr "${line}" : "#" > /dev/null
59 then
60 comment="${comment}
61 ${line}"
62 else
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
71 ${line}
72 EOF
73 IFS="${OFS}"
74
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
97
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
101 "" )
102 if test -n "${predefault}"
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
105 predicate="gdbarch->${function} != ${predefault}"
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
112 fi
113 ;;
114 * )
115 echo "Predicate function ${function} with invalid_p." 1>&2
116 kill $$
117 exit 1
118 ;;
119 esac
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
129 if [ -n "${postdefault}" ]
130 then
131 fallbackdefault="${postdefault}"
132 elif [ -n "${predefault}" ]
133 then
134 fallbackdefault="${predefault}"
135 else
136 fallbackdefault="0"
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
143 fi
144 done
145 if [ -n "${class}" ]
146 then
147 true
148 else
149 false
150 fi
151 }
152
153
154 fallback_default_p ()
155 {
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
158 }
159
160 class_is_variable_p ()
161 {
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
166 }
167
168 class_is_function_p ()
169 {
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174 }
175
176 class_is_multiarch_p ()
177 {
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
182 }
183
184 class_is_predicate_p ()
185 {
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_info_p ()
193 {
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200
201 # dump out/verify the doco
202 for field in ${read}
203 do
204 case ${field} in
205
206 class ) : ;;
207
208 # # -> line disable
209 # f -> function
210 # hiding a function
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
213 # v -> variable
214 # hiding a variable
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
217 # i -> set from info
218 # hiding something from the ``struct info'' object
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
223
224 returntype ) : ;;
225
226 # For functions, the return type; for variables, the data type
227
228 function ) : ;;
229
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
233
234 formal ) : ;;
235
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
240
241 actual ) : ;;
242
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
246
247 staticdefault ) : ;;
248
249 # To help with the GDB startup a static gdbarch object is
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
253
254 # If STATICDEFAULT is empty, zero is used.
255
256 predefault ) : ;;
257
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
262
263 # If PREDEFAULT is empty, zero is used.
264
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
294 # Variable declarations can refer to ``gdbarch'' which
295 # will contain the current architecture. Care should be
296 # taken.
297
298 invalid_p ) : ;;
299
300 # A predicate equation that validates MEMBER. Non-zero is
301 # returned if the code creating the new architecture failed to
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
312
313 # See also PREDEFAULT and POSTDEFAULT.
314
315 print ) : ;;
316
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
319
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
322
323 garbage_at_eol ) : ;;
324
325 # Catches stray fields.
326
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
330 esac
331 done
332
333
334 function_list ()
335 {
336 # See below (DOCO) for description of each field
337 cat <<EOF
338 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
339 #
340 i:int:byte_order:::BFD_ENDIAN_BIG
341 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
342 #
343 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
344 #
345 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
346
347 # The bit byte-order has to do just with numbering of bits in debugging symbols
348 # and such. Conceptually, it's quite separate from byte/word byte order.
349 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
351 # Number of bits in a char or unsigned char for the target machine.
352 # Just like CHAR_BIT in <limits.h> but describes the target machine.
353 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
354 #
355 # Number of bits in a short or unsigned short for the target machine.
356 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
357 # Number of bits in an int or unsigned int for the target machine.
358 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
359 # Number of bits in a long or unsigned long for the target machine.
360 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
361 # Number of bits in a long long or unsigned long long for the target
362 # machine.
363 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
364 # Alignment of a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367
368 # The ABI default bit-size and format for "half", "float", "double", and
369 # "long double". These bit/format pairs should eventually be combined
370 # into a single object. For the moment, just initialize them as a pair.
371 # Each format describes both the big and little endian layouts (if
372 # useful).
373
374 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
376 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
378 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
379 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
380 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
381 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
382
383 # For most targets, a pointer on the target and its representation as an
384 # address in GDB have the same size and "look the same". For such a
385 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
386 # / addr_bit will be set from it.
387 #
388 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
389 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390 # gdbarch_address_to_pointer as well.
391 #
392 # ptr_bit is the size of a pointer on the target
393 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
394 # addr_bit is the size of a target address as represented in gdb
395 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
396 #
397 # dwarf2_addr_size is the target address size as used in the Dwarf debug
398 # info. For .debug_frame FDEs, this is supposed to be the target address
399 # size from the associated CU header, and which is equivalent to the
400 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401 # Unfortunately there is no good way to determine this value. Therefore
402 # dwarf2_addr_size simply defaults to the target pointer size.
403 #
404 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405 # defined using the target's pointer size so far.
406 #
407 # Note that dwarf2_addr_size only needs to be redefined by a target if the
408 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409 # and if Dwarf versions < 4 need to be supported.
410 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411 #
412 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
413 v:int:char_signed:::1:-1:1
414 #
415 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
417 # Function for getting target's idea of a frame pointer. FIXME: GDB's
418 # whole scheme for dealing with "frames" and "frame pointers" needs a
419 # serious shakedown.
420 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
421 #
422 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
423 # Read a register into a new struct value. If the register is wholly
424 # or partly unavailable, this should call mark_value_bytes_unavailable
425 # as appropriate. If this is defined, then pseudo_register_read will
426 # never be called.
427 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
428 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
429 #
430 v:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:int:num_pseudo_regs:::0:0::0
436
437 # Assemble agent expression bytecode to collect pseudo-register REG.
438 # Return -1 if something goes wrong, 0 otherwise.
439 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441 # Assemble agent expression bytecode to push the value of pseudo-register
442 # REG on the interpreter stack.
443 # Return -1 if something goes wrong, 0 otherwise.
444 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
446 # GDB's standard (or well known) register numbers. These can map onto
447 # a real register or a pseudo (computed) register or not be defined at
448 # all (-1).
449 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
450 v:int:sp_regnum:::-1:-1::0
451 v:int:pc_regnum:::-1:-1::0
452 v:int:ps_regnum:::-1:-1::0
453 v:int:fp0_regnum:::0:-1::0
454 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
455 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
456 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
457 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
458 # Convert from an sdb register number to an internal gdb register number.
459 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
460 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
461 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
462 m:const char *:register_name:int regnr:regnr::0
463
464 # Return the type of a register specified by the architecture. Only
465 # the register cache should call this function directly; others should
466 # use "register_type".
467 M:struct type *:register_type:int reg_nr:reg_nr
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # deprecated_fp_regnum.
473 v:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 v:int:call_dummy_location::::AT_ENTRY_POINT::0
478 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483 # MAP a GDB RAW register number onto a simulator register number. See
484 # also include/...-sim.h.
485 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
486 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
488 # setjmp/longjmp support.
489 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
490 #
491 v:int:believe_pcc_promotion:::::::
492 #
493 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
494 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
495 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
496 # Construct a value representing the contents of register REGNUM in
497 # frame FRAME, interpreted as type TYPE. The routine needs to
498 # allocate and return a struct value with all value attributes
499 # (but not the value contents) filled in.
500 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
501 #
502 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
504 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
505
506 # Return the return-value convention that will be used by FUNCTYPE
507 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
508 # case the return convention is computed based only on VALTYPE.
509 #
510 # If READBUF is not NULL, extract the return value and save it in this buffer.
511 #
512 # If WRITEBUF is not NULL, it contains a return value which will be
513 # stored into the appropriate register. This can be used when we want
514 # to force the value returned by a function (see the "return" command
515 # for instance).
516 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
517
518 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
519 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
520 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
521 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
522 # Return the adjusted address and kind to use for Z0/Z1 packets.
523 # KIND is usually the memory length of the breakpoint, but may have a
524 # different target-specific meaning.
525 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
526 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
527 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
529 v:CORE_ADDR:decr_pc_after_break:::0:::0
530
531 # A function can be addressed by either it's "pointer" (possibly a
532 # descriptor address) or "entry point" (first executable instruction).
533 # The method "convert_from_func_ptr_addr" converting the former to the
534 # latter. gdbarch_deprecated_function_start_offset is being used to implement
535 # a simplified subset of that functionality - the function's address
536 # corresponds to the "function pointer" and the function's start
537 # corresponds to the "function entry point" - and hence is redundant.
538
539 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
540
541 # Return the remote protocol register number associated with this
542 # register. Normally the identity mapping.
543 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
544
545 # Fetch the target specific address used to represent a load module.
546 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
547 #
548 v:CORE_ADDR:frame_args_skip:::0:::0
549 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
551 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552 # frame-base. Enable frame-base before frame-unwind.
553 F:int:frame_num_args:struct frame_info *frame:frame
554 #
555 M:CORE_ADDR:frame_align:CORE_ADDR address:address
556 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557 v:int:frame_red_zone_size
558 #
559 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
560 # On some machines there are bits in addresses which are not really
561 # part of the address, but are used by the kernel, the hardware, etc.
562 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
563 # we get a "real" address such as one would find in a symbol table.
564 # This is used only for addresses of instructions, and even then I'm
565 # not sure it's used in all contexts. It exists to deal with there
566 # being a few stray bits in the PC which would mislead us, not as some
567 # sort of generic thing to handle alignment or segmentation (it's
568 # possible it should be in TARGET_READ_PC instead).
569 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
570 # It is not at all clear why gdbarch_smash_text_address is not folded into
571 # gdbarch_addr_bits_remove.
572 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
573
574 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
575 # indicates if the target needs software single step. An ISA method to
576 # implement it.
577 #
578 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579 # breakpoints using the breakpoint system instead of blatting memory directly
580 # (as with rs6000).
581 #
582 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583 # target can single step. If not, then implement single step using breakpoints.
584 #
585 # A return value of 1 means that the software_single_step breakpoints
586 # were inserted; 0 means they were not.
587 F:int:software_single_step:struct frame_info *frame:frame
588
589 # Return non-zero if the processor is executing a delay slot and a
590 # further single-step is needed before the instruction finishes.
591 M:int:single_step_through_delay:struct frame_info *frame:frame
592 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
593 # disassembler. Perhaps objdump can handle it?
594 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
596
597
598 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
599 # evaluates non-zero, this is the address where the debugger will place
600 # a step-resume breakpoint to get us past the dynamic linker.
601 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
602 # Some systems also have trampoline code for returning from shared libs.
603 m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
604
605 # A target might have problems with watchpoints as soon as the stack
606 # frame of the current function has been destroyed. This mostly happens
607 # as the first action in a funtion's epilogue. in_function_epilogue_p()
608 # is defined to return a non-zero value if either the given addr is one
609 # instruction after the stack destroying instruction up to the trailing
610 # return instruction or if we can figure out that the stack frame has
611 # already been invalidated regardless of the value of addr. Targets
612 # which don't suffer from that problem could just let this functionality
613 # untouched.
614 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
615 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
617 v:int:cannot_step_breakpoint:::0:0::0
618 v:int:have_nonsteppable_watchpoint:::0:0::0
619 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
622 # Is a register in a group
623 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
624 # Fetch the pointer to the ith function argument.
625 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
626
627 # Return the appropriate register set for a core file section with
628 # name SECT_NAME and size SECT_SIZE.
629 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
630
631 # Supported register notes in a core file.
632 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
634 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
635 # core file into buffer READBUF with length LEN.
636 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
637
638 # How the core target converts a PTID from a core file to a string.
639 M:char *:core_pid_to_str:ptid_t ptid:ptid
640
641 # BFD target to use when generating a core file.
642 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
643
644 # If the elements of C++ vtables are in-place function descriptors rather
645 # than normal function pointers (which may point to code or a descriptor),
646 # set this to one.
647 v:int:vtable_function_descriptors:::0:0::0
648
649 # Set if the least significant bit of the delta is used instead of the least
650 # significant bit of the pfn for pointers to virtual member functions.
651 v:int:vbit_in_delta:::0:0::0
652
653 # Advance PC to next instruction in order to skip a permanent breakpoint.
654 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
655
656 # The maximum length of an instruction on this architecture in bytes.
657 V:ULONGEST:max_insn_length:::0:0
658
659 # Copy the instruction at FROM to TO, and make any adjustments
660 # necessary to single-step it at that address.
661 #
662 # REGS holds the state the thread's registers will have before
663 # executing the copied instruction; the PC in REGS will refer to FROM,
664 # not the copy at TO. The caller should update it to point at TO later.
665 #
666 # Return a pointer to data of the architecture's choice to be passed
667 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
668 # the instruction's effects have been completely simulated, with the
669 # resulting state written back to REGS.
670 #
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
673 #
674 # The TO area is only guaranteed to have space for
675 # gdbarch_max_insn_length (arch) bytes, so this function must not
676 # write more bytes than that to that area.
677 #
678 # If you do not provide this function, GDB assumes that the
679 # architecture does not support displaced stepping.
680 #
681 # If your architecture doesn't need to adjust instructions before
682 # single-stepping them, consider using simple_displaced_step_copy_insn
683 # here.
684 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
685
686 # Return true if GDB should use hardware single-stepping to execute
687 # the displaced instruction identified by CLOSURE. If false,
688 # GDB will simply restart execution at the displaced instruction
689 # location, and it is up to the target to ensure GDB will receive
690 # control again (e.g. by placing a software breakpoint instruction
691 # into the displaced instruction buffer).
692 #
693 # The default implementation returns false on all targets that
694 # provide a gdbarch_software_single_step routine, and true otherwise.
695 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
696
697 # Fix up the state resulting from successfully single-stepping a
698 # displaced instruction, to give the result we would have gotten from
699 # stepping the instruction in its original location.
700 #
701 # REGS is the register state resulting from single-stepping the
702 # displaced instruction.
703 #
704 # CLOSURE is the result from the matching call to
705 # gdbarch_displaced_step_copy_insn.
706 #
707 # If you provide gdbarch_displaced_step_copy_insn.but not this
708 # function, then GDB assumes that no fixup is needed after
709 # single-stepping the instruction.
710 #
711 # For a general explanation of displaced stepping and how GDB uses it,
712 # see the comments in infrun.c.
713 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
714
715 # Free a closure returned by gdbarch_displaced_step_copy_insn.
716 #
717 # If you provide gdbarch_displaced_step_copy_insn, you must provide
718 # this function as well.
719 #
720 # If your architecture uses closures that don't need to be freed, then
721 # you can use simple_displaced_step_free_closure here.
722 #
723 # For a general explanation of displaced stepping and how GDB uses it,
724 # see the comments in infrun.c.
725 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
726
727 # Return the address of an appropriate place to put displaced
728 # instructions while we step over them. There need only be one such
729 # place, since we're only stepping one thread over a breakpoint at a
730 # time.
731 #
732 # For a general explanation of displaced stepping and how GDB uses it,
733 # see the comments in infrun.c.
734 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
735
736 # Relocate an instruction to execute at a different address. OLDLOC
737 # is the address in the inferior memory where the instruction to
738 # relocate is currently at. On input, TO points to the destination
739 # where we want the instruction to be copied (and possibly adjusted)
740 # to. On output, it points to one past the end of the resulting
741 # instruction(s). The effect of executing the instruction at TO shall
742 # be the same as if executing it at FROM. For example, call
743 # instructions that implicitly push the return address on the stack
744 # should be adjusted to return to the instruction after OLDLOC;
745 # relative branches, and other PC-relative instructions need the
746 # offset adjusted; etc.
747 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
748
749 # Refresh overlay mapped state for section OSECT.
750 F:void:overlay_update:struct obj_section *osect:osect
751
752 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
753
754 # Handle special encoding of static variables in stabs debug info.
755 F:char *:static_transform_name:char *name:name
756 # Set if the address in N_SO or N_FUN stabs may be zero.
757 v:int:sofun_address_maybe_missing:::0:0::0
758
759 # Parse the instruction at ADDR storing in the record execution log
760 # the registers REGCACHE and memory ranges that will be affected when
761 # the instruction executes, along with their current values.
762 # Return -1 if something goes wrong, 0 otherwise.
763 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
764
765 # Save process state after a signal.
766 # Return -1 if something goes wrong, 0 otherwise.
767 M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
768
769 # Signal translation: translate inferior's signal (host's) number into
770 # GDB's representation.
771 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
772 # Signal translation: translate GDB's signal number into inferior's host
773 # signal number.
774 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
775
776 # Extra signal info inspection.
777 #
778 # Return a type suitable to inspect extra signal information.
779 M:struct type *:get_siginfo_type:void:
780
781 # Record architecture-specific information from the symbol table.
782 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
783
784 # Function for the 'catch syscall' feature.
785
786 # Get architecture-specific system calls information from registers.
787 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
788
789 # True if the list of shared libraries is one and only for all
790 # processes, as opposed to a list of shared libraries per inferior.
791 # This usually means that all processes, although may or may not share
792 # an address space, will see the same set of symbols at the same
793 # addresses.
794 v:int:has_global_solist:::0:0::0
795
796 # On some targets, even though each inferior has its own private
797 # address space, the debug interface takes care of making breakpoints
798 # visible to all address spaces automatically. For such cases,
799 # this property should be set to true.
800 v:int:has_global_breakpoints:::0:0::0
801
802 # True if inferiors share an address space (e.g., uClinux).
803 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
804
805 # True if a fast tracepoint can be set at an address.
806 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
807
808 # Return the "auto" target charset.
809 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
810 # Return the "auto" target wide charset.
811 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
812
813 # If non-empty, this is a file extension that will be opened in place
814 # of the file extension reported by the shared library list.
815 #
816 # This is most useful for toolchains that use a post-linker tool,
817 # where the names of the files run on the target differ in extension
818 # compared to the names of the files GDB should load for debug info.
819 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
820
821 # If true, the target OS has DOS-based file system semantics. That
822 # is, absolute paths include a drive name, and the backslash is
823 # considered a directory separator.
824 v:int:has_dos_based_file_system:::0:0::0
825
826 # Generate bytecodes to collect the return address in a frame.
827 # Since the bytecodes run on the target, possibly with GDB not even
828 # connected, the full unwinding machinery is not available, and
829 # typically this function will issue bytecodes for one or more likely
830 # places that the return address may be found.
831 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
832
833 # Implement the "info proc" command.
834 M:void:info_proc:char *args, enum info_proc_what what:args, what
835
836 EOF
837 }
838
839 #
840 # The .log file
841 #
842 exec > new-gdbarch.log
843 function_list | while do_read
844 do
845 cat <<EOF
846 ${class} ${returntype} ${function} ($formal)
847 EOF
848 for r in ${read}
849 do
850 eval echo \"\ \ \ \ ${r}=\${${r}}\"
851 done
852 if class_is_predicate_p && fallback_default_p
853 then
854 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
855 kill $$
856 exit 1
857 fi
858 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
859 then
860 echo "Error: postdefault is useless when invalid_p=0" 1>&2
861 kill $$
862 exit 1
863 fi
864 if class_is_multiarch_p
865 then
866 if class_is_predicate_p ; then :
867 elif test "x${predefault}" = "x"
868 then
869 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
870 kill $$
871 exit 1
872 fi
873 fi
874 echo ""
875 done
876
877 exec 1>&2
878 compare_new gdbarch.log
879
880
881 copyright ()
882 {
883 cat <<EOF
884 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
885
886 /* Dynamic architecture support for GDB, the GNU debugger.
887
888 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
889 2007, 2008, 2009 Free Software Foundation, Inc.
890
891 This file is part of GDB.
892
893 This program is free software; you can redistribute it and/or modify
894 it under the terms of the GNU General Public License as published by
895 the Free Software Foundation; either version 3 of the License, or
896 (at your option) any later version.
897
898 This program is distributed in the hope that it will be useful,
899 but WITHOUT ANY WARRANTY; without even the implied warranty of
900 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
901 GNU General Public License for more details.
902
903 You should have received a copy of the GNU General Public License
904 along with this program. If not, see <http://www.gnu.org/licenses/>. */
905
906 /* This file was created with the aid of \`\`gdbarch.sh''.
907
908 The Bourne shell script \`\`gdbarch.sh'' creates the files
909 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
910 against the existing \`\`gdbarch.[hc]''. Any differences found
911 being reported.
912
913 If editing this file, please also run gdbarch.sh and merge any
914 changes into that script. Conversely, when making sweeping changes
915 to this file, modifying gdbarch.sh and using its output may prove
916 easier. */
917
918 EOF
919 }
920
921 #
922 # The .h file
923 #
924
925 exec > new-gdbarch.h
926 copyright
927 cat <<EOF
928 #ifndef GDBARCH_H
929 #define GDBARCH_H
930
931 struct floatformat;
932 struct ui_file;
933 struct frame_info;
934 struct value;
935 struct objfile;
936 struct obj_section;
937 struct minimal_symbol;
938 struct regcache;
939 struct reggroup;
940 struct regset;
941 struct disassemble_info;
942 struct target_ops;
943 struct obstack;
944 struct bp_target_info;
945 struct target_desc;
946 struct displaced_step_closure;
947 struct core_regset_section;
948 struct syscall;
949 struct agent_expr;
950 struct axs_value;
951
952 /* The architecture associated with the connection to the target.
953
954 The architecture vector provides some information that is really
955 a property of the target: The layout of certain packets, for instance;
956 or the solib_ops vector. Etc. To differentiate architecture accesses
957 to per-target properties from per-thread/per-frame/per-objfile properties,
958 accesses to per-target properties should be made through target_gdbarch.
959
960 Eventually, when support for multiple targets is implemented in
961 GDB, this global should be made target-specific. */
962 extern struct gdbarch *target_gdbarch;
963 EOF
964
965 # function typedef's
966 printf "\n"
967 printf "\n"
968 printf "/* The following are pre-initialized by GDBARCH. */\n"
969 function_list | while do_read
970 do
971 if class_is_info_p
972 then
973 printf "\n"
974 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
975 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
976 fi
977 done
978
979 # function typedef's
980 printf "\n"
981 printf "\n"
982 printf "/* The following are initialized by the target dependent code. */\n"
983 function_list | while do_read
984 do
985 if [ -n "${comment}" ]
986 then
987 echo "${comment}" | sed \
988 -e '2 s,#,/*,' \
989 -e '3,$ s,#, ,' \
990 -e '$ s,$, */,'
991 fi
992
993 if class_is_predicate_p
994 then
995 printf "\n"
996 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
997 fi
998 if class_is_variable_p
999 then
1000 printf "\n"
1001 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1002 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1003 fi
1004 if class_is_function_p
1005 then
1006 printf "\n"
1007 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1008 then
1009 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1010 elif class_is_multiarch_p
1011 then
1012 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1013 else
1014 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1015 fi
1016 if [ "x${formal}" = "xvoid" ]
1017 then
1018 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1019 else
1020 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1021 fi
1022 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1023 fi
1024 done
1025
1026 # close it off
1027 cat <<EOF
1028
1029 /* Definition for an unknown syscall, used basically in error-cases. */
1030 #define UNKNOWN_SYSCALL (-1)
1031
1032 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1033
1034
1035 /* Mechanism for co-ordinating the selection of a specific
1036 architecture.
1037
1038 GDB targets (*-tdep.c) can register an interest in a specific
1039 architecture. Other GDB components can register a need to maintain
1040 per-architecture data.
1041
1042 The mechanisms below ensures that there is only a loose connection
1043 between the set-architecture command and the various GDB
1044 components. Each component can independently register their need
1045 to maintain architecture specific data with gdbarch.
1046
1047 Pragmatics:
1048
1049 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1050 didn't scale.
1051
1052 The more traditional mega-struct containing architecture specific
1053 data for all the various GDB components was also considered. Since
1054 GDB is built from a variable number of (fairly independent)
1055 components it was determined that the global aproach was not
1056 applicable. */
1057
1058
1059 /* Register a new architectural family with GDB.
1060
1061 Register support for the specified ARCHITECTURE with GDB. When
1062 gdbarch determines that the specified architecture has been
1063 selected, the corresponding INIT function is called.
1064
1065 --
1066
1067 The INIT function takes two parameters: INFO which contains the
1068 information available to gdbarch about the (possibly new)
1069 architecture; ARCHES which is a list of the previously created
1070 \`\`struct gdbarch'' for this architecture.
1071
1072 The INFO parameter is, as far as possible, be pre-initialized with
1073 information obtained from INFO.ABFD or the global defaults.
1074
1075 The ARCHES parameter is a linked list (sorted most recently used)
1076 of all the previously created architures for this architecture
1077 family. The (possibly NULL) ARCHES->gdbarch can used to access
1078 values from the previously selected architecture for this
1079 architecture family.
1080
1081 The INIT function shall return any of: NULL - indicating that it
1082 doesn't recognize the selected architecture; an existing \`\`struct
1083 gdbarch'' from the ARCHES list - indicating that the new
1084 architecture is just a synonym for an earlier architecture (see
1085 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1086 - that describes the selected architecture (see gdbarch_alloc()).
1087
1088 The DUMP_TDEP function shall print out all target specific values.
1089 Care should be taken to ensure that the function works in both the
1090 multi-arch and non- multi-arch cases. */
1091
1092 struct gdbarch_list
1093 {
1094 struct gdbarch *gdbarch;
1095 struct gdbarch_list *next;
1096 };
1097
1098 struct gdbarch_info
1099 {
1100 /* Use default: NULL (ZERO). */
1101 const struct bfd_arch_info *bfd_arch_info;
1102
1103 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1104 int byte_order;
1105
1106 int byte_order_for_code;
1107
1108 /* Use default: NULL (ZERO). */
1109 bfd *abfd;
1110
1111 /* Use default: NULL (ZERO). */
1112 struct gdbarch_tdep_info *tdep_info;
1113
1114 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1115 enum gdb_osabi osabi;
1116
1117 /* Use default: NULL (ZERO). */
1118 const struct target_desc *target_desc;
1119 };
1120
1121 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1122 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1123
1124 /* DEPRECATED - use gdbarch_register() */
1125 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1126
1127 extern void gdbarch_register (enum bfd_architecture architecture,
1128 gdbarch_init_ftype *,
1129 gdbarch_dump_tdep_ftype *);
1130
1131
1132 /* Return a freshly allocated, NULL terminated, array of the valid
1133 architecture names. Since architectures are registered during the
1134 _initialize phase this function only returns useful information
1135 once initialization has been completed. */
1136
1137 extern const char **gdbarch_printable_names (void);
1138
1139
1140 /* Helper function. Search the list of ARCHES for a GDBARCH that
1141 matches the information provided by INFO. */
1142
1143 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1144
1145
1146 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1147 basic initialization using values obtained from the INFO and TDEP
1148 parameters. set_gdbarch_*() functions are called to complete the
1149 initialization of the object. */
1150
1151 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1152
1153
1154 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1155 It is assumed that the caller freeds the \`\`struct
1156 gdbarch_tdep''. */
1157
1158 extern void gdbarch_free (struct gdbarch *);
1159
1160
1161 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1162 obstack. The memory is freed when the corresponding architecture
1163 is also freed. */
1164
1165 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1166 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1167 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1168
1169
1170 /* Helper function. Force an update of the current architecture.
1171
1172 The actual architecture selected is determined by INFO, \`\`(gdb) set
1173 architecture'' et.al., the existing architecture and BFD's default
1174 architecture. INFO should be initialized to zero and then selected
1175 fields should be updated.
1176
1177 Returns non-zero if the update succeeds. */
1178
1179 extern int gdbarch_update_p (struct gdbarch_info info);
1180
1181
1182 /* Helper function. Find an architecture matching info.
1183
1184 INFO should be initialized using gdbarch_info_init, relevant fields
1185 set, and then finished using gdbarch_info_fill.
1186
1187 Returns the corresponding architecture, or NULL if no matching
1188 architecture was found. */
1189
1190 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1191
1192
1193 /* Helper function. Set the global "target_gdbarch" to "gdbarch".
1194
1195 FIXME: kettenis/20031124: Of the functions that follow, only
1196 gdbarch_from_bfd is supposed to survive. The others will
1197 dissappear since in the future GDB will (hopefully) be truly
1198 multi-arch. However, for now we're still stuck with the concept of
1199 a single active architecture. */
1200
1201 extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
1202
1203
1204 /* Register per-architecture data-pointer.
1205
1206 Reserve space for a per-architecture data-pointer. An identifier
1207 for the reserved data-pointer is returned. That identifer should
1208 be saved in a local static variable.
1209
1210 Memory for the per-architecture data shall be allocated using
1211 gdbarch_obstack_zalloc. That memory will be deleted when the
1212 corresponding architecture object is deleted.
1213
1214 When a previously created architecture is re-selected, the
1215 per-architecture data-pointer for that previous architecture is
1216 restored. INIT() is not re-called.
1217
1218 Multiple registrarants for any architecture are allowed (and
1219 strongly encouraged). */
1220
1221 struct gdbarch_data;
1222
1223 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1224 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1225 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1226 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1227 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1228 struct gdbarch_data *data,
1229 void *pointer);
1230
1231 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1232
1233
1234 /* Set the dynamic target-system-dependent parameters (architecture,
1235 byte-order, ...) using information found in the BFD. */
1236
1237 extern void set_gdbarch_from_file (bfd *);
1238
1239
1240 /* Initialize the current architecture to the "first" one we find on
1241 our list. */
1242
1243 extern void initialize_current_architecture (void);
1244
1245 /* gdbarch trace variable */
1246 extern int gdbarch_debug;
1247
1248 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1249
1250 #endif
1251 EOF
1252 exec 1>&2
1253 #../move-if-change new-gdbarch.h gdbarch.h
1254 compare_new gdbarch.h
1255
1256
1257 #
1258 # C file
1259 #
1260
1261 exec > new-gdbarch.c
1262 copyright
1263 cat <<EOF
1264
1265 #include "defs.h"
1266 #include "arch-utils.h"
1267
1268 #include "gdbcmd.h"
1269 #include "inferior.h"
1270 #include "symcat.h"
1271
1272 #include "floatformat.h"
1273
1274 #include "gdb_assert.h"
1275 #include "gdb_string.h"
1276 #include "reggroups.h"
1277 #include "osabi.h"
1278 #include "gdb_obstack.h"
1279 #include "observer.h"
1280 #include "regcache.h"
1281
1282 /* Static function declarations */
1283
1284 static void alloc_gdbarch_data (struct gdbarch *);
1285
1286 /* Non-zero if we want to trace architecture code. */
1287
1288 #ifndef GDBARCH_DEBUG
1289 #define GDBARCH_DEBUG 0
1290 #endif
1291 int gdbarch_debug = GDBARCH_DEBUG;
1292 static void
1293 show_gdbarch_debug (struct ui_file *file, int from_tty,
1294 struct cmd_list_element *c, const char *value)
1295 {
1296 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1297 }
1298
1299 static const char *
1300 pformat (const struct floatformat **format)
1301 {
1302 if (format == NULL)
1303 return "(null)";
1304 else
1305 /* Just print out one of them - this is only for diagnostics. */
1306 return format[0]->name;
1307 }
1308
1309 static const char *
1310 pstring (const char *string)
1311 {
1312 if (string == NULL)
1313 return "(null)";
1314 return string;
1315 }
1316
1317 EOF
1318
1319 # gdbarch open the gdbarch object
1320 printf "\n"
1321 printf "/* Maintain the struct gdbarch object. */\n"
1322 printf "\n"
1323 printf "struct gdbarch\n"
1324 printf "{\n"
1325 printf " /* Has this architecture been fully initialized? */\n"
1326 printf " int initialized_p;\n"
1327 printf "\n"
1328 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1329 printf " struct obstack *obstack;\n"
1330 printf "\n"
1331 printf " /* basic architectural information. */\n"
1332 function_list | while do_read
1333 do
1334 if class_is_info_p
1335 then
1336 printf " ${returntype} ${function};\n"
1337 fi
1338 done
1339 printf "\n"
1340 printf " /* target specific vector. */\n"
1341 printf " struct gdbarch_tdep *tdep;\n"
1342 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1343 printf "\n"
1344 printf " /* per-architecture data-pointers. */\n"
1345 printf " unsigned nr_data;\n"
1346 printf " void **data;\n"
1347 printf "\n"
1348 printf " /* per-architecture swap-regions. */\n"
1349 printf " struct gdbarch_swap *swap;\n"
1350 printf "\n"
1351 cat <<EOF
1352 /* Multi-arch values.
1353
1354 When extending this structure you must:
1355
1356 Add the field below.
1357
1358 Declare set/get functions and define the corresponding
1359 macro in gdbarch.h.
1360
1361 gdbarch_alloc(): If zero/NULL is not a suitable default,
1362 initialize the new field.
1363
1364 verify_gdbarch(): Confirm that the target updated the field
1365 correctly.
1366
1367 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1368 field is dumped out
1369
1370 \`\`startup_gdbarch()'': Append an initial value to the static
1371 variable (base values on the host's c-type system).
1372
1373 get_gdbarch(): Implement the set/get functions (probably using
1374 the macro's as shortcuts).
1375
1376 */
1377
1378 EOF
1379 function_list | while do_read
1380 do
1381 if class_is_variable_p
1382 then
1383 printf " ${returntype} ${function};\n"
1384 elif class_is_function_p
1385 then
1386 printf " gdbarch_${function}_ftype *${function};\n"
1387 fi
1388 done
1389 printf "};\n"
1390
1391 # A pre-initialized vector
1392 printf "\n"
1393 printf "\n"
1394 cat <<EOF
1395 /* The default architecture uses host values (for want of a better
1396 choice). */
1397 EOF
1398 printf "\n"
1399 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1400 printf "\n"
1401 printf "struct gdbarch startup_gdbarch =\n"
1402 printf "{\n"
1403 printf " 1, /* Always initialized. */\n"
1404 printf " NULL, /* The obstack. */\n"
1405 printf " /* basic architecture information. */\n"
1406 function_list | while do_read
1407 do
1408 if class_is_info_p
1409 then
1410 printf " ${staticdefault}, /* ${function} */\n"
1411 fi
1412 done
1413 cat <<EOF
1414 /* target specific vector and its dump routine. */
1415 NULL, NULL,
1416 /*per-architecture data-pointers and swap regions. */
1417 0, NULL, NULL,
1418 /* Multi-arch values */
1419 EOF
1420 function_list | while do_read
1421 do
1422 if class_is_function_p || class_is_variable_p
1423 then
1424 printf " ${staticdefault}, /* ${function} */\n"
1425 fi
1426 done
1427 cat <<EOF
1428 /* startup_gdbarch() */
1429 };
1430
1431 struct gdbarch *target_gdbarch = &startup_gdbarch;
1432 EOF
1433
1434 # Create a new gdbarch struct
1435 cat <<EOF
1436
1437 /* Create a new \`\`struct gdbarch'' based on information provided by
1438 \`\`struct gdbarch_info''. */
1439 EOF
1440 printf "\n"
1441 cat <<EOF
1442 struct gdbarch *
1443 gdbarch_alloc (const struct gdbarch_info *info,
1444 struct gdbarch_tdep *tdep)
1445 {
1446 struct gdbarch *gdbarch;
1447
1448 /* Create an obstack for allocating all the per-architecture memory,
1449 then use that to allocate the architecture vector. */
1450 struct obstack *obstack = XMALLOC (struct obstack);
1451 obstack_init (obstack);
1452 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1453 memset (gdbarch, 0, sizeof (*gdbarch));
1454 gdbarch->obstack = obstack;
1455
1456 alloc_gdbarch_data (gdbarch);
1457
1458 gdbarch->tdep = tdep;
1459 EOF
1460 printf "\n"
1461 function_list | while do_read
1462 do
1463 if class_is_info_p
1464 then
1465 printf " gdbarch->${function} = info->${function};\n"
1466 fi
1467 done
1468 printf "\n"
1469 printf " /* Force the explicit initialization of these. */\n"
1470 function_list | while do_read
1471 do
1472 if class_is_function_p || class_is_variable_p
1473 then
1474 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1475 then
1476 printf " gdbarch->${function} = ${predefault};\n"
1477 fi
1478 fi
1479 done
1480 cat <<EOF
1481 /* gdbarch_alloc() */
1482
1483 return gdbarch;
1484 }
1485 EOF
1486
1487 # Free a gdbarch struct.
1488 printf "\n"
1489 printf "\n"
1490 cat <<EOF
1491 /* Allocate extra space using the per-architecture obstack. */
1492
1493 void *
1494 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1495 {
1496 void *data = obstack_alloc (arch->obstack, size);
1497
1498 memset (data, 0, size);
1499 return data;
1500 }
1501
1502
1503 /* Free a gdbarch struct. This should never happen in normal
1504 operation --- once you've created a gdbarch, you keep it around.
1505 However, if an architecture's init function encounters an error
1506 building the structure, it may need to clean up a partially
1507 constructed gdbarch. */
1508
1509 void
1510 gdbarch_free (struct gdbarch *arch)
1511 {
1512 struct obstack *obstack;
1513
1514 gdb_assert (arch != NULL);
1515 gdb_assert (!arch->initialized_p);
1516 obstack = arch->obstack;
1517 obstack_free (obstack, 0); /* Includes the ARCH. */
1518 xfree (obstack);
1519 }
1520 EOF
1521
1522 # verify a new architecture
1523 cat <<EOF
1524
1525
1526 /* Ensure that all values in a GDBARCH are reasonable. */
1527
1528 static void
1529 verify_gdbarch (struct gdbarch *gdbarch)
1530 {
1531 struct ui_file *log;
1532 struct cleanup *cleanups;
1533 long length;
1534 char *buf;
1535
1536 log = mem_fileopen ();
1537 cleanups = make_cleanup_ui_file_delete (log);
1538 /* fundamental */
1539 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1540 fprintf_unfiltered (log, "\n\tbyte-order");
1541 if (gdbarch->bfd_arch_info == NULL)
1542 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1543 /* Check those that need to be defined for the given multi-arch level. */
1544 EOF
1545 function_list | while do_read
1546 do
1547 if class_is_function_p || class_is_variable_p
1548 then
1549 if [ "x${invalid_p}" = "x0" ]
1550 then
1551 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1552 elif class_is_predicate_p
1553 then
1554 printf " /* Skip verify of ${function}, has predicate. */\n"
1555 # FIXME: See do_read for potential simplification
1556 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1557 then
1558 printf " if (${invalid_p})\n"
1559 printf " gdbarch->${function} = ${postdefault};\n"
1560 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1561 then
1562 printf " if (gdbarch->${function} == ${predefault})\n"
1563 printf " gdbarch->${function} = ${postdefault};\n"
1564 elif [ -n "${postdefault}" ]
1565 then
1566 printf " if (gdbarch->${function} == 0)\n"
1567 printf " gdbarch->${function} = ${postdefault};\n"
1568 elif [ -n "${invalid_p}" ]
1569 then
1570 printf " if (${invalid_p})\n"
1571 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1572 elif [ -n "${predefault}" ]
1573 then
1574 printf " if (gdbarch->${function} == ${predefault})\n"
1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1576 fi
1577 fi
1578 done
1579 cat <<EOF
1580 buf = ui_file_xstrdup (log, &length);
1581 make_cleanup (xfree, buf);
1582 if (length > 0)
1583 internal_error (__FILE__, __LINE__,
1584 _("verify_gdbarch: the following are invalid ...%s"),
1585 buf);
1586 do_cleanups (cleanups);
1587 }
1588 EOF
1589
1590 # dump the structure
1591 printf "\n"
1592 printf "\n"
1593 cat <<EOF
1594 /* Print out the details of the current architecture. */
1595
1596 void
1597 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1598 {
1599 const char *gdb_nm_file = "<not-defined>";
1600
1601 #if defined (GDB_NM_FILE)
1602 gdb_nm_file = GDB_NM_FILE;
1603 #endif
1604 fprintf_unfiltered (file,
1605 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1606 gdb_nm_file);
1607 EOF
1608 function_list | sort -t: -k 3 | while do_read
1609 do
1610 # First the predicate
1611 if class_is_predicate_p
1612 then
1613 printf " fprintf_unfiltered (file,\n"
1614 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1615 printf " gdbarch_${function}_p (gdbarch));\n"
1616 fi
1617 # Print the corresponding value.
1618 if class_is_function_p
1619 then
1620 printf " fprintf_unfiltered (file,\n"
1621 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1622 printf " host_address_to_string (gdbarch->${function}));\n"
1623 else
1624 # It is a variable
1625 case "${print}:${returntype}" in
1626 :CORE_ADDR )
1627 fmt="%s"
1628 print="core_addr_to_string_nz (gdbarch->${function})"
1629 ;;
1630 :* )
1631 fmt="%s"
1632 print="plongest (gdbarch->${function})"
1633 ;;
1634 * )
1635 fmt="%s"
1636 ;;
1637 esac
1638 printf " fprintf_unfiltered (file,\n"
1639 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1640 printf " ${print});\n"
1641 fi
1642 done
1643 cat <<EOF
1644 if (gdbarch->dump_tdep != NULL)
1645 gdbarch->dump_tdep (gdbarch, file);
1646 }
1647 EOF
1648
1649
1650 # GET/SET
1651 printf "\n"
1652 cat <<EOF
1653 struct gdbarch_tdep *
1654 gdbarch_tdep (struct gdbarch *gdbarch)
1655 {
1656 if (gdbarch_debug >= 2)
1657 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1658 return gdbarch->tdep;
1659 }
1660 EOF
1661 printf "\n"
1662 function_list | while do_read
1663 do
1664 if class_is_predicate_p
1665 then
1666 printf "\n"
1667 printf "int\n"
1668 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1669 printf "{\n"
1670 printf " gdb_assert (gdbarch != NULL);\n"
1671 printf " return ${predicate};\n"
1672 printf "}\n"
1673 fi
1674 if class_is_function_p
1675 then
1676 printf "\n"
1677 printf "${returntype}\n"
1678 if [ "x${formal}" = "xvoid" ]
1679 then
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1681 else
1682 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1683 fi
1684 printf "{\n"
1685 printf " gdb_assert (gdbarch != NULL);\n"
1686 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1687 if class_is_predicate_p && test -n "${predefault}"
1688 then
1689 # Allow a call to a function with a predicate.
1690 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1691 fi
1692 printf " if (gdbarch_debug >= 2)\n"
1693 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1694 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1695 then
1696 if class_is_multiarch_p
1697 then
1698 params="gdbarch"
1699 else
1700 params=""
1701 fi
1702 else
1703 if class_is_multiarch_p
1704 then
1705 params="gdbarch, ${actual}"
1706 else
1707 params="${actual}"
1708 fi
1709 fi
1710 if [ "x${returntype}" = "xvoid" ]
1711 then
1712 printf " gdbarch->${function} (${params});\n"
1713 else
1714 printf " return gdbarch->${function} (${params});\n"
1715 fi
1716 printf "}\n"
1717 printf "\n"
1718 printf "void\n"
1719 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1720 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1721 printf "{\n"
1722 printf " gdbarch->${function} = ${function};\n"
1723 printf "}\n"
1724 elif class_is_variable_p
1725 then
1726 printf "\n"
1727 printf "${returntype}\n"
1728 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1729 printf "{\n"
1730 printf " gdb_assert (gdbarch != NULL);\n"
1731 if [ "x${invalid_p}" = "x0" ]
1732 then
1733 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1734 elif [ -n "${invalid_p}" ]
1735 then
1736 printf " /* Check variable is valid. */\n"
1737 printf " gdb_assert (!(${invalid_p}));\n"
1738 elif [ -n "${predefault}" ]
1739 then
1740 printf " /* Check variable changed from pre-default. */\n"
1741 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1742 fi
1743 printf " if (gdbarch_debug >= 2)\n"
1744 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1745 printf " return gdbarch->${function};\n"
1746 printf "}\n"
1747 printf "\n"
1748 printf "void\n"
1749 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1750 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1751 printf "{\n"
1752 printf " gdbarch->${function} = ${function};\n"
1753 printf "}\n"
1754 elif class_is_info_p
1755 then
1756 printf "\n"
1757 printf "${returntype}\n"
1758 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1759 printf "{\n"
1760 printf " gdb_assert (gdbarch != NULL);\n"
1761 printf " if (gdbarch_debug >= 2)\n"
1762 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1763 printf " return gdbarch->${function};\n"
1764 printf "}\n"
1765 fi
1766 done
1767
1768 # All the trailing guff
1769 cat <<EOF
1770
1771
1772 /* Keep a registry of per-architecture data-pointers required by GDB
1773 modules. */
1774
1775 struct gdbarch_data
1776 {
1777 unsigned index;
1778 int init_p;
1779 gdbarch_data_pre_init_ftype *pre_init;
1780 gdbarch_data_post_init_ftype *post_init;
1781 };
1782
1783 struct gdbarch_data_registration
1784 {
1785 struct gdbarch_data *data;
1786 struct gdbarch_data_registration *next;
1787 };
1788
1789 struct gdbarch_data_registry
1790 {
1791 unsigned nr;
1792 struct gdbarch_data_registration *registrations;
1793 };
1794
1795 struct gdbarch_data_registry gdbarch_data_registry =
1796 {
1797 0, NULL,
1798 };
1799
1800 static struct gdbarch_data *
1801 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1802 gdbarch_data_post_init_ftype *post_init)
1803 {
1804 struct gdbarch_data_registration **curr;
1805
1806 /* Append the new registration. */
1807 for (curr = &gdbarch_data_registry.registrations;
1808 (*curr) != NULL;
1809 curr = &(*curr)->next);
1810 (*curr) = XMALLOC (struct gdbarch_data_registration);
1811 (*curr)->next = NULL;
1812 (*curr)->data = XMALLOC (struct gdbarch_data);
1813 (*curr)->data->index = gdbarch_data_registry.nr++;
1814 (*curr)->data->pre_init = pre_init;
1815 (*curr)->data->post_init = post_init;
1816 (*curr)->data->init_p = 1;
1817 return (*curr)->data;
1818 }
1819
1820 struct gdbarch_data *
1821 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1822 {
1823 return gdbarch_data_register (pre_init, NULL);
1824 }
1825
1826 struct gdbarch_data *
1827 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1828 {
1829 return gdbarch_data_register (NULL, post_init);
1830 }
1831
1832 /* Create/delete the gdbarch data vector. */
1833
1834 static void
1835 alloc_gdbarch_data (struct gdbarch *gdbarch)
1836 {
1837 gdb_assert (gdbarch->data == NULL);
1838 gdbarch->nr_data = gdbarch_data_registry.nr;
1839 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1840 }
1841
1842 /* Initialize the current value of the specified per-architecture
1843 data-pointer. */
1844
1845 void
1846 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1847 struct gdbarch_data *data,
1848 void *pointer)
1849 {
1850 gdb_assert (data->index < gdbarch->nr_data);
1851 gdb_assert (gdbarch->data[data->index] == NULL);
1852 gdb_assert (data->pre_init == NULL);
1853 gdbarch->data[data->index] = pointer;
1854 }
1855
1856 /* Return the current value of the specified per-architecture
1857 data-pointer. */
1858
1859 void *
1860 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1861 {
1862 gdb_assert (data->index < gdbarch->nr_data);
1863 if (gdbarch->data[data->index] == NULL)
1864 {
1865 /* The data-pointer isn't initialized, call init() to get a
1866 value. */
1867 if (data->pre_init != NULL)
1868 /* Mid architecture creation: pass just the obstack, and not
1869 the entire architecture, as that way it isn't possible for
1870 pre-init code to refer to undefined architecture
1871 fields. */
1872 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1873 else if (gdbarch->initialized_p
1874 && data->post_init != NULL)
1875 /* Post architecture creation: pass the entire architecture
1876 (as all fields are valid), but be careful to also detect
1877 recursive references. */
1878 {
1879 gdb_assert (data->init_p);
1880 data->init_p = 0;
1881 gdbarch->data[data->index] = data->post_init (gdbarch);
1882 data->init_p = 1;
1883 }
1884 else
1885 /* The architecture initialization hasn't completed - punt -
1886 hope that the caller knows what they are doing. Once
1887 deprecated_set_gdbarch_data has been initialized, this can be
1888 changed to an internal error. */
1889 return NULL;
1890 gdb_assert (gdbarch->data[data->index] != NULL);
1891 }
1892 return gdbarch->data[data->index];
1893 }
1894
1895
1896 /* Keep a registry of the architectures known by GDB. */
1897
1898 struct gdbarch_registration
1899 {
1900 enum bfd_architecture bfd_architecture;
1901 gdbarch_init_ftype *init;
1902 gdbarch_dump_tdep_ftype *dump_tdep;
1903 struct gdbarch_list *arches;
1904 struct gdbarch_registration *next;
1905 };
1906
1907 static struct gdbarch_registration *gdbarch_registry = NULL;
1908
1909 static void
1910 append_name (const char ***buf, int *nr, const char *name)
1911 {
1912 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1913 (*buf)[*nr] = name;
1914 *nr += 1;
1915 }
1916
1917 const char **
1918 gdbarch_printable_names (void)
1919 {
1920 /* Accumulate a list of names based on the registed list of
1921 architectures. */
1922 int nr_arches = 0;
1923 const char **arches = NULL;
1924 struct gdbarch_registration *rego;
1925
1926 for (rego = gdbarch_registry;
1927 rego != NULL;
1928 rego = rego->next)
1929 {
1930 const struct bfd_arch_info *ap;
1931 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1932 if (ap == NULL)
1933 internal_error (__FILE__, __LINE__,
1934 _("gdbarch_architecture_names: multi-arch unknown"));
1935 do
1936 {
1937 append_name (&arches, &nr_arches, ap->printable_name);
1938 ap = ap->next;
1939 }
1940 while (ap != NULL);
1941 }
1942 append_name (&arches, &nr_arches, NULL);
1943 return arches;
1944 }
1945
1946
1947 void
1948 gdbarch_register (enum bfd_architecture bfd_architecture,
1949 gdbarch_init_ftype *init,
1950 gdbarch_dump_tdep_ftype *dump_tdep)
1951 {
1952 struct gdbarch_registration **curr;
1953 const struct bfd_arch_info *bfd_arch_info;
1954
1955 /* Check that BFD recognizes this architecture */
1956 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1957 if (bfd_arch_info == NULL)
1958 {
1959 internal_error (__FILE__, __LINE__,
1960 _("gdbarch: Attempt to register "
1961 "unknown architecture (%d)"),
1962 bfd_architecture);
1963 }
1964 /* Check that we haven't seen this architecture before. */
1965 for (curr = &gdbarch_registry;
1966 (*curr) != NULL;
1967 curr = &(*curr)->next)
1968 {
1969 if (bfd_architecture == (*curr)->bfd_architecture)
1970 internal_error (__FILE__, __LINE__,
1971 _("gdbarch: Duplicate registration "
1972 "of architecture (%s)"),
1973 bfd_arch_info->printable_name);
1974 }
1975 /* log it */
1976 if (gdbarch_debug)
1977 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1978 bfd_arch_info->printable_name,
1979 host_address_to_string (init));
1980 /* Append it */
1981 (*curr) = XMALLOC (struct gdbarch_registration);
1982 (*curr)->bfd_architecture = bfd_architecture;
1983 (*curr)->init = init;
1984 (*curr)->dump_tdep = dump_tdep;
1985 (*curr)->arches = NULL;
1986 (*curr)->next = NULL;
1987 }
1988
1989 void
1990 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1991 gdbarch_init_ftype *init)
1992 {
1993 gdbarch_register (bfd_architecture, init, NULL);
1994 }
1995
1996
1997 /* Look for an architecture using gdbarch_info. */
1998
1999 struct gdbarch_list *
2000 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2001 const struct gdbarch_info *info)
2002 {
2003 for (; arches != NULL; arches = arches->next)
2004 {
2005 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2006 continue;
2007 if (info->byte_order != arches->gdbarch->byte_order)
2008 continue;
2009 if (info->osabi != arches->gdbarch->osabi)
2010 continue;
2011 if (info->target_desc != arches->gdbarch->target_desc)
2012 continue;
2013 return arches;
2014 }
2015 return NULL;
2016 }
2017
2018
2019 /* Find an architecture that matches the specified INFO. Create a new
2020 architecture if needed. Return that new architecture. */
2021
2022 struct gdbarch *
2023 gdbarch_find_by_info (struct gdbarch_info info)
2024 {
2025 struct gdbarch *new_gdbarch;
2026 struct gdbarch_registration *rego;
2027
2028 /* Fill in missing parts of the INFO struct using a number of
2029 sources: "set ..."; INFOabfd supplied; and the global
2030 defaults. */
2031 gdbarch_info_fill (&info);
2032
2033 /* Must have found some sort of architecture. */
2034 gdb_assert (info.bfd_arch_info != NULL);
2035
2036 if (gdbarch_debug)
2037 {
2038 fprintf_unfiltered (gdb_stdlog,
2039 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2040 (info.bfd_arch_info != NULL
2041 ? info.bfd_arch_info->printable_name
2042 : "(null)"));
2043 fprintf_unfiltered (gdb_stdlog,
2044 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2045 info.byte_order,
2046 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2047 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2048 : "default"));
2049 fprintf_unfiltered (gdb_stdlog,
2050 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2051 info.osabi, gdbarch_osabi_name (info.osabi));
2052 fprintf_unfiltered (gdb_stdlog,
2053 "gdbarch_find_by_info: info.abfd %s\n",
2054 host_address_to_string (info.abfd));
2055 fprintf_unfiltered (gdb_stdlog,
2056 "gdbarch_find_by_info: info.tdep_info %s\n",
2057 host_address_to_string (info.tdep_info));
2058 }
2059
2060 /* Find the tdep code that knows about this architecture. */
2061 for (rego = gdbarch_registry;
2062 rego != NULL;
2063 rego = rego->next)
2064 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2065 break;
2066 if (rego == NULL)
2067 {
2068 if (gdbarch_debug)
2069 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2070 "No matching architecture\n");
2071 return 0;
2072 }
2073
2074 /* Ask the tdep code for an architecture that matches "info". */
2075 new_gdbarch = rego->init (info, rego->arches);
2076
2077 /* Did the tdep code like it? No. Reject the change and revert to
2078 the old architecture. */
2079 if (new_gdbarch == NULL)
2080 {
2081 if (gdbarch_debug)
2082 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2083 "Target rejected architecture\n");
2084 return NULL;
2085 }
2086
2087 /* Is this a pre-existing architecture (as determined by already
2088 being initialized)? Move it to the front of the architecture
2089 list (keeping the list sorted Most Recently Used). */
2090 if (new_gdbarch->initialized_p)
2091 {
2092 struct gdbarch_list **list;
2093 struct gdbarch_list *this;
2094 if (gdbarch_debug)
2095 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2096 "Previous architecture %s (%s) selected\n",
2097 host_address_to_string (new_gdbarch),
2098 new_gdbarch->bfd_arch_info->printable_name);
2099 /* Find the existing arch in the list. */
2100 for (list = &rego->arches;
2101 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2102 list = &(*list)->next);
2103 /* It had better be in the list of architectures. */
2104 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2105 /* Unlink THIS. */
2106 this = (*list);
2107 (*list) = this->next;
2108 /* Insert THIS at the front. */
2109 this->next = rego->arches;
2110 rego->arches = this;
2111 /* Return it. */
2112 return new_gdbarch;
2113 }
2114
2115 /* It's a new architecture. */
2116 if (gdbarch_debug)
2117 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2118 "New architecture %s (%s) selected\n",
2119 host_address_to_string (new_gdbarch),
2120 new_gdbarch->bfd_arch_info->printable_name);
2121
2122 /* Insert the new architecture into the front of the architecture
2123 list (keep the list sorted Most Recently Used). */
2124 {
2125 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2126 this->next = rego->arches;
2127 this->gdbarch = new_gdbarch;
2128 rego->arches = this;
2129 }
2130
2131 /* Check that the newly installed architecture is valid. Plug in
2132 any post init values. */
2133 new_gdbarch->dump_tdep = rego->dump_tdep;
2134 verify_gdbarch (new_gdbarch);
2135 new_gdbarch->initialized_p = 1;
2136
2137 if (gdbarch_debug)
2138 gdbarch_dump (new_gdbarch, gdb_stdlog);
2139
2140 return new_gdbarch;
2141 }
2142
2143 /* Make the specified architecture current. */
2144
2145 void
2146 deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2147 {
2148 gdb_assert (new_gdbarch != NULL);
2149 gdb_assert (new_gdbarch->initialized_p);
2150 target_gdbarch = new_gdbarch;
2151 observer_notify_architecture_changed (new_gdbarch);
2152 registers_changed ();
2153 }
2154
2155 extern void _initialize_gdbarch (void);
2156
2157 void
2158 _initialize_gdbarch (void)
2159 {
2160 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2161 Set architecture debugging."), _("\\
2162 Show architecture debugging."), _("\\
2163 When non-zero, architecture debugging is enabled."),
2164 NULL,
2165 show_gdbarch_debug,
2166 &setdebuglist, &showdebuglist);
2167 }
2168 EOF
2169
2170 # close things off
2171 exec 1>&2
2172 #../move-if-change new-gdbarch.c gdbarch.c
2173 compare_new gdbarch.c
This page took 0.082753 seconds and 4 git commands to generate.